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ABSTRACT

Accommodating human preferences is essential for creating Al agents that deliver
personalized and effective interactions. Recent work has shown the potential for
LLMs to infer preferences from user interactions, but they often produce broad
and generic preferences, failing to capture the unique and individualized nature
of human preferences. This paper introduces PREDICT, a method designed to
enhance the precision and adaptability of inferring preferences. PREDICT incor-
porates three key elements: (1) iterative refinement of inferred preferences, (2)
decomposition of preferences into constituent components, and (3) validation of
preferences across multiple trajectories. We evaluate PREDICT on two distinct
environments: a gridworld setting and a new text-domain environment (PLUME).
PREDICT more accurately infers nuanced human preferences improving over ex-
isting baselines by 66.2% (gridworld environment) and 41.0% (PLUME).

1 INTRODUCTION

A fundamental component of effective interaction is understanding the preferences of those with
whom we engage. Successfully recognizing and accommodating these preferences leads to more
pleasant and efficient experiences (Felfernig et al.,[2006). While such preferences can be verbalized
explicitly, they can also be inferred implicitly from past interactions. Ideally, an Al agent should be
able to both use explicit feedback and learn from implicit cues. As human directions are commonly
expressed in natural language, creating a mapping from implicit cues to natural language could
enable a natural-language conditioned agent to seamlessly integrate both implicitly and explicitly
defined preferences. This work focuses on this gap by proposing a method to infer natural language
preferences from a user’s actions.

Large Language Models (LLMs) possess strong priors about human behavior (Brown et al., [2020).
Previous work has demonstrated that these priors can provide the basis to infer user preferences in
domains such as robotic manipulation (Peng et al.,|2024) and collaborative authoring (Gao et al.,
2024). However, current methods infer preferences without reflection nor refinement, resulting in
generic outcomes that limit the models’ adaptability toward the uniqueness and nuance of an indi-
vidual’s preferences. We propose PREDICT (Preference Reasoning by Evaluating Decomposed
preferences Inferred from Counterfactual Trajectories), which is comprised of three algorithmic
contributions to enhance the precision and efficiency of preference inference: (1) iteratively re-
fining inferred preferences until the induced trajectory closely aligns with the user’s example, (2)
breaking down (or decomposing) inferred preferences into constituent components, and (3) validat-
ing the inferred preferences across multiple user examples. The preference inferred by predict are
used to condition the behavior or generations of an Al assistant.

We systematically demonstrate the benefits of PREDICT’s contributions on two environments: a
gridworld environment, where an agent learns to pick up objects based on a user’s preferences
over colors and shapes, and PLUME, a text-based environment where an agent learns to write text
that aligns with a user’s preferences. PLUME is a new environment and is a contribution of this
paper. PREDICT demonstrates improvements of 66.2% over behavioral cloning in the gridworld
environment, and 41.0% over CIPHER (Gao et al) [2024) in PLUME. In PLUME, we augment
PREDICT with in-context learning and achieve a further 17.9% improvement. The innovations
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outlined in this paper are a key step toward more personalized and effective interactions between Al
agents and humans.

2 RELATED WORK

Natural Language Conditioned Agents Language is the most natural way for humans to commu-
nicate and express themselves. As a result, considerable research has focused on natural language-
conditioned agents across a variety of domains. BabyAl (Chevalier-Boisvert et al.| | 2019)) introduces
an environment for natural language conditioned gridworld agents. Further advancements, such as
gSCAN 2021), investigate how gridworld agents handle compositionality, while Zhong
et al.| (2020) explore the ability of agents to learn environment dynamics from text. Misra et al.
2018)) proposes LingUNet as way to fuse language and vision in a simulated 3D world. [Blukis et al.
2018 2020) extend this for continuous drone control. In room-to-room navigation, works such as
CLIPNav (Du et al. and Embodied CLIP (Khandelwal et al} [2022)) use CLIP embeddings
(Radford et al., 2021)) to condition agents on visual-language aligned representations.

In robotic arm manipulation, Lynch & Sermanet| (2021) condition trajectories on both goal images
and natural language, demonstrating successful task completion with limited language labelling.
Jang et al. builds upon this and use videos as goal contexts. For pick-and-place tasks,
et al.| (2022) uses a CLIP-based two-stream architecture, and [Mees et al|| (2022; [2023)) demonstrate

long-horizon task completion via hierarchical approaches.

In natural language generation, prompting (Radford et all, 2019) and in-context learning
2020) have proven effective methods for controlling the generation of text, especially in a

preference-driven context (Sun et al.} 2023} 2024).

Personalization Some prior approaches of adapting models to user preferences involve RLHF
ennon et al.} [2020) and fine-tuning (Tan et al., 2024} [Zhuang et all, [2024), which can be compute-
intensive and inaccessible to some practitioners without the budget or scale of needed data. With
the rise of LLMs with strong instruction-following capabilities, methods like prompting to adapt
a user’s profile have become more popular (Shen et al.| 2024} [Salemi et al., 2024), however these
approaches often rely on explicit feedback provided from the user (Lin et al., [2024). PREDICT
circumvents these issues by learning from implicit user signals, breaking down preferences into
sub-components to generate tailored user-preferences, all without the need of fine-tuning.

Preference-Conditioned Agents Combined preference inference and conditioning has recently
gained traction, with the following two works being most aligned with our approach.

(2024) explores preference learning in quadrupedal mobile manipulation using an object
detection module to map image observations to text. An LLM then infers preferences by comparing

pairs of trajectories. These preferences are in turn used to improve task alignment with user prefer-
ences. (2024) propose the PRELUDE environment, where an LLM learns writing style
preferences in a collaborative authoring task. We discuss this work in detail in Section[4.3]

These methods rely on a single inference step, whereas our approach uses iterative refinement for
more precise preferences, and validation across several user examples for robustness.

3 PREDICT

We now outline PREDICT’s key contributions to preference inference. Whenever a user provides a
demonstration for how to complete a task the user would like their Al assistant to be able to com-
plete, PREDICT improves the inferred preferences using: (1) iterative refinement and (2) preference
validation against relevant user examples. Iterative refinement consists of two sub-steps: (i) update
inferred preferences through candidate trajectories, and (ii) breaking down the inferred preferences
into constituent components. Iterative refinement is halted when either the maximum number of
iterative refinement steps is reached or no updates are made in sub-step (i). The inferred preferences
are then used to condition and align the behaviors or generations of an Al assistant. A visualization
of PREDICT along with summaries of the prompts used for each of the steps above are provided
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Figure 1: Overview of PREDICT on PLUME’s summary writing task. The user provides a writ-
ing demonstration, which PREDICT can learn from. PREDICT observes the demonstration, then
executes an iterative refinement (preference update and breakdown) and a validation step. Iterative
refinement updates the set of inferred references by generating a new candidate solution using the
currently inferred preference set then prompting an LLM to compare the candidate solution to the
user’s demonstration and update the preference set to more closely match the user’s writing. An
LLM is then prompted to break it into a set of component parts. Iterative refinement continues un-
til a candidate solution matches the demonstration or a maximum number of iterations is reached.
Once the preferences are updated, each preference component is validated with LLM-as-a-Judge to
evaluate how well the component aligns with other user demonstrations.

in Fig. [T} and the algorithm is provided in Appendix [} The complete prompts are shown in Ap-
pendix (Flg and Elﬂ

3.1 ITERATIVE REFINEMENT

PREDICT conditions the Al assistant (e.g. an LLM) on the inferred user preferences to generate a
candidate solution (e.g. summary, email, or trajectory) for a given task (e.g. summarize an article).
Example candidate solutions (e.g. haikus on the top and trajectories on the bottom) are provided in
Fig.[[Jon the far left. If no prior user demonstrations have been seen, the Al assistant is conditioned
on an empty preference set.

The candidate solution is then compared to the user’s demonstration. If the candidate trajectory
exactly matches the user’s demonstration then the current inferred preferences are considered suffi-
cient to explain the user’s behavior and no further learning is required. This means all subsequent
steps in the PREDICT algorithm are skipped.

