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ABSTRACT
In this paper, we propose a non-interactive scheme to achieve end-

to-end keyword spotting in the homomorphic encrypted domain

using deep learning techniques. We carefully designed a complex-

valued convolutional neural network (CNN) structure for the en-

crypted domain keyword spotting to take full advantage of the lim-

ited multiplicative depth. At the same depth, the proposed complex-

valued CNN can learn more speech representations than the real-

valued CNN, thus achieving higher accuracy in keyword spotting.

The complex activation function of the complex-valued CNN is non-

arithmetic and cannot be supported by homomorphic encryption.

To implement the complex activation function in the encrypted

domain without interaction, we design methods to approximate

complex activation functions with low-degree polynomials while

preserving the keyword spotting performance. Our scheme sup-

ports single-instruction multiple-data (SIMD), which reduces the

total size of ciphertexts and improves computational efficiency. We

conducted extensive experiments to investigate our performance

with various metrics, such as accuracy, robustness, and F1-score.

The experimental results show that our approach significantly out-

performs the state-of-the-art solutions on every metric.

CCS CONCEPTS
• Security andprivacy→Privacy protections; Privacy-preserving
protocols; • Information systems→ Multimedia information sys-
tems.
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1 INTRODUCTION
With the advent of the big data era, massive amounts of multime-

dia data are being generated exponentially. As an important part

of multimedia data, audio data, such as music and voice, is also

growing rapidly in data volume. It is a heavy burden for resource-

constrained data owners to store and process an enormous amount

of audio data locally. Fortunately, data owners can outsource ex-

pensive data storage and processing to public clouds and enjoy

convenient services with cloud computing. Typically, public clouds

are managed by third parties. Outsourcing data to public clouds

without protection will raise security concerns for users on their up-

loaded data. It is therefore desirable to develop privacy-preserving

processing in cloud computing. The methods based on homomor-

phic encryption, e.g., signal processing in the encrypted domain,

are promising approaches among existing privacy-preserving pro-

cessing techniques.

Homomorphic encryption (HE) plays an important role in privacy-

preserving processing techniques. Existing HEs can be roughly

divided into two types: partially homomorphic encryption [37, 39]

and fully homomorphic encryption [22]. The algorithm executors

can manipulate the HE ciphertexts so that the plaintexts are com-

puted according to the algorithm. Suppose that users upload the

HE ciphertexts of their data, the cloud server can then perform

privacy-preserving applications on these HE ciphertexts without

knowing users’ private data.

There are already many privacy-preserving applications for im-

age data based on HE, such as privacy-preserving image classifica-

tion [11, 23, 24], privacy-preserving human action recognition [32],

etc. There are a few works on privacy-preserving processing, e.g.,

privacy-preserving speech recognition [48]. Nevertheless, this work

assumes that the features are extracted in the plaintext domain, and
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the speech recognition algorithm is performed on the encrypted fea-

tures. It is desirable to develop non-interactive privacy-preserving

approaches for important speech processing techniques (e.g., key-

word spotting) over HE ciphertexts of speech data. As an important

application in speech processing, keyword spotting aims at detect-

ing a pre-defined keyword or a set of keywords in a continuous

stream of audio [19]. Keyword spotting has plenty of applications

such as speech data mining, audio indexing, phone call routing,

activating voice assistants, etc [51]. The recent development of

deep learning has led to greater advances in end-to-end keyword

spotting. Considering its importance in speech processing, it is

meaningful to perform keyword spotting in the HE domain. How-

ever, to the best of our knowledge, there is no report on end-to-end

keyword spotting in the HE domain.

It is a great challenge to enable effective end-to-end keyword

spotting in the HE domain. Due to the limitation of the current

HE scheme, the maximum allowable multiplicative depth in the

HE domain is limited. Although bootstrapping can be used to re-

fresh ciphertexts and increase the multiplicative depth, it takes

too much time and has poor practicality. Therefore, we focus on

the employment of leveled homomorphic encryption (LHE) and

do not consider the use of bootstrapping in the following. The

effectiveness of traditional keyword spotting schemes generally

depends on speech feature extractors and machine learning al-

gorithms. Traditional speech feature extractors (e.g., MFCC) and

machine learning algorithms (e.g., SVM) require a large multiplica-

tive depth, which exceeds the maximum multiplicative depth of the

current HE scheme. Therefore it is difficult to implement traditional

keyword spotting schemes non-interactively in the encrypted do-

main. It is more promising to develop a secure keyword spotting

scheme using deep learning techniques.

The deep networks of existing end-to-end keyword spotting

schemes are too deep to be directly migrated to the encryption

domain of LHE. If we shorten these deep networks before migrating

them to the HE domain, it may lead to a much lower performance of

keyword spotting. Although there are someworks on implementing

deep neural networks for secure classification in the HE domain,

they are optimized for image datasets. Applying these schemes to

the keyword spotting task does not yield good results. In addition,

all the existing deep networks in the encrypted domain use real-

valued deep networks. At the same depth, the complex-valued

deep network can process twice as much input data as the real-

valued deep network, which means that the complex-valued deep

network can learn more representational information from the data.

