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Abstract

Machine learning (ML) is transforming modeling and control in the physical,
engineering, and biological sciences. However, rapid development has outpaced
the creation of standardized, objective benchmarks—Ieading to weak baselines,
reporting bias, and inconsistent evaluations across methods. This undermines
reproducibility, misguides resource allocation, and obscures scientific progress.
To address this, we propose a Common Task Framework (CTF) for scientific
machine learning. The CTF features a curated set of datasets and task-specific
metrics spanning forecasting, state reconstruction, and generalization under realistic
constraints, including noise and limited data. Inspired by the success of CTFs
in fields like natural language processing and computer vision, our framework
provides a structured, rigorous foundation for head-to-head evaluation of diverse
algorithms. As a first step, we benchmark methods on two canonical nonlinear
systems: Kuramoto-Sivashinsky and Lorenz. These results illustrate the utility
of the CTF in revealing method strengths, limitations, and suitability for specific
classes of problems and diverse objectives. Next, we are launching a competition
around a global real world sea surface temperature dataset with a true holdout
dataset to foster community engagement. Our long-term vision is to replace ad hoc
comparisons with standardized evaluations on hidden test sets that raise the bar for
rigor and reproducibility in scientific ML.
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Figure 1: The twelve-axis radar plot characterizes a method’s performance across all tasks on a
dataset, and provides a visual performance profile. The axes correspond to the various tasks associated
with forecasting and reconstruction with noise, limited data and parametric dependency. The chart
shows the top four performing metrics on the KS and the Lorenz dataset scored against their reference
baselines: constant zero and average prediction respectively.

1 Introduction

Data science, especially machine learning (ML) and artificial intelligence (Al), is transforming almost
every aspect of the engineering, physical, social, and biological sciences. As the body of literature
on new ways to model many scientific data and systems grows, we still lack objective measures
to adequately characterize and compare these methods. In the absence of a common standard for
benchmarking new and existing approaches, the current literature is suffering from weak baselines,
reporting bias, and inconsistent evaluations [22]]. And despite the rise of benchmark data sets across
science and engineering, the reliance on self-reporting has generated a significant reproducibility
crisis. Self-reporting is, in general, a flawed premise. For instance, neural networks upon training are
typically initialized with random weight assignment. Although the errors achieved on the training
data set are comparable from run to run, the errors on the test set can be significantly different. This
can lead to p-hacking, or judicious picking of results, when reporting scores on test data sets, i.e.
simply re-train the model until a desired and good result is achieved for self-reporting. Only with a
true, withheld test set is a comparison among methods possible.

CTFs play a critical role in evaluating methodological advancements. Donoho [9]] has argued that the
successful application of CTFs is a primary factor for the success of data science and machine learning.
Indeed, the fields of speech recognition, natural language processing, and computer vision have
developed mature CTF platforms that are progressively updated with more challenging data in order
to drive progress and innovation. For instance, the industry-leading CVPR conference offers more
than 30 challenge problems per year for participants to score and benchmark their ML/AT algorithms
against. More broadly, classic fields of machine learning have benefited from extensive benchmark
environments and common task frameworks, including ImageNet [8. [15], Go and chess [28]], video
games such as Atari [23]] and StarCraft [31], the OpenAl Gym [27,[10], among other environments
for more realistic control [7, 30]]. While scientific ML benchmarks and datasets are becoming more
common [12, 24} |29} l4], many scientific disciplines have yet to integrate the CTF into their core
infrastructure [22]]. This compromises true comparative metrics between methods, algorithms, and
results, and it limits the potential of ML in these areas.



1.1 Common Task Framework for Science and Enginering

We propose a CTF for science and engineering that is primarily focused on evaluating machine
learning and AI models for dynamic systems: systems whose underlying evolution is determined
by physical or biophysical principles or governing equations. The CTF will provide training data
sets with clear and concise goals related to forecasting and reconstruction under various challenging
scenarios, such as noisy measurements, limited data, or varying system parameters. Given a training
dataset and a range of timesteps to predict, users will produce approximations for a hidden test dataset.
The predictions are evaluated and scored on a diverse set of metrics by an independent referee and
posted on a leaderboard.