However, if the assistant’s solution differs, we prompt an LLM (prompt outline: Fig. [I] “Iterative
Refinement” [update here and in figure to “Preference Update™]) to update the inferred preferences
so that they explain the difference between the candidate solution and the user’s demonstration.
Examples of inferred preferences can be seen in Fig. [I] “Updated Preferences” [need to add this
label to figure].

PREDICT then breaks down the updated preferences by prompting an LLM to break the up-
dated preferences into their components parts (prompt outline: Fig. [[] “Breakdown™). Examples of
LLM-identified preference components are provided in Fig. [T]“Preference Components”. Breaking
down the preferences provides several advantages. The components provide greater coverage of
the preference space with less data, e.g., three components can be combined to cover nine distinct

!code coming soon!
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preference sets. Further, preference components make it easier to refine preference sets by adding,
removing, or modifying single components rather than modifying long-form preference descriptions
(see Fig.[T]“Updated Preferences” for examples). Lastly, preference components remove ambiguity
when validating preferences. If we validate a compound preference and only a single component is
incorrect, then the entire compound preference including any useful components may be discarded.

PREDICT then generates a new candidate trajectory by conditioning the Al assistant on the updated
preference components. We repeat the process of generating Al assistant solutions, comparing to the
user demonstrations, updating the inferred preferences, and breaking the updated preferences into
components until the candidate solutions exactly match the user’s demonstrations, or a maximum
number of iteration steps is reached. In all experiments, we use a maximum of three preference
update steps per user demonstration.

3.2 VALIDATING PREFERENCES

PREDICT validates each preference component in the inferred preference set against each of the
most relevant user demonstrations by prompting an LLM to determine whether the demonstration
strongly confirms, somewhat confirms, is neutral toward, somewhat contradicts, or strongly contra-
dicts the preference (prompt outline: Fig. [T]“Validation™). Each answer is mapped to a score from
+2 (strongly confirms) to -2 (strongly contradicts). If the mean score across all demonstrations is
below a manually specified threshold, the preference is removed. Examples of retained and dis-
carded preference components are in Fig. [T] “Validated Preferences”. To avoid discarding correct,
but rare, preferences, a preference component must be validated against a minimum of two user
demonstrations before it can be removed. In our experiments, we use a validation threshold of 0.25.

Preference Aggregation Following CIPHER |Gao et al.|(2024), before solving a new task, PRE-
DICT retrieves up to five previous, relevant examples. The preferences inferred for each example
are aggregated, and an LLM is prompted to remove redundancy and condense the combined set of
preferences. The condensed preference set is then used to complete the task.

4 EXPERIMENTAL SET UP

All of our experiments consist of three phases per task. First, the user completes the task using
their true preferences. Second, the agent attempts to complete the task using its currently inferred
preferences (if any). Finally, the agent compares its attempt at task completion with the user’s
example to infer new preferences to use going forward.

All agents are evaluated along two dimensions: preference quality that measures similarity between
the true and inferred preference sets, and action quality that evaluates an agent’s task completion
against the user’s true preferences. Note that the first task completion will always be conditioned on
an empty preference set and that we evaluate the preference set used to solve the task. Thus, the first
step is equivalent across all agents, and we omit its results.

The agent learns from 4 — 10 users (depending on the task) with five examples per user, and perfor-
mance is reported as the mean across all examples, users, and across five seeds (standard deviation
is reported over these seeds). The user preferences for the assistive writing tasks are in Appendix [F]
(Table [3)), whereas the PICK UP task has a rule-based user preference construction procedure de-
scribed in Section[d.2} For all experiments, we use GPT-40 as the inferring agent except when we
compare LL.Ms of different sizes and quality (shown in Fig. El For the assistive writing tasks,
GPT-4o is used as a synthetic human. The synthetic human prompts can be found in Appendix [H.2}

4.1 RESEARCH QUESTIONS

We pose the following research questions:

RQ1: Does iteratively creating candidate comparison trajectories improve the quality of in-
ferred preferences? To explore this, we consider three variants of PREDICT: (1) PREDICTqyc
(INC=1 inference step, no candidate) uses no example comparisons and prompts the LLM a single

Determined by MMLU performance: llama8b (68.4) and 70b (82);|GPT-40-mini (82) and GPT-40 (88.7)
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step to infer the preference given only the user’s example; PREDICT ¢ (1SC=1 inference step,
single candidate) is PREDICT with a single inference step and a single candidate trajectory; and (3)
PREDICTsc (X3 inference steps, single candidate) is PREDICT with a single candidate used for
all inference steps. Comparing PREDICTnc and PREDICTgc measures the effect of comparing
candidate examples to the user’s examples when inferring preferences. The differences between
the PREDICT;sc and PREDICTgc variants quantifies the role of increasing the number of infer-
ence steps, while comparing PREDICTgc and the full PREDICT algorithm clarifies the effects of
explicitly providing the LLM with the outcomes of its predictions.

RQ2: Does breaking down preferences into components improve the performance and consis-
tency of the preference inferring methods? To answer this question we compare the full PRE-
DICT algorithm with a variant that does not breakdown preferences PREDICTcp (CP=compound
preferences). We hypothesize that PREDICT improves performance and reduces variance between
seeds relative to PREDICTcp.

RQ3: Does filtering preferences by validating them across multiple examples lead to fewer
errors? To answer this question, we evaluate a variant, PREDICTyy (NV=no validation), that does
not validate preferences.

4.2 ENVIRONMENT 1: PICK UP

We develop the PICK UP (Policy Imitation by Comprehending Key User Preferences) task in a grid-
world environment populated with various objects of different shapes and colors. See Appendix [A]
Fig.[]for an overview of PREDICT applied to the PICK UP task. Users in the environment navigate
to pick up objects with attributes (i.e., shape/color) they like, while avoiding objects with attributes
they dislike, before navigating to an end goal location. When an object is collected, a reward of
+1 is awarded for each liked attribute and a reward of -1 is awarded for each disliked attribute. For
example, an object whose shape and color are both liked would have a reward of +2, while an object
whose shape is liked and color disliked has a reward of 0. Note the reward function is used only for
evaluation purposes and does not play a role in preference learning.

For PICK UP, we automatically transform trajectories into a structured language description. Fig.[3]
(Appendix [D) shows a visual and natural language representation of the environment and its trajec-
tories. The objective of a preference inferring agent in this environment is to be able to collect the
same objects that the user’s would. To accomplish this, they must first identify the user’s likes and
dislikes, and then navigate the world to collect the appropriate objects. We include the presence of
neutral objects in the environment, which adds ambiguity to the system as neutral objects are only
picked up if they are along the shortest path between desirable objects or the goal, which is not iden-
tifiable from the text representation of the user’s example. Thus, from the perspective of an inferring
LLM, the environment is only partially observable. This design is intentional; motion is inherently
difficult to encode in language, so many tasks will be partially observable to an LLM. Due to the
partial observability, we require three validations to discard a preference in PICK UP.

In this environment, each task instance is defined by a user identifier and an environment lay-
out containing seven random objects placed at random locations in a 5x5 grid. The user identi-
fier maps to a unique and private set of preferences. Each user’s preference set contains exactly
one liked shape, one liked color, one disliked shape, and one disliked color, however this infor-
mation is not provided to the inferring agent. These are all specified in the structured format:
<likes/dislikes><attribute>. Users are neutral toward all the remaining attributes.
The well-defined structure of the preferences in PICK UP allows us to map a preference set to a set
of positive reward objects and negative reward objects. We then use this mapping to condition an
A* agent that collects all the positive objects while avoiding negative objects.