Therefore, the use of complex-valued deep networks in keyword

spotting has the potential to improve recognition performance. To

our best knowledge, there are no reports on complex-valued deep

networks in the encrypted domain. It is necessary andmeaningful to

design a complex-valued CNN structure for the encrypted domain

keyword spotting under the constraint of the current HE schemes.

In this paper, we attempt to solve this problem by proposing

an end-to-end keyword spotting scheme in the encrypted domain

using deep learning techniques. We propose CryptoCNet, a solu-
tion to the complex-valued convolutional neural network (CNN)

algorithms on encrypted data. Compared with the commonly used

real-valued CNNs, the complex-valued CNNs have better feature

capturing capability with the same depth. We employ the CKKS

scheme as the cryptographic primitive, which is a famous approxi-

mate HE. The CKKS scheme supports approximate arithmetics over

complex numbers that are suitable for machine learning.We present

the implementation of the building blocks in the HE domain, includ-

ing the complex-valued convolutional layer, the pooling layer, and

the fully connected layer. Then, we propose a method for approxi-

mating complex activation functions using low-degree polynomials

while preserving accuracy. With the approximate polynomial acti-

vation function, we can perform complex-valued CNNs in the HE

domain without any interaction. For the keyword spotting task,

we design the network structure of the complex-valued CNN to

evaluate in the encrypted domain and maintain high recognition

performance. The proposed CryptoCNet also employs the single-

instruction multiple-data (SIMD) technique, which allows multiple

audio samples to be processed simultaneously.

We summarize our contributions as follows.

• We propose the implementation of the complex-valued con-

volutional layer, the pooling layer, and the fully connected

layer in the HE domain, using the SIMD technique that al-

lows the simultaneous batching of multiple samples.

• We investigate several methods for approximating the com-

monly used complex activation functions with low-degree

polynomials in complex-valued CNNs, which allows activa-

tion functions to be implemented non-interactively in the

HE domain.

• We design a network structure for complex-valued CNNs for

keyword spotting in the HE domain. To our best knowledge,

there is no previous report on complex-valued deep networks

in the HE domain.

• We conducted extensive comparison experiments on the

Speech Commands dataset. The experimental results show

that our scheme significantly outperforms the state-of-the-

art works in various metrics.

The rest of this article is organized as follows. In section 2, we re-

view related works about keyword spotting in the plaintext domain

and neural networks in the encrypted domain. Section 3 introduces

the preliminaries related to this paper. Section 4 presents building

blocks of our secure complex-valued CNN. In section 5, we give a

security analysis of the proposed scheme and cryptographic param-

eters analysis. Section 6 provides experimental results. In section 7,

we summarize the paper and discuss the future work direction.

2 RELATEDWORKS
2.1 Keyword Spotting in the Plaintext Domain
Various traditional methods are proposed for keyword spotting.

Senthildevi et al. proposed a Tamil keyword recognition system

using MFCCs and dynamic time warping algorithms [1]. The works

in [21, 30, 40] described some hybrid methods of SVM, hidden

Markov model, and Gaussian mixed model. Recently, motivated by

the impressive success of deep learning, researchers have begun

to propose keyword spotting schemes based on deep networks.

In [41], Tang et al. used MFCC to extract features beforehand and

explored the use of deep residual networks with dilated convolu-

tions. By using a short-time Fourier transform module to form the

front-end and a simple two-dimensional CNN to form the back-

end, Won et al. [45] proposed a keyword spotting algorithm. In [19],
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Coucke et al. introduced end-to-end stateless modeling for keyword

spotting, based on dilated convolutions coupled with residual con-

nections and gating. In [36], Mittermaier et al. employed depth-wise

separable convolutions (DSConv) [29] to constitute an end-to-end

keyword spotting architecture. Choi et al. proposed [18] a ResNet-

inspired architecture convolved along the time dimension and treat

the frequency dimension as channels. In [33], Lin et al. exploited
a pre-trained speech embedding model trained to extract useful

features for keyword spotting models. The scheme in [35] uses

synthetic speech for data enhancement to strengthen the model.

Raju et al. [35] presented a similar multi-target training setup for

their keyword spotter. However, the above methods are designed

for unencrypted audio data. The multiplicative depth of their algo-

rithms is too high to be migrated to the HE domain. We need to

propose a practically usable keyword spotting scheme for the HE

domain.

2.2 Deep Learning in the Encrypted Domain
Xie et al. [46] discussed the theoretical aspects of implementing

neural networks using polynomial approximations in the encrypted

domain. Building on this work, Dowlin et al. [23] proposed Cryp-

toNets, a neural network classifier on encrypted data. CryptoNets

use the square activation layer as the activation function layer, re-

placing the max pool layer with the average pool layer. Chabanne

et al. [11] combined the idea of CryptoNets with batch normaliza-

tion to improve the accuracy of CryptoNets. Hesamifard et al. [24]
compared the performance of activation functions approximated

by different low-order polynomials and found that the derivative

approximation performed best. Ishiyama et al. [26] compared the

performance of Swish and ReLU activation functions by polynomial

approximation in different intervals. In [5, 28, 38], secure schemes

based on secure multi-party computing techniques are proposed.

