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ABSTRACT

Traditional object detection are ill-equipped for incremental learning. However,1

fine-tuning directly on a well-trained detection model with only new data will2

leads to catastrophic forgetting. Knowledge distillation is a straightforward way3

to mitigate catastrophic forgetting. In Incremental Object Detection (IOD), previ-4

ous work mainly focuses on feature-level knowledge distillation, but the different5

response of detector has not been fully explored yet. In this paper, we propose6

a fully response-based incremental distillation method focusing on learning re-7

sponse from detection bounding boxes and classification predictions. Firstly, our8

method transferring category knowledge while equipping student model with the9

ability to retain localization knowledge during incremental learning. In addition,10

we further evaluate the qualities of all locations and provides valuable response11

by adaptive pseudo-label selection (APS) strategies. Finally, we elucidate that12

knowledge from different responses should be assigned with different importance13

during incremental distillation. Extensive experiments conducted on MS COCO14

demonstrate significant advantages of our method, which substantially narrow the15

performance gap towards full training.16

1 INTRODUCTION17

In the natural world, the visual system of creatures could constantly acquire, integrate and optimize18

knowledge. Learning mode is inherently incremental for them. In contrast, currently, the classic19

training paradigm of the object detection model (Tian et al., 2019; Li et al., 2021b) does not have20

such capability. Supervised object detection paradigm relies on accessing pre-defined labeled data.21

This learning paradigm implicit assumes data distribution is fixed or stationary, while data from22

real world is represented by continuous and dynamic data flow, whose distribution is non-stationary.23

When the model continuously obtains knowledge from non-stationary data distribution, new knowl-24

edge would interfere with the old one, triggering catastrophic forgetting (Goodfellow et al., 2015;25

Mccloskey & Cohen, 1989).26

A straightforward way in incremental object detection is based on knowledge distillation (Hinton27

et al., 2015). Peng et al. (2021) stressed that the Tower layers could reduce catastrophic forgetting28

significantly. They implemented incremental learning on an anchor-free detector and selectively per-29

formed distillation on non-regression outputs. In knowledge distillation for object detection where30

incremental learning was not introduced, previous work extracted knowledge from the combined31

distillation of different components. For example, Chen et al. (2017) and Sun et al. (2020) dis-32

tilled all components of the detector. Nevertheless, the nature of these methods are designed using33

feature-based knowledge distillation, fully response-based method (Gou et al., 2021) has not been34

explored in incremental object detection yet. Besides, since different components in the detection35

make different contributions to incremental distillation, an elaborate design for different responses36

is essential.37

This paper focused on a practical and challenging problem concerning incremental object detection:38

how to learn response from detecting bounding boxes and classification predictions. Responses in39

object detection contain logits together with the offset of bounding box (Gou et al., 2021). Firstly,40

since the number of ground truth on each new image is uncertain, one of the foremost considerations41

is that validate the object of all samples, determining which object is positive or negative and which42

ground truth each object should regress towards. A troublesome issue is that the output of the43
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regression branch may be substantially different from that of the ground truth. Furthermore, the44

localization knowledge of each edge in the detection bounding boxes is also response that should be45

taken seriously. To sum up, we use the response on the location where teacher detector generates46

high-quality predictions as the ground truth to guide the student detector following the behavior of47

teacher on the old object. In this case, it is of great significance to use the old detector to provide48

valuable incremental information from detection bounding boxes and classification predictions.49

To tackle the above problems, this paper rethinks response-based knowledge distillation method,50

finding that distillation at proper locations is crucial in facilitating incremental object detection.51

We believe that student detector can acquire high-quality knowledge from the teacher detector’s52

high-quality predictions. Driven by this inspiration, we proposed an incremental distillation scheme53

that learns specific responses from the classification head and regression head respectively. Unlike54

previous work, we introduce incremental localization distillation (Zheng et al., 2021) in regression55

response to equip student detector with the ability to learn location ambiguity during incremental56

learning. Besides, we propose adaptive pseudo-label selection (APS) strategies to automatically57

select distillation nodes based on statistical characteristics from different responses, which evaluates58

the qualities of all locations and provides valuable response. We alleviate catastrophic forgetting59

greatly and significantly narrow the gap with full training by distilling the response alone. Extensive60