The preference structure also enables direct comparison of preferences. To this end, we report
the Intersection over Union (IoU) between the inferred and true preference sets as the preference
quality metric. A downside of the rigid preference structure is that it requires us to decompose
preferences, which prevents us from addressing RQ2 in this environment. For the action quality
metric, we measure the camulative reward, or return, of the agent’s trajectories. Each liked/disliked
attribute (shape or color) in the set of collected objects adds +1/-1 to the score respectively. For all
experiments, we use 10 distinct users (N = 10).
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4.3 ENVIRONMENT 2: ASSISTIVE WRITING

PRELUDE: Gao et al.|(2024) propose PRELUDE (PREference Learning from User’s Direct Edits)
as an environment to evaluate preference inferring algorithms. PRELUDE consists of two tasks:
summarizing articles and writing emails from notes. Each task has a set of users with each user
having a distinct set of preferences. Each user additionally writes their summaries/emails on differ-
ent topics, with each topic corresponding to a different source of articles/notes (e.g., chat forums,
paper abstracts, encyclopedia articles). The summarization and email writing tasks have five and
four users respectively.

For each task instance, the agent must write a summary or email using the article / notes and any
inferred preferences it has learned up to that point. The user is then asked if the agent’s output is
satisfactory based on their true preferences. If the agent’s output is satisfactory, the cost to the agent
is zero. If the agent’s output is not satisfactory, the user edits the agent’s output according to their
preferences, and a cost based on the extent of the edit is incurred.

PLUME: The objective of the PRELUDE environments is to evaluate how well a model infers a
user’s preferences and the cost of incorrectly inferred preferences. Therefore, it is vital that the
measure of inferred preference quality is highly correlated with the cost function. We analyze PRE-
LUDE (see below) and find that the chosen metrics, the editing process, and the sets of preferences
used are key limitations of the environment, which contribute to a weak correlation between the
quality of the preferences and the quality of the generated writing.

For these reasons, we develop a new environment based on same underlying tasks as PRELUDE,
which we call PLUME: Preference Learning from User Memos and Emails. As in|Gao et al.|(2024),
PLUME uses GPT-40 as a proxy-human to be our user. In the following sections, we provide a
detailed description of each limitation and how it is addressed by PLUME. An example of how
PREDICT is applied to PLUME’s summary task can be seen in Fig.

Metric Correlation We begin by investigating the magnitude of the correlation between the pro-
posed preference quality metric — preference set accuracyﬂ— and action quality metric — Leven-
shtein distance (Levenshtein,|1966) — used in PRELUDE (Gao et al.,|[2024). To find this correlation,
for a given context, we generate the powerset of the preference set. We then create a population of
agents, each conditioned on one of the subsets from the powerset. These agents and a user com-
plete five instances of the task within their context, on which we measure the preference and action
quality. Intuitively, agents conditioned on larger subsets of the true preference set have a higher pref-
erence quality score and their generation quality should reflect this. We repeat across every context
and both tasks, and calculate the Pearson correlation between every preference quality metric and
every action quality metric. The results are shown in Appendix Table [ (for metric correlation
by task).

The results, reported in the first column of Appendix [E.3| show a weak correlation (< 0.5) be-
tween the PRELUDE’s preference accuracy and Levenshtein distance. This can be explained by the
inherent limitations with the metrics. The accuracy metric relies on the “highest” BERTScore, and
therefore cannot differentiate partially correct preferences from perfectly correct preferences. More-
over, the Levenshtein distance can vary substantially between generations, leading to a wide range
of possible costs even when the exact same preferences are used for the generation (an illustrative
example of this is shown in Appendix [G.T). |[Gao et al.| (2024) allude to this fact as a motivation for
their two-stage editing process, and when we compare the results to a version of PRELUDE where
the user always generates summaries/emails directly from the article/notes instead of editing the
agent’s summary/email (PRELUDENgqit), we see a further drop in correlation. However, we pro-
pose addressing this issue using improved metrics, as the editing procedure itself imposes notable
limitations, which are discussed below.

To this end, we investigate and compare several new preference and generation-quality metrics.
For the preference quality metric, we test using the BERTScore (Zhang™* et al., 2020) directly. For
the action quality metric, we additionally test length-normalized Levenshtein distance (In-L-dist),
BERTScore, and an LLM-as-a-Judge (Zheng et al.,|2023) metric inspired from the editing procedure
in PRELUDE. The LL.M-as-a-Judge evaluation is a per preference-component match (PPCM) that

3a preference is correct if its BERTScore (Zhang* et al.,2020) with true preference set is greater than the
BERTScore with any other preference set.
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asks an LLM how much a component of a preference is exhibited in a piece of writing on a five point
scale from “clearly contradicts” (score of -2) to “clearly exhibits” (score of +2). This is repeated for
each component of the true preference set, and we compute the mean score across components. The
full prompts used for both of these metrics are shown in Appendix (Fig.[T3).

The results in Table [] (Appendix [E.3)) show that BERTScore has a stronger correlation than PRE-
LUDE’s accuracy metric with every writing generation metric compared. Looking at action/gener-
ation quality metrics, Levenshtein distance consistently has the weakest correlation, while PPCM
has the strongest. Notably, the pairing of BERTScore (preference quality) and PPCM (generation
quality) provides the highest correlation in every situation and are the primary metrics we report in
PLUME.

The Editing Procedure Asking whether a generation matches the user’s preferences is inherently
ambiguous in cases where they only partially meet the user’s preferences. Even if this ambiguity is
resolved, generations that are not selected for editing incur no cost, which removes any incentive to
further improve the quality of the learned preferences. This limits the environments ability to differ-
entiate a wide range of methods. Lastly, the editing process unduly influences the user’s writing, as
demonstrated in Appendix

In place of the editing, PLUME has the agent and user independently solve the task at every step.
This removes any ambiguity on whether a generation should be edited and incur a cost, provides a
smoother curve along which to evaluate different methods, prevents agents from influencing users,
and enables the agent to learn from every user example.

Preference Sets We observe the following limitations with PRELUDE’s preference sets: (1) certain
preference components have little impact on the generated text, due to unclear definitions (e.g.,
skillful foreshadowing) or similarity to default LLM behavior (e.g., clear); (2) Some
preferences are repeated across several contexts (e.g., short,brief, concise appear in four of
five summarization contexts); and (3) There is a large variance in preference set complexities (e.g.,
targeted to young children, storytelling, short sentences, playful
language, interactive, positive vs. question answering style).

To address these, PLUME reworks the preference sets with the following criteria: (1) each prefer-
ence set contains an equal number of components, (2) within each task, preference sets should have
a shared structure, (3) as much as possible, preferences should be orthogonal to each other, avoid-
ing overlapping preferences (e.g., write in the style of old-timey radio and use
archaic language) or contradictory preferences (e.g., use emojis and use a formal
tone). (4) Preferences should not follow an LLMs default biases — i.e., generating an output con-
ditioned on no preference should lead to a low score. A full list of the preferences used in PRELUDE
and PLUME is shown in Appendix [F] (Table [5). We encourage future researchers to use PLUME
with different preference sets to adjust difficulty or examine specific concepts.

Knowledge of Contexts Instead of treating each article/notes topic as a distinct user, PRELUDE
introduces the additional challenge of context awareness where a single user has different prefer-
ences based on the topic of the article/notes. Therefore, prior to writing a summary or an email the
agent must first identify the correct context. However, this is orthogonal to the challenge of inferring
preferences from user examples. As this work focuses on how to infer preferences, the version of
PLUME used in all experiments assume a distinct known user per topic. We note that PLUME is
easily adaptable to use hidden contexts if desired.

4.4 BASELINES

In addition to the PREDICT baselines outlined Section[d.1] we implement the following models.

