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Abstract

In this paper, we analyze the sample complexities of learning the optimal state-
action value function Q∗ and an optimal policy π∗ in a finite discounted Markov
decision process (MDP) where the agent has recursive entropic risk-preferences
with risk-parameter β ̸= 0 and where a generative model of the MDP is available.
We provide and analyze a simple model based approach which we call model-
based risk-sensitive Q-value-iteration (MB-RS-QVI) which leads to (ε, δ)-PAC-
bounds on ∥Q∗ −Qk∥, and ∥V ∗ − V πk∥ where Qk is the output of MB-RS-QVI
after k iterations and πk is the greedy policy with respect toQk. Both PAC-bounds
have exponential dependence on the effective horizon 1

1−γ and the strength of
this dependence grows with the learners risk-sensitivity |β|. We also provide two
lower bounds which shows that exponential dependence on |β| 1

1−γ is unavoidable
in both cases. The lower bounds reveal that the PAC-bounds are tight in the pa-
rameters S,A, δ, ε and that unlike in the classical setting it is not possible to have
polynomial dependence in all model parameters.

1 Introduction

In reinforcement learning (RL), the aim of the agent is to conventionally optimize the expected
return, which is defined in terms of a (discounted) sum of rewards [50]. In the majority of RL
literature, the environment is modeled via the Markov Decision Process (MDP) framework [40],
wherein efficient computation of an optimal policy, thanks to optimal Bellman equations, renders
possible. However, as a risk-neutral objective, the expected return fails to capture the true needs of
many high-stake applications arising in, e.g., medical treatment [19], finance [43, 9], and operations
research [16]. Decision making in such applications must take into account the variability of returns,
and risks thereof. To account for this, one may opt to to maximize a risk measure of the return
distribution, while another approach could be to consider the entire distribution of return, as is done
under the distributional RL framework [8] that has received much attention over the last decade.

Within the first approach, the risk is quantified via concave risk measures, which yield well-defined
mathematical optimization frameworks. Notably, they include value-at-risk (VaR), Conditional VaR
(CVaR) [44], entropic risk [23], and entropic VaR (EVaR) [2], all of which have been applied to a
wide-range of scenarios. CVaR appears to be the most popular one used to model risk-sensitivity
in MDPs [15, 10, 12, 7], mainly due to a delicate control it offers for the undesirable tail of return.
Despite its popularity and rich interpretation, solving and learning MDPs with CVaR-defined objec-
tives has rendered technically challenging [7]. This has been a key motivation of adopting weaker
notions such as nested CVaR [5], at the expense of sacrificing the interpretability. Entropic risk, as
another popular notion, has been considered for risk control in MDPs [11, 38, 22, 24, 20]. In the RL
literature, it has been mainly considered for the undiscounted settings, despite the popularity of dis-
counted MDPs. A notable exception is [22] that studies, among other things, planning in discounted
MDPs under the entropic risk.
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In this paper, we study risk-sensitive discounted RL where the agent’s objective is formulated using
the entropic risk measure. In discounted RL, where future rewards are discounted by a factor of γ,
one may identify two main approaches to apply the entropic risk to sequence of rewards, (rt)t≥0,
collected by an RL agent. The first and most intuitive one, which we may call the non-recursive
approach, consists in directly applying the entropic risk functional to return

∑∞
t=0 γ

trt. The other
approach, which we may call the recursive approach, works by applying the risk functional at every
step t (see Section 2 for details). The non-recursive approach (e.g., [22]), while being most intuitive,
has several drawbacks; e.g., the optimal policy might not be time-consistent (see [25]). In contrast,
the recursive approach yields a form of Bellman optimality equation, which is key to developing
learning algorithms with provable sample complexity. Therefore, we restrict attention to the RL
problem defined using recursive risk-preferences.

1.1 Main Contributions

We study risk-sensitive RL in finite discounted MDPs under the recursively applied entropic risk
measure, assuming that the agent is given access to a generative model of the environment. The
agent’s learning performance is assessed via sample complexity defined as the total number T of
samples needed to learn, for input (ε, δ), either an ε-optimal policy (which we call policy learning),
or an ε-close approximation (in max-norm) to the optimal Q-value (which we call Q-value learning),
with probability exceeding 1− δ.

Specifically, we make the following contributions: We present an algorithm called Model-Based
Risk-Sensitive Q-Value Iteration (MB-RS-QVI), a model-based RL algorithms for the RL problem
considered, which is derived using a simple plug-in estimator. It is provably sample efficient, despite
its simple design. Notably, we report sample complexity bounds on the performance of (MB-RS-

QVI) under Q-value learning (Theorem 1) scaling as Õ
(

SA
ε2(1−γ)2 (

e
|β| 1

1−γ −1
|β| )2

)
and policy learning

(Theorems 2 and 3), scaling as Õ
(

SA
ε2(1−γ)4 (

e
|β| 1

1−γ −1
|β| )2

)
, and Õ

(
S2A

ε2(1−γ)2
e
|β| 1

1−γ

|β|2

)
in any dis-

counted MDP with S states, A action, and discount factor γ, with Õ hiding logarithmic factors.
Here, β denotes the risk parameter (see Section 2 for precise definition), where β > 0 (resp. β < 0)
corresponds to a risk-averse (resp. risk-seeking) agent. An interesting property of these bounds is
the exponential dependence on the effective horizon 1

1−γ , which is absent in the conventional (risk-
neutral) RL, wherein β = 0. Another key contribution of this paper is to derive the first, to our
knowledge, sample complexity lower bounds for the discounted RL under entropic risk measure.
Our lower bounds establish that for Q-value learning (Theorem 4) and policy learning (Theorem 5),

one needs at least Ω̃
(

(S−2)A
ε2

e
|β| 1

1−γ −3
|β|2

)
and Ω̃

(
(S−2)(A−1)

ε2
e
|β| 1

1−γ −3
|β|2

)
samples, respectively, to

come ε-close to optimality. Interestingly, the derived lower bounds assert that exponential depen-
dence on |β|

1−γ in both sample complexities are unavoidable thus making the risk-sensitive setting
fundamentally harder than the classical risk-neutral setting.

1.2 Related Work

Finite-sample guarantees for risk-neutral RL. There is a large body of papers studying
provably-sample efficient learning algorithms in discounted MDPs. These papers consider a variety
of settings, including the generative setting [26, 21, 1], the offline (or batch) setting [41, 33], and
the online setting [48, 31]. In particular, in the generative setting – which we consider in this paper
– some notable developments include, but not limited to [27, 21, 1, 32, 46, 52, 14]. Among these,
[21, 1, 46, 32] present algorithms attaining minimax-optimal sample complexity bounds, although
some of these result do not cover the full range of ε. We also mention a line of work, comprising
e.g. [39, 45], that investigate discounted RL in the generative setting but under distributional robust-
ness. Let us also remark that some recent works – notably [56, 57] – study sample complexity of
average-reward MDPs in the generative setting.

Finally, we mention that some studies consider adaptive sampling in the generative setting to account
for the heterogeneity across the various state-action pairs in the MDP; see, e.g., [3, 54]. This line of
works stand in contrast to the papers cited above that strive for optimizing the performance, in the
worst-case sense, via uniformly sampling various state-action pairs.
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Risk-sensitive RL. There exists a rich literature on decision making under a risk measure. We
refer to [42, 35, 29] for some developments in bandits, where the performance is assessed via regret.
Extensions to episodic MDPs were pursued in a recent line of work, including [20, 34, 24], which
establish near-optimal guarantees on regret. The two lines of work (on bandits and episodic MDPs)
constitute the majority of work on risk-sensitive RL, thoroughly studying a variety of risk measures
including CVaR, entropic risk, and entropic value-at-risk [2, 49].

Among the various risk measures, CVaR has arguably received a great attention; see, for instance,
[17, 18, 13]. For instance, [18, 13] study episodic RL in the regret setting and present algorithms
with sub-linear regret in tabular MDPs ([18]) and under function approximation ([13]), while [17]
investigates the sample complexity analysis in the generative setting (similar to ours), We also pro-
vide a pointer to some work which deal with a class of measures called coherent risk measures that
include CVaR as a special case. In this category, we refer to, for instance, [51], which studies policy
gradient algorithms, and to [30] that investigates regret minimization in the episodic setting and with
function approximation. In the case of infinite-horizon setting, the entropic risk measure is mostly
considered in the undiscounted (i.e., the average-reward) setting; examples include [11, 38, 36, 37].
In contrast, little attention is paid to the discounted setting, which is mainly due to technical difficul-
ties caused by discounting. The work [22] is among the few papers investigating solving discounted
MDPs under the entropic risk.

Notations. For n ∈ N, let [n] := {1, . . . , n}. 1A denotes the indicator function of an event
A. Given a set X , ∆(X ) denotes the probability simplex over X . We use the convention that
∥ · ∥ := ∥ · ∥∞ and explicitly use the subscript ∥ · ∥p when using p-norms for which 1 ≤ p <∞. We
use Z = S ×A to denote the set of all state-action pairs.

2 Background

2.1 Markov Decision Processes

We write the 6-tupleM = (S,A, P,R, γ, β) as a finite, discounted infinite-horizon Markov decision
process (MDP), where S = {1, 2, ..., S} is the finite state space of size S := |S|, A = {1, 2, ..., A}
is the finite action space of size A := |A|, P : S ×A → ∆(S) is the transition probability function,
R : S × A → [0, 1] is the deterministic reward function, γ ∈ (0, 1) is the discount factor, and
β ̸= 0 is the risk-parameter. The agent interacts with the MDP M as follows. At the beginning of
the process, M is in some initial state s0 ∈ S. At each time t ≥ 0, the agent is in state st ∈ S and
decides on an action at ∈ A according to some rule. The MDP generates a reward rt := R(st, at)
and a next-state st+1 ∼ P (·|st, at). The MDP moves to st+1 when the next time slot begins, and
this process continues ad infinitum. This process yields a growing sequence (st, at, rt)t≥0. The
agent’s goal is to maximize an objective function, as a function of the reward values (rt)t≥0 which
involves the two parameters γ and β; in addition to the discount factor γ that makes future rewards
less valuable than the present ones, the risk-parameter β quantifies to what degree the agent seeks or
avoids strategies that have more variability in the rewards obtained over time. To concretely define
the objective function of the agent, we shall introduce some necessary concepts.

2.2 Entropic Risk Preferences

The entropic risk preferences is rooted in expected utility theory. Consider for β ̸= 0 the class of
utility functions u(t) = 1

β (1 − e−βt) defined for t ∈ R. The utility u is supposed to describe the
preferences of some economic agent in the form of how much utility u(t) she derives from some
monetary quantity t ∈ R. For any bounded random variable X ∈ L∞(Ω,F ,P), the certainty
equivalent u−1(E[u(X)]) = −1

β log(E[e−βX ]) expresses the amount of money that would give the
same utility as that of entering in the bet given by the random variable X . We thus define the
functional ρ : L∞(Ω,F ,P) → R by

ρ(X) = − 1

β
log(E[e−βX ]) .