But these methods require a large amount of data transmission be-

tween the client and the server, which brings a high communication

cost. Badawi et al. [3] proposed a very efficient GPU implementa-

tion to achieve high performance. In [10, 12, 27], efficient evaluation

of neural networks are proposed by optimizing coding and matrix

multiplication. However, all the works above deal with the MNIST

image dataset other than the audio data. Prior arts offer no solutions

to enable secure speech spotting directly over HE ciphertexts of

audio data. We propose a HE-friendly complex-valued CNN for

speech spotting in the HE domain to address these issues.

3 BACKGROUND
3.1 Homomorphic Encryption
We can group existing HEs into two groups: partial homomor-

phic encryption (PHE) and fully homomorphic encryption (FHE).

PHE allows homomorphic addition or multiplication. For example,

Paillier encryption [37] is the most famous additive HE that are

widely used in various privacy-preserving schemes [4, 49, 50]. The

unsupported non-linear operations of the Paillier encryption are

implemented by multi-party computation (MPC) [2, 7, 47], which is

typically interactive with the party holding the private key during

computation.

FHE supports an arbitrary number of homomorphic additions

and multiplications, with a costly bootstrapping procedure to re-

fresh ciphertexts to increase themultiplicative depth. The bootstrap-

ping procedure is so time-consuming that it is not yet practical.

Therefore, we focus on LHE that supports homomorphic evalua-

tion of polynomials with a bounded degree, such as YASHE [6],

BGV [9], BFV [8, 20], TFHE [16] and CKKS [15]. The CKKS scheme

is a word-wise approximate FHE scheme that supports the evalua-

tion of encrypted real or complex data. We can construct the CKKS

scheme based on ring learning with errors problem (RLWE) [34].

For a power-of-two integer N , we use R = Z[X ]/(XN +1) to denote

the cyclotomic polynomial ring of dimension N , where Z[X ] is the

polynomial ring with integer coefficients. For a positive integer

l , we use Rl = R/2lR to denote the residue polynomial ring of

R. The plaintext and the ciphertext spaces are defined in R and

Rl , respectively. For a positive integer k ≤ N /2, the CKKS scheme

provides a technique to pack k complex numbers in a single poly-

nomial using a variant of the complex canonical embedding map

ϕ : Ck → R. With this Single Instruction-Multiple Data (SIMD)

technique, the CKKS scheme allows multiple plaintexts to be pro-

cessed simultaneously in the HE domain in a batch fashion.

Suppose x = (x0, x1, . . . , xk−1) and y = (y0,y1, . . . ,yk−1) are
two complex-valued vectors, where k ≤ N /2. For convenience, we

omit the encoding symbol ϕ and use J·K to represent the encryption
operator of the plaintext vector, e.g., JxK means a ciphertext of

the plaintext vector x. We summarize some important SIMD-type

homomorphic operations of CKKS as follows:

JxK ⊕ JyK = J(x0 + y0, x1 + y1, . . . , xk−1 + yk−1)K

JxK ⊗ JyK = J(x0 × y0, x1 × y1, . . . , xk−1 × yk−1)K

JxK ⊙ z = J(x0 × z, x1 × z, . . . , xk−1 × z)K, z ∈ C

where ⊗ and ⊙ denote the scalar multiplication and non-scalar

multiplication, respectively. Non-scalar multiplication costs signifi-

cantly more runtime than scalar multiplication. The readers may

refer to [13–15] for more technical details and security analysis of

the CKKS scheme.

3.2 Complex-Valued Convolutional Neural
Networks

The complex-valued CNN consists of complex-valued neurons or-

ganized in multiple layers [42]. Each complex-valued neuron maps

the input to the output by executing a function. Input and output

numbers are represented in complex-valued forms. The structure

of the function is determined by the network model layer to which

it belongs. There is at least one hidden layer between the input

and output layers composed of various types of complex-valued

components. Complex-valued CNN commonly includes complex-

valued convolutional layers, complex-valued activation functions,

and complex-valued pooling layers.

We introduce the representation of complex numbers in the

network as the start. A complex number z = a + ιb has a real part a
and an imaginary partb, which are real numbers. Following [17, 25],

we represent the real part a and the imaginary part b as logically

distinct real values when training the network. After training, we

can learn the real and imaginary part weights, which are then

combined into the complex-valued weights. During the prediction
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stage, the complex-valued weights are used to instantiate complex-

valued components of the complex-valued CNN. We provide a brief

introduction on these components in the following.

3.2.1 Complex-Valued Convolutional Layer. A complex-valued con-

volutional layer is a set of complex-valued filters operating on the

complex-valued input. Each complex-valued filter is represented as

a complex-valued matrix. We get the convolutional result of one

point by computing the dot product of the filter’s complex-valued

weights and the two-dimensional input values in the neighbor of

that point.

We denote ℜ(·) andℑ(·) as the real and imaginary parts of a

complex number, respectively, and denote ∗ as convolution operator.

