Under review as a conference paper at ICLR 2026

LILMS CAN GENERATE A BETTER ANSWER BY AGGRE-
GATING THEIR OWN RESPONSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities across tasks,
yet they often require additional prompting techniques when facing complex prob-
lems. While approaches like self-correction and response selection have emerged
as popular solutions, recent studies have shown these methods perform poorly
when relying on the LLM itself to provide feedback or selection criteria. We argue
this limitation stems from the fact that common LLM post-training procedures
lack explicit supervision for discriminative judgment tasks. In this paper, we
propose Generative Self-Aggregation (GSA), a simple and effective prompting
method that improves answer quality without requiring the model’s discriminative
capabilities. GSA first samples multiple diverse responses from the LLM, then
aggregates them to obtain an improved solution. Unlike previous approaches, our
method does not require the LLM to correct errors or compare response quality;
instead, it leverages the model’s generative abilities to synthesize a new response
based on the context of multiple samples. While GSA shares similarities with
the self-consistency (SC) approach for response aggregation, SC requires specific
verifiable tokens to enable majority voting. In contrast, our approach is more
general and can be applied to open-ended tasks. Empirical evaluation demonstrates
that GSA effectively improves response quality across various tasks, including
mathematical reasoning, knowledge-based problems, and open-ended generation
tasks such as code synthesis and conversational responses.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range
of tasks, yet they often struggle with complex problems requiring careful deliberation or multi-step
reasoning (Bang et al.,2023)). This limitation has prompted the development of various prompting
techniques, with self-correction (Kamoi et al., 2024} [Madaan et al.,|2023)) and choose-from-N (Bai
et al.| [2022; |Snell et al.| |2024; |Chen et al.,|2023)) emerging as popular approaches. In self-correction,
models revise their initial responses based on feedback, while choose-from-N methods generate
multiple candidates and select the best one. However, recent studies have shown that these methods
perform suboptimally when relying on the LLM itself to provide feedback or selection criteria without
external guidance (Huang et al.,2024; [Mahan et al.| [2024).

We argue that this phenomenon reflects an asymmetry in standard LLM training: while next-token
prediction enables strong zero-shot generative ability, it provides little explicit supervision for
discriminative judgment (e.g., scoring, pairwise comparison). Recent work on generative reward
models Mahan et al.|(2024) supports this view by showing that specialized training can substantially
enhance judgment capabilities, albeit at the cost of additional data curation and compute that may be
impractical for many applications.

To the best of our knowledge, existing methods that successfully self-improve without additional
training on discriminative processes fall into two main categories: approaches utilizing external
feedback (e.g., code executors (Stengel-Eskin et al.,|2024)) or computational verifiers (Pan et al.,|2023)))
and the self-consistency method (Wang et al.,|2023)). The external feedback approach requires careful
task-specific design and is not universally applicable across different domains. Self-consistency
takes a different approach by generating multiple samples and employing majority voting among
them. However, its applicability is limited to tasks with specific, verifiable tokens as answers, such

Under review as a conference paper at ICLR 2026

as mathematical reasoning or multiple-choice questions, making it unsuitable for open-ended tasks.
Moreover, self-consistency can only aggregate final answers, overlooking the valuable reasoning
processes behind these answers. By contrast, selection-based variants that ask an LLM to pick among
candidates (e.g., Universal self-consistency (Chen et al., 2023)) still require reliable discriminative
judgments from the model itself, which prior studies suggest can be fragile without external signals
Huang et al.|(2024); Mahan et al.|(2024).

Question: Last night Rick saw
ten wolves and 15 cougars.
Today Rick saw three times as
many wolves as cougars and

Last night, the total number of
animals Rick saw was: 10 + 15 = 25.
Today, Rick saw three times as many

wolves as cougars. Let‘s call the W

\ \

§ number of cougars saw today "x". Then, \ 7

~o-® ‘the number of wolves saw today is 3x. -
Rick also saw .. we get: 25 (yesterday)

+ 16 (today) = 41 animals.

!
three fewer cougars than the \
previous night. How many

No error found!

animals did Rick see? Let’s
think step by step.