We note that there does not seem to be consensus on wether the functional is parametrized with β
of −β. We follow this convention considering its widespread use in the actuarial literature [4], but
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we remark that some other lines of work appear to prefer the other parametrization. For the case
β → 0, we recover the risk-neutral case that is simply the expectation: limβ→0 ρ(X) = E[X]. It is
straightforward to see that ρ admits the following properties:

ρ(X) ≤ ρ(Y ), for any X ≤ Y, (1)
ρ(c) = c, for any c ∈ R, (2)
ρ(X) ≤ E[X], for β > 0, (3)
ρ(X) ≥ E[X] for β < 0, (4)

where properties (3)-(4) follow from Jensen’s inequality. Using ρ as a measure of the preference for
different random variables, it follows directly from (2)-(4) that ρ(X) ≤ ρ(E[X]) for β > 0 and that
ρ(X) ≥ ρ(E[X]) for β < 0. If further shows that β > 0 is associated with risk-aversion, while
β < 0 is associated with risk-seeking behavior.

Applying risk in a stochastic dynamic process can be done in several ways and is thus more com-
plicated than for a single-period problem. Two approaches to this end exist in the literature. The
first and most intuitive one, which is often called the static or non-recursive approach, is to apply
the functional to the total discounted sum of rewards ρ

(∑∞
t=0 γ

trt
)
, which is well-defined under

the bounded rewards assumption, i.e., rt ∈ [0, 1] for all t. The other approach, which we may call
the recursive approach, works by applying the risk at every step t where we give the details be-
low. The non-recursive approach is probably most intuitive but has several drawbacks. Even though
there is no obvious optimality equation for the non-recursive case, a solution to the planning prob-
lem has been proposed in [22]. In comparison, the planning problem is more straightforward with
recursive risk-preferences due to the availability of an optimality equation that allows for simple
value-iteration type algorithms. The recursive approach also guarantees the existence of an optimal
stationary deterministic policy whereas with non-recursive risk preferences the optimal policy might
not be time-consistent (see [25]). In this paper, we study the problem with recursive risk-preferences.

2.3 Value Function and Q-function

A bit of notation is required in order to define the state value function V (henceforth V -function)
and state-action value function Q (henceforth Q-function) of a policy.

We follow the approach of [4] and [6] but since none of their cases include our β > 0 case and also
only cover V -functions, we give in Section C the full setup with history-dependent policies as well
as a full definition of the V and Q-functions, and prove existence of a stationary optimal policy and
show that the value functions of this policy satisfy a Bellman optimality equation and similarly that
value functions of any policy satisfy a Bellman recursion relation. We give an outline here that only
deals with stationary policies, which is justified by the results of Section C.

Let v ∈ RS and π : S → A be a stationary deterministic policy. We then define ρs,a : RS → R by

ρs,a(v) = − 1

β
log

(
Es′∼P (·|s,a)[e

−βv(s′)]

)
(5)

and slighltly abusing the notation, we write ρs,π when a = π(s), that is ρs,π := ρs,π(s). We then
define the operator Jπ : RS → RS given by Jπ(v)(s) = r(s, π(s)) + γρs,π(v). The N -step
total discounted utility JN (s, π) is defined as applying Jπ recursively N -times to the 0-map, that is
JN (s, π) := JN

π (0)(s). Note that the outer-most iteration corresponds to the immediate time-step.
By properties (1)-(2) of ρ, it follows that JN (s, π) is increasing in N and that JN (s, π) ≤ 1

1−γ , so
that the limit N → ∞ exists. This limit is considered the value of state s under the policy π of the
agent: V π(s) = limN→∞ JN (s, π).

The problem of the agent is then for all initial states s ∈ S to find a policy π∗ that solves J(s, π∗) =
supπ J(s, π). In [4], the authors consider a more general framework that is not restricted to finite
MDPs or stationary policies; they prove that under some conditions —that are trivially fulfilled in
the case of finite MDPs— there exists a stationary policy π∗ that maximizes the state-value function
for all states s ∈ S simultaneously. We show that any optimal policy π∗ that solves the agent satisfies
the optimality equation:

V ∗(s) = max
a∈A

(
R(s, a)− γ

β
log

(
Es′∼P (·|s,a)[e

−βV ∗(s′)]

))
, (6)
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where V ∗ is the optimal V -function. Also for any stationary deterministic policy π, we have the
Bellman recursion:

V π(s) = R(s, π(s))− γ

β
log

(
Es′∼P (·|s,π(s))[e

−βV π(s′)]

)
. (7)

Since we are not interested only in the planning problem but also in learning, we also introduce the
state-action value function Q. The approach is very similar to that of the value-function. Given
π, we define the operator Lπ : RS → RS×A as follows: for all v : S → R, Lπ(v)(s, a) =
R(s, π(s))+γρs,π(v) . We define the operator L : RS → RS×A for all v : S → R as: L(v)(s, a) =
R(s, a) + γρs,a(v) . We define the N -step total discounted utility of the state-action pair (s, a)
under π as LN (s, a, π) := (L ◦ JN−1

π (0))(s, a) and the limit is denoted Qπ(s, a): Qπ(s, a) =
limN→∞ LN (s, a, π). Although the authors do not consider state-action value functions in their
paper, repeating the arguments of [4] it suffices to consider stationary policies when wanting to
solve maxπ Q

π(s, a) for all (s, a) and that the solution Q∗ solves the optimality equation:

Q∗(s, a) = R(s, a)− γ

β
log

(
Es′∼P (·|s,a)[e

−βmaxa′ Q∗(s′,a′)]

)
. (8)

Similarly, it is clear that the Q-functions satisfy the Bellman recursion relations:

Qπ(s, a) = R(s, a)− γ

β
log

(
Es′∼P (·|s,a)[e

−βV π(s′)]
)
. (9)

2.4 Learning Performance

We consider two types of RL algorithms U , namely those that output aQ-functionQU
T : S×A → R

and those that output a policy πU
T : S → A using T transition samples. Note that any algorithm that

outputs a Q-function also outputs a policy, namely the one obtained by acting greedily with respect
to the Q-function. There are also ways to obtain a Q-function from a policy. There is however
no canonical way to do this as the algorithm cannot simply output QπU

since the algorithm does
not have access to the true MDP. The way we evaluate the quality of an algorithm that outputs a
Q-function is by ∥Q∗ −QU

T ∥. For an algorithm that instead outputs a policy, we evaluate the policy
in terms of ∥V ∗ − V πU

T ∥. Often we will suppress T from the notation.
Definition 1 ((ε, δ)-correctness). We say that an algorithm U that outputs aQ-functionQU is (ε, δ)-
correct on a set of MDPs M if P(∥Q∗ −QU∥ ≤ ε) ≥ 1− δ for all M ∈ M. Similarly, we say that
an algorithm U that outputs a policy πU is (ε, δ)-correct on a set of MDPs M if P(∥V ∗ − V πU ∥ ≤
ε) ≥ 1− δ for all M ∈ M.

3 Model-Based Risk-Sensitive Q-Value Iteration

In this section we describe the model-based value iteration algorithm which aims at finding the
optimal Q-function Q∗. We then give an upper bound on the total number of calls to the generative
model needed in order for this algorithm to be (ε, δ)−correct. The model based approach is based
on working on an MDP, which may disagree with the true MDP because it does not use the true
transition probabilities but an estimate of the transition functions obtained from n calls to each of
the state-action pairs in S ×A as described in the algorithm below.

The model-based approach we describe is general in the sense that any oracle that for any ε > 0 can
find an ε-optimal policy can be used. We prove the existence of one such oracle in the form of a
Q-value iteration very like the one from the classical risk-neutral setting. The proof is very similar
to Part (a) in Theorem 3.1 in [4] but is nevertheless provided in Appendix F.
Lemma 1 (Q-value iteration). Fix a map π : A → S. We then define the operators T π, T :
RS×A → RS×A which for f : S ×A → R is given by

(T f)(s, a) = R(s, a) +
−γ
β

log

(∑
s′

P (s′|s, a)e−βmaxa f(s′,a)

)
(T πf)(s, a) = R(s, a) +

−γ
β

log

(∑
s′

P (s′|s, a)e−βf(s′,π(s′))

)
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Algorithm 1: Model estimation
Input: Generative model P
Output: Model estimate P̂

1 Function EstimateModel(n):
2 ∀ (s, z) ∈ S × Z :m(s, z) = 0
3 for each z ∈ Z do
4 for i = 1, 2, ..., n do
5 s ∼ P (·|z)
6 m(s, z) := m(s, z) + 1
7 end
8 ∀s ∈ S : P̂ (s, z) = m(s,z)

n
9 end

10 return P̂

The operators T and T π are γ-contractions with respect to the max-norm, i.e., for value-functions
f1 and f2, it holds that ∥T f1 − T f2∥ ≤ γ∥f1 − f2∥ and ∥T πf1 − T πf2∥ ≤ γ∥f1 − f2∥.

The above lemma is the basis for the Q-value iteration algorithm:

Algorithm 2: RS-QVI(M,k)

Input: MDP M = (S,A, P,R, γ, β) and number of iterations k.
Output: Estimate Qk of optimal Q-function Q∗

1 Initialization: ∀(s, a) set Q(s, a) = 0
2 for j = 0, 1, ..., k − 1 do
3 for all s ∈ S do
4 πj(s) = argmaxa∈AQj(s, a)
5 for all a ∈ A do
6 T Qj(s, a) = R(s, a)− γ

β log(Es′∼P (·|s,a)[e
−βQj(s,πj(s))])

7 Qj+1(s, a) = T Qj(s, a)
8 end
9 end

10 end
11 ∀s ∈ S : πk(s) = argmaxa∈AQk(s, a)
12 return Qk and πk

The next lemma shows that if we choose k large enough in the RS-QVI algorithm, we can obtain
Qk and V πk that are as close to Q∗ and V ∗ as we desire. The proof is postponed to Appendix F.

Lemma 2. Fix ε > 0. Then there exists some k(ε) such that if the number of iterations in RS-QVI
exceeds k(ε), then the output of Algorithm 2 (RS-QVI) satisfies ∥Qk−Q∗∥ < ε and ∥V πk−V ∗∥ < ε.

Using Algorithm 2, we introduce the MB-RS-QVI algorithm, which consists in building an em-
pirical model M̂ = (S,A, P̂ , R, γ, β) via calling the generative model n times – namely, P̂ =
EstimateModel(n) – and then solving it via RS-QVI.

3.1 Analysis of MB-RS-QVI

With RS-QVI in place, we need a set of lemmas for the analysis of the sample-complexity of the
model based RS-QVI algorithm.

An important result for the analysis is a risk-sensitive version of the simulation lemma [28, 48],
which describes how different two Q-functions for the same policy are in two different MDPs that
differ only slightly in their rewards and transition functions. The proof is postponed to Appendix F.
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Lemma 3 (Simulation Lemma with Entropic Risk). Consider two MDPs M1 = (S,A, P1, R, γ, β)
and M2 = (S,A, P2, R, γ, β) differing only in their transition functions. Fix a stationary policy π,
and let Qπ

1 and Qπ
2 be respective Q-functions of π in M1 and M2. If max(s,a)∈S×A ∥P1(·|s, a) −

P2(·|s, a)∥1 ≤ τ . Then, it holds that

∥Qπ
1 −Qπ

2∥ ≤


γ

1−γ
e
|β| 1

1−γ

|β| maxs,a
∣∣∑

s′∈S [P1(s
′|s, a)− P2(s

′|s, a)]e−|β|( 1
1−γ −V1(s

′))
∣∣ β < 0

γ
1−γ

e
|β| 1

1−γ

|β| maxs,a
∣∣∑

s′∈S [P1(s
′|s, a)− P2(s

′|s, a)]e−|β|V1(s
′))
∣∣ β > 0

γ
1−γ

e
|β| 1

1−γ

|β| maxs,a
∑

s′∈S |P1(s
′|s, a)− P2(s

′|s, a)| β ̸= 0.