In PICK UP, we implement behavioral cloning (BC) (Pomerleau, |1988) that is trained using a cross-
entropy loss on the related user examples seen to date. Due to the low-data regime, we first pre-train
the BC agent on a dataset (1000 trajectories, ~ 12, 000 state-action pairs) of distinct user examples
whose preference sets differ from those found in the gridworld environment. During evaluation,
when the BC agent sees a new user example, it adds the example to its dataset of user specific
examples. It then creates a clone of its pre-trained agent and fine-tunes a version of the agent on
examples from the same user, early stopping on a single user example reserved for validation.
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PICK UP Summarization Emails

Method IoU Return BScore PPCM BScore PPCM

| No Learning Baselines |
NP 0.0040.00 —0.0740.03 | —=0.5040.00 —1.4940.15 | —0.50+0.00 —1.0710.17
Oracle 1.00+0.00 2.06+0.19 1.0040.00 1.6849.07 1.00+0.00 1.84.40.04

| Learning Baselines |
BC 0.0040.00 —0.0140.10 - - - -
ICL - - *0.50:|:0,00 1-07:|:0_22 *0.50;‘;0_00 1.11:‘:0.17
Cl ; ; 0124001  —0.584042 | 0124001  —0.0d40 20

] PREDICT Ablations |
Base 0.41:|:0_07 1.22:‘:0.15 0.18:‘:0,02 0~38:|:0_14 0.15:|:0_02 0'90:t0.16
ISC 0.4340.07 1184020 | 0.2940.01 0494013 | 0.2440.05 0.9540.12
SC 0.4540.02 1.2419.27 0.2540.01 0.6840.17 0.2249.02 1.0710.27
CP - - 0.1540.02 0.8140.13 0.1340.02 1.0949.98
NV 0.4840.06 1.2510.17 0.2640.03 0.7340.18 0.2040.01 0.9540.15
Full 0.4940.06 1.4040.15 0.2740.03 0.784+0.06 0.2340.02 1.1040.10

+ICL - - 0.26:‘:0.02 1.32:{:0.20 0-20i0.02 1.64:|:0_14

Table 1: PREDICT Iterative Refinement Steps = 3Main Results. PREDICT’s ability to infer the
correct preference set and quality of generated behaviors. Results are reported as the mean and
standard deviation across five seeds. For all metrics, a higher score is better. Acronym Glossary:
IoU (Intersection over Union), BScore (BERTScore), PPCM (per preference-component match),
NP (No-Preferences), BC (behavioral cloning), ICL (in-context learning), C1/C5 (CIPHER-1/5),
INC (1-step No Candidate), 1SC (1-step Single Candidate), SC (Single Candidate), CP (Compound
Preferences), NV (No Validation).

In PLUME, we implement CIPHER-1 and CIPHER-5 (Gao et al.,[2024), and an in-context learning
(ICL) agent using previously observed article/notes and resulting user summary/email as examples.

We then implement three additional baselines across both environments. An agent that solves
the task with no preferences (NP), providing a lower-bound of performance. An oracle agent
that receives access to the user’s true preference, providing an upper bound of performance, and
PREDICTg,, which is a variation of PREDICT that uses only a single candidate trajectory, a sin-
gle inference step, compound preferences instead of a set of preference components, and uses no
validation. We note that PREDICTg,. is conceptually equivalent to CIPHER, however it uses the
prompts from PREDICT, which differ from those in CIPHER.

5 RESULTS AND DISCUSSION

We present our main results comparing baselines and various PREDICT ablations in Table[T} Results
on PRELUDE can be found in Appendix To compare tasks on action quality with metrics
on different scales, we use a percentile score, where 0% corresponds to the no-preference (NP)
baseline and 100% to the oracle preference baseline. All percentage improvements are reported as
the difference in scores on this scale. Overall, PREDICTg; outperforms PREDICTg,s by 9.3%,
BC by 66.2%, and CIPHER by 41.0%.

RQ1. In our first question, we set out to verify whether generating iterative candidate trajectories is
beneficial to inferring preferences. Comparing PREDICT to its ablated versions on the action/gen-
eration quality metric (PPCM), shows each component of the iterative refinement process improves
performance. Comparing PREDICT with no comparison trajectory — PREDICT ¢ — to PRE-
DICT with a single candidate comparison trajectory — PREDICTsc — we can see providing com-
parison trajectories is beneficial when inferring preferences (2.3% mean improvement). This result
supports the algorithmic decisions in (Gao et al.,[2024; |Peng et al., 2024)). Allowing for multiple re-
finement steps provides a further increase in performance (Table [lf PREDICT;gc vs. PREDICTgc,
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Figure 2: Mean and standard deviation (5 seeds) performance for CIPHER-1, in-context learning
(ICL), PREDICT, Oracle, and no preferences (NPC) for different preference-inferring LLMs.

4.3% mean improvement). This can be explained by the LLM having more chances to infer correct
preferences. Lastly, when comparing PREDICTgsc to PREDICTE,; we see another 3.9% improve-
ment. This highlights the benefits of updating candidates after each inference step using the newly
inferred preferences. In all, iterative refinement provides a mean improvement of 9.0%.

RQ2. We next examine the effect of splitting compound preferences down into their constituent
components by comparing PREDICT to PREDICT¢p (compound preferences) (Table[T) on PLUME.
Action/generation quality (PPCM) does not show a clear trend, with both models achieving simi-
lar scores on both tasks. However the full version of PREDICT does achieve a higher preference
BERTScore on both tasks; in fact PREDICT¢p produces one of the lowest BERTScores. More inter-
esting however, is the variance: using compound preferences leads to high PPCM variance, whereas
the full version of PREDICT is the most consistent performer (lowest variance). We hypothesize that
splitting preferences into components enforces structure and benefits consistency, but it also prevents
the LLM from using the more complex, multi-faceted preferences that PREDICTcp can utilize. On
the other hand, when PREDICTcp makes an error, the error is much more difficult to isolate and
rectify. This can lead to PREDICTcp retaining incorrect preferences or discarding everything. More
work is required to investigate and potentially mitigate this trade-off.

RQ3. We investigate the benefit of validating preferences by comparing PREDICT to PREDICTyy
(no validation). Here, we see a modest but consistent action quality benefit of 7.0%, 1.6%, and 5.2%
for the PICK UP, email writing, and summarization tasks respectively when using validation.

Discussion. Fig. [2] shows that the performance of PREDICT scales better with the quality of the
underlying LLM (e.g., Llama3 70B-instruct vs. GPT-40), compared to every other methods. Addi-
tionally, as expected, performance increases as more user examples are seen (Fig.[6), with the largest
performance gain from the first example.

While BERTScore is a more representative metric than the accuracy used in |Gao et al.| (2024),
it does not fully capture the impact of the inferred preferences: preferences can be written very
differently, but lead to similar outcomes (e.g., use hashtags for emphasis versuswrite
in the style of tweet). For this reason, we focus primarily on action quality in this paper,
but encourage future work to investigate alternatives metrics that better capture preference intent.

While PREDICT outperforms all preference-conditioned and no-learning baselines, ICL and PRE-
DICT perform equally well on email writing with ICL outperforming PREDICT on summariza-
tion. All summarization tasks have a formatting/structure preference (e.g., write in the
style of a tweet), which are difficult to capture using natural language preference descrip-
tions. PREDICT often tries to capture these preferences using multiple relevant, but imper-
fect preferences (e.g., use hashtags for emphasis, include emojis to create
a playful tone, employ attention grabbing phrasing). We further investigate
the performance gap by comparing the performance across preference sets (Fig. [3) and find that
ICL excels on sets with the strongest structural preferences (e.g., write in the style of
a screenplay). In contrast, PREDICT outperforms ICL on the preference sets requiring
a more nuanced understanding of tone (e.g., be intensely emotional or be sharply
critical). While ICL generally performs well, preference conditioning has several advantages:
(1) preferences are easier to interact with than a dataset of in-context examples, (2) at inference
time, it requires 10x fewer tokens, and (3) it can benefit a wider range of tasks, e.g., human-agent
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Figure 3: PPCM mean and standard deviation (5 seeds) for PREDICT, CIPHER-1, and in-context
learning (ICL) by Email (top) and Summary (bottom) sub-task type. GPT-40 is the LLM.

collaboration (Liu et al.} 2024)), sample efficient imitation/reinforcement learning, or generating per-
sonalized preference pairs for RLAIF (Sun et al., [2024)).