(Greedy Decoding)
Standard CoT Prompting

(Prompt the LLM to generate feedback)
Self-refine

(1) Diverse Responses Generation

Question: Last night Rick saw
ten wolves and 15 cougars.
Today Rick saw three times as
many wolves as cougars and
three fewer cougars than the
previous night. How many
animals did Rick see? Let’s
think step by step.

e

Last night, Rick saw 10 wolves and 15 cougars.
Today, Rick saw three times as many wolves as
cougars last night, so he saw 3 * 15 = 45 wolves
.. Therefore, the total numberof animals Rick saw

\ds 55 + 27 = 82.

Last night .. Let the number of cougars he saw
today be “"c.” The number of wolves he saw would
then be 3c. Since he saw three fewer cougars than
Last night, the number of cougars he saw today is
15 - 3 = 12. Using this, the number of wolves he
saw is 3 * 12 = 36. Adding them, he saw 36 + 12 =
48 animals today. So the total is 25 + 48 = 73.

Last night, Rick saw: 10 wolves and 15 cougars.

| (2) Context-Enriched Response Synthesis

Use diverse responses as context and prompt the
model to generate an improved response

Last night, Rick saw 10 wolves and 15 cougars,
so the total number of animals he saw was 10 +
15 = 25. Today, Rick saw three times as many

wolves as cougars today. Since Rick saw three
fewer cougars than Last night, the number of

cougars he saw today is 15 - 3 =12. The number
of wolves he saw today is 3 * 12 = 36. Adding

these, Rick saw 36 + 12 = 48 animals today. In
total, Rick saw 25animals last night and 48
animals today, so the total is 25 + 48 = 73.

Today, Rick saw 3 times as many wolves as
cougars: .. 3 times that many wolves would be 3 x
15 = 45 wolves. 3 fewer cougars today would be 15
- 3 = 12 cougars. ... Total animals saw by Rick:
25 + 57 = 82

Generative Self-aggregation

Figure 1: Illustration of Generative Self-aggregation with an example on a math problem using Llama
3 8B as the language model.

Building on these insights, we propose Generative Self-Aggregation (GSA), which improves answer
quality by generatively aggregating information from multiple responses. Unlike previous methods,
GSA does not require the model to explicitly judge or compare responses and does not need additional
training. As illustrated in Figure[I] GSA first generates multiple diverse responses, then uses these
responses as context to prompt the model to aggregate them and generate an improved solution. The
common LLMs’ training paradigm of predicting subsequent tokens based on input context allows the
model to identify and learn from stronger solutions through its natural text generation capabilities,
enabling the model to combine strengths from different solutions. Unlike traditional self-consistency
which relies on majority voting, our approach leverages the generative power of LLM for aggregating
multiple responses. By utilizing the reasoning process rather than just the final answers, the model
has access to more information that can be aggregated to improve the final solution. Moreover, this
generative aggregation approach extends beyond specific-answer tasks to open-ended problems where
majority voting would not be applicable.

Through extensive experimentation across mathematical reasoning, knowledge-based, and open-
ended generation tasks, we demonstrate that our method outperforms both self-correction and
choose-from-N baselines across different tasks and model scales. Our method achieves comparable
or better performance to self-consistency on tasks with verifiable answers, while self-consistency
cannot be applied to open-ended tasks. Our ablation studies demonstrate the method’s robustness
across different sampling strategies. Further analysis of likelihood distributions reveals that LLMs are
more confident on generating new responses than selecting among existing ones, providing empirical
support for our framework.

The rest of the paper is organized as follows: Section 2 reviews related work in LLM prompting
techniques; Section 3 introduces our proposed Generative Self-Aggregation approach; Section 4
presents comprehensive experimental results; Section 5 draws a brief conclusion and discusses
potential future directions.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 SELF-CONSISTENCY

Self-consistency (Wang et al.,[2023)) is a decoding strategy that improves Chain-of-Thought (CoT)
prompting by leveraging multiple reasoning paths. Instead of using greedy decoding to generate
a single solution, it first samples multiple diverse reasoning paths and then aggregates their final
answers through majority voting to determine the most consistent one. Its success on mathematical
reasoning and common sense questions demonstrates LLMs’ ability to generate correct solutions
across different attempts. [Lin et al.| (2024)) further extends this concept and employ LLM to extract
answer and conduct voting on various reasoning paths. However, their application to open-ended
tasks remains challenging due to the lack of clear voting mechanisms.