It then follows that if for some ε > 0 it holds that any of the maxs,a-expressions is smaller than
ε 1−γ

γ |β|e−|β| 1
1−γ , then ∥Qπ

1 − Qπ
2∥ ≤ ε and ensuring this with high probability is a matter of

invoking an appropriate concentration inequality. Using the decompositions from Lemma 4, we get
for any s ∈ S that

V πk(s) ≥ V ∗(s)− ∥V πk − V̂ πk∥ − ∥V̂ π∗
− V ∗∥ − ∥V̂ πk − V̂ ∗∥, (10)

and similarly we get for any state-action pair (s, a) ∈ S ×A that

Qk(s, a) ≥ Q∗(s, a)− ∥Q̂π∗
−Q∗∥ − ∥Qk − Q̂∗∥ . (11)

The last of the distances on the right-hand side of (10) and (11) can be made arbitrarily small by any
optimization oracle for the problem. One such is value-iteration using the model MDP as demon-
strated by Lemma 2. Making these terms small enough is thus purely a computational matter and
not a statistical one. We thus focus on bounding the remaining distances on the right-hand sides.

Theorem 1. There exists a universal constant c such that for any ε > 0, δ ∈ (0, 1) and any MDP
M with S states and A actions, if the learner is allowed to make

T = c
SA

ε2(1− γ)2

(
e|β|

1
1−γ − 1

|β|

)2

log

(
SA

δ

)
(12)

calls to the generative model, then P(∥Q∗ −Qk∥ ≤ ε) ≥ 1− δ.

Proof. For any ε > 0, we can get ∥Qk − Q̂∗∥ < ε/2 using enough iterations of the optimiza-
tion oracle by Lemma 2. The term ∥Q̂π∗ − Q∗∥ can also be made smaller than ε/2 by the
simulation lemma if either maxs,a

∣∣∑
s′∈S [P1(s

′|s, a) − P2(s
′|s, a)]e−|β|( 1

1−γ −V1(s
′))
∣∣ < τ or

maxs,a
∣∣∑

s′∈S [P1(s
′|s, a) − P2(s

′|s, a)]e−|β|V1(s
′))
∣∣ < τ , where τ = ε

2

[
γ

1−γ
e
|β| 1

1−γ

|β|

]−1

which

can be ensured with probability larger than 1− δ by picking N = (1−e
−β 1

1−γ )2

2τ2 log(2SA/δ). Using
that the total calls to the generative model is T = SAN and substituting in the value for τ , we can
ensure for all (s, a) that Qk(s, a) > Q∗(s, a)− ε with probability larger than 1− δ by using a total
number of samples

T = 3
SA

ε2(1− γ)2

(
e|β|

1
1−γ − 1

|β|

)2

log

(
SA

δ

)
. (13)

Theorem 2. There exists a universal constant c such that for any ε > 0, δ ∈ (0, 1), and any MDP
M with S states and A actions if the learner is allowed to make

T = c
SA

ε2(1− γ)4

(
e|β|

1
1−γ − 1

|β|

)2

log

(
SA

δ

)
(14)

calls to the generative model then P(∥V ∗ − V πk∥ ≤ ε) ≥ 1− δ

Proof. The proof follows immediately from Theorem 1 and Theorem 7 with the choice of c = 6.
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By taking the limit β → 0 leads to PAC-bounds in the risk-neutral case, but the resulting Q-value
learning PAC bound is worse by a factor of 1

1−γ [21] and the policy learning PAC-bound is worse
by a factor of 1

(1−γ)3 [1].

Since the derivations so far lead to a PAC-bound on policy learning that is worse by a factor of
1

(1−γ)2 compared to the PAC bound on Q-value learning, we now provide an alternative derivation
that leads to a PAC-bound with the same dependence on horizon. The bound achieved based on the
Weissman bound however comes with a worse dependence on S, but in cases with long effective
horizons and small state-space, this bound might be tighter. Another deficiency of this alternative
bound is that it is also less interpretable in the sense that it explodes for β → 0.
Theorem 3. There exists a universal constant c such that for any ε > 0, δ ∈ (0, 1), and any MDP
M with S states and A actions, if the learner is allowed to make

T = c
SA(S + log(SA/δ))

ε2(1− γ)2
e2|β|

1
1−γ

|β|2
(15)

calls to the generative model, then P(∥V ∗ − V πk∥ ≤ ε) ≥ 1− δ.

Proof. By Lemma 2, we can pick k large enough so that ∥V̂ πk − V̂ ∗∥ ≤ ε/3. By the union bound
we have that the two terms ∥V πk − V̂ πk∥ and ∥V̂ π∗ − V ∗∥ can simultaneously be made smaller

than ε/3 by sampling each state-action pair N = 8
S+log( 2SA

δ )

τ2 times where τ = ε
3

[
γ

1−γ
e
|β| 1

1−γ

|β|

]−1

such that if we sample

T = 73

[
S + log

(
SA

δ

)]
SA

ε2(1− γ)2
e2|β|

1
1−γ

|β|2
(16)

times in total, then we can ensure that for all s simultaneously it holds that V πk(s) > V ∗ − ε.

Remark 1. State-of-the-art techniques for proving optimal upper bounds in the risk-neutral case
are critically exploiting linearity of the expectation operator and are thus not readily available in
the risk-sensitive case due to the non-linearity of the entropic risk measure.

4 Sample Complexity Lower Bounds

In this section, we provide two sample complexity lower bounds. The first one, presented in The-
orem 4, concerns the sample complexity of learning the optimal Q-value function Q∗, whereas the
second one, in Theorem 5, is on learning an optimal policy π∗. The proofs are both postponed to
Appendix H.

Theorem 4 (Lower bound for learning Q∗). There exist constants c1, c2 > 0 such that for any RL
algorithm U that outputs a Q-function QU and any δ ∈ (0, 14 ) and ε ∈

(
0, 1

40
γ
|β| (1 − e−|β| 1

1−γ )
)
,

the following holds: if the total number T of transitions satisfies

T ≤ (S − 2)Aγ2

c1ε2
(e|β|

1
1−γ − 3)

|β|2
log

(
(S − 2)A

c2δ

)
,

then there is some MDP M with S states and A actions for which P(∥Q∗
M −QU

T ∥ > ε) ≥ δ.

Theorem 5 (Lower bound for learning π∗). There exist constants c1, c2 > 0 such that for any RL
algorithm U that outputs a policy QU and any δ ∈ (0, 14 ) and ε ∈

(
0, 1

50
γ
|β| (1− e

−|β| 1
1−γ )

)
, it holds

that if the total number T of transitions satisfies

T ≤ (S − 2)(A− 1)γ2

c1ε2
(e|β|

1
1−γ − 3)

|β|2
log

(
(S − 2)

c2δ

)
,

then there is some MDP M with S states and A actions for which P(∥V ∗
M − V πU

T ∥ > ε) ≥ δ.
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The lower bounds in Theorems 4-5 establish that an exponential dependence of the sample complex-
ity on the effective horizon 1

1−γ is unavoidable; more precisely, they assert that a scaling of e|β|
1

1−γ

is unavoidable in both Q-learning and policy-learning. Recalling the sample complexity bounds of
MB-RS-QVI (Theorems 1-2), we observe a similar exponential dependence. However, there re-
mains a gap of order 1

(1−γ)2 e
|β| 1

1−γ . This remains as an interesting open question as to whether
closing this gap can be done via a more elegant analysis of MB-RS-QVI or it calls for more novel
algorithmic ideas, but in any case the lower bounds show that risk-sensitive agents face a fundamen-
tally harder problem than risk-neutral agents where the sample complexity is polynomial in 1

1−γ .
The proofs of lower bounds are given in Section H in the appendix, but we briefly sketch the ideas
below for the case where the algorithm outputs a Q-function; the other case is proven using quite
similar ideas.

We consider a class of hard-to-learn MDPs. In the class there are two absorbing states sG and sB
where in sG the agent always recieves a reward of R = 1 and in sB the agent always receives
a reward of R = 0 irrespective of the action taken. For all other state-action pairs z the reward
is zero and the only possible transition is to either of the states sG and sB . P (sG|z) = q and
P (sB |z) = 1−q, for some q > 0. This construction critically allows us to calculate explicitlyQ∗(z)
for a given parameter q and for two different MDPsM0,M1 in the class where q0 = p and q1 = p+α
for appropriately chosen values of p and α we are able to ensure that Q∗

M1
(z) − Q∗

M0
(z) > 2ε

which means that any specific algorithmic output QU (z) cannot be ε-close to both Q∗
M1

(z) and
Q∗

M0
(z). We then show by a likelihood ratio argument that any algorithm U that is (ε, δ)-correct

on M0, i.e. that P0(|Q∗
M0

(z) − QU (z)| ≤ ε) > δ, will also satisfy that P1(|Q∗
M0

(z) − QU (z)| ≤
ε) > δ provided that the algorithm does not try out z enough times on M0 and exactly because
Q∗

M1
(z) − Q∗

M0
(z) > 2ε, the event {|Q∗

M0
(z) − QU (z)| ≤ ε} is disjoint from the event on being

ε-close to Q∗
M1

. The final part of the proof is to exploit that the different state-action pairs contain
no information about each other which allows for an independence argument for the estimation of
QU (z) and QU (z′) for z ̸= z′. While doing this analysis, we fix an inaccuracy in the proof of
Lemma 17 in [21] that arises where they lower-bound the likelihood ratio of two Bernoulli random
variables with biases p ≥ 1

2 and p+ α on a high probability event. We also mention that we extend
the result to hold for p < 1

2 .

For policy learning we consider almost the same class of MDPs but augment with a known state a0
that is used in the analysis.

Remark 2. It is worth remarking that the best lower bound in the risk-neutral setting is derived in
[21] using a richer construction than above. However, with a risk-sensitive learning objective, the
optimal state-action value function in the construction of [21] does not admit an analytical solution,
which is needed for the delicate tuning of the transition probabilities.