experiments on the MS COCO dataset support our analysis and conclusion.61

The main contributions of this work can be summarized,62

1. To the best of our knowledge, this paper is first work to explore the fully response-based63

distillation method in incremental object detection.64

2. We propose a novel distillation scheme elaborate designed for incremental detection focus-65

ing on detection bounding boxes and classification predictions.66

3. We propose adaptive pseudo-label selection strategies to automatically select distillation67

nodes based on statistical characteristics from the different responses.68

2 RELATED WORK69

Incremental Learning. Catastrophic forgetting is the core challenge for incremental learning. In-70

cremental learning based on parameter constraints is a candidate solution for such problem, which71

protects the old knowledge by introducing an additional parameter-related regularization term to72

modify the gradient. EWC (Kirkpatrick et al., 2016) and MAS (Aljundi et al., 2018) are two typical73

representatives of such method. Another solution is incremental learning based on knowledge dis-74

tillation, as well as the topic of the study. This kind of method mainly projects old knowledge by75

transferring knowledge in old tasks to new tasks through knowledge distillation. LwF (Li & Hoiem,76

2018) is the first algorithm that introduces the concept of knowledge distillation into incremental77

learning, in the purpose of making predictions of the new model on new tasks similar to that of78

the old model and thereby protecting the old knowledge in the form of knowledge transfer. How-79

ever, it would cause knowledge confusion when the correlation between new and old tasks is low.80

iCaRL (Rebuffi et al., 2017) algorithm uses knowledge distillation to avoid excessive deterioration81

of knowledge in the network, while BiC (Wu et al., 2019) algorithm added a bias correction layer82

after the FC layer to offset the category bias of new data when using the distillation loss.83

Incremental Object Detection. Compared with incremental classification, achievements on incre-84

mental object detection is much less. Meanwhile, the high complexity of the detection task also85

adds the difficulty of incremental object detection. Shmelkov et al. (2017) proposed to apply LwF86

to Fast RCNN detector (Girshick, 2015), which is the first work on incremental object detection.87

Thereafter, some researchers move this area forward. Peng et al. (2021) proposed SID approach88

for incremental object detection on anchor-free detector and conducted experiments on FCOS (Tian89

et al., 2019) and CenterNet (Zhou et al., 2019). Li et al. (2021a) studied object detection based90

on class-incremental learning on Faster RCNN detector with emphasis given to few-shot scenarios,91

which is also the focus of ONCE algorithm (Perez-Rua et al., 2020). Li et al. (2019) designed an92

incremental object detection system with RetinaNet detector (Lin et al., 2020) under the scenario93

of edge device. the latest work, Joseph et al. (2021) introduced the concept of incremental learning94

when defining the problems of Open World Object Detection (OWOD).95
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Figure 1: Overview of response-based incremental distillation.

Knowledge Distillation for Object Detection. Knowledge distillation (Bucila et al., 2006)is an96

effective way to transfer knowledge between models. Widely applied in image classification tasks97

in previous researches, knowledge distillation is now used in object detection tasks more and more98

frequently. Chen et al. (2017) implemented distillation in all components on Faster RCNN detector99

(including backbone, proposals in RPN, and head). To imitate the high-level feature response of100

the teacher model with the student model, Wang et al. (2019) proposed a distillation method based101

on fine-grained feature imitation. By synthesize category-conditioned objects through inverse map-102

ping, Chawla et al. (2021) proposed a data-free knowledge distillation technology applicable for103

object detection, but the method would trigger dream-image. Guo et al. (2021) believing that fore-104

ground and background both play an unique role in object detection, proposed an object detection105

distillation method that could decouple foreground and background. Zheng et al. (2021) proposed106

a localization distillation method introducing knowledge distillation into the regression branch of107

the object detector, so as to enable the student network to solve the localization ambiguity in object108

detection as the teacher network. However, existing object detection distillation framework does not109

pay enough attention to the significant role of the head. In this study, we found the head has its110

particularly significant.111

3 METHOD112

3.1 OVERALL STRUCTURE113

In general, a one-stage object detector is composed of three components: (i.) backbone for feature114

extraction; (ii.) neck for fusion of multi-level features; (iii.) head for classification and regression.115