We convolve a two-dimensional complex-valued input matrix M =
X + ιY by a 2D complex-valued filter K = A + ιB, where X, Y, A,
and B are all real-valued matrices. Since the convolution operation

is distributive, convolving the complex-valued inputM by the filter

K can be decomposed into convolutions of real-valued matrices,

i.e.,

M ∗ K = (X ∗ A − Y ∗ B) + ι(X ∗ B + Y ∗ A) (1)

Thus, we get the equivalent representation of a complex-valued

convolution as the traditional real-valued convolution.

3.2.2 Complex-Valued Pooling Layer. The complex-valued pooling

layer is usually used immediately after the complex-valued activa-

tion layer in complex-valued CNN. The complex-valued pooling

layer is for sub-sampling from the data to reduce the size of pa-

rameters of the neural network. This layer divides the data into

non-overlapping subareas and performs a function to obtain a value

on each sub-area. One of the most common pooling methods are

average pooling, which outputs the average value of the subarea.

3.2.3 Complex-Valued Activation Layer. The complex-valued acti-

vation layer is a non-linear complex function, which can enhance

the expression ability of the model. Each complex activation func-

tion takes a single complex number as input and performs some

arithmetic operation to obtain a complex result. Many complex acti-

vation functions have been proposed based on the ReLU. Trabelsi et
al. [42] proposed one complex activation functions CReLU. Given a

complex number z, CReLU(z) will separate z’s real and imaginary

parts and then perform ReLU functions on them, i.e.,

CReLU(z) = ReLU(ℜ(z)) + ιReLU(ℑ(z)), z ∈ C. (2)

3.2.4 Complex-Valued Fully Connected Layer. In the fully con-

nected layer, each neuron is connected to all neurons in the previous

layer. Each connection is associated with a complex-valued weight.

The output of each neuron in this layer is the dot product of two

vectors, which are the outputs of neurons in the previous layer

and the attached weights of connections, respectively. Similarly,

we can get the equivalent representation of vector multiplication

between a complex number and real number. We assume that there

are a one-dimensional complex input vector m = x + ιy and a one-

dimensional complex-valued weights k = a + ιb, where x, y, a, and
b are all real-valued vectors. We calculate the inner product of m
and k as

m⋆ k = (a⋆ x − b⋆ y) + ι(b⋆ x + a⋆ y) (3)

Algorithm 1 Complex-valued Convolution in the HE domain

1: Input: C11, . . . ,C1Nin ,C21, . . . ,CNoutNin ∈ Ck and matrix

Z of Nin ciphertext vectors.

2: Output: matrix Z̃ of Nout ciphertext vectors..

3: for j = 1, 2, · · · ,Nout do
4: for l = 1, 2, · · · ,n − k + 1 do
5: for o = 1, 2, · · · ,Nin do
6: form = 1, 2, · · · ,k do
7: Z̃jl = Cjom ⊙ Zo(l+m−1) ⊕ Z̃jl
8: end for
9: end for
10: end for
11: end for
12: return Z̃

where⋆ denote the vector multiplication operator. The readers may

refer to [42] for complete technical details of complex-valued CNN.

4 PROPOSED SCHEME
We present our building blocks in the HE domain, which are em-

ployed to construct our secure complex-valued CNN. Each building

blocks are implemented with the SIMD technique, so that multiple

plaintexts can be processed simultaneously in the HE domain.

4.1 Complex-Valued Convolutional Layer
We first explain the complex-valued convolution of a single in-

put with a single channel. We use zi to denote the vector of com-

plex numbers (zi1, zi2, . . . , zik ). The input is a vector of cipher-

texts Z = (Jz1K, Jz2K, . . . , JznK). We assume that the weights of the

complex-valued kernel has been obtained after the training stage.

Since the real and imaginary weights are learned separately in the

training, we will have the real part r = (r1, r2, . . . , rk ) ∈ R
k
and the

imaginary part i = (i1, i2, . . . , ik ) ∈ R
k
, where k is less than n. We

then combine r and i to obtain the weights of the complex-valued

convolutional kernel as C = r + ιi. As the complex-valued kernel

slides through the input vector, we compute the dot product of the

complex-valued kernel with the sub-vectors covered by the kernel

on the input vector. The result of the single-channel complex-valued

convolution remains a vector of ciphertexts.

We consider the case of multiple output convolution with multi-

ple input channels. We assume that the numbers of input channels

and filters are Nin and Nout , respectively. Each filter consists of

Nin complex-valued kernels. Every complex-valued kernel will

convolve one input channel to obtain a vector of ciphertexts with

the single-channel convolution method. Thus, Nin input channels

and Nin complex-valued kernels will generate Nin vectors. We

then perform summation on the resultant Nin vectors over the

channels to get one output vector of ciphertexts. After repeating

this process with the remaining filters, we can obtain Nout vectors

of ciphertexts as the output. Therefore, the input is a matrix Z of

Nin ciphertext vectors, i.e., Z = (zT
1
, zT
2
, . . . , zTNin

)T , where T
de-

notes the transpose of a matrix or vector. The output is a matrix

Z̃ of Nout ciphertext vectors. The explicit steps of multiple out-

put complex-valued convolution in the HE domain are depicted in

Algorithm 1.