5 Conclusion and Future Works

We have studied the sample-complexity of learning the optimal Q-function and that of learning an
optimal policy in finite discounted MDPs, where the agent has recursive risk-preferences given by
the entropic risk measure and has access to a generative model. We introduced an algorithm, called
MB-RS-QVI, and derived PAC-type bounds on its sample complexity for both learning which have
derived bounds from analyzing the MB-RS-QVI algorithm that uses the model given by the plug-
in estimator from samples generated by a simulator. We also derive lower bounds. The upper
bounds show that PAC-learning is possible but the lower bounds show that dependence on e|β|

1
1−γ is

unavoidable and thus that learning is fundamentally harder for risk-senstive agents relative to risk-
neutral agents. The bounds that we derive on the sample complexity of learning the optimalQ-value
are of order

O
(
log(SA/δ)

) SA

ε2(1− γ)2

(
e|β|

1
1−γ − 1

|β|

)2)
, Ω

(
(S − 2)A

ε2
e|β|

1
1−γ − 3

|β|2
log((S − 2)A/δ)

)
(17)
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while the bounds we derive on the sample complexity of learning an optimal policy are of order

O
(
log(SA/δ)

) SA

ε2(1− γ)4

(
e|β|

1
1−γ − 1

|β|

)2)
, Ω

(
(S − 2)(A− 1)

ε2
e|β|

1
1−γ − 3

|β|2
log((S − 2)/δ)

)
(18)

where we also give the alternative bound of order

O
((
S + log(SA/δ)

) SA

ε2(1− γ)2
e2|β|

1
1−γ

|β|2

)
(19)

which might be tighter in cases of long horizon and small state space. These constitute the first
bounds, to our knowledge, on the sample complexities of entropic risk-sensitive agents in the dis-
counted MDP setting. The upper and lower bounds derived in this paper leave open gaps in 1

1−γ .
Since the constructions in the lower bounds are not the ones used in the tightest lower bounds derived
in the risk-neutral setting, one possibility is that the lower bounds can be improved by considering
a more carefully chosen set of hard-to-learn MDPs with the challenge being to control the gap in
V -values or Q-values under different parameters. Also since the plugin-estimator model-based QVI
algorithm is provably optimal in the risk-neutral setting, we believe that this might also be the case
for risk-sensitive agents but that more tools are needed to develop a more careful analysis. Another
future direction is that of developing model-free algorithms for this setting and analyzing their sta-
tistical efficiency. Another interesting research direction is to consider function approximation, as
in [55]. As other future directions, one may consider more complicated RL settings such as offline
RL [41], where data is collected under a fixed (but unknown) behavior policy, and online RL [48,
31], where the agent’s learned policy impacts the data collection process. And finally one may also
consider the problem where the learner have non-recursive risk-preferences instead.
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A Technical Lemmas

Recall that Qk is the Q-function output by the algorithm after k iterations, πk is the greedy policy
with respect to Qk, and that π∗ is an optimal policy of the true MDP M .

The first lemma establishes a decomposition result for MB-RS-QVI, whose proof follows very sim-
ilar lines to the proof of Lemma 3 in [1].
Lemma 4. For any state-action pair (s, a) ∈ S ×A,

Qk(s, a) ≥ Q∗(s, a)− ∥Qk − Q̂∗∥ − ∥Q̂π∗
−Q∗∥ .

Further, for any state s ∈ S,

V πk(s) ≥ Q∗(s)− ∥V πk − V̂ πk∥ − ∥V̂ πk − V̂ ∗∥ − ∥V̂ π∗
− V ∗∥ .

Proof. For any (s, a) ∈ S ×A, we have

Qk(s, a)−Q∗(s, a) = Qk(s, a)− Q̂∗(s, a) + Q̂∗(s, a)−Q∗(s, a)

≥ Qk(s, a)− Q̂∗(s, a) + Q̂π∗
(s, a)−Q∗(s, a)

≥ −∥Qk − Q̂∗∥ − ∥Q̂π∗
−Q∗∥ .

Similarly, for any s ∈ S, we have

V πk(s)− V ∗(s) = V πk(s)− V̂ πk(s) + V̂ πk(s)− V̂ ∗(s) + V̂ ∗(s)− V ∗(s)

≥ V πk(s)− V̂ πk(s) + V̂ πk(s)− V̂ ∗(s) + V̂ π∗(s)− V ∗(s)

≥ −∥V πk − V̂ πk∥ − ∥V̂ πk − V̂ ∗∥ − ∥V̂ π∗
− V ∗∥ ,

and the lemma follows.

Next, we present two lemmas that collect a few useful inequalities. Some of these may be standard
results, but for concreteness, we collect them here.
Lemma 5. It holds that

log(1− x) ≥ −x− x2 + x3 ∀x ∈ [0,
1

5
]

log(1− x) ≥ −x− 2x ∀x ∈ [0,
1

2
]

log(1 + x) ≥ x− x2 ∀x ∈ [0,∞)

log(1 + x) ≥ x

2
∀x ∈ [0, 1] .

Proof. We only prove the first claim, as the rest could be proven using the technique after some
elementary calculations.

Let f(x) = (1 − x) and g(x) = −x − x2 + x3. It holds that f(0) = g(0), and since we have
f ′(x) = 1

1−x and g′(x) = −1− 2x+ 3x2, it follows easily that

f ′(x) ≥ g′(x) ⇔ 0 ≤ x(1− 5x+ 3x2)

where the inequality is satisfied for all x ∈ [0, 5−
√
13

6 ] ⊆ [0, 15 ]. The result then follows from the
fundamental theorem of calculus.

Lemma 6. Let α > 1. For any x ∈ [0, 1
α ], it holds that

1− (1− x)α ≥ xα

2
.

Proof. Define f(x) = 1− (1− x)α − xα
2 . Since f ′′(x) = −α(α− 1)(1− x)α−2 < 0, f is strictly

concave. Further, since f(0) = 0 and f( 1
α ) =

1
2 (1−

1
α )

α > 1
2 −

1
e > 0, f is positive on the interval

[0, 1
α ] and the result follows.
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B Risk Measures

In this section we give a very brief introduction to risk measures with proper definitions and key
examples to the extend needed. The reason for this is that the literature is varied and that some
inequalities and vocabulary change slightly, in particular over the choice of working with rewards or
losses.
Definition 2. Let (Ω,F ,P) be a background probability space and M some convex cone of random
variables defined on the background space. That is for any X,Y ∈ M and λ > 0 it holds that
X + Y ∈ M and λX ∈ M. A functional ψ : M → R is said to be a risk measure if it satisfies the
following properties:

ψ(0) = 0 (Normalization) (20)
if X ≤ Y then ψ(X) ≥ ψ(Y ) (Monotonicity) (21)
ψ(X + c) = ψ(X)− c ∀c ∈ R (Translation invariance) (22)

Any risk measure that in addition satisfies the properties
ψ(cX) = cψ(X) ∀a > 0 (Positive homogeneity) (23)
ψ(X + Y ) ≤ ψ(X) + ψ(Y ) (Subadditivity) (24)

is called a coherent risk measure. A weaker notion is convex risk measure which is a risk measure
that satisfies

ψ(λX + (1− λ)Y ) ≤ λψ(X) + (1− λ)ψ(Y ) ∀λ ∈ [0, 1] (Convexity) (25)
and finally a risk-measure ψ is called law-invariant if ψ(X) only depends on the distribution of X
under P.

We now mention some example of risk measures: The risk measure given by

ERMβ(X) =
1

β
log

(
E[e−βX ]

)
(26)

is known as the entropic risk measure with parameter β ̸= 0. It is not positive homogeneous and
hence not coherent. For β < 0 it is not even convex. Letting β → 0 one recovers the expectation
and letting β → ∞ one recovers the essential infimum risk measure.

The risk measure given by
VaRα(X) := qα(X) := inf{x ∈ R : FX(x) ≥ α} (27)

is called the value-at-risk at level α ∈ (0, 1) and is in general not sub-additive hence also not
coherent.

The risk measure given by

CVaRα(X) :=
1

1− α

∫ 1

α

VaRu(X)du (28)

is known as the conditional Value-at-risk (CVaR) or sometimes as the expected shortfall (ES) and is
known to be a coherent risk-measure.

All the examples so far are evidently law-invariant.

The actual functional that will be used to rank random variables is the negative of the ERM-
risk measure given in the example above with the interpretation being that a lower quantity of risk is
preferable. It follows directly then that the functional ρ : M → R given by ρ(X) := −ERMβ(X)
has the following properties:

ρ(0) = 0 (Normalization) (29)
if X ≤ Y then ρ(X) ≤ ρ(Y ) (Monotonicity) (30)
ρ(X + c) = ρ(X) + c (Translation invariance) (31)

It is common in the literature to overload notation and also refer to ρ as the ERM and we will do so
and henceforth we will no longer care about risk measures, but only about this specific functional ρ.
It follows immediately from the normalization and translation invariance that for any real number
c ∈ R it holds that ρ(c) = c.

We will often use the short-hand notation ρs,a(V (s′)) as ρ applied to the random variable X that
takes on the values {V (s′)}s′∈S with probabilities P(X = V (s′)) = P (s′|s, a).
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C Bellman Optimality and Bellman Recursions

In this section we properly define the state-value functions and state-action value functions of any
possibly history-dependent policy π and show that the problem of finding an optimal policy can be
achieved by a stationary policy and that the value functions satisfy Bellman recursions when the
value functions are defined iteratively with respect to the ERM. Several similar results exist in the
literature e.g. [4] and [6] which also covers the β > 0 case. These results are derived under more
general assumptions on S and A. These general assumptions are trivially satisfied when S and A are
finite but their proofs require assumptions on the functionals to ensure the existence of a stationary
optimal policy usually by invoking a measurable selection theorem. We avoid this complication
by only considering finite S and A and we in turn also give the first proof for state-action value
functions and not just for value-functions which is needed as we consider the problem of learning.

Let M = (S,A, P,R, γ, ρ) be a finite MDP with ρ being the ERM, and R(s, a) ∈ [0, 1] a determin-
istic reward function. LetD = S×A,H1 = S andHk = Dk−1×S for k ≥ 2 the set of all possible
histories up to stage k. A policy π = (πk)k∈N a sequence of maps πk : Hk → A. We denote the
set of all policies Π and identify the set of all stationary policies with the set of measurable maps
F from S to A which is simply the set of all maps from S to A since all maps between finite sets
that are both equipped with the discrete topology are measurable with respect to the induced Borel
σ-algebras. Let B(Hk) be the set of maps Vk : Hk → R equipped with the supremum norm and let
π = (πk)k∈N be any policy. For any Vk+1 ∈ B(Hk+1) and hk ∈ Hk we denote by ρhk,πk

(Vk+1)
the functional ρ applied to the random variable concentrated on the set {Vk+1(hk, πk(hk), s

′)}s′∈S

with P(sk+1 = s′) = P(s′|sk, πk(hk)). By monotonicity of ρ we get that ρhk,πk
(Vk+1) ≤ ∥Vk+1∥

Next, we define the operators Lπk
: B(Hk+1) → B(Hk) by

(Lπk
Vk+1)(hk) = Lπk,Vk+1

(hk) := R(sk, πk(hk)) + γρhk,πk
(Vk+1) (32)

and similarly we define La : B(Hk+1) → B(Hk) by

(LaVk+1)(hk) = La,Vk+1
(hk) := R(sk, a) + γρsk,a(Vk+1)

with ρsk,a defined analogously as ρhk,πk
as above. By the basic properties of risk-measures it

follows directly that 0 ≤ LπkVk+1
(hk) ≤ 1 + γ∥Vk+1∥ and similarly for La.

For any initial state s1 = s we define the N -step discounted utility as

JN (s, a, π) := (La ◦ Lπ2 ◦ · · · ◦ LπN
)0(s) (33)

where 0(hk) = 0 for all hk ∈ Hk and all k ∈ N.

By monotonicity of ρ, it holds that the sequence (JN (s, a, π))N∈N is non decreasing and bounded
in the interval [0, 1

1−γ ] for any s, a, π ∈ S ×A×Π and so the limit

J(s, a, π) := lim
N→∞

JN (s, a, π)

exists for any state s, any action a and any policy π.