The purpose of incremental distillation is to transfer old knowledge to the student detector, and this116

knowledge could be the features of the intermediate layer in the backbone or neck or the soft predic-117

tions in the head. Here, we incrementally learn a strong and efficient student object detector by the118

distillation of incremental knowledge from responses of the different heads. The overall incremental119

detection framework is shown in Figure 1. Firstly, knowledge distillation is applied to learn incre-120

mental response from the classification head and regression head of the teacher detector. Secondly,121

incremental localization distillation loss is also applied to enhance the localization information ex-122

traction ability of the student detector. Notably, the adaptive pseudo-label selection strategies are123

proposed to gain more meaningful incremental responses from the teacher detector, that is, selec-124
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tive calculation of the distillation loss from the pseudo label provided by the teacher detector. The125

overall learning target of the student detector is therefore defined as,126

Ltotal = Lmodel + λ1Ldist cls(CS , CT ) + λ2Ldist bbox(RS ,RT ) (1)

where λ is the parameters that balances the weights of different loss terms. The loss term Lmodel127

is standard loss function used in GFocal (Li et al., 2020) to train object detector for the new object128

class. The second loss term Ldist cls is the L2 incremental distillation loss for classification branch.129

The third loss term Ldist bbox is the incremental localization distillation loss for regression branch.130

In the above, we set λ1 = λ2 = 1.131

3.2 DISTILLATION AT CLASSIFICATION-BASED RESPONSE132

The soft predictions from the classification head contains the knowledge of various categories dis-133

covered by the teacher model. Through the learning of soft prediction, the student model can inherit134

hidden knowledge, which is intuitive for classification tasks. Let T be the teacher model, we use135

SoftMax function to transform logits ZT in final score output, responding probability distribution136

PT is defined as,137

PT = SoftMax

(
ZT
t

)
(2)

Similarly, we define PS for the student model S,138

PS = SoftMax

(
ZS
t

)
(3)

where t is temperature to soften the probability distribution for PT and PS .139

Previous works usually directly use all the prediction responses in the classification head and treat140

each position equally. If there is any inappropriate balance, the response generated by the back-141

ground category may overwhelm the response generated by the foreground category, thereby inter-142

fering with the retention of old knowledge. To tackle this problem, the L2 incremental distillation143

loss for the classification-based response is as follows,144

Ldist cls (CS , CT ) =

m∑
i=1

(
PT i − PS i

)2
(4)

where PT i is the category response of the frozen teacher detector from m pseudo object classes145

using the new data, andPS i is the category response of the student detector for the old object classes.146

By distilling the selected response, the student detector inherits the knowledge of the positive object147

category to a greater extent.148

3.3 DISTILLATION AT REGRESSION-BASED RESPONSE149

The bounding box response from the regression branch is also quite important for incremental detec-150

tion. Contrary to the discrete class information, there is a possibility that the output of the regression151

branch may provide a regression direction that contradicts the ground truth. That’s because, even if152

the image does not contain any objects of the old category, the regression branch will still predict153

the bounding box, although the confidence is relatively low. That poses a challenge for learning the154

knowledge of the old model to correctly predict the bounding box of the old object. On the other155

hand, in previous works, only the bounding box of a relatively high-confidence object was learned156

as the knowledge of the teacher detector, ignoring the localization information.157

Benefit from the general distribution of bounding box B from GFocal detector, each edge of B can158

be represented by probability distribution through SoftMax function (Zheng et al., 2021). Further,159

the probability matrix of bounding box B is defined as,160
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B = [pt, pb, pl, pr] εRn×4 (5)

Therefore, we can extract the incremental localization knowledge of bounding box B from teacher161

detector T and transfer it to student detector S by using KL-Divergence loss,162

Le
LD = LKL

(
PS j ,PT j

)
(6)

Finally, incremental localization distillation loss for the regression-based response is defined as,163

Ldist bbox (RS ,RT ) =

J∑
j=1

∑
e∈B
Le
LD (7)

where RT j is the regression response of the frozen teacher detector from J pseudo bounding box164

using the new object, andRS j is the regression response of the student detector for the old bounding165

box. Compared to only use the bounding box in previous works, incremental localization distillation166

can provide extra localization response.167

3.4 ADAPTIVE PSEUDO-LABEL SELECTION168

When an incremental object detector is trained, the gap of knowledge between the teacher detector169

and the student detector is obvious. For a new sample, it’s preferable for the teacher detector to170

provide the high-quality knowledge, as the student detector will benefit from positive response. To171

this end, a basic problem related to incremental object detection has been thoroughly studied: how172

to select distillation nodes as positive response. Traditional selection strategies depend on sensitive173

hyper-parameters such as setting confidence and Top-K . Those empirical practices in which rules174

are fixed have such consequences that too small thresholds lead to the ignoring of some objects175

while too large ones probably result in the introduction of negative response.176

To solve this problem, the adaptive pseudo-label selection (APS) strategy is proposed. Algorithm177