2.2 SELF-CORRECTION

Self-correction in Large Language Models has emerged as a significant research direction, focusing
on models’ ability to recognize and improve their outputs based on feedback (Kamoi et al., 2024} Paul
et al., [2024; Madaan et al., [2023)). A substantial body of work explores self-correction with external
feedback sources, such as human annotations (Shinn et al., |2023)), code executors (Stengel-Eskin
et al., [2024; |Chen et al., 2024bj |Gou et al., 2024)), or symbolic reasoning tools (Pan et al., [2023]).
While effective, these approaches are limited by their reliance on additional knowledge sources or
tools that may not always be available. When only the language model itself is available, researchers
have proposed various intrinsic self-correction methods. Self-Refine (Madaan et al., [2023)) and RIC
prompting (Kim et al.,|2023) prompt the model to provide feedback on and refine its previous outputs.
However, recent studies have shown that these approaches, which rely on LLMs’ ability to make
discriminative judgments about their own outputs, often produce inaccurate assessments and yield
suboptimal results (Huang et al.| |[2024).

To address these limitations, some researchers have explored training-based approaches to enhance
self-correction capabilities. These include supervised fine-tuning methods (Paul et al., [2024; Welleck
et al.| [2023)) and reinforcement learning approaches (Akyiirek et al., 2023)). While promising, these
methods require substantial human-annotated training data, limiting their practical applicability.

2.3 CHOOSE-FROM-N METHODS

Another prominent approach to improve language model outputs is the choose-from-N paradigm,
where multiple candidate responses are first generated and then selected based on specific selection
criteria. Best-of-N sampling (Stiennon et al.,|2020; Jinnai et al., [2024) represents a widely adopted
variant of this approach, utilizing reward model scores as selection criteria during decoding to
better align responses with human preferences. This methodology has been extended by works
incorporating specialized verifiers or process reward models (PRM, Snell et al.| (2024))) to enhance
selection accuracy. However, the effectiveness of these approaches heavily depends on having
well-trained reward models that accurately reflect human preferences.

An alternative strategy employs the language model itself as the evaluators for selection. For instance,
Constitutional Al (Bai et al.||2022) introduces Reinforcement Learning from Al Feedback (RLAIF),
employing LLMs to identify harmful content and generate preference labels for training. Universal
self-consistency (Chen et al.,2023)) employs LLMs to select the best answer from several candidates.
Zheng et al.| (2023)) further establish that strong LLMs can provide judgments that correlates with
human preferences. While this correlation can be effective for tasks like model evaluation or dataset
construction where errors can be averaged out, using LLMs as judges for selecting better responses
in individual cases may not be optimal. Moreover, recent studies (Fu et al.| 2023} |[Thakur et al.| [2024)
have identified several challenges in these approaches. [Mahan et al.| (2024) shows that LLMs’ zero-
shot judgments may not always fully align with human preferences. [Thakur et al.|(2024)) demonstrates
that recent open-source LLMs’ alignment performance falls considerably short of human-to-human
agreement, with their evaluations often deviating significantly from human assessments. Our method
takes an alternative approach without requiring LLMs’ discriminative judging capabilities. (Farinhas
et al., |2023)) focus on translation tasks and propose two variants: choose or generate based on
previous translations, which bears some similarity to our work. However, their methods show little
improvement when using the LLM itself, requiring external guidance.

Under review as a conference paper at ICLR 2026

2.4 MULTI-MODEL COLLABORATION

Recent research has explored the potential of leveraging multiple large language models as interactive
agents to solve complex problems. Various multi-agent frameworks have emerged where models
assume distinct roles, such as debaters and judges (Du et al. 2024; Wang et al.,|2024b)). For example,
Chen et al.| (2024a) present an iterative discussion framework that enables multiple LLM agents
to engage in round-table discussions with confidence-weighted voting, where it require models to
provide a confidence score. [Wang et al.|(2024a) propose a multi-layer design to iteratively aggregate
responses from different models. However, their fundamental focus differs from ours - they aim to
leverage the complementary strengths across heterogeneous models, while our method explores how a
single model can improve over its own responses. Moreover, all these multi-agent approaches require
simultaneous deployment of multiple models and involve substantially more complex frameworks,
resulting in substantially higher computational and resource costs. In contrast, our work introduces a
lightweight, single-round, single-model method that avoids explicit discriminative judgments and
achieves strong empirical performance across diverse tasks.