Scoring is by nature reductive—reducing a method’s performance to a single floating point value.
We choose a multi-metric scoring approach because a single number often doesn’t provide enough
information on whether a method is right for an application or not. As a result, we decided to carefully
design a twelve-score system designed to match crucial tasks required in science and engineering.
A summary, or composite score, is also produced that gives the overall score for a given method.
Rankings by task and overall performance are highlighted here and tracked on a leader board.

To visualize the overall performance of a method, a radar plot is generated highlighting the various
scores associated with the challenge (see Fig. [I). From this figure one can glean the characterization
of a method with respect to its performance on the diverse set of CTF tasks. The average of all
scores serves as the composite score. This scoring system prevents a winner takes all framework,
since different modeling approaches will excel on different tasks. Some will do well with noise,
others will not. Others might excel in the limited data regime, while performing poorly under
parametric generalization. These profiles are important to provide a comprehensive and well-rounded
performance metric, and help guide for scientists for selecting a suitable method.

Once the ctfdscience is launched’] we invite everyone to benchmark their methods on the CTF for
Science by taking the following steps:

1. Sign-up and Sign-in on Kaggle
2. Train your model with our training data and generate predictions for each benchmark case
3. Submit prediction files to the competition platform

4. See your score on the leaderboard

To interact with ctf4science before the competition launch visit our GitHub repositoryﬂ install the
ctf4science package[33]], and evaluate your method on our datasets ODE_Lorenz, PDE_KS, and SST.
Our datasets and our ctf4science Python package don’t require high-performance hardware and can
be run on a laptop computer.

2 Datasets & Evaluation Metrics

We launch the CTF platform with two canonical and commonly used models in scientific machine
learning: the Lorenz equations, a dynamical system and the Kuramoto-Sivashinsky (KS) equation,
a partial differential equation. Both exhibit complex and challenging behavior for the science and
engineering tasks of reconstruction and forecasting under the constraints of noise, limited data, and
parametric dependence. While these equations serve as a starting point, the CTF will evolve to include
both more complex data and more challenging tasks. The CTF framework is a sustainable platform
that evolves and grows as the community develops more sophisticated methods and algorithms and
faces new challenges.

We provide a detailed breakdown of the evaluation metrics and the associated data matrices in the
following sections. For convenience, we included an overview table that summarizes the relationship
between each evaluation metric and the corresponding data matrices in the supplementary materials.

We are proposing a launch date of November 1, 2025 on Kaggle
3Available at https://github. com/CTF-for-Science/ctf4science
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Figure 2: The CTF Evaluation framework scores the performance of methods on (a) the Lorenz
dynamical system and (b) the Kuramoto-Sivashinsky partial differential equation. (c) Data is collected
and organized into matrices which is then split into testing and training sets. RMSE errors are
computed for reconstruction and short-time forecasting, while the spectral error computes the
statistics of long-time forecasting (spatial or temporal). (d) Forecasting and reconstruction tasks are
evaluated on noise-free, low-noise and high-noise data. Methods are also evaluated when (e) only
limited data is available and (f) for reconstruction of parametrically dependent data.

2.1 Spatio-Temporal System: Kuramoto-Sivashinsky

The KS equation is a fourth order, nonlinear partial differential equation. It is considered a canonical
example of spatio-temporal chaos in a one-dimensional PDE and is therefore commonly used as
a test problem for data-driven algorithms. The KS equation is a particularly challenging case for
fitting algorithms due to its combination of high dimensionality, nonlinearity, and sensitivity to initial
conditions (chaotic behavior):

Up + Uy + Ugy + PUgrpze = 0. (1

The solutions of Eq. are defined on a grid across the domain of [0, 327] with periodic boundary
conditions. A numerical integrator with an unknown time step At evolves the solution mm steps.