The problem of the agent is to find J∗(s, a) = supπ∈Π J(s, a, π) and an optimal policy π∗ that
solves J(s, a, π∗) = J∗(s, a).

Theorem 6. There exist a unique non-negative function Q ∈ B(S × A) (non-negative maps from
S ×A → ∞ equipped with sup-norm) and a stationary decision rule f∗ : S → A such that

Q(s, a) = R(s, a) + γρs,a(max
a′

Q(s′, a′)) , (34)

= R(s, a) + γρs,a(Q(s′, f∗(s′))) . (35)

Moreover, Q(s, a) = J∗(s, a) = J(s, a, f∗) meaning that f∗ is an optimal stationary policy.

Proof. We start by proving existence of Q. Let L : B(S × A) → B(S × A) denote the operator
given by

LQ(s, a) := R(s, a) + γρs,a(max
a′

Q(s′, a′)) . (36)
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Let Q1, Q2 ∈ B(S ×A). We then have for all (s, a) that

LQ1(s, a)− LQ2(s, a) = γ[ρs,a(max
a′

Q1(s
′, a′))− ρs,a(max

a′
Q2(s

′, a′))] (37)

= γ[ρs,a(max
a′

Q1(s
′, a′))− ρs,a(max

a′
Q1(s

′, a′)−max
a′

Q1(s
′, a′) + max

a′
Q2(s

′, a′))]

(38)

≤ γ[ρs,a(max
a′

Q1(s
′, a′))− ρs,a(max

a′
Q1(s

′, a′) + max
a′

{Q2(s
′, a′)−Q1(s

′, a′))})]
(39)

≤ γ[ρs,a(max
a′

Q1(s
′, a′))− ρs,a(max

a′
Q1(s

′, a′) + ∥Q1 −Q2∥)] (40)

= γ∥Q1 −Q2∥ . (41)

We start by showing that L : B(S × A) → B(S × A), that is it takes non-negative functions
and returns non-negative functions. By normalization and monotonicity of ρ we have for any non-
negative Q ∈ B(S ×A) that

LQ(s, a) = R(s, a) + γρs,a(max
a′

Q(s, a)) ≥ 0 + γρs,a(0) = 0 (42)

and since we by a completely similar argument have LQ2(s, a) − LQ1(s, a) ≤ γ∥Q1 − Q2∥, we
have that L is a contraction, and since S×A we can identifyB(S×A) with the closed subset of the
complete metric space(RS×A, ∥ · ∥) that consists of vectors with non-negative coordinates. Since
this subspace is closed, it is also a complete metric space and the existence of Q then follows from
the Banach fixed point theorem.

Since there are only finitely many states and actions we can pick a stationary decision rule where
f∗(s) is an arbitrary element of argmaxaQ(s, a).

Let V be the function given V (s) := Q(s, f∗(s)) for all s. We then see that

V (s) ≥ R(s, a) + γρs,a(V (s′)) (43)

for every s ∈ S. Let π = (πk)k ∈ N be any policy in Π. The above inequality then shows
that for any history hk, k ∈ N we have that V (sk) ≥ Lπk

V (hk) and furthermore we note that
Q(s1, a) = LaV (h1). This implies for any N ∈ N that

Q(s, a) ≥ (La ◦ Lπ2
◦ · · · ◦ LπN

)V (s) ≥ (La ◦ Lπ2
◦ · · · ◦ LπN

)0(s) = JN (s, a, π) , (44)

where we have used that Q(s, a) ≥ 0. Finally taking the limit we find that Q(s, a) ≥ J(s, a, π).

Finally we aim to that Q(s, a) ≤ J(s, a, f∗). By induction, we wish to show that V (s) ≤
JN (s, f∗(s), f∗) + γN∥V ∥ for all N ∈ N. For the induction step, we start by noting that
J1(s, f

∗(s), f∗) = R(s, f∗(s)) and so

V (s) = R(s, f∗(s)) + γρs,f∗(s)(V (s′)) (45)

≤ R(s, f∗(s)) + γρs,f∗(s)(∥V ∥) (46)

= R(s, f∗(s)) + γ∥V ∥ (47)
= J1(s, f

∗(s), f∗) + γ∥V ∥ , (48)

for all (s, a) ∈ S ×A. For the induction step, we assume that V (s) ≤ JN (s, f∗(s), f∗) + γN∥V ∥.
By using that V (s) = Lf∗V (s) and that L is monotone, we see that

V (s) = Lf∗V (s) (49)

≤ Lf∗(JN (s, f∗(s), f∗) + γN∥V ∥) (50)

=
(
R(·, f∗(·)) + γρ·,f∗(·)(JN (·, f∗(·), f∗) + γN∥V ∥

)
(s) (51)

= JN+1(s, f
∗(s), f∗) + γN+1∥V ∥ , (52)

from which taking the limit N → ∞, we get that V (s) ≤ J(s, f∗(s), f∗).

Finally, since

Q(s, a) = LaV (s) ≤ LaJ(s, f
∗(s), f∗) = J(s, a, f∗) , (53)

the conclusion holds.
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Since this shows that an optimal stationary policy exists, it will suffice to consider only stationary
policies and one can by completely analogous arguments show that for any stationary policy π, there
exists a non-negative map Qπ ∈ B(S × A) such that Qπ(s, a) = J(s, a, π) such that Qπ satisfies
the Bellman recursion:

Qπ(s, a) = R(s, a) + γρs,a(Q
π(s′, π(s′)) , (54)

and similarly for state-value functions V π(s) := Qπ(s, π(s)).

We also remark that in the proof we see directly that Q(s, a) ∈ [0, 1
1−γ ] for all (s, a).

D Deterioration of Greedy Policy

Next we show a result that bounds the quality of a greedy policy with respect to the quality of
the value-function for which the policy is greedy. The result is a generalization of [47] from
the expectation to that of the ERM. Throughout, we use the notation ρs,a(V (s′)) as shorthand
notation for ρ applied to the categorical random variable X with support {V (s′)}s′∈S where
P(X = V (s′)) = P (s′|s, a).

Theorem 7. Let V̂ be a function for which ∥V ∗ − V̂ ∥ < ε and let πG := argmaxa[R(s, a) +

γρs,a(V̂ (s′))] be a greedy policy with respect to V̂ . Let the value function of this greedy policy be
denoted V G := V πG

. It then holds that

∥V ∗ − V G∥ ≤ 2γ

1− γ
ε . (55)

Proof. Let s̄ be a state such that ∥V ∗ − V G∥ = V ∗(s̄)− V G(s̄). We then consider the two actions
a∗ := π∗(s̄) (pick any if more) and aG := πG(s̄). Since πG is greedy w.r.t. V G, we have that

R(s̄, a∗) + γρs̄,a∗(V̂ (s′)) ≤ R(s̄, aG) + γρŝ,aG(V̂ (s′)) .

By assumption, it holds for any s ∈ S that

V ∗(s)− ε ≤ V̂ (s) ≤ V ∗(s) + ε.

By monotonicity and translation invariance of ρ, we thus get

R(s̄, a∗) + γρs̄,a∗(V̂ (s′)) ≥ R(s̄, a∗) + γρs̄,a∗(V ∗(s′)− ε) (56)

= R(s̄, a∗) + γρs̄,a∗(V ∗(s′))− γε , (57)

and similarly we have

R(s̄, aG) + γρs̄,aG(V̂ (s′)) ≤ R(s̄, aG) + γρs̄,aG(V ∗(s′)) + γε, (58)

which collectively implie

R(s̄, a∗)−R(s̄, aG) ≤ 2γε+ γ
(
ρs̄,aG(V ∗(s′))− ρs̄,a∗(V ∗(s′)

)
. (59)

Finally, we obtain

V ∗(s̄)− V G(s̄) = R(s̄, a∗)−R(s̄, aG) + γρs̄,a∗(V ∗(s′))− γρs̄,aG(V G(s′))

≤ 2γε+ γρs̄,aG(V ∗(s′))− γρs̄,a∗(V ∗(s′) + γρs̄,a∗(V ∗(s′))− γρs̄,aG(V G(s′))

= 2γε+ γ
(
ρs̄,aG(V ∗(s′)− ρs̄,aG(V G(s′))

)
= 2γε+ γ∥V ∗ − V G∥,

from which the result follows.
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E Concentration Results

In this section we collect some lemmas on concentration. they directly complement lemma 3.

Let N denote the number of calls to the generative model on each state-action pair such that
the total number of calls is SAN . Let P̂ (s′|s, a) denote the plug-in estimator obtained from N

samples of s′ ∼ P (·|s, a), that is P̂ (s′|s, a) =
∑N

n=1 1{sn=s′}
N where sn is the outcome of the

random variable Xn taking values in S according to P (·|s, a).

Lemma 7. Fix ε > 0. If every state-action pair has been tried at least N = 8
S+log(SA

δ )

τ2 times, then
it holds that max(s,a) ∥P (·|s, a)− P̂ (·|s, a)∥1 ≤ ε with probability at least 1− δ.

Proof. Using the Weissman inequality [53], any confidence interval for a state-action pair that have
been tried m times have size 2

√
2[log(2S − 2)− log(δP )]/N . Setting this size to be smaller than τ

and solving for N , we find that

N ≥ 8

ε2

(
log(2S − 2)− log(δP )

)
. (60)

Noting that 8
(
S + log(1/δP )

)
/ε2 ≥ 8[log(2S − 2) − log(δP )]/ε

2 and substituting δP = δ
SA ,

the result follows by the union bound since each of the SA confidence balls contain P (·|s, a) with
probability at least 1− δ.

Theorem 8. Let π be any fixed policy. For β > 0 we have that if N > (1−e
−β 1

1−γ )2

2ε2 log(2SA/δ)
then it holds that with probability at least 1− δ that

max
s,a

∣∣∑
s′

[P (s′|s, a)− P̂ (s′|s, a)]e−βV π(s′)
∣∣ < ε (61)

and if β < 0 it holds that if N > (1−e
−β 1

1−γ )2

2ε2 log(2SA/δ), then it holds that with probability at
least 1− δ that

max
s,a

∣∣∑
s′

[P (s′|s, a)− P̂ (s′|s, a)]e|β|(V
π(s′)− 1

1−γ )
∣∣ < ε . (62)

Proof. We only prove the first claim: β > 0 as the other case is completely similar. We note that for
the random variable

∑
s′ 1{Xn=s′}(s

′|s, a)e−βV π(s′), we have that

E
[∑

s′

1{Xn=s′}(s
′|s, a)e−βV π(s′)

]
=

∑
s′

E
[
1{Xn=s′}

]
e−βV π(s′) (63)

=
∑
s′

P (s′|s, a)e−βV π(s′) (64)

and that it is bounded in [e−β 1
1−γ , 1]. Also, since∑

s′

P̂ (s′|s, a)e−βV π(s′) =
1

N

N∑
n=1

∑
s′

1{Xn=s′}(s
′|s, a)e−βV π(s′), (65)

it follows directly from Hoeffding’s inequality that

P
(∣∣∣∣∑

s′

[P (s′|s, a)− P̂ (s′|s, a)]e−βV π(s′)

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2Nε2(

1− e−β 1
1−γ

)2). (66)

Thus, by picking N = (1−e
−β 1

1−γ )2

2ε2 log(2SA/δ) and a union bound,

P
(
max
s,a

|
∑
s′

[P (s′|s, a)− P̂ (s′|s, a)]e−βV π(s′)| ≥ ε

)
≤ δ . (67)
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F Analysis of MB-RS-QVI: Missing Proofs

F.1 Proof of Lemma 1

Proof. We only give the proof for T as the claim for T π could be proven using extremely similar
lines.