3 METHODOLOGY

We propose Generative Self-Aggregation (GSA), a prompting method that improves answer quality
without relying on LLMs’ discriminative ability. Our method consists of two key steps: (1) diverse
response generation and (2) context-enriched response synthesis. Unlike traditional self-consistency,
which relies on majority voting to find agreement among multiple final outputs, our approach enables
the model to synthesize an improved solution by learning from diverse attempts. Our method operates
within the model’s generative framework without requiring any discriminative judgments (such as
selecting or judging responses) and does not require additional training.

3.1 DIVERSE RESPONSE GENERATION

Given a language model M (-) and query ¢, we first generate n diverse responses by sampling from
the model’s distribution:

ri~ M(rlg), i=1,...,n.

We can employ various sampling strategies, such as temperature sampling (Ackley et al., | 1985)
or nucleus sampling (Holtzman et al., 2020), to generate these candidates. The diversity of these
responses is crucial for providing rich context in the subsequent synthesis step. For example, in
mathematical reasoning tasks, diverse candidates may explore different solution paths, potentially
containing valuable correct intermediate steps even when reaching incorrect final answers. In
knowledge-based tasks, they can access different aspects of the model’s internal knowledge that a
single deterministic generation might miss.

3.2 CONTEXT-ENRICHED RESPONSE SYNTHESIS

After generating diverse candidates, we construct an enriched prompt by combining the original task
query with the generated responses and ask the model to generate an new response:

7’/ ~ M(T|Pr0mpt(q7 {ri}izl,...,n)~

Standard training of next-token prediction enables the language model to attend to and learn from
useful content in the provided context. By providing the model multiple attempts, we enable it to
identify effective reasoning patterns or knowledge and combine them into a more refined response,
potentially combining the strengths while avoiding their individual weaknesses. The following box
presents a prompt template that we use for a coding task MBPP (Austin et al., 2021)):

Here is the problem:
{query}

Reference Solutions:
{diverse_responses}

Instructions:

1. Review the above solutions.

Under review as a conference paper at ICLR 2026

2. Generate a Python function that solves the Problem.
3. Provide a brief explanation of your reasoning.
4. Ensure your code is enclosed within a ‘‘python'‘‘' code block.

Figure[I]presents an example using Llama 3 8B (Dubey et al., [2024) on a mathematical reasoning
task. When given this problem, standard zero-shot chain-of-thought prompting with greedy decoding
produces an incorrect solution. Self-refine ask the model to provide a feedback to the generated
solution, but failing to correctly identify the errors. Our method, in contrast, first generates three
diverse solutions through sampling, with two arriving at an incorrect answer and one reaching the
correct answer. Instead of attempting to select the final answer through voting, our method provides
these diverse attempts as context and prompts the model to generate an improved solution.

The resulting response not only arrives at the correct answer but also demonstrates an evolution
in reasoning strategy: the original correct solution first derives the number of wolves as 3¢ with ¢
defined as the number of cougars, and then calculate ¢, following the sequential order of conditions
in the question. Differently, the improved solution takes a more direct approach without introducing
variables. This transformation suggests that the model can not only identify correct reasoning patterns
from the provided attempts but also simplify them into more straightforward solution paths.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Language models. We evaluate our method using four different LLMs to ensure robustness across
model scales and architectures. We use the instruction-tuned version of the open-sourced models for
experiments.

We evaluate on four instruction-tuned models: Llama 3 8B (Dubey et al., 2024), trained on 15T
tokens; Gemma 2 9B (Riviere et al.| [2024)), a distilled 9B model with architectural improvements;
Qwen 2.5 14B (Yang et al., [2024), which improves over earlier versions in reasoning and knowledge;
and GPT-40 Mini, a compact GPT-4 variant optimized for speed and cost with strong generation
quality.