1477



Keyword Spotting in the Homomorphic Encrypted Domain Using Deep Complex-Valued CNN MM ’22, October 10–14, 2022, Lisboa, Portugal

4.2 Complex Activation Function
The complex activation function plays an important role in the

complex-valued CNN in the HE domain. An appropriate complex

activation function and its accurate implementation in the HE do-

main will greatly benefit the speech spotting performance in the

HE domain. In the following, we will introduce our complex acti-

vation function and its approximation method, and then describe

the implementation of the complex activation function in the HE

domain.

4.2.1 Polynomial Approximation in the Complex Field. The real-
valued activation function ReLU is widely used in deep networks.

However, ReLU is a non-linear function that cannot be realized in

the HE domain. To implement ReLU in the HE domain, some ap-

proximation methods have been proposed, such as the least square

method [11] and the derivative approximation method [24]. The

least square method first performs data sampling on the activa-

tion function and then uses the least square method to obtain the

approximate polynomial. The derivative approximation method

first computes the approximation of the derivative of the activa-

tion function and then obtains the approximation of the activation

function by integration. Both these two methods use polynomials

to approximate activation functions, so that the approximate poly-

nomial activation functions can be implemented in the HE domain

with the homomorphic properties. For convenience, we denote

the polynomial approximation function of the ReLu function as

PReLU. After performing the least square method or the derivative

approximation method, we can obtain the PReLU function as

PReLU(x) = a0 + a1x + . . . + anx
n, (4)

where n is the degree of PReLU(x), and x,a1,a2, . . . ,an ∈ R. The
degree of PReLU cannot be very high due to the limited multiplica-

tive depth of the HE.

We focus on the polynomial approximation method of the com-

plex activation function using the approximation methods of the

real-valued activation function. We propose two methods for ap-

proximating complex activation functions.

(1) We consider the complex activation function as a combina-

tion of two real-valued activation functions. We separately

approximate the real and imaginary parts to obtain two poly-

nomial functions, and then combine them to obtain the ap-

proximation function of the complex activation function. For

example, when we adopt CReLU as the activation function,

the approximation function can be obtained as

PCReLU(z) = PReLU(ℜ(z)) + ιPReLU(ℑ(z)), z ∈ C. (5)

(2) The input of the polynomial approximation function PReLU

of the ReLU function is a real number. Although the domain

of PReLU is real filed, we can adapt PReLU for complex

numbers by extending its domain to the complex field, i.e.,

PEReLU(z) = a0 + ιa0 + a1z + . . . + anz
n, z ∈ C. (6)

4.2.2 Implementing Complex Activation Function in the HE Domain.
In the encryption domain of RLWE-based HE, arithmetic opera-

tions will result in increased noise. Homomorphic multiplication

introduces more noise than homomorphic addition. Typically, the

Table 1: Polynomial approximation result for z = x + ιy.

Activation

function

Approximation

method

Polynomial approximated

PCReLU
Least square

method

2.025e−6x3 + 0.156x2 +
0.499x + 0.281 +

ι(2.025e−6y3 + 0.156y2 +
0.499y + 0.281)

Derivative ap-

proximation

6.250e−5x3 + 0.375x2 +
4.999x + 0.125 +

ι(6.250e−5y3 + 0.375y2 +
4.999y + 0.125)

PEReLU

Least square

method

6.835e−6z3 + 0.234z2 +
0.499z + 0.187 + 0.187ι

Derivative ap-

proximation

1.851e−4z3 + 0.250z2 +
0.499z + 0.180 + 0.180ι

maximum allowable multiplicative depth of the current HE is lim-

ited. Compared with high-degree approximated polynomials, low-

degree polynomials of activation function allows for implementing

a deep network in the HE domain with more depth. Thus, follow-

ing [23], we adopt third-degree polynomials as the approximated

activation functions in our implementation. Let us denote the ap-

proximate activation function by fa (z) = a3z
3+a2z

2+a1z+a0+ιa0.
The SIMD-type evaluation of the approximate activation function

is given as

a3 ⊙ JzK3 ⊕ a2 ⊙ JzK2 ⊕ a1 ⊙ JzK ⊕ a0, (7)

whose multiplicative depth is three. We can firstly calculate Ja3xK
and Jx2K, respectively. Then, we calculate Ja3x3K with the cipher-

text multiplication. With this strategy, we reduce the required mul-

tiplicative depth to two.

We provide some example results of PCReLU and PEReLU in Ta-

ble 1. We have also tested these approximated activation functions

in CryptoCNet. T he results are given in Table 3.

4.3 Complex-Valued Pooling Layer
In the complex-valued pooling layer, we perform down-sampling

of the vector of ciphertexts Z = (Jz1K, Jz2K, . . . , JznK). Existing FHE
schemes currently do not support the comparison operation, so we

only use average-pooling in the pooling layer in the HE domain.