Consider two maps Q : RS×A → RS×A and W : RS×A → RS×A, and let Q′ = T Q and
W ′ = TW be their respective T -transforms. Let (s, a) be any pair such that |Q′(s, a)−W ′(s, a)| =
∥Q′ −W ′∥∞, and assume without loss of generality that Q′(s, a) ≥W ′(s, a). Further, define

V (s) := max
a

Q(s, a) , X(s) := max
a

W (s, a) .

Assuming that β > 0 (the case β < 0 is completely similar), we then have

∥Q′ −W ′∥ = Q′(s, a)−W ′(s, a)

= −γ
β
log

(∑
s′

P (s′|s, a)e−βV (s′)

)
+
γ

β
log

(∑
s′

P (s′|s, a)e−βX(s′)

)
= −γ

β
log

(∑
s′

P (s′|s, a)e−βX(s′)−β(V (s′)−X(s′))

)
+
γ

β
log

(∑
s′

P (s′|s, a)e−βX(s′)

)
≤ −γ

β
log

(∑
s′

P (s′|s, a)e−βX(s′)−β∥V−X∥
)
+
γ

β
log

(∑
s′

P (s′|s, a)e−βX(s′)

)
= γ∥V −X∥
≤ γ∥Q−W∥ ,

and the lemma follows.

F.2 Proof of Lemma 2

Proof. By Lemma 1, we have that T is a γ-contraction and that Q∗ is its unique fixed point. We
thus have ∥Qk − Q∗∥ = ∥T Qk−1 − T Q∗∥ ≤ γ∥Qk−1 − Q∗∥. Applying this inequality k times
yields

∥Qk −Q∗∥ ≤ γk∥Q0 −Q∗∥ ≤ γk

1− γ
.

Solving γk

1−γ for k, we get that if k >
log( 1

(1−γ)ε
)

log(1/γ) , then ∥Qk −Q∗∥ < ε, thus proving the first claim.

To show the other claim, we start by noting that ∥V πk − V ∗∥ ≤ ∥Qπk − Q∗∥. Note also that by
design we have that T πkQπk = Qπk and that T Qk = T πkQk. Thus,

∥Qπk −Q∗∥ ≤ ∥Qπk −Qk∥+ ∥Qk −Q∗∥ . (68)

The first term in the right-hand side is bounded as follows:

∥Qπk −Qk∥ = ∥T πkQπk −Qk∥
≤ ∥T πkQπk − T Qk∥+ ∥T Qk −Qk∥
= ∥T πkQπk − T πkQk∥+ ∥T Qk − T Qk−1∥
≤ γ∥Qπk −Qk∥+ γ∥Qk −Qk−1∥ ,

which means that

∥Qπk −Qk∥ ≤ γ

1− γ
∥Qk −Qk−1∥ ≤ γk

1− γ
∥Q1 −Q0∥ ≤ γk

(1− γ)2
. (69)

The proof is completed by observing that picking k >
log( 2

(1−γ)2ε
)

log(1/γ) implies ∥V πk − V ∗∥ < ε.
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F.3 Proof of Lemma 3

Proof. There are four different cases to consider, namely the combinations arrising from β > 0 vs
β < 0 and wether on the state-action pair (s, a) that realizes the maximum it holds that Q1(s, a) >
Q2(s, a) or Q2(s, a) > Q1(s, a).

Case 1: β > 0, Q1(s, a) > Q2(s, a).

∥Q1 −Q2∥ =
γ

β
ln

(∑
s′ P2(s

′|s, a)e−βV2(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)

)
=
γ

β
ln

(∑
s′ P2(s

′|s, a)e−βV1(s
′)+β(V2(s

′)−V1(s
′))∑

s′ P1(s′|s, a)e−βV1(s′)

)
≤ γ

β
ln

(
eβ∥V1−V2∥

∑
s′ P2(s

′|s, a)e−βV1(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)

)
= γ∥V1 − V2∥+

γ

β
ln

(∑
s′ P2(s

′|s, a)e−βV1(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)

)
≤ γ∥Q1 −Q2∥+

γ

β
ln

(
1 +

∑
s′ P2(s

′|s, a)e−βV1(s
′) −

∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)

)
≤ γ∥Q1 −Q2∥+

γ

β

∑
s′ P2(s

′|s, a)e−βV1(s
′) −

∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)

≤ γ∥Q1 −Q2∥+
γ

β

|
∑

s′ [P2(s
′|s, a)− P1(s

′|s, a)]e−βV1(s
′)|

e−β 1
1−γ

.

Rearranging the terms yields the asserted result:

∥Q1 −Q2∥ ≤ γ

1− γ

eβ
1

1−γ

β

∣∣∑
s′

[P2(s
′|s, a)− P1(s

′|s, a)]e−βV1(s
′)
∣∣ .

Case 2: β > 0 and Q1(s, a) < Q2(s, a). The proof is very similar but the extension V2(s) =
V1(s) + V2(s)− V1(s) is now done in the numerator instead:

∥Q1 −Q2∥ =
γ

β
ln

(∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P2(s′|s, a)e−βV2(s′)

)
=
γ

β
ln

( ∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)−β(V2(s′)−V1(s′))

)
≤ γ

β
ln

(
eβ∥V1−V2∥

∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P2(s′|s, a)e−βV1(s′)

)
= γ∥V1 − V2∥+

γ

β
ln

(∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P2(s′|s, a)e−βV1(s′)

)
≤ γ∥Q1 −Q2∥+

γ

β
ln

(
1 +

∑
s′ P2(s

′|s, a)e−βV1(s
′) −

∑
s′ P1(s

′|s, a)e−βV1(s
′)∑

s′ P1(s′|s, a)e−βV1(s′)

)
≤ γ∥Q1 −Q2∥+

γ

β

∑
s′ P1(s

′|s, a)e−βV1(s
′) −

∑
s′ P2(s

′|s, a)e−βV1(s
′)∑

s′ P2(s′|s, a)e−βV1(s′)

≤ γ∥Q1 −Q2∥+
γ

β

|
∑

s′ [P1(s
′|s, a)− P2(s

′|s, a)]e−βV1(s
′)|

e−β 1
1−γ

,

which again yields

∥Q1 −Q2∥ ≤ γ

1− γ

eβ
1

1−γ

β

∣∣∑
s′

[P2(s
′|s, a)− P1(s

′|s, a)]e−βV1(s
′)
∣∣ .
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Case 3: β < 0 and Q1(s, a) > Q2(s, a).

∥Q1 −Q2∥ =
γ

|β|
ln

(∑
s′ P1(s

′|s, a)e|β|V1(s
′)∑

s′ P2(s′|s, a)e|β|V2(s′)

)
=

γ

|β|
ln

( ∑
s′ P1(s

′|s, a)e|β|V1(s
′)∑

s′ P1(s′|s, a)e|β|V1(s′)−|β|(V2(s′)−V1(s′))

)
≤ γ

|β|
ln

( ∑
s′ P1(s

′|s, a)e|β|V1(s
′)∑

s′ P1(s′|s, a)e|β|V1(s′)−|β|∥V1−V2∥

)
= γ∥V1 − V2∥+

γ

|β|
ln

(∑
s′ P1(s

′|s, a)e|β|V1(s
′)∑

s′ P2(s′|s, a)e|β|V1(s′)

)
≤ γ∥Q1 −Q2∥+

γ

β
ln

(
1 +

∑
s′ P1(s

′|s, a)e|β|V1(s
′) −

∑
s′ P2(s

′|s, a)e|β|V1(s
′)∑

s′ P2(s′|s, a)e|β|V1(s′)

)
≤ γ∥Q1 −Q2∥+

γ

|β|
∣∣∑

s′

[P1(s
′|s, a)− P2(s

′|s, a)]e|β|V1(s
′)
∣∣

γ∥Q1 −Q2∥+
γ

|β|
e|β|

1
1−γ

∣∣∑
s′

[P2(s
′|s, a)− P1(s

′|s, a)]e|β|
[
V1(s

′)− 1
1−γ

]∣∣,
which implies

∥Q1 −Q2∥ ≤ γ

1− γ

e|β|
1

1−γ

β

∣∣∑
s′

[P2(s
′|s, a)− P1(s

′|s, a)]e|β|[V1(s
′)− 1

1−γ ]
∣∣.

Case 4: β < 0 and Q2(s, a) > Q1(s, a). The proof of this case is similar to the other three cases
and is omitted and the final part of the lemma follows by the triangle inequality and the fact that
e−|β|V1(s) ≤ 1 and e−|β|( 1

1−γ −V1(s)) ≤ 1.

G Lower Bound on Bernoulli Likelihood Ratio

In this section, we revisit and develop a technical result that bounds the likelihood ratio of two
samples under different hypotheses on a high probability event. Parts of the proof closely resembles
parts of Lemma 17 in [21]; however, we stress that our treatment fixes an error in the proof, which
however requires slightly stronger assumptions than those imposed in [21]. In addition, while the
result in [21] only considers p ≥ 1

2 , ours deal with both cases of p ≥ 1
2 and p < 1

2 .

Let p ∈ (0, 1) and p̃ = max{p, 1 − p}. Let α ∈ (0, 1−p̃
5 ]. Consider two coins (Bernoulli random

variables), one with bias q = p and one with bias q = p+α. We name the two statistical hypotheses
H0 : q = p and H1 : q = p+ α.

Let W be the outcome of flipping one of the coins t times and the associated likelihood function
under hypothesis m as

Lm(w) := Pm(W = w) (70)
for hypothesis Hm with m ∈ {0, 1} and for every possible history of outcomes w, and where
Pm(W = w) denotes the probability of observing the history w under the hypothesis Hm. The
likelihood function defines a random variable Lm(W ), whereW is the stochastic process of realized
coin tosses.

Let t ∈ N and θ = exp
(
− c1α

2t
p(1−p)

)
. Let k be the number of successes in the t trials and

k̃ =

{
k if p ≥ 1

2

t− k if p < 1
2 .

Finally, we define the event E as

E =

{
p̃t− k̃ ≤

√
2p(1− p) log(

c2
2θ

)

}
,

where c2 ≥ 2 is any constant.
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Theorem 9. For c1 = 32, it holds that L1(W )
L0(W )1E ≥ 2θ

c2
1E .

Proof. We distinguish two cases depending on the value of p.

Case 1: p ≥ 1
2 . The likelihood ratio can be written as

L1(W )

L2(W )
=

(p+ α)k(1− p− α)t−k

pk(1− p)t−k
=

(
1 +

α

p

)k(
1− α

1− p

)t−k

=

(
1 +

α

p

)k(
1− α

1− p

)k 1−p
p
(
1− α

1− p

)t− k
p

.