1 describes how the proposed strategy works for an input image. We obtain positive response from178

the category and bounding box as distillation nodes respectively.179

Classification head. The statistical characteristics of the category information are utilized to deter-180

mine the response of classification, as described in L-2 to L-12. We first calculate the classification181

confidence of each position. After that, we calculate the mean µC and standard deviation σC in182

L-6 and L-7. With these statistical, the threshold τC is obtained in L-8. Finally, we select these183

candidates whose confidence are greater than the threshold τC in L-9 to L-12.184

Regression head. The statistical characteristics of the distribution information are utilized to deter-185

mine the response of regression, as described in L-14 to L-23. For the GFocal detector, the author186

points out that a certain and unambiguous bounding box, whose distribution is usually sharp. There-187

fore, the Top-1 value is usually very large if the distribution is sharp. Based on these statistical188

characteristics, the top-1 is used to measure the confidence of the bounding box. We first calculate189

the Top-1 of each distribution. After that, we calculate the mean µB and the standard deviation σB190

of all Top-1 in L-17 and L-18. Then, the threshold τB is obtained in L-19. Finally, we select these191

candidates whose confidence are greater than the threshold τB in L-20 to L-23.192

The proposed APS strategy has the following advantages: 1. guaranteeing fair selection of pseudo193

labels of different objects. 2. using statistical characteristics of different branches to adaptively194

select pseudo labels to provide the incremental response.195

4 EXPERIMENTS AND DISCUSSION196

In this section, we perform experiments on several incremental scenarios on the MS COCO dataset197

using baseline detector GFocal to validate our method. Then, we perform ablation studies to prove198

the effectiveness of each component of our method. Finally, we discuss a question: What are the199

bottlenecks in our method?200
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Algorithm 1 Adaptive Pseudo-label Selection (APS)
Input: Unlabeled image I , image-level labels c, b, teacher detector θ′
Output: Sampled pseudo-label sets C′,B′

1: Inference I with θ′ yields the classification score C and predicted distributionB
2:
3: Classification branch:
4: for k = 1 to C do
5: GC ←− confidence(Ck)

6: Compute µC = mean(GC)
7: Compute σC = std(GC)
8: Compute threshold τC = µC + σC
9: for each candidate c in C do

10: if GCk
≥ τC then

11: Add candidate c to C′

12: return C′

13:
14: Regression branch:
15: for k = 1 to B do
16: GB ←−Max(Bk)

17: Compute µB = mean(GB)
18: Compute σB = std(GB)
19: Compute threshold τB = µB + σB
20: for each candidate b in B do
21: if GSb

≥ τB then
22: Add candidate b toB′

23: returnB′

Implementation Details. We build our method on top of the GFocal detector using their public201

implementations. The teacher and student detectors defined in our experiments are standard GFocal202

architectures. For the GFocal detector, ResNet-50 is used as its backbone, FPN (Lin et al., 2017) is203

used as its neck. We trained our detector to follow the same parameters described in their paper. All204

the experiments are performed on 8 NVIDIA Tesla V100 GPU, with batch size of 8.205

Datasets and Evaluation Metric. MS COCO 2017 (Chen et al., 2015) is a challenging benchmark206

in object detection which contains 80 object classes. For experiments on the COCO dataset, we use207

train and validation set for training and test set for testing. The standard COCO protocols are used208

as an evaluation metric, i.e. AP , AP50, AP75, APS , APM and APL.209

Experiment Setup for MS COCO. The detector is trained by 12 epochs (1x mode) for each incre-210

mental step for the MS COCO dataset. The setting is consistent for all the detectors in the different211

scenarios. We set up experiments in the following scenarios:212

• 40 + 40: we train a base detector with the first 40 classes and then the last 40 classes are213

learned incrementally as new object classes.214

• 75 + 5: we train a base detector with the first 75 classes and then the last 5 classes are215

learned incrementally as new object classes.216

• Last 40 + First 40: we specially train a base detector with the last 40 classes and then the217

first 40 classes are learned incrementally as new object classes.218

4.1 OVERALL PERFORMANCE219

We reported the incremental results under the first 40 classes + last 40 classes scenario in Table 1. In220

this scenario, we observed that if the old detector and new data were directly used to conduct fine-221

tuning process, then the AP dropped to 17.8% as compared to the 40.2% in full data training. This222

is because the fine-tuning made the detector’s memory of old object classes close to 0, resulting in223

catastrophic forgetting (ref to Figure 2(b)). Our method far outperformed fine-tuning across various224

IoUs evaluation criteria from 0.5 to 0.95. The experimental results show that when IoU is 0.5, 0.75225
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Table 1: Incremental results based on GFocal detector on COCO benchmark under first 40 classes
+ last 40 classes. (”∆” represents an improvement over Catastrophic Forgetting. ”∇” represents the
gap with Upper Bound.)