As the two methods seem to have complementary benefits, we combine the two methods
(PREDICTgyj41cL), and achieve a performance gain of 17.9% and 13.1% over PREDICT and ICL
respectively. PREDICTgy41cL outperforms previous state-of-the-art CIPHER by 58.8%.

5.1 LIMITATIONS AND FUTURE WORK

While the methods proposed in this work provide a number of significant improvements, their limi-
tations and challenges provide interesting avenues for future work.

First, in this paper we focus on learning with the fewest user examples possible. However another
aspect of efficiency is the total number of prompt and generated tokens used, and adding more
refinement and preference validation steps increases the number of tokens used. In our experiments,
PREDICTgy; used (5.87x / 6.07x) more (prompt / generated) tokens on average than PREDICTgg.
Given the monetary and environmental cost of LLMs, reducing the number of tokens while retaining
performance is an important area for improvement.

Another limitation is the requirement to represent all trajectories in language. While this is possible
for the environments used here, it may not be possible in all domains (e.g., any environment requiring
an understanding of subtle movement patterns). Future work is needed to investigate the use of
multimodal foundations models, such as VLMs, to address this limitation.

Lastly, a full-scale human trial would provide a greater understanding of the benefits and limitations
of the proposed method. We look forward to investigating this more closely in future work.

Ethical Concerns The proposed method allows for greater personalization of assistive agents. How-
ever inferring a user’s preferences could be seen as an invasion of privacy. With this in mind, these
methods should be applied only with explicit consent from human users.

6 CONCLUSION

In this paper, we propose three novel contributions to guide an LLM to better infer preferences
from user examples and introduce a new environment for evaluation. First, we iteratively refine
preferences by using a preference conditioned agent to test inferred preferences. Second, we break
preferences down into their constituent components. Third, we validate preferences against other
user examples. We demonstrate on both navigation and writing environments that the proposed
method improves performance by as much as 66.2% and 58.8%.
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A PREDICT + PICK UP OVERVIEW
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Figure 4: PREDICT Overview. Examples for using PICK UP to infer user preferences are provided
for the PLUME. The user has a task they want to provide a demonstration of for PREDICT to learn
from. After observing the user’s demonstration, PREDICT executes an iterative refinement step
(consists of preference update and breakdown) and a validation step. Iterative refinement involves
updating the set of inferred references by generating a candidate solution by conditioning the Al
assistant on the inferred preference set and prompting an LLM to update the preference set if the
candidate solution does not closely match the demonstration. If the preference is updated an LLM is
prompted to break it into component parts. Iterative refinement continues until a candidate solution
matches the user demonstration. If the preferences were updated in iterative refinement, each pref-
erence component is then validated using LLM-as-a-Judge to evaluate how well each component
aligns with the user demonstration.

B METRIC DEFINITIONS

Preference Inference Quality

PICKUP:

inferred N true

Intersection over Union (IoU) = ——, (1)
inferred U true
where inferred is the set of inferred preferences and true is the set of true, target preferences.
PLUME:
1 T
Rggrr = m Z maxz, ezX; Xj; 2
T, ET
1 TA
Pggrr = — Z maXy, caX; Xj; (3)
|x| T;€ED
P - R,
BERTScore (BScore) = Fpry = 2— ot~ BERT. 4)

Pgerr + Rpgrr’
where x is the tokenized reference text (i.e. the true preferences) and z is the tokenized candidate
text (i.e. the inferred preferences).

Behavior/Generation Quality

PICKUP:
T

Return = Zr(st,at), )

t
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where r(...) is the hand coded reward function used to train the human proxy policies, s; is the state
at step t, a; is the action taken at step ¢, and 7' is a trajectory containing the assistant’s solution.

PLUME:

Sl im_judge(true;, assistant_attempt)

PPCM =
|true

; (6)

where true is the set of true preferences, assistant_attempt is the assistant’s summary or email, and
IIm_judge is a function that prompts the human proxy LLM to evaluate how well a given assistant
solution aligns with the true preference on a scale of -2 to +2 (see Appendix Section F.4, Figure 13
for the LLM-as-a-Judge prompt).
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C ALGORITHM

Algorithm 1 Preference-Conditioned Agent Task Completion

—_

Require:

L task_instance > Task instance

Initialize empty preference set all_pre ferences < &

Retrieve relevant examples related_examples < get_relevant_examples(task_instance.context)
for each example in related_examples do

| all_preferences < all_preferences U example.learned_preferences

Coalesce and condense preferences pre ferences_to_use < LLM.coalesce(all_pre ferences)
Generate agent trajectory agent_trajectory < agent.solve_task(preferences_to_use)
Output: Completed task trajectory agent_trajectory and final preferences

preferences_to_use

R A

Algorithm 2 PREDICT: Preference Refinement and Inference

1: Require:
2: task_instance > Task instance
3: L agent_trajectory > Agent trajectory
4: user_example > User example
5: Initialize in ferred_preference_set < preferences_to_use
6: Set candidate trajectory candidate_trajectory < agent_trajectory
7. for each refinement step (up to 3 steps) do
8: if candidate_trajectory = user_example then
9: | Stop refinement
10: else
11: Refine preferences
compound_pre ference < LLM.Refine(in ferred_pre ference_set,
user_example,
candidate_trajectory)
12: Decompose preference
inferred_preference_set < LLM.Breakdown(compound_pre ference)
13: Generate new candidate trajectory
candidate_trajectory + agent.solve_task(inferred_preference_set)

14: Initialize empty validation score list validation_scores < ||
15: for each preference_component in inferred_preference_set do
16: for each example in related_examples do
17: Validate preference against trajectory
L new_score < LLM validate(pre ference_component, example)

18: validation_scores + validation_scores + [new_score|
19: if mean(validation_scores) < threshold then
20: = | Discard preference_component

21: Add task_instance and in ferred_pre ference_set to list of examples for future learning
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D PICK UP OBJECTS VISUALIZATION

A rendering of the PICK UP Objects task is provided in Appendix Fig.[3}

The user picks up the yellow triangle, the blue
circle, and the green pentagon

'__I‘"."E Return: 2

User Preferences:

The following objects are available:
' a red pentagon, a red square, a yellow triangle,
blue circle, and a green pentagon.

A

“likes yellow", “likes circles”, “dislikes red", “dislikes squares”

L

Figure 5: A depiction of a user example and associated language descriptions for the PICK UP task.
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E EXTENDED RESULTS

Additional results tables and figures discussed in the main body of the paper.

E.1 PREDICT ITERATIVE STEPS SWEEP

The impact of the number of iterative steps on PREDICT’s performance on the two environments

and three tasks.

PICK UP Summarization Emails
Iterative Steps | Jaccard Return BScore PPCM BScore PPCM
2 0.504+0.03 1.4240.17 | 0.2610.02 0.924027 | 0.2310.01 1.18+40.17
3 0.4840.04 1401007 | 0.2310.01 0.6040.31 | 0.2110.01 1.3240.22
5 0.5340.06 1.5210.16 | 0.224003 0.8440.24 | 0.2210902 1.1040.36

Table 2: Iterative Step Sweep. The impact the number of iterative steps has on PREDICT’s ability
to infer the correct preference set and the quality of generated behaviors across the two environ-
ments and three tasks. Results are reported as the mean and standard deviation across three seeds
for the following metrics: Jaccard = Jaccard similarity between inferred and true preference sets;

BScore=BERTScore.
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E.2 PRELUDE RESULTS

Results on PRELUDE (Gao et al., 2024) for PREDICT and baselines: a No-Learning baseline
(NPC), an Oracle preference baseline, in-context learning (ICL), CIPHER-1, and CIPHER-5 |Gao
et al| (2024) (Table 3). To directly evaluate the ability to infer preferences, we provide all models
with ground-truth knowledge of the source of the documents. On the summarization task, PRE-
DICT outperforms all baselines on action/generation quality. On the email writing task, PREDICT
outperforms all baselines on the PPCM metric, but slightly underperforms CIPHER-1 on the poorly
correlated Levenshtein distance metric (see Section 4.3} Metric Correlation for issues with Leven-
shtein distance).