We start by bounding the second factor using that log(1−x) ≥ −x−x2+x3 for x ∈ [0, 15 ] (Lemma
5) and that exp(x) ≥ 1 + x for all x along with our assumption that α ≤ 1−p

5 :(
1− α

1− p

) 1−p
p

≥ exp

(
1− p

p

[
− α

1− p
− α2

(1− p)2
+

α3

(1− p)3

])
≥ 1− 1− p

p

[
α

1− p
+

α2

(1− p)2
− α3

(1− p)3
]

= 1− α

p
− α2

p(1− p)
+

α3

p(1− p)2

≥ 1− α

p
− α2

p(1− p)
+

α3

p2(1− p)

=

(
1− α

p

)(
1− α2

p(1− p)

)
,

where we have used that p ≥ 1− p.

Using this along with the fact that k ≤ t and p ≥ 1− p, it follows that

L1(W )

L0(W )
≥

(
1− α2

p2

)k(
1− α2

p(1− p)

)k(
1− α

1− p

)t− k
p

≥
(
1− α2

p(1− p)

)2k(
1− α

1− p

)t− k
p

≥
(
1− α2

p(1− p)

)2t(
1− α

1− p

)t− k
p

.

Note that we have α2 ≤ (1−p)2

25 ≤ p(1−p)
25 ≤ p(1−p)

2 . Using this and the fact that log(1− x) ≥ −2x

for x ∈ [0, 12 ], we obtain (
1− α2

p(1− p)

)2t

≥ exp

(
− 4t

α2

p(1− p)

)
= θ

4
c1

≥
(
2θ

c2

) 4
c1

,

where we have used that 2
c2

≥ 1.

Now on the event E , we have that t − k
p ≤

√
2 1−p

p t log( c22θ ). Using this along with the fact that
1
c1

log( c22θ ) ≤
α2t

p(1−p) , which follows since

log(
c2
2θ

) = log

(
c2
2
exp

[
c1α

2t

p(1− p)

])
≤ log

(
exp

[
c1α

2t

p(1− p)

])
=

c1α
2t

p(1− p)
,
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we obtain that (
1− α

1− p

)t− k
p

≥
(
1− α

1− p

)√
2 1−p

p t log(c2/(2θ))

≥ exp

(
− 2

α

1− p

√
2
1− p

p
t log(c2/(2θ))

)
= exp

(
− 2

√
2

√
α2t

p(1− p
log(c2/(2θ))

)
≥ exp

(
− 2

√
2

√
c1

log(c2/(2θ))

)

=

(
2θ

c2

) 2
√

2√
c1

.

Putting these together, we see that

L1(W )

L2(W )
1E ≥

(
2θ

c2

) 2
√

2√
c1

+
2(1−p)
p·c1

+ 2
c1

1E ,

so that choosing c1 = 32 yields the claimed result:
L1(W )

L2(W )
1E ≥ 2θ

c2
1E .

Case 2: p < 1
2 . Define m = t− k, which is now the number of failed coin flips. Hence,

L1(W )

L0(W )
=

(1− p− α)m(p+ α)t−m

(1− p)mpt−m
=

(
1− α

1− p

)m(
1 +

α

p

)t−m

=

(
1− α

1− p

)m(
1 +

α

p

)m p
1−p

(
1 +

α

p

)t− m
1−p

.

Again, using exp(1 + x) ≥ x for all x ∈ R and using that log(1 + x) ≥ x − x2 for all x ≥ 0, we
get that (

1 +
α

p

) p
1−p

≥ exp

(
p

1− p

[
α

p
− α2

p2

])
≥ 1 +

α

1− p
− α2

p(1− p)

≥ 1 +
α

1− p
− α2

p(1− p)
− α3

p(1− p)2

=

(
1 +

α

1− p

)(
1− α2

p(1− p)

)
.

Using this along with the fact that (1− p) > p and m ≤ t, we have

L1(W )

L2(W )
≥

(
1− α2

(1− p)2

)m(
1− α2

p(1− p)

)m(
1 +

α

p

)t− m
1−p

≥
(
1− α2

p(1− p)

)2t(
1− α

p

)t− m
1−p

.

Again, using log(1− x) ≥ −2x for x ∈ [0, 12 ], we get that(
1− α2

p(1− p)

)2t

≥ exp

(
− 4t

α2

p(1− p)

)
≥ θ

4
c1

≥
(
2θ

c2

) 4
c1

.
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On the event E , we have that t − m
1−p ≤

√
2ptα2

1−p log( c22θ ). Using this along with the fact that
1
c1

log( c22θ ) ≤
α2t

p(1−p) , we get on the event E that

(
1− α

p

)t− m
1−p

≥
(
1− α

p

)√
2p

1−p t log(
c2
2θ )

≥ exp

(
− 2

√
2t

p(1− p)
log(

c2
2θ

)

)
≥ exp

(
− 2

√
2

√
c1

log(
c2
2θ

)

)

=

(
2θ

c2

) 2
√

2√
c1

.

We thus get the desired result for c1 = 32:

L1(W )

L0(W )
1E ≥ 1E

(
2θ

c2

) 4
c1

+ 2
√

2√
c1

≥ 1E

(
2θ

c2

)
.

H Proofs of Lower Bounds

H.1 Lower Bound for Q-value Learning

For a lower bound we construct the following class of MDPs with S′ := S + 2 states and A actions
where the first states are labelled S1, , ..., sS , s

G, sB and the actions are labelled a1, ..., aA. The
states sG and sB are absorbing under any actions and R(sG, a) = 1 for all j and R(sB , a) = 0
for all a ∈ A. For the states s ∈ {s1, ..., sS}, we have that R(s, a) = 0 for all a ∈ A. We have
SA state-action pair combinations from {s1, ..., sS} ×A =: Z on which we assume some ordering
allowing us to write zi, i ∈ [SA]. Finally for all state-action pairs zi ∈ [SA] we have P (sG|zi) = qi
and P (sB |zi) = 1 − qi for some qi ∈ [0, 1]. The structure of this class of MDPs allows us to get
lower bounds on the samples needed to learn the Q-value of each state-action pair zi and then use
the fact that samples used to learn the Q-values for different state-action pairs bring no information
on eachother to get the final bound.

zi

sG sB

q
i

1
−
q i

R = 1 R = 0

Figure 1: Dynamics and rewards of the hard-to-learn MDP class

For any state-action pair we can explicitly calculate the state-action value-functions

Q(zi) =
−γ
β

log(qie
−β 1

1−γ + 1− qi),

Q(sG, a) =
1

1− γ
,

Q(sB , a) = 0.

Denote the collection of all such MDPs by M.
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Fix any index i and consider the two hypotheses Hi
0 : qi = p and Hi

1 : qi = p + α where
p and α are given by

p =

{
1− e−β 1

1−γ for β > 0,

e−|β| 1
1−γ for β < 0,

and

α = 8ε
|β|
γ

1

e|β|
1

1−γ − 1
,

for any ε in the range ε < 1
40

γ
|β| (1− e−|β|) .

We use M0 to denote an MDP where Hi
0 holds and M1 to denote an MDP where instead Hi

0 holds
and E0 and P0 as the expectations operator and probability operator under Hi

1 and similarly E1 and
P1 under Hi

0. Fix any (ε, δ)-correct Q-algorithm U . We start by showing that with these parameter
we have that Q∗

M1
(zi)−Q∗

M0
(zi) > 2ε, which we do by casing on the sign of β :

Case 1: β < 0. In this case p = e−|β| 1
1−γ . We then have

Q∗
M1

(zi)−Q∗
M0

(zi) =
γ

|β|
log

(
(p+ α)e|β|

1
1−γ + 1− p− α

pe|β|
1

1−γ + 1− p

)
=

γ

|β|
log

(
1 +

α(e|β|
1

1−γ − 1)

pe|β|
1

1−γ + 1− p

)
≥ γ

|β|
α

2

e|β|
1

1−γ − 1)

pe|β|
1

1−γ + 1− p

>
γ

|β|
α

4
(e|β|

1
1−γ − 1)

= 2ε ,

where we have used that p = e−|β| 1
1−γ and the fact that log(1 + x) ≥ x

2 for x ∈ [0, 1].

Case 2: β > 0. The case for β > 0 is similar, although in this case we have p = 1− e−β 1
1−γ and

use the inequality log(1 + x) ≤ x for all x > −1 to get that

Q∗
M1

(zi)−Q∗
M0

(zi) = −γ
β
log

(
(p+ α)e−β 1

1−γ + 1− p− α

pe−β 1
1−γ + 1− p

)
= −γ

β
log

(
1− α(1− e−β 1

1−γ )

1− p+ pe−β 1
1−γ

)
= −γ

β
log

(
1− α(1− e−β 1

1−γ )

(1− p)e−β 1
1−γ

)

≥ γ

β
α

1− e−β 1
1−γ

(1 + p)e−β 1
1−γ

≥ γ

β
α
1− e−β 1

1−γ

2e−β 1
1−γ

≥ γ

β
α
eβ

1
1−γ − 1

2

= 4ε .

In particular, this means that the events B0 := {|Q∗
M0

(zi)−QU
t (zi)| ≤ ε} and B1 := {|Q∗

M1
(zi)−

QU
t (zi)| ≤ ε} are disjoint events Let t be the number of times the algorithm tries zi. Since U is

(ε, δ)-correct it holds that P0(B0) ≥ 1− δ ≥ 3
4 .
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Let k be the number of transitions from zi to zGi in the t trials. We then define k̃, p̃ and θ by

k̃ :=

{
k if p ≥ 1

2

t− k if p < 1
2

θ := exp
(
− 32α2t

p(1− p)

)
p̃ = max{p, 1− p}

and the event

E =

{
p̃t− k̃ ≤

√
2p(1− p)t log(

8

2θ
)

}
for which we have P0(E) > 3

4 by Lemma 16 in [21] and thus P0(B0 ∩ E) > 1
2 . Now by Theorem 9

we get that

P1(B0) ≥ P1(B0 ∩ E) = E1[1E1B0 ] = E0

[
L1

L0
1E1B0

]
≥ θ

4
E0[1E1B0 ] =

θ

4
P0(E ∩B0) ≥

θ

8
.

Solving for t in θ
8 > δ we find

t <
p(1− p)

32α2
log(

1

8δ
),

and since

p(1− p)

α2
=

γ2

|β|2
e−|β| 1

1−γ (1− e−|β| 1
1−γ )

64ε2
(e|β|

1
1−γ − 1)2

≥ γ2

64ε2
e|β|

1
1−γ − 3

|β|2
,

we conclude that if the algorithm U tries the state-action pair zi less than

T̃ (ε, δ) :=
γ2

2048ε2
e|β|

1
1−γ − 3

|β|2
log(

1

8δ
)

times under the hypothesis Hi
0, then P1(B0) > δ and B0 ⊂ Bc

1.

Next we use the fact that the structure of the MDPs is such that information on the Q-value of any
state-action pair in Z carries no information on the Q-values of any other state-action pair in Z.

Let n := SA. If the number of total transition samples is less than n
2 T̃ (ε, δ) there must be at

least n/2 state-action pairs zi that has been tried no more than T̃ (ε, δ) times which without loss of
generality we might assume are the state-action pairs {zi}n/2i=1.