The pooling window of length k will slide k steps on the ciphertext

vector at each time. We calculate the encrypted mean value of k
ciphertext data covered by the window at every last sliding position.

The output is a ciphertext vector of ⌊ nk ⌋ encrypted data, where ⌊·⌋

denote rounding down operation. We depict the explicit steps of

this SIMD-manner pooling process in Algorithm 2.

4.4 Complex-Valued Fully Connected Layer
In complex-valued fully connected (FC) layer, each complex-valued

neuron connects to all neurons in the previous layer with the

attached weight. The convolutional neurons in the former layer

should first be channel-wise arranged in row-major order and then

connected. The input is a ciphertext vector z = (Jz1K, Jz2K, . . . , JznK)
from the previous complex-valued neurons. The separately trained
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Algorithm 2 Pooling in the Encrypted domain

1: Input: Jz1K, Jz2K, · · · , JznK, and k ∈ R.
2: Output: Jz̃1K, Jz̃2K, · · · , Jz̃ ⌊ nk ⌋K.
3: for j = 1, 2, · · · , ⌊ nk ⌋ do
4: for l = (j − 1) × k, (j − 1) × k + 1, · · · , j × k − 1 do
5: Jz̃j K = 1

k ⊙ Jzl K ⊕ Jz̃j K
6: end for
7: end for
8: return Jz̃1K, Jz̃2K, · · · , Jz̃ ⌊ nk ⌋K

real part R = (r1, r2, . . . , rk ) and imaginary part I = (i1, i2, . . . , ik )
are combined to form the complex-valued weight W = R + ιI. A
subroutine is to compute the dot product of the subsidiary complex-

valued weight vector of a neuron with the ciphertext input vector.

We will obtain the output vector of ciphertexts by repeating this

subroutine for each neuron in that layer in turn.

4.5 Network Architecture and Training
The recent work CryptoNets use two different network structures

in training and prediction. Specifically, they use a nine-layer net-

work for training and a simpler five-layer network for prediction.

Different from CryptoNets, we use the same network structure

in training and prediction. Therefore, our method ensures that

the network can maintain the same performance in prediction as

in training. The architecture, parameters, and output size of our

CryptoCNet are shown in Table 2, where the input to the network

is 8000 pieces of data.

During network training, each layer is required to simulate

complex-valued arithmetic operations using both real and imagi-

nary parts. Then, we can convert the training of CryptoCNet into
the training of real-valued CNN as [43]. Dropout layers are used

when we train the model to avoid over-fitting, and we remove them

in the prediction step. After network training, the complex-valued

parameters of CryptoCNet are obtained by combining the real and

imaginary parameters of the corresponding layer in the training

networks.

5 DISCUSSIONS
5.1 Security Analysis
We use the following theorem to analyze the security of our scheme

under the Chosen Plaintext Attack (IND-CPA).

Theorem 1. Our scheme satisfies the IND-CPA security.

Proof. In our scheme, the audio data is encrypted by the CKKS

scheme before the cloud server processes it. During the whole exe-

cution of the deep network, the cloud server only operates on the

ciphertext data using homomorphism and cannot perform decryp-

tion (no decryption key). Therefore, the security of our scheme is

equivalent to the security of the employed HE scheme. Since the

CKKS scheme is proven to be secure under the CPA, our scheme

satisfies the IND-CPA security. □

The cloud server may try to use brute force to obtain the original

plaintext audio. Let us consider n seconds of audio at a sampling

frequency of 8000Hz. There are n × 8000 ciphertexts, where each

Table 2: Our network architecture

Layer Parameters Output size

1
st

Conv layer 32 filters of size 13 32 × 7988

Activation layer - 32 × 7988

Average pooling layer Pool size 3 32 × 2662

2
nd

Conv layer 32 filters of size 11 32 × 2652

Activation layer - 32 × 2652

Average pooling layer Pool size 3 32 × 884

3
rd

Conv layer 64 filters of size 9 64 × 876

Activation layer - 64 × 876

Average pooling layer Pool size 3 64 × 292

4
th

Conv layer 128 filters of size 7 128 × 286

Activation layer - 128 × 286

Average pooling layer Pool size 3 128 × 95

5
th

Conv layer 128 filters of size 5 128 × 91

Activation layer - 128 × 91

Average pooling layer Pool size 3 128 × 30

6
th

Conv layer 192 filters of size 3 192 × 28

Activation layer - 192 × 28

Average pooling layer Pool size 3 192 × 9

FC layer 256 units 1 × 256

Activation layer - 1 × 256

output layer 35 units 1 × 35

ciphertext encryptsm audio signals. We assume that we represent

each audio data with a 64-bit digit, there are 2
n×8000×m×64

differ-

ent possibilities for restoring the original plaintext audio. When

n = 1,m = 1024, the cloud server needs 2
1×8000×1024×64

operations

to restore the original plaintext audio, which is very difficult for ex-

isting computers. Thus, the cloud server cannot break the proposed

scheme in the encrypted domains even with a brute force attack.