Results in this table further support issues with the current preference-quality metrics. In the email
writing task, the no-learning baseline (which always uses an empty preference), has a higher accu-
racy than any learning method, which may be due to the significant overlap between preference sets
in the task. Further, in both tasks, the highest preference-quality scores do not lead to the highest
action-quality scores. We encourage future work to look into alternative preference-quality metrics.

We lastly note that PRELUDE has substantially smaller range between the no-learning (NPC) and
oracle preference baselines relative to PLUME. On PPCM, PRELUDE has a range 2.45 and 0.62
for summarization and email writing respectively, while PLUME has ranges of 3.17 and 2.91 for the
two tasks. This further supports PLUME as the primary evaluation environment.

Summarization
Method | Accuracy BScore | Levenshtein PPCM
No Learning Baselines
NPC 0.200.00 —0.4310.00 | 111.5014.91 —0.8910.12
Oracle l.OOiO_OO 1.00i0_00 1.35;‘;3_02 1.56:|:0.09

Learning Baselines

ICL - - 113985781 —0.811010
Cl1 0.7940.07r 0.1310.04 49.2049.15  0.7940.24
C5 0.6640.19 0.0440.04 453442007  0.9940.45
PREDICT | 0.7340.10 0.1040.03 9.2115.90 1.0310.26
Emails
Method | Accuracy BScore | Levenshtein PPCM
No Learning Baselines
Oracle 1~00:t0.00 1.00:|:0,00 1.72i1_21 1.51:‘:0.03

Learning Baselines

ICL - - 35.8549 .85 0.87+0.05
Ci1 0.0710.07 —0.254003 | 13.6116.88 0.9410.06
G5 0.0740.10 —0.0440.02 | 21.884435  0.9310.12

PREDICT | 0.0410.06 —0.2540.04 18.9319.10 0.9640.12

Table 3: PRELUDE Results. PREDICT’s ability to infer the correct preference set and quality of
generated behaviors across the two PRELUDE tasks compared against a no-learning baseline (NPC),
a method with access to the true preferences (Oracle), in-context learning (ICL), and CIPHER |Gao
et al.| (2024). Results are reported as the mean and standard deviation across five seeds. Accuracy
and Bscore (BERTScore) Zhang* et al.| (2020) are preference-quality metrics, while Levenshtein
distance and PPCM (per preference-component match) are action-quality metrics.
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E.3 METRIC CORRELATION RESULTS

The metric correlation results for the assistive writing tasks both across the summary versus email
writing sub-tasks and by sub-task (Table ).

PRELUDE PRELUDE y,E4it PLUME
Metric Acc. B.Score | Acc. B.Score Acc. B.Score
[ Emails |

L-dist 0.05 -0.25 -0.06 -0.28 -0.07  -0.14
In-L-dist | 0.05 -0.24 | -0.01 -0.28 -0.05  -0.21
PPCM 0.29 0.34 0.21 0.30 0.42 0.77

| Summarization ‘

L-dist -040  -0.54 -0.03 -0.17 -0.10  -0.12
In-L-dist | -0.50  -0.60 -0.18 -0.37 -0.16  -0.37
PPCM 0.51 0.70 0.51 0.71 0.47 0.76

| Across Tasks ‘

L-dist -0.35 -0.44 -0.03 -0.17 -0.07 -0.12
In-L-dist | -0.43 -0.48 -0.11 -0.22 -0.15 -0.30
PPCM 0.46 0.58 0.44 0.56 0.45 0.76

Table 4: Pearson R correlation between preference similarity metrics and generated writing simi-
larity metrics broken down by task (summarization vs. email). For Levenshtein distance (L-dist)
and length-normalized Levenshtein distance (In-L-dist) lower is better, so inverse correlation is ex-
pected. All other metrics are higher is better. Best correlation in each environment is bold. Best
overall correlation is underlined. See Section for a full description of each metric.
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E.4 PREFERENCE INFERENCE AND CONDITIONING PERFORMANCE BY NUMBER OF USER
SAMPLES

In Fig.[6] we show the impact of the number of samples for a given user according to the measures
for inferred-preference and action/generation quality metrics.

PICKUP Summarization Emails
1.0
—— PREDICT 02
0.8 BC 021 ’
5 0.6 » 0.0 — PREDICT | = 0.01 —— PREDICT
g S — CIPHER1 | o —— CIPHER-1
S @ IcL @ IcL
© 0.4+ @ @
= -0.24 — Full+ICL —0.24 — Full+ICL
0.2
-0.41 —0.4
0.0
2.0 2.0 2.0
1.5 1.5 1.5
1.0 1.0 1.0
£ 054 0.5 0.5
5 = =
< 0.0 9 0.0 Q 0.0
5 o a
> 4 — 4 — 4
Z-05 0.5 — PREDICT ‘ 0.5 — PREDICT
-1.0 -1.0 —— CIPHER-1 -1.04 —— CIPHER-1
1.5 ] — PREDICT 151 ICL 154 IcL
o BC " —— Full+ICL o —— Full+ICL
-2.0~ . . . . -2.0 = . . . . -2.04~ . . . .
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Samples per User Samples per User Samples per User

Figure 6: Performance for PREDICT, behavior cloning (BC), CIPHER-1, and in-context learning
(ICL) given different numbers of user samples to learn from. Mean and standard deviation (5 seeds)
for preference similarity (IoU in PICK UP and BScore in PLUME) and preference-conditioned
generation quality (Avg. Return for PICK UP and PPCM for PLUME). GPT-4o is the LLM used.
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F PRELUDE vs. PLUME PREFERENCE SETS

The preference sets used for each document source and environment (PRELUDE vs. PLUME) are

given in Appendix Table[5]

Document Source  Task Version

User Preferences

Summarization
PRELUDE interactive, playful language, positive, short sentences, sto-
rytelling, style targeted to young children
News Articles adopt a step-by-step structure, include a simile, use amper-
PLUME sands (&) instead of “and”s, write in the style of a children’s
book
PRELUDE brief, immersive, 1nV9ke personal reflection, second person
narrative, show emotions
Chat Forum Posts adopt a header and sub-header structure, include rhetorical
PLUME questions, use ALLCAPS to emphasize words, write in the
style of a tweet
PRELUDE brief, bullet points, parallel structure
Encylopedia Pages adopt a rhyming structure, include modern slang, use semi-
PLUME . .
colons (;) when possible, write in the style of a screenplay
PRELUDE inquisitive, simple English, skillful foreshadowing, tweet
style, with emojis
Paper Abstract adopt a question-answering style structure, include person-
PLUME ifications, use archaic language, write in the style of a pod-
cast
PRELUDE question answering style
Movie Review adopt a stream-of-consciousness structure, include ono-
PLUME matopoeias, use imagery, write in the style of old timey ra-
dio
Email Writing
PRELUDE conversational, informal, no closing
Personal Problem be intensely emotional, include alliterations, use a formal
PLUME o .
tone, write in a second person narrative
PRELUDE call to action, casual tone, clear, positive
Paper Review be sharply critical, include several short and punchy sen-
PLUME tences, use parenthetical asides, write using assertive ex-
pressions
PRELUDE engaging, personalized, professional tone, thankful closing
Paper Tweet be blatantly sarcastic, include hyperboles, use an informal
PLUME . . .
tone, write in a third person perspective
rofessional greeting and closing, respectful, straight to the
PRELUDE P greeting & resp &
points, structured
Paper Summary
PLUME be highly inquisitive, include several long and flowing sen-

tences, use emojis, write using conditional expressions

Table 5: The user preferences for each assistive writing task (summarization vs. email writing),
document source, and version (PRELUDE vs. PLUME).
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G ILLUSTRATIVE EXAMPLES OF ISSUES WITH PRELUDE

G.1 LEVENSHTEIN DISTANCE AND MULTIPLE GENERATIONS

We present here an inherent issue with Levenshtein distance. For all three generations, we prompt
gpt-4o to summarize the encyclopedia article on hotdogs. The first two generations (A. and B.) use
identical prompts, in which we ask it to use the preference: “use a haiku”. In the third generation, we
ask it to use the preference “use a single short sentence”. We then calculate the Levenshtein distance
between each pair, reported in Table [§] Notably, the Levenshtein distance and length normalized
Levenshtein distance, in which a lower score represents higher similarity, would both indicate that
generation A and C are more similar to generation A and B, even though generation A and B share
the same exact same prompt while generation C uses a entirely different preference. BERTScore
does a better job of identifying the most similar texts, however the PPCM scores, which compares
writing directly to the true preferences, clearly labels both Generation A. and Generation B. as
“strongly exhibiting” the preference “use a haiku”, and Generation C. as “strongly contradicting”
the preference.