2.1.1 Test 1: Forecasting (2 scores)

The first test of the method, as illustrated in Fig. 2}d, involves the approximation of the future state of
the system. Thus, given a data matrix representing the dynamics over ¢ € [0, 107] (X; € R10mxn),
the forecast is requested for ¢ € [107, 11T (X1preq € R™*™), with n being the dimension of the
system and m being the number of time steps. The forecasting score is composed of two scores
evaluating both the short-time forecast Esr (the "weather forecast"), which is computed using root-
mean square error (RMSE) between the test set and the user’s approximation, and the long-term
forecast E;r (the "climate forecast"), which is based upon the power spectral density - see Fig. [2}c.
As such, the following two error scores are computed:

IXq[1: k] — X1 : k2|l

SST(Xy X) = |

- (weather forecast) 2)
XL &, ]
Sip(X, X) = PV — :AN’ k]~ PIN —k: N, K| (climate forecast). 3)
PN —k: N,K]|

For the challenge dynamics of interest, sensitivity of initial conditions is common, making long range
forecasting to match the test set an unreasonable task given fundamental mathematical limitations
with Lyapunov times. Thus, as shown above, the long-time error is computed by least-squares fitting
of the power spectrum Pk, :] = In(|FFT(X[k, :])|?), where the fftshift has been used to model the
data in the wavenumber domain and k = n/2 — kjaq : n/2 + (Kmasz + 1) with kppae = 100. This
means that we look at the match in the first 100 wavenumbers of the power spectrum over a long time



simulation. It is clear that there are many ways to evaluate the long-range forecasting capabilities.
We chose a simple and transparent metric fully understanding that more nuanced scoring could be
used. To provide a reasonable range we then compute the two scores

E; =100(1 — Ssr(Xipreds Xitest)), Fa =100(1 — Sir(Xipred, Xitest))s 4
meaning in each case a score of E; = 100 corresponds to a perfect match. Note that, as a baseline, a
solution guess of zeros X1 preq[l : k,:] = 0 (corresponding also to P1,,cq[N — k : N, k] = 0) gives

a score of 1 = Ey = 0.

Input: Xi4,q;, € RI™X"; Output: X;,,.cq € R™*"; Scores: E1, E».

2.1.2 Test 2: Noisy Data (4 scores)

The ability to handle noise is critical in all data-driven applications as sensors and measurement tech-
nologies are by default embedded with varying levels of noise. Methods that work with numerically
accurate data, for example data points that are 10~% accurate, may be useful for model reduction, but
are rarely suitable for discovery and engineering design from real-world data. Both strong and weak
noise are considered as these represent realistic challenges to be addressed in practice.

This test is very similar to Test 1, but now with noise added to the data. Specifically, the challenger
is given a data matrix Xgrein € R and Xarein € R1O™X7 representing the evolution
with medium or high noise respectively. The objective is to first produce a reconstruction of
the data itself, i.e. denoise the data to produce an estimate of the true state of the dynamics,
Xopred, Xapred € RO™X™ for Xoyrain, Xatrain respectively, and the second objective is to then
forecast the future state, matrices Xapred, Xsprea € R™*™ for Xotrqin, Xatrain respectively. For
the first task, a least-square fit is used between the approximation of the denoised data and the truth,
and for the forecasting a long-time evaluation is computed leading to the following scores:

E3 = 100(1 - SST(X2pred7 X2test))7 E4 = 100(1 - SLT(X3pred7 XStest))»
ES = 100(1 - SST(X4pred7 X4test>)7 EG = 10()(1 - SLT(XSpred7 XStest))-

IHPUt: X2t7’m’nax3train € RlOmxn; OutPUt: X2pred7X4pred S RlOmxn’ X3predaX5pred €
R™>".  Scores: Es, Ey, Fs, Eg.

2.1.3 Test 3: Limited Data (4 scores)

Data limitations are common in real world physical systems and often affect the success of data-
driven methods. Thus, testing for model performance on low-data is critically important and provides
important insight to potential users.

Figure 2}e demonstrates the nature of the test. In this case only a limited number of snapshots
M on numerically accurate data are given Xyt,qin € RM>n_ From this limited data, a forecast
must be made which is evaluated with both error metrics (2) & () on the approximated future
Xegpred € R"™*™. The experiment is repeated with noise on the measurements using the training
matrix Xs;rqin € RM*™ for which a forecasting prediction matrix is produced Xrpreda € R™>™.
The performance is evaluated on the following scores representing short and long-time metrics for
both noise-free and noisy data respectively.

E7 - 100(1 - SST(XGpredvxﬁtest))v E8 = 100(1 - SLT(X6p7‘eda XGtest))a
E9 = 100(1 - SST(X7pred7 X7test))a EIO = 100(1 - SLT(X7preda X7test))~

Two error scores (analogous to 'y and F») are produced for the noise-free and noisy limited data.
These scores are E; (short) and Eg (long) for the noise free case and Ey (short) and F1 (long) for
the noisy case.