Method AP AP50 AP75 APS APM APL

Upper Bound 40.2 58.3 43.6 23.2 44.1 52.2
Catastrophic Forgetting 17.8 25.9 19.3 8.3 19.2 24.6

LwF (Li & Hoiem, 2018) 17.2(∆− 0.6/∇23.0) 25.4 18.6 7.9 18.4 24.3
RILOD (Li et al., 2019) 29.9(∆12.1/∇10.3) 45.0 32.0 15.8 33.0 40.5
SID (Peng et al., 2021) 34.0(∆16.2/∇6.2) 51.4 36.3 18.4 38.4 44.9
Ours 36.9(∆19.1/∇3.2) 54.5 39.6 21.3 40.4 47.5

Table 2: Incremental results based on GFocal detector on COCO benchmark under last 40 classes +
first 40 classes. (”∆” represents an improvement over Catastrophic Forgetting. ”∇” represents the
gap with Upper Bound.)

Method AP AP50 AP75 APS APM APL

Upper Bound 40.2 58.3 43.6 23.2 44.1 52.2
Catastrophic Forgetting 22.6 32.7 24.2 15.1 25.0 27.6

LwF (Li & Hoiem, 2018) 20.5(∆− 2.1/∇19.7) 29.9 22.1 13.0 22.5 25.3
RILOD (Li et al., 2019) 34.1(∆11.5/∇6.1) 51.1 36.8 19.1 38.0 43.9
SID (Peng et al., 2021) 33.5 (∆10.9/∇6.7) 50.9 36.3 19.0 37.7 43.0
Ours 37.5(∆14.9/∇2.8) 55.1 40.4 21.3 41.1 48.2

and 0.95, the AP improves by 19.1%, 28.6% and 20.3%, respectively. This indicates that our method226

can well address catastrophic forgetting. Notably, even compared with the full data training where227

the entire dataset was used, our method only had a gap of 3.2%. This indicates that the student228

detector maintained a good memory of the old objects while learning new objects. To put it more229

intuitively, we visualized the incremental results of all object classes, as shown in Figure 2. The blue230

column denotes the AP of the first 40 classes, while the orange column denotes the AP of the last231

40 classes. As can be seen, our method has produced significant outcomes. In Figure 3, we further232

visualized the AP of all objects of the first 40 classes and the last 40 classes.233

Considering the long-tail problem of the COCO dataset, we particularly configured an incremental234

experiment under the last 40 classes + first 40 classes scenario. In this scenario, the first 40 classes235

object contain more memories that should be retained, which means that more incremental responses236

can be obtained. As can be seen from Table 2, the incremental performance of our method has been237

further improved, with the gap against full data training reduced to 2.8% and the improvement on238

catastrophic forgetting increased to 14.9%. This also validates our inference that the method we239

propose benefits from more incremental responses.240

In addition, we also compared our method with LwF, RILOD, and SID. Both Table 1 and Table 2241

show that although LwF works well in incremental classification, it is even lower AP than directly242

fine-tuning in detection tasks. To a fair comparison with RILOD and SID, we replicated them243

based on GFocal detector. For RILOD, we completely followed their method. For SID, we used244

the component with the greatest improvement proposed by the authors. Both tables show that the245

improvement of our method to catastrophic forgetting is outstanding.246

4.2 ABLATION STUDY247

As shown in Table 3, we validated the effectiveness of different components of the proposed method248

on the COCO benchmark to highlight our improvement in performance. “all cls + all reg” denotes249

that responses from both the classification branch and regression branch are treated equally in the250

incremental distillation, which is also our baseline performance. “all cls” denotes that only classi-251

fication responses in the incremental distillation process are treated equally. “all reg” denotes that252

only regression responses in the incremental distillation process are treated equally. “cls + APS”253
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Figure 2: AP of Per-class among different learning schemes. (a) Detector is trained with all data.(b)
Student detector is finetuned with new classes.(c) Student detector is distilled via different response.