5.2 Cryptographic Parameters Analysis
We denote the bit-length of a fresh ciphertext modulus by L. After
constant multiplication or ciphertext multiplication, we need to per-

form Rescale operation to ensure that the decryption is correct. Let

us denote the bit-lengths of constant multiplication and ciphertext

multiplication by pc and p, respectively. After constant multiplica-

tion, the ciphertext modulus will be reduced by pc bits. While after

the ciphertext multiplication operation, the ciphertext modulus will

be reduced by p bits. We will perform these operations at every

layer of our complex-valued CNN. The convolutional layer, the

pooling layer, and the fully connected layer each involve a constant

multiplication. In Eq. (7), the complex-valued activation layer needs

to compute Ja3x3K. We can first calculate Ja3xK and Jx2K separately
and then calculate Ja3x3K with a ciphertext multiplication. With

this approach, the multiplicative depth is only two. Thus, in the

whole CryptoCNet, the ciphertext modulus will reduced by

L1 = 6 × (pc + pc + pc + p) + 2pc + p + pc = 21pc + 7p. (8)

For example, we can set L = 1200, p = 30 and pc = 30. Then, we

leave 1200 − (21 + 7) × 30 = 360 bits for ciphertext modulus to get
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Table 3: The accuracy of four activation functions for key-
word spotting.

Activation function Approximation method Accuracy(%)

PCReLU
Least square method 74.1

Derivative approximation 73.9

PEReLU

Least square method 74.4
Derivative approximation 74.1

the correct decryption result, which is enough for high precision

computing for speed processing.

6 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct experiments to evaluate the effectiveness

of our CryptoCNet for keyword spotting in the HE domain. All

experimental results are generated on a 64-bit Ubuntu18.04.5LTS

PC with Intel Xeon Gold 6145 CPU @2.00GHZ and 125G RAM.

We have implemented the proposed scheme in C++ based on the

HEAAN [31] library, which implements the CKKS cryptosystem.

We choose the bit-length of the initial ciphertext module as L =
1200, the dimension of the cyclotomic ring R as N = 2

11
. There are

2
10

plaintext slots in a ciphertext. We also set p = 30 and pc = 30

to assure high-precision data processing as analyzed in Section 5.2.

6.1 Dataset
The Speech Commands dataset [44] is built for detecting the spoken

word in keyword spotting. Each keyword in the dataset consists of

one-second speech data from various speakers. A total of 105,829

speech data are used for training and prediction, and each data is

labeled with one of thirty-five keywords. We resample the speech

data at a frequency of 8000Hz and obtain 8000 real numbers as the

size of the model input.

6.2 Effects of different Activation Functions
In Section 4.2, we have presented two methods to approximate

complex activation functions. We have also provided four specific

polynomial activation functions in Table 1. We now compare the

performance of these four activation functions in the proposed

network structure for keyword spotting. The comparison results

are shown in Table 3. With the same polynomial approximation

methods (i.e., the least square method and the derivative approxi-

mation method), the activation function PERELU is always better

than PCRELU. For example, when adopting the same least square

method, PCRELU achieves the accuracy of 74.1%, while PERELU

achieves the accuracy of 74.4%, which is the best among the four

compared activation functions. Therefore, we use PERELU with

least square method as the activation function for our CryptoCNet
in the following discussions.

6.3 Running Time
The evaluation of our complex-valued CNN in the HE domain

in the Speech Commands dataset costs 16796.5657 seconds. Since

our scheme supports the batch processing manner with the SIMD

technique, we can decrease the amortization time for each audio

Table 4: The accuracy of eight models for keyword spotting.

Method Accuracy(%)

Proposed 74.4
CryptoNets 35.9

CryptoNets-1D 27.3

DPN-DNN 4.3

DPN-CNN 4.2

DPN-CNN-1D 62.9

CryptoDL 17.2

CryptoDL-1D 18.9

signal. For example, in our experiment, we choose N = 2
11

for the

CKKS scheme and thus allow the batch size of 1024. Therefore, the

amortization time for a single speech data is 16.402 seconds, which

is a significant improvement compared with the case without the

SIMD technique.

6.4 Comparison with the state-of-the-art
Solutions

In this section, we compare the performance of our scheme with

the state-of-the-art solutions on the Speech Commands dataset. We

compare our CryptoCNet with the four recent deep networks in the

HE domain, i.e., DPN-CNN [48], DPN-DNN [48], CryptoNets [23],

and CryptoDL [24]. The inputs of CryptoNets, CryptoDL, and DPN-

CNN are two-dimensional signals. Following [48], we reshape the

speech data into a two-dimensional 98× 200 matrix. We choose the

frame length as 25ms and the frame step as 10ms to split the speech

into short-time frames. Each short-time frame constitutes each row

of the matrix, and the matrix is used as the input of the three two-

dimensional networks. We also converted these two-dimensional

networks into a one-dimensional neural network to be fairer. Thus,

we get the CryptoNets-1D, CryptoDL-1D, and DPN-CNN-1D by

replacing the 2D functions of each layer in CryptoNets, CryptoDL,

and DPN-CNN, respectively.