Input:  Xyirain, Xstrain € RMX%, Output:  Xepred, Xrprea € R™*"; Scores:
Eq, Eg, Ey, Eqg.

2.1.4 Test 4: Parametric Generalization (2 scores)

Finally, the ability of a model to generalize to different parameter values is evaluated. For this
case, the model’s ability to interpolate and extrapolate to new parameter regimes is considered with
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Figure 3: Ranked average scores of each model on the KS and Lorenz Dataset.

noise-free data and noisy data respectively. The interpolation and extrapolation are each their own
score. This gives a total of four scores that evaluate parametric dependence.

Figure 2}H shows the basic architecture of the test. For the noise-free case, three training data sets
are provided with three different (unknown) parameter values Xgtrqin, X7train, X8train € R10mxn
Construction of the dynamics in parametric regimes that are interpolatory Xg,r.q € R™*™ and
extrapolatory Xgpreq € R"*" are required. For both of the test regimes, a burn in matrix Xo¢rqin
and Xotrqin r€spectively of size M X n is given and the performance is evaluated using the short
term metric (2)).

Ell - 100(1 - SST(X8p7'ed7 X8test))7 E12 - 100(1 - SST(XQpredy X9test>)-

. 10mx Mxn.
Input. Xﬁtraina X7train7 XStrain e R™™ n, X9train7 XlOtrain eR n’

Output: XSpred; X9p7"ecl € R™*™; Scores: Ey1, Eis.

2.2 Dynamical System: Lorenz

One of the most influential dynamical systems in history, the Lorenz dynamical system is given by

dx dz

o= E:wy—bz.

—y:m;—xz—y
dt ’

U(y - )’
where the parameters b = 8/3 and o = 10 are typically fixed at these values while r is explored as
a bifurcation parameter. For specific values of r, including our choice r = 28, the system exhibits
chaotic behavior as shown in Fig. 2{a).
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The training and testing are identical as for the spatio-temporal KS system described above aside from
the long range (climate) forecast score. Data matrices for testing and training are of the same form as
in Section [2.T) with n = 3 being the dimension of the dynamical system. Since in this case there is no
spatial coordinate it is no longer possible to use the power spectral density of the differential equation
to evaluate the long-time performance. Instead, for this system, we evaluate the long-time forecasting
based on the distribution of values in the state-space over the last k time steps (e.g. & = 500). For
this we compare the histograms of the distribution of predicted and true solution trajectories in the
following way. The histogram for a time series is computed using the histogram command with a set
number of bins (e.g., bins = 41 for our current Lorenz evaluation). The difference of the histogram
between the truth (z, y and z) and prediction (Z, ¢ and Z) for each variable is measured in an ¢;-sense:

(2,7) |Hist, — Histz||1
sir(z, Z) = .
r ||Hists||1

From this the long-time error score for the Lorenz system is composed of the distributional error in
each coordinate:

Sikerena) (X X)) = (s, &) + sy, §) + sz, 7)) /3 (climate forecast).

As with the spatio-temporal system and the power spectral density, this gives a simple measure of the
accuracy of the prediction from a statistical viewpoint since long-time prediction is well beyond the
Lyapunov time which would not allow for a least-square match between trajectories of the truth and
prediction.

2.3 Composite Score

We compute a composite score (AvgScore) per dataset from metrics F through E2 by averaging
the resulting scores for each method. This score is evaluated per method, not per model. Thus, each
method can fit a model for each task and produce the best possible score. All scores are clipped such
that E; € [—100, 100], thus AvgScore € [—100, 100]. Methods that cannot produce a result for a
given task receive the minimum score —100.

3 Methods, Baselines and Results

We characterized twelve highly-cited modeling methods on our ctf4science datasets. Table T]shows
all scored methods and their resulting performance scores. For details on the scored methods, please
refer to the appendix. In addition, we also provide the scores of six zero-shot time series prediction
foundation models in Table 2 of the appendix. The ctfdscience includes two naive baseline methods:
predicting zero and predicting the average. In our evaluations, we use average prediction as the
baseline for the Lorenz dataset and zero prediction as the reference baseline for KS dataset.