Let Ti be the number of times the algorithm has tried zi for i ≤ n/2 Due to the structure of the
MDPs in M it is sufficient to consider only the algorithms that outputs an estimate of QU

Ti
based on

samples from zi since any other samples can yield no information on Q∗(zi)

Thus by defining the events Λi := {|Q∗
M1

(zi) − QU
Ti
(zi)| > ε} we have that Λi and Λj are condi-

tionally independent given Ti and Tj . We then have

P1({Λc
i}1≤i≤n/2 ∩ {Ti ≤ T̃ (ε, δ)}1≤i≤n/2)

=

T̃ (ε,δ)∑
t1=0

· · ·
T̃ (ε,δ)∑
tn/2=0

P1({Ti = ti}1≤i≤n/2)P1({Λc
i}1≤i≤n/2 ∩ {Ti = ti}1≤i≤n/2)

=

T̃ (ε,δ)∑
t1=0

· · ·
T̃ (ε,δ)∑
tn/2=0

P1({Ti = ti}1≤i≤n/2)
∏

1≤i≤n/2

P1(Λ
c
i ∩ {Ti = ti})

=

T̃ (ε,δ)∑
t1=0

· · ·
T̃ (ε,δ)∑
tn/2=0

P1({Ti = ti}1≤i≤n/2)(1− δ)n/2,
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where we have used the law of total probability from line one to two and from two to three follows
from independence. We now have directly that

P1({Λc
i}1≤i≤n/2|{Ti ≤ T̃ (ε, δ)}1≤i≤n/2) ≤ (1− δ)

n
2 .

Thus, if the total number of transitions T is less than n
2 T̃ (ε, δ), then

P1(∥Q∗ −QU
T ∥ > ε) ≥ P1

( ⋃
z∈S×A

Λ(z)

)
= 1− P1

( ⋂
1≤i≤n/2

Λc
i

)
≥ 1− P1({Λc

i}1≤i≤n/2|{Tzi ≤ T̃ (ε, δ)}1≤i≤n/2)

≥ 1− (1− δ)n/2

≥ δn

4
,

when δ n
2 ≤ 1 by Lemma 6. By setting δ′ = δ n

4 and substituting back S′ we obtain the result. This
shows that if the number of samples is smaller than

T =
(S′ − 2)A

4096

γ2

ε2
e|β|

1
1−γ − 3

|β|2
log(

(S′ − 2)A

32δ
) (71)

on the MDP corresponding to the hypothesisH0 : {Hi
0|1 ≤ i ≤ n} it holds that P1(∥Q∗

M1
−QU

T ∥ >
ε) > δ′.

H.2 Lower Bound for Policy Learning

For a lower bound we construct the following class of MDPs with S′ := S + 2 states and A′ :=
A + 1 actions where the first states are labelled s1, . . . , sS , s

G, sB and the actions are labelled
a0, a1, ..., aA. The states sG and sB are absorbing under any actions and R(sG, a) = 1 for all j and
R(sB , a) = 0 for all a ∈ A. For the states s ∈ {s1, ..., sS}, we have that R(s, a) = 0 for all a ∈ A.

From the state si with probabilities that depend on the action taken the agent will then end up in
either a good state sG which is absorbing and yields the maximal unit reward under all actions or in
the bad state sB which is also absorbing but which yields no reward under any action. The different
MDPs thus differ only in their transition probabilities in the choice states si.

Fix an index 1 ≤ i ≤ S. We then consider the following set of possible parameters called hypotheses
Hi

l , l ∈ {0, 1, 2, . . . , A} given by

Hi
0 :q(si, a0) = p+ α q(si, a) = p for a ̸= a0

Hl :q(si, a0) = p+ α q(si, a) = p for a /∈ {a0, l} q(si, al) = p+ 2α ,

where p and α are given by

p =

{
1− e−β 1

1−γ β > 0,

e−|β| 1
1−γ β < 0,

α =
5|β|
γ

ε

e|β|
1

1−γ − 1
,

where we allow for

0 < ε <
γ

50|β|
(
1− e−|β| 1

1−γ
)
,

which ensures that α ≤ e
−|β| 1

1−γ

10 .

Consider a fixed hypothesis Hi
l for some l ̸= 0 and the sub-MDP that only consists of the states

{si, sG, sB}. Here the optimal action is a∗ = al, the second best action is a0 and all other actions
are even worse so the value-error over all states in the triplet for any suboptimal choice of actions
will be at least as large as V ∗(si)−V 0(si) where V 0 is the value by choosing a = 0. We now show
that any non-optimal action is ε-bad on si.
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Case 1: β > 0.

V ∗(si)− V 0(si) = −γ
β
log

(
(p+ 2α)e−β 1

1−γ + 1− p− 2α

(p+ α)e−β 1
1−γ + 1− p− α

)

=
−γ
β

log

(
1− α

1− e−β 1
1−γ

pe−β 1
1−γ + 1− p− α(1− e−β 1

1−γ )

)

>
γ

β
α

1− e−β 1
1−γ

pe−β 1
1−γ + 1− p− α(1− e−β 1

1−γ )

≥ γ

β
α

1− e−β 1
1−γ

pe−β 1
1−γ + 1− p

=
γ

β
α

1− e−β 1
1−γ

(1 + p)e−β 1
1−γ

≥ γ

β
α
1− e−β 1

1−γ

2e−β 1
1−γ

=
γ

2β
α(1− e−β 1

1−γ )

≥ ε ,

where we have used log(1 + x) > x for x ∈ (−1,∞) \ {0}.

Case 2: β < 0.

V ∗(si)− V 0(si) =
γ

|β|
log

(
(p+ 2α)e|β|

1
1−γ + 1− p− 2α

(p+ α)e|β|
1

1−γ + 1− p− α

)

=
γ

|β|
log

(
1 + α

e|β|
1

1−γ − 1

pe−β 1
1−γ + 1− p+ α(e|β|

1
1−γ − 1)

)

>
γ

2|β|
α

e|β|
1

1−γ − 1

pe−β 1
1−γ + 1− p+ α(e|β|

1
1−γ − 1)

≥ γ

2|β|
α

e|β|
1

1−γ − 1

2 + α(e|β|
1

1−γ − 1)

≥ γ

2|β|
α
e|β|

1
1−γ − 1

2 + 1
10

5

21

γ

|β|
α(e|β|

1
1−γ − 1)

≥ ε ,

where we have used log(1 + x) > x
2 for x ∈ (0, 1).

Now haven shown that all non-optimal actions are ε-bad, we wish to show that any algorithm that
is (ε, δ)-correct on Hi

0, i.e. choosing the action a0 with probability at least 1 − δ, will also have a
probability of choosing a0 on Hi

l that is larger than δ provided that al is not tried sufficiently many
times under Hi

0.

Let Pl and El denote the probability operator and expectation operator under the hypothesis Hi
l .

Let t := til be the number of times the algorithm tries action l in si under H0. Assuming that
δ ∈ (0, 14 ) and using that the algorithm is (ε, δ)-correct we have that P0(B) ≥ 1 − δ ≥ 3

4 where
B = {πU (si) = a0} is the event that the algorithm outputs the action a0.
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Let θ = exp
(
− 32α2t

p(1−p)

)
. Fix some t ∈ N and let k be the number of transitions to sGi in the t trials

and

k̃ =

{
k if p ≥ 1

2

t− k if p < 1
2 .

Finally, we define the event E as

E =

{
p̃t− k̃ ≤

√
2p(1− p) log(

8

2θ
)

}
. (72)

Form the Chernoff-Hoeffding bound and as shown in [21] we have that P0(E) > 3
4 and so P0(B ∩

E) > 1
2 . From Theorem 9, we get that

P1(B) ≥ P1(B ∩ E) = E1[1B1E ] ≥ E0

[
L1(W )

L0(W )
1E1B

]
≥ E0

[
θ

4
1E1B

]
=
θ

4
P0(E ∩B) ≥ θ

8
.

(73)

Now solving for θ
8 > δ, we see that if

t < t̃(ε, δ) :=
1

800
log(

1

8δ
)
γ2

ε2
· e

|β| 1
1−γ − 3

|β|2
(74)

then P1(B) > δ and the event B is containing the event that the algorithm does not choose the
optimal action al.

Since this holds for all the A hypotheses Hi
l , l = 1, 2, ..., A it follows that the algorithm needs at

least T̃ (ε, δ) := At̃(ε, δ) samples to be (ε, δ)-correct on the state si.

Next we use the fact that the structure of the MDPs is such that information used to determine π∗(si)
carries no information to determine π∗(sj) for i ̸= j.

If the number of total transition samples is less than S
2 T̃ (ε, δ) then there must be at least S

2 states
in the set {si}Si=1 for which some action (apart from a0) has been tried no more than T̃ (ε, δ) times
which without loss of generality we might assume are the states{si}S/2i=1. and that it is action a1 that
has been tried out at most T̃ (ε, δ) times in each of these states.

Let Ti be the number of times the algorithm has tried sampled any action on si for i ≤ S/2 Due to
the structure of the MDPs in M it is sufficient to consider only the algorithms that yields an estimate
of πU

Ti
based on samples from si since any other samples can yield no information on π∗(si).

Thus, by defining the events Λi := {|V ∗
M1

(si) − V πU
Ti (si)| > ε} we have that Λi and Λj are

conditionally independent given Ti and Tj . We then have that for the MDP M1 ∈ M (The one
corresponding to the hypothesis H1 := {Hi

1|1 ≤ i ≤ n}) it holds that

P({Λc
i}1≤i≤S/2 ∩ {Ti ≤ T̃ (ε, δ)}1≤i≤S/2)

=

T̃ (ε,δ)∑
t1=0

· · ·
T̃ (ε,δ)∑
tS/2=0

P({Ti = ti}1≤i≤S/2)P({Λc
i}1≤i≤S/2 ∩ {Ti = ti}1≤i≤S/2)

=

T̃ (ε,δ)∑
t1=0

· · ·
T̃ (ε,δ)∑
tS/2=0

P({Ti = ti}1≤i≤S/2)
∏

1≤i≤S/2

P(Λc
i ∩ {Ti = ti})

=

T̃ (ε,δ)∑
t1=0

· · ·
T̃ (ε,δ)∑
tS/2=0

P({Ti = ti}1≤i≤S/2)(1− δ)S/2 ,

where we have used the law of total probability from line one to two and from two to three follows
from independence. We now have directly that

P
(
{Λc

i}1≤i≤S/2|{Ti ≤ T̃ (ε, δ)}1≤i≤S/2

)
≤ (1− δ)

S
2 .
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Thus, if the total number of transitions T is less than S
2 T̃ (ε, δ) on the MDP M0 corresponding to

the hypothesis H0 : {Hi
0|1 ≤ i ≤ n}, then on M1 it holds that

P(∥V ∗ − V πU
T ∥ > ε) ≥ P

( ⋃
1≤i≤S/2

Λ(z)

)

= 1− P
( ⋂

1≤i≤S/2

Λc
i

)
≥ 1− P({Λc

i}1≤i≤S/2|{Tzi ≤ T̃ (ε, δ)}1≤i≤S/2)

≥ 1− (1− δ)S/2

≥ δS

4
,

when δS
2 ≤ 1 by Lemma 6. By setting δ′ = δ S

4 and substituting back S′ andA′ we obtain the result.
This shows that if the number of samples is smaller than

T =
(S′ − 2)(A′ − 1)

1600
log(

S′ − 2

32δ
)
γ2

ε2
· e

|β| 1
1−γ − 3

|β|2

on M0 then on M1 it holds that P(∥V ∗ − V πU
T ∥ > ε) > δ.
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