denotes that the APS strategy is employed to conduct incremental distillation over classification re-254

sponses, as shown in Equation 4. “cls + reg +APS” denotes that responses based on regression are255

also used, as shown in Equation 7. In Table 3, separately distillation all responses from classifica-256

tion and regression, obtained 23.8% and 13.0% of AP. When only all responses from the regression257

branch are used, AP is even lower than the fine-tuning performance, which also supports our as-258

sumption stated in the introduction section. Comparatively, the direct incremental distillation of259

all responses from classification and regression branches obtains 31.5% of AP. By utilizing APS260

to decouple classification responses, the student detector obtained higher results. Our decoupling261

proposal can improve the result from 31.5% of AP to 33.2%. The incremental distillation process262

further utilized the APS strategy to decouple regression responses, obtaining 36.9% of AP on the263

COCO benchmark, a 5.4% improvement compared with the baseline performance. All these results264

clearly point to the advantageous performance of our method.265
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4.3 DISCUSSION266

In this section, we present further insights into response-based incremental distillation. We reveal the267

contribution of different components for distillation detection and discuss the impact of incremental268

response in the head.269

Distance between different components. We calculate the feature distance between different com-270

ponents to illustrate why response-based distillation can attain higher performance compared to271

other components. We randomly choose 10 images from COCO minival and calculate the L2 dis-272

tance of features in different components of different training strategies. As shown in Figure 4,273

“All” denotes that the detector with full data training; ‘Incremental’ denotes that the detector with274

incremental data training; “Finetune” denotes that the detector with finetuning training. Distilling275

student detector via classification-based and regression-based incremental response in the head can276

substantially narrow the distances with upper bound. However, neither the L2 distance between “All277

vs. Incremental” and “All vs. Finetune” improves significantly in the FPN representing the feature-278

based distillation. This also supports our assumption that different response from the head has its279

particularly significant, especially classification response.280

Incremental response helps both learning and generalization. We notice that the incremental281

response from the head can provide an effective guidance to avoid catastrophic forgetting problems.282
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Table 3: Ablation study based on GFocal detector using the COCO benchmark under first 40 classes
+ last 40 classes. (”∆” represents an improvement over Catastrophic Forgetting. ”∇” represents the
gap with Upper Bound.)

Method AP AP50 AP75 APS APM APL

Upper Bound 40.2 58.3 43.6 23.2 44.1 52.2
Catastrophic Forgetting 17.8 25.9 19.3 8.3 19.2 24.6

KD:all cls + all reg 31.5(∆13.7/∇8.7) 48.3 33.4 17.7 35.3 41.3
KD:all cls 23.8(∆10.1/∇16.4) 36.6 24.9 11.8 27.2 32.9
KD:all reg 13.0(∆− 4.8/∇27.2) 21.1 13.4 5.0 14.7 18.6
KD:cls + APS 33.2(∆15.4/∇7.0) 51.2 35.2 18.5 37.8 43.8
KD:cls + reg + APS 36.9(∆19.1/∇3.2) 54.5 39.6 21.3 40.4 47.5

Table 4: Incremental results based on GFocal detector on COCO benchmark under first 75 classes +
last 5 classes. (”∆” represents an improvement over Catastrophic Forgetting.)

Method AP AP50 AP75 APS APM APL

Catastrophic Forgetting 3.8 5.9 3.8 1.9 5.3 6.5

All response 32.5 (∆28.7) 48.9 34.7 18.3 35.9 41.1
Adaptive response 28.3 (∆24.5) 42.4 30.3 15.0 31.5 37.0

Thereby, the student detector achieves noticeable improvement in different scenarios. In Table 4,283

our method can still learn new object classes without forgetting old ones even with a little data. But,284

due to the insufficient incremental response provided in the +5 classes scenario, our method did285

not achieve a more competitive AP. However, our method still contributes to generalization. In this286

case, we can degrade the adaptive response to all responses in exchange for a better compromise.287

Comparatively, when sufficient incremental responses emerge, our method is easy to achieve (near)288

perfect AP.289

5 CONCLUSION290

In this paper, we design an entirely response-based incremental object detection paradigm. This291

method uses only the detection head to achieve incremental detection, which significantly alleviates292

catastrophic forgetting. We innovatively learn responses from detection bounding boxes and classi-293

fication predictions, and specifically introduce incremental localization distillation in the regression294

response. Second, the adaptive selection technique is designed to provide a fair incremental response295

in the different heads. Extensive experiments validate the effectiveness of our method. Finally, our296

empirical analysis reveals the contribution of different responses and components in incremental297

detection, which could provide insights to further advancement in the field.298
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