In Fig. 3] we show all evaluated methods per dataset including the naive baselines—constant and
average—ranked by their AvgScore. The difference in dimensionality, dynamics, and long-term
trajectory stability between Lorenz and KS results in radically different performance distributions.
Further, while some models score high on specific tasks, no model scores high-across all tasks (see
Table[T). Overall, the results demonstrate that each dataset and task is challenging enough to produce
a distribution of scores that characterizes the methods.

A complete overview of all model’s performance metrics on the Lorenz dataset can be found in table
[Ta] The overall score performance for each method in in Fig. [3| while the top three performers in each
error category are shown is shown in Fig. d[a). A complete overview of all model’s performance
metrics on the KS dataset can be found in table[Tb] The overall score performance for each method
in in Fig. [3| while the top three performers in each error category are shown is shown in Fig. f{b).

3.1 Observations

Applying the "ImageNet recipe” (fixed public data, objective metrics, leaderboarded methods) to
dynamic systems poses new challenges. Scientific models are not trivial to compare, as they range
from assumption-rich, high-fidelity approaches to generic, assumption-free, data-hungry models.
While the low-dimensional chaotic Lorenz ODE is canonical, easy to synthesize, and analytically
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Figure 4: Top three performing models per metric on the (a) Lorenz and (b) KS dataset. Lorenz and
KS use the average value prediction and constant zero prediction as their baseline respectively.

transparent, it is chaotic. Chaos guarantees that any forecaster—even the ground-truth solver—
accumulates exponential error beyond 3 Lyapunov times, so "predict-the-mean" becomes the rational
long-horizon baseline.

Methods therefore succeed or fail depending on whether their implicit assumptions match the task:
SINDy excels when its candidate library contains the true terms; operator learners and PINNs
might under-perform because they were designed for smooth function-to-function or interpolation
problems, not autoregressive time marching; generic RNN-style models struggle at the low data
limit, while reservoir models are very well adapted for chaotic time series. Simultaneously, we
also see some methods unexpectedly outperformed others in contexts they were not designed for
(e.g., DeepONet applied to an autoregressive task on temporal, rather than spatio-temporal data).
In essence, ctfdscience works as intended. Every task-dataset combination acts as a search light
illuminating the performance space within which modeling methods exist and provide insight into
which method can tackle which under which conditions.

We begin by presenting a ranking of all methods evaluated from their composite score (See Fig.[3]and
Table[T). We present the top 3 models and the constant prediction baseline for each metric from E1
through F12. The results highlight how the diversity of methods developed have definitive strengths
and weaknesses on the various tasks. Thus depending on the task, the appropriate method should be
deployed. The CTF provides the critical evaluation metrics necessary for making such decisions.



4 Limitations & Future Work

We are launching ctf4science in a limited scope with three datasets: a dynamical system (Lorenz) and
two spatio-temporal system (KS and SST). The evaluation metrics test short- and long-time forecasting
and reconstruction under the challenges of noise, limited data and parametric dependency. There
are many more datasets and tasks that could and should be considered for science and engineering,
most notably tasks in control. This CTF is an important first step to establish fair comparisons among
modeling methods on truly withheld test sets. In future versions, more challenging datasets, real
world datasets, and more tasks, including control tasks will be integrated.

A key limiting factor in achieving high-scores on the current CTF datasets is the small dataset size,
which hamstrings large machine learning models from performing at their best. This was by design,
since in many engineering systems, limited data availability is a practical reality. We will expand our
collection of datasets and scoring metrics to larger datasets in the future.

Furthermore, the current selection of models is only a starting point. We fully expect that extensions
to standard methods could outperform our results (e.g. PINNs[32]). We want to improve on the
current results together with the broader research community. ctfd4science will help us find successful
variations and new applications to existing methods.

While wall-clock time is a useful metric for assessing the potential speed advantage of ML methods
over traditional approaches[22], our focus here is on evaluating model suitability for certain tasks.
Wall-clock time depends on factors such as hardware configuration, implementation, parallelization,
and library efficiency. Nevertheless, we provide our time measurement of each model’s training and
evaluation pipeline in the appendix (Table 1) as a rough indication of computational burden.