Generation A.

A sausage in bun,
Toppings vary near and far,

Hot dog, rich in roots.

Generation B.

Grilled or steamed sausage,
In a bun with cheese or spice,
Street food’s warm embrace.

Generation C.

A hot dog is a sausage in a bun with various toppings such as mustard, ketchup,

and relish
Pairing | Levenshtein Dist. | Norm. Levenshtein Dist. | BERTScore | PPCM per generation
A-B 17 0.85 0.27 2,2)
A-C 16 0.76 0.20 2,-2)
B-C 17 0.81 0.10 2,-2)

Table 6: Levenshtein distance between each pair of generations.
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G.2 EDITING INFLUENCES THE USER

In this next example, we demonstrate how the editing procedure can influence the output of the user.
We again ask an LLM to summarize the encyclopedia article on hot dog. Let’s assume, an inferring
agent has incorrectly inferred the preference “question answering style”. Using this preference, the
preference-conditioned agent writes:

What is a hot dog?

A hot dog is a dish made of a sausage (typically a wiener or frankfurter) served in
a partially sliced bun. It can refer to the sausage itself, which is grilled, steamed,
or boiled.

How is a hot dog typically prepared?

Hot dog preparation varies, but common condiments include mustard, ketchup,
relish, and onions. Some toppings can also include cheese sauce, sauerkraut, chili,
bacon, or jalapefios.

Where did hot dogs originate?

The sausages used in hot dogs were culturally imported from Germany, and the
dish became popular in the U.S. as a working-class street food. Over time, hot
dogs became closely associated with American culture, particularly baseball.
Where are hot dogs most popular?

While they are especially associated with New York City, hot dogs became
widespread across the United States throughout the 20th century, becoming an
integral part of American cuisine.

We ask the user if the above is satisfactory for it’s true preference of: “style targeted to young
children”. It does not, so we then ask the user to edit the above for it true preference “style targeted
to young children”, and the user writes:

What is a hot dog?

A hot dog is a yummy snack made of a sausage (like a wiener or frankfurter)
inside a soft bun. Sometimes people call the sausage itself a hot dog, and it can be
cooked by grilling, steaming, or boiling.

How is a hot dog usually made?

Hot dogs can be made in different ways, but they often have yummy toppings like
mustard, ketchup, relish, and onions. Some people like to add even more fun stuff
like cheese, sauerkraut, chili, bacon, or spicy jalapefios.

Where did hot dogs come from?

The sausages in hot dogs came from Germany, and a long time ago, they became
super popular in the U.S. as a quick and tasty street food for busy people. Now,
hot dogs are a big part of American culture, especially at baseball games!

Where are hot dogs the most popular?

Even though hot dogs are popular all over, they are especially loved in New York.
Over the years, hot dogs have become a favorite food all across the United States!

While the above summary does correctly follow the true preference, it is still formatted in a question
answering style, which is not part of the user’s preferences. l.e., the preference-inferring agent’s
error has directly impacted the user’s writing. This is another reason why PLUME removes the
editing procedure.

For reference, if the user is directly asked to summmarize the encyclopedia article on hot dogs using
it’s true preference of “style targeted to young children”, it outputs:

A hot dog is a yummy food that’s made with a sausage, like a wiener or frankfurter,
inside a soft bun. You can cook the sausage in different ways, like grilling or
boiling. People love to put tasty toppings on their hot dogs, such as ketchup,
mustard, cheese, and even onions!

Hot dogs came from Germany, but they became super popular in the US, espe-
cially at baseball games. Now, you can find hot dogs all over the country, and in
some places, like Chicago, people have special ways of making them!
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H PROMPTS

H.1 PREFERENCE INFERENCE AND PREFERENCE-CONDITIONED AGENT PROMPTS

The prompts used by PREDICT for candidate trajectory generation and task completion in the
PLUME environment are in Appendix Fig. |7/} The prompts used by PREDICT to infer the user
preferences from user examples are provided in Appendix Fig. 0] for the PICK UP environment and
in Appendix Fig. [8|for the PLUME environment.

System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided pref-

erences.
User Prompt
You have the following preferences: [<inferred_preference_1>,..,

<inferred preference_k>]

Using these preferences, write a short {summary | email} about {this | these}
{article | notes}:

[START OF {ARTICLE | NOTES}]
<task_content>
[END OF {ARTICLE | NOTES}]

Encapsulate the {summary | email} in triple quotes

<{summary | email}>

939995

\. J

Figure 7: LLM prompts for the preference-conditioned agent and for task completion on the
PLUME’s summarization and e-mail writing tasks. The system prompt is prepended to the
user prompt following the LLM’s chat template. “{...|...}"” means that of the two options is
selected based on the task and “<...>” indicates that the text is formatted from a variable.
inferred_preference_i refers to one of the inferred user preferences.
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System Prompt

A user is completing writing tasks. The user has an underlying set of preferences that ex-
plains why they write the way they do.

\

Aggregation Task

We are tasked to curate a prompt to guide a specific style of writing. We currently
have the following list of preferences related to writing styles:
[<inferred_preference_1>,..,<inferred preference_l>]
Unfortunately, these preferences may overlap or contain redundancies. Please re-
view the list and condense it by combining similar or overlapping preferences, en-
suring that the distinct intent behind each one remains clear so that a writer can easily
follow them. Ensure the condensed list is concise, non-redundant, and preserves the
original level of specificity. When applicable, preserve the exact wording. Return
the revised preferences in the same format as the original list.

Inference Task

We received a new task. The task is to {summarize | write an email
about } the following:
<article |notes>

We have previously identified the following preferences:
[<inferred preference_1>,..,<inferred preference_k>]

Based on these preferences, we wrote this { summary | email}:
<assistant_output>

However, this differs from the user’s {summary | email}. The user wrote this
{summary | email}:
<user_output>

Refine the list of preferences by adding, removing, or updating preferences in order
to better imitate the user.

While refining the preference set, you should:

- Identify and reason about differences between our writing and the user’s writing.

- Consider writing traits from distinct quirks to broader stylistic tendencies.

- Provide a concise set of preferences in the imperative form.

- Be precise; make the fewest possible changes to the preference set.

- Do not qualify, dilute, or soften existing preferences.

- Only refine the preferences if a clear difference exists. Otherwise, preserve the
current preferences.

Provide a concise set of specific preferences in the imperative form. After reasoning,
output the refined set of preferences as a JSON array, where each element is a string,
on a single new line and prefaced with “Preferences:”.