6.4.1 Accuracy. Table 4 shows the accuracy of the eight models for

keyword spotting on the Speech Commands dataset. Our model has

the highest accuracy of 74.4%, which is a significant improvement

better than the state-of-the-art solutions. DPN-CNN and DPN-DNN

did not converge during the training, thus having poor prediction ac-

curacy. CryptoNet has an accuracy of 35.9%, which is still only half

of our scheme’s accuracy. CryptoDL performed worse than Cryp-

toNets, with an accuracy of only 17.2%. It is worth noting that our

proposed one-dimensional versions of DNNs and CNNs have higher

accuracy than their corresponding original two-dimensional ver-

sions. For example, DPN-CNN-1D is improved by 58.7% than DPN-

CNN. Thus, our experimental results show that one-dimensional

neural networks are more suitable for keyword spotting than two-

dimensional neural networks.

6.4.2 Robustness. We evaluate the robustness of our scheme by

adding Gaussian white noises with different signal noise ratios

(SNR) to the speech data. Table 5 shows the accuracies of the eight

models with SNRs of 30 dB, 35 dB, and 40 dB. We can see that

the accuracy of our scheme nearly remains unchanged when SNR
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Table 5: Accuracy(%) of eight models under different SNR
noise.

Condition SNR(dB) 30 35 40

Accuracy(%)

Proposed 67.3 73.1 74.3
CryptoNets 27.8 35.2 35.9

CryptoNets-1D 24.5 27.6 28.7

DPN-DNN 4.0 4.1 4.1

DPN-CNN 3.9 3.4 3.8

DPN-CNN-1D 54.7 62.1 62.7

CryptoDL 11.1 14.6 16.3

CryptoDL-1D 13.9 17.5 18.8

Figure 1: ROC curves of the eight models.

= 40dB. As SNR decreases, the accuracy of our scheme tends to

decrease. However, even when SNR = 30dB, the accuracy of our

scheme is still 67.3%, which is significantly larger than all the other

compared schemes.

6.4.3 ROC Curve. Figure 1 shows the receiver operating charac-
teristic (ROC) curves of the eight models. Both DPN-CNN and

DPN-DNN achieve the worst performance, whose curves almost

overlap with the diagonal. The other compared schemes perform

better than DPN-CNN andDPN-DNN. However, their performances

are still not satisfactory. Our scheme achieves the best performance

among all the tested schemes.

6.4.4 PR Curve. Figure 2 shows the Precision-Recall (PR) curves of
the eightmodels. As Recall increases, the precisions of the compared

schemes decline rapidly with approaching the ‘L’ letter, indicating

that the performances of these schemes are very vulnerable. In con-

trast, the curve of our scheme is close to a convex curve. Therefore,

our scheme outperforms the compared state-of-the-art solutions.

6.4.5 Other Metrics. In Table 6, we measure the performances of

our scheme and the state-of-the-art works in terms of F1 score,

Recall, and Precision. Our scheme achieves the best performance

among all the schemes in every metric. Our modified DPN-CNN-1D

and CryptoNets are the second and third best, respectively. The ex-

perimental results show that our scheme significantly outperforms

the state-of-the-art works.

Our scheme achieves an accuracy rate of over 84% in recognizing

“Backward”, “Sheila”, “Happy”, and “Six”, which is much higher than

Figure 2: PR curves of the eight models.

Table 6: F1-score, Recall, and Precision of eight models.

Method F1-score Recall Precision

Proposed 73.2 73.1 73.9
CryptoNets 33.9 34.6 36.6

CryptoNets-1D 26.6 26.7 28.8

DPN-DNN 0.4 3.1 0.2

DPN-CNN 0.3 2.8 0.3

DPN-CNN-1D 62.4 61.2 65.7

CryptoDL 11.6 14.9 16.9

CryptoDL-1D 15.5 16.5 22.2

the average of 74.4%. On the other hand, “Follow” and “Forward”

are easily mistaken for “Four”. This is because the pronunciation

of these two words is relatively similar to “Four”, which leads to a

lower accuracy rate than the average recognition rate.

7 CONCLUSION
In this paper, we proposed a novel scheme that enables efficient

and accurate keyword spotting in the encryption domain of LHE or

FHE. To fully use the multiplicative depth of the current HE scheme,

our scheme uses a complex-valued CNN structure designed for key-

word spotting in the HE domain. To our best knowledge, there

has been no report on the complex-valued neural network in the

HE domain before. We present secure implementation methods

of building blocks for complex-valued CNN, including complex-

valued convolution, pooling, and fully connected layers. To realize

the non-linear activation function without interaction, we propose

some approximation methods for complex activation functions. We

propose our complex-valued convolutional network architecture

for keyword spotting in the HE domainwith our building blocks and

approximation methods. Our scheme supports the implementation

of complex-valued CNN in a batched manner, which can process

multiple plaintexts simultaneously. According to our experimental

results, our scheme outperforms the state-of-the-art works in terms

of various metrics, including accuracy, ROC curve, and F1-score.

The proposed CryptoCNet can benefit many end-to-end audio pro-

cessing applications with privacy protection requirements, such as

cloud-based speech recognition and music retrieval solutions.
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