5 Conclusion

We developed a CTF that scores modeling approaches on a diversity of tasks that are prototypical
in science and engineering. The canonical Lorenz and KS systems form an accepted testbench for
demonstrating the effectiveness of modeling methods in scientific machine learning literature and act
as the starting point of our benchmark. Our work builds a fair and multi-dimensional comparison
between methods that is based on a true hidden testset—Ilimiting the risk of "hacked" scores.

CTFs have transformed the research fields that embraced them, such as computer vision, speech and
language processing. CTFs have also been critical in identifying protein structure from sequence
[L6], leading to the Nobel Prize in Chemistry. Scientific machine learning is now mature enough
as a field that a CTF is warranted and needed in order to fairly and accurately evaluate emerging
algorithms, especially on the diversity of tasks critical to science and engineering. This work marks
the beginning of a sustained effort to provide a neutral and fair comparison between methods and
tasks, and thereby boost transparency and competition in machine learning for science.

The central tension our experiment exposes is that scientific ML methods live on a spectrum from
assumption-rich, high fidelity to generic, assumption-free, data-hungry models. We see the present
CTF as the microscope slide on which this spectrum first becomes visible. Our roadmap adds diverse
systems (non-chaotic ODEs, PDEs, stochastic SDEs, experimental datasets), multiple task types
(forecasting, system identification, imputation, control), and configuration files that declare what
priors each submission may exploit. By exposing where and why celebrated learning algorithms
misalign with specific scientific goals, the current CTF is not a verdict on their value but an invitation
to researchers in the community to refine architectures and to co-create a truly comprehensive
benchmark suite for scientific machine learning; enabling the discovery of scientific breakthroughs
and foundational world models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The paper does exactly as stated in the abstract: We build a platform for evaluation
scientific machine learning models on diverse challenges in science and engineering.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a separate section in the paper which clearly outlines how the CTF tasks
tested are limited in scope by default as the evaluations still do not evaluate assumptions and constraints
in training models. We have pointed towards how we can use this first benchmark set as a start point
for future improvements.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: We are benchmarking a wide range of models. The assumptions and theoretical results
for each model are not applicable for this work, and well beyond the scope of what is attempted to
demonstrate here: a fair comparison between methods.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. The entire framework, datasets, and implemented methods that were scored are
made available on GitHub and through Kaggle. See introduction. We implemented the ctf4science
Python package to easily replicate all our results, and provide a repository with every evaluated model
as a submodule that can be called from the root directory of the main repository. All configuration
files used to produce the results are available in the respective model repositories and can be used to
reproduce the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Reproducibility is the core of this work. All  data
(https://www.kaggle.com/datasets/dynamics-ai/ctf4science-lorenz-official-ds,
https://www.kaggle.com/datasets/dynamics-ai/ctf4science-kuramoto-sivashinsky-official-ds,
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and https://www.kaggle.com/datasets/dynamics-ai/ctf4science-sst-ds), all models, all code
(https://github.com/CTF-for-Science/ctf4science) and an extensive appendix are provided to ensure
full transparency, access and reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

» The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer:

Justification: The paper contains all the information on the CTF. Details on the models scored on the
benchmark are in the appendix, and the code to reproduce the results on their respective repositories
linked above.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA|

Justification: The merit of the CTF for science as a benchmark doesn’t depend on the statistical
significance of individual scores and thus error bars were widely omitted. We don’t say that there isn’t
merit to repeated experiment runs or errorbars, but they don’t add to or take away from the merit of
our work.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.
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8.

10.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: See section[T.11
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We ensured full compliance.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss the impact on the scientific community, but not society as a whole. We
consider this work benign in nature and thus focused our discussion on the groups of people directly
affected by ctfdscience in the near term: researchers, academics, and engineers.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer:

Justification: We consider the datasets and framework of ctf4science benign and don’t see high-risk
for misuse or dual use at this time.

Guidelines:

¢ The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: All sources and assets were cited appropriately.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: Datasets are documented in the paper and provided in the croissant format. Code is
documented and made publicly available. Modeling methods used and implemented are documented
extensively in the appendix and in their respective repositories linked above.

Guidelines:

¢ The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
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Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Not applicable
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA|
Justification: Not applicable
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: Not applicable
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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