J

Figure 8: LLM prompts for preference inference on PLUME’s summarization and e-mail writing
tasks. The system prompt is prepended to each user prompt following the LLM’s chat template.
“{...]...}”” means that of the two options is selected based on the task and “<. . .>" indicates that
the text is formatted from a variable. user_output refers to how the user completes the task,
assistant_output how the assistant completes the task, and inferred preference_i to
one of the inferred user preferences. Continued on next page.
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1404
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1415
1416
1418
1420 . . .
You inferred the following preference string:
1421 q .
[<inferred preference_1>,..,<inferred preference_k>]
ez Format this preference into a concise set of preferences. Format the final set of
1423 preferences as a JSON list on a single line and prefaced with “Preferences:”. Each
1424 element in the JSON list should be a string. The final output should look like:
1425 Preferences: [<preference 1>,..., <preference i>, ...]
1426
1428
1429 Validate the following preference: “[<inferred preference. 1>, ..,
1430 <inferred_preference_k>]" against the following writing:
1431
1432 <user_output>
1433
1434 Does the writing confirm or contradict the preference? Select one of the following:
1435 strongly confirms the preference, somewhat confirms the preference, is neqtral to-
1436 ward the preference, somewhat contradicts the preference, strong'ly contradicts Fhe
. preferfznce. Your final decision should be output on a separate line prefaced with
“Verdict:”.
1438
1439
1440
1441 Figure 8: LLM prompts for prpference inference on the PLUME’s summarization and e-mail writ-
1y INg tasks. The system prompt is prependgd to each user prompt following the LLM’s c.hat. template.
“{...]...}”” means that of the two options is selected based on the task and “<. . .>" indicates that
1222 the text is formatted from a variable. user_output refers to how the user completes the task,

assistant_output how the assistant completes the task, and inferred preference_i to
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System Prompt

A user is completing tasks where they pick up objects of different colors and shapes. The
user has an underlying set of preferences that explains why they pick up the objects they do.
The objective is to identify these underlying preferences so that we can act exactly like the
user.

Inference Task

We received a new task.

In this task, the following objects are available: a green square, a red pentagon, a
red square, a yellow circle, and a yellow square.

We have previously identified the following preferences:
[<inferred preference_1>..,<inferred preference k>]
Based on these preferences, <agent_output>.

However, this differs from the user’s actions. <user_output>.

Refine the list of preferences by adding, removing, or updating preferences in order
to better imitate the user.

While refining the preference set, you should:

- Reason about the difference between the objects we selected and the objects the
user selected.

- Make the fewest changes to the preference set to improve our actions.

- Consider both the objects that were selected and those that were not selected.

- Reason about the specific shapes that the user may like or dislike and the specific
colors that the user may like or dislike.

- Think step by step.

After reasoning, output the refined preference on a new line and prefaced with “Pref-
erences:”.

Preference Breakdown Task

You inferred the following preference string:
“[<inferred_preference_1>,..,<inferred preference_k>]|”
Format this preference into a concise set of preferences.

Format the final set of preferences as a JSON list on a single line and prefaced with
“Preferences:”. Each element in the JSON list should be a string with exactly two
words in the format “<likes/dislikes> <attribute>" where <attribute> must be a
single shape or color. Putting this together, the final output should look like:

Preferences: [“likes <color/shape>", ..., “dislikes <color/shape>", ...]

. J

Figure 9: LLM prompts for each step of preference inference on the PICK UP task. The system
prompt is prepended to each user prompt following the LLM’s chat template. “<. . .>" indicates
that the text is formatted from a variable. user_output refers to how the user completes the task,
assistant_output how the assistant completes the task, and inferred_preference_i to
one of the inferred user preferences. Continued on next page.
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Validation Task

Validate the following preference: “[<inferred_preference_1>,..,
<inferred_preference_k>]" against the following behavior:

<state_definition> <user_output>

Does the behavior confirm or contradict the preference?

Select one of the following: strongly confirms the preference, somewhat confirms
the preference, is neutral toward the preference, somewhat contradicts the prefer-
ence, strongly contradicts the preference.

While validating the preference, you should:
- Think step by step.

The final verdict should be output on a separate line in the format:
Verdict: confirms/contradicts/neutral

Figure 9: LLM prompts for each step of preference inference on the PICK UP task. The system
prompt is prepended to each user prompt following the LLM’s chat template. “<. . .>" indicates
that the text is formatted from a variable. user_output refers to how the user completes the task,
assistant_output how the assistant completes the task, and inferred_preference_i to
one of the inferred user preferences.
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H.2 SYNTHETIC HUMAN PROMPTS

The prompts used to have GPT-40 play the role of our synthetic human for PREDICT are given in
Appendix Fig.[T0] The “human” is instructed to complete the task in the same way as the preference-
conditioned agent when completing the writing tasks (see Appendix Fig.[7).

System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided pref-

erences.
User Prompt
You have the following preferences: [<inferred.preference_1>,..,

<inferred preference_k>]

Using these preferences, write a short {summary | email} about {this | these}
{article |notes}:

[START OF {ARTICLE | NOTES}]
<task_content>
[END OF {ARTICLE | NOTES}]

Encapsulate the {summary | email} in triple quotes

311313

<{summary | email}>

999995

Figure 10: LLM prompts for the synthetic human on the PLUME’s summarization and e-mail
writing tasks. The system prompt is prepended to the user prompt following the LLM’s chat tem-
plate. “{...|...}” means that of the two options is selected based on the task and “<. . .>" indicates
that the text is formatted from a variable. inferred_preference_i refers to one of the inferred
user preferences.
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H.3 PREFERENCE-CONDITIONED AGENT BASELINE PROMPTS

The prompts used in the no-preference baseline are in Appendix Fig. [IT] and for the in-context
learning baseline are in Appendix Fig. For the in-context learning baseline, the number of
examples [ matches the number of examples used when coalescing prevoiusly inferred prompts (see
Appendix Fig.[g).

System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided pref-
erences.

Write a short { summary | email} about {this | these} {article | notes}:

[START OF {ARTICLE | NOTES}]
<task._content>
[END OF {ARTICLE | NOTES}]

. J

Figure 11: LLM prompts for the no preference baseline in the PLUME environment. The system
prompt is prepended to the user prompt following the LLM’s chat template. “<. . . >” indicates that
the text is formatted from a variable. task_content refers to the content of either the article to
be summarized or the notes to include in the email, depending on the sub-task.
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System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided pref-
erences.

You have previously observed the following examples:

Example O:

{Article |Notes}:

[START OF {ARTICLE | NOTES}]
<task_content>

[END OF {ARTICLE | NOTES}]

{Article | Notes}:

311313

<completion_0>

939995

Example :

{Article | Notes}:

[START OF {ARTICLE | NOTES}]
<task_content>

[END OF {ARTICLE | NOTES}]

{Article | Notes}:

311313

<completion.>

939995

Using the same style as these examples, write a short {summary | email} about {this |
these} {article | notes}:

[START OF {ARTICLE | NOTES}]
<task_content>
[END OF {ARTICLE | NOTES}]

Encapsulate the {summary | email} in triple quotes

331313

<{summary | email}>

939995

. J

Figure 12: LLM prompts for the in-context learning baseline in the PLUME environment. The
system prompt is prepended to the user prompt following the LLM’s chat template. “<. . . >” indi-
cates that the text is formatted from a variable, and completion_l refers to an example completion
provided for in-context learning. task_content refers to the content of either the article to be
summarized or the notes to include in the email, depending on the sub-task.
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H.4 LLM-AS-A-JUDGE PROMPTS

The prompts used by the LLM-as-a-Judge are shown in Fig.[T3]

System Prompt

You are an experienced editor that is evaluating writing samples.

You received the following {summary | email}:

337313

<agent_completion>

Does the above {summary | email} exhibit the following preference:
<true_preference_i>?

Identify, analyze, and reason about specific excerpts that show similarities or contradictions
of underlying preferences. After reasoning, select one of the following options:

clearly exhibits, somewhat exhibits, neither exhibits nor contradicts, somewhat contradicts,
clearly contradicts

Your final selection should be on a new line prefaced with “Verdict:”

\. J

Figure 13: LLM-as-a-Judge prompts for the per preference-component match metric (PPCM)
used in the PLUME environment. The system prompt is prepended to the user prompt fol-
lowing the LLM’s chat template. “<...>” indicates that the text is formatted from a variable.
agent_completion refers to the agent’s article summary or email, depending on the sub-task.
true_preference_i refers to one of the k true preferences that the user has.
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