Tasks and datasets. We conduct comprehensive evaluations across diverse tasks with task-specific
evaluation metrics:

o Mathematics reasoning. For mathematical reasoning capabilities, we use Grade School Math 8K
(GSMBK;|Cobbe et al.[2021]), a dataset of grade school math word problems that require multi-step
reasoning. We also include Math (Hendrycks et al., 2021b)), a diverse collection of mathematical
problems spanning algebra, arithmetic, and geometry. We follow the original paper to use string
match for accuracy calculation. SVAMP (Patel et al., [2021) serves as a challenge set designed for
more robust evaluation of models against elementary level math word problems.

o Knowledge Tasks. For testing knowledge application, we employ the Massive Multitask Language
Understanding benchmark (MMLU; Hendrycks et al.|2021a)), which covers 57 subjects ranging from
mathematics to law. Due to resource constraints, we randomly sample 10% of the MMLU test set for
evaluation. Additionally, we use Graduate-Level Google-Proof Q&A Benchmark (GPQA;|Rein et al.
2023), a benchmark with very hard question written by experts in biology, physics, and chemistry,
which also requires strong reasoning ability.

e Open-ended Tasks. To evaluate performance on less constrained tasks, we use MT-bench (Zheng
et al.;|2023), a multi-turn dialogue benchmark specifically designed to assess open-ended conversation
capabilities. Alpaca Eval (Li et al.| 2023)) provides a comprehensive suite for evaluating instruction-
following abilities. For programming tasks, we include MBPP (Austin et al., |2021)), which contains
974 basic Python programming problems. For MT-bench, we employ GPT-4 (OpenAll 2023)) as the
evaluator to score the response. For Alpaca eval, we employ GPT-4 to calculate win rate against
responses from GPT4-turbo.

Baselines. We compare against five baselines: Greedy, which uses standard decoding with tem-
perature = 0; Self-Refine (Madaan et al., 2023), which iteratively improves responses based on
model-generated feedback; Self-Consistency (Wang et al.,[2023)), which samples multiple outputs

Under review as a conference paper at ICLR 2026

and selects the most frequent answer via majority vote; Universal Self-Consistency (Chen et al.,
2023)), which generates multiple responses and selects one based on a model-predicted index; and
Best-of-N (Oracle), an upper bound that marks a sample as correct if any candidate is correct (for
MT-bench, we report the best score among responses).

To ensure fair comparison, we standardize computational budget across all methods by fixing the
number of model calls to 4 in the main results. We set this limit for practical cost considerations,
as the cost scales linearly with the number of class and the largest performance gains typically
occur within the first few responses. Nevertheless, we experiment our method with larger number of
responses in Section[4.3]

For Self-Consistency, we generate four diverse candidates using temperature sampling and apply
majority voting on the final answer. We randomly select three of these candidates for our method
and universal self-consistency. For Self-Refine, we limit the feedback-refinement loop to 2 iterations.
‘We maintain consistent prompt templates across our method and universal self-consistency, while
adhering to the original prompts for Self-Refine. In the final aggregation step of our method, we
employ greedy decoding for closed-ended tasks to ensure deterministic outputs, and temperature
sampling for open-ended tasks, following standard practice. For additional case study, detailed
prompts and parameter settings, please refer to the Appendix.

4.2 MAIN RESULTS

Table 1: Performance comparison on Llama 3 and GPT 40 mini across tasks, and methods. GSM8K,
Math, GPQA, MMLU, SVAMP and MBPP scores are accuracy percentages. MT-bench is on a 1-10
scale; Alpaca scores are length-control win rate percentages against responses from GPT4-turbo;
Best results for each model-task pair are in bold.

Model Method Tasks
GSMS8K MATH GPQA MMLU SVAMP | MT-bench Alpaca MBPP
Best-of-N (Oracle) 9174 4726 6123 7708 9267 | 8.04 36.14 60.60
Greedy 8247 2928 3214 63.13 82.67 743 2755 5520
Llama 3 Self-Refine 8299 3032 3214 63.53 83.00 7.30 2442 52.80
Self-Consistency 8635 31.68 3326 6562 8833 N/A N/A N/A
Uni. Self-Consistency ~ 84.99 3128 3326 6448 87.33 745 29.14 53.20
Ours 86.05 3246 3504 6562 88.00 7.53 2934 5520
Best-of-N (Oracle) 9629 8672 5647 8625 9533 | 930 61.67 78.60
Greedy 9348 76.54 4107 8085 93.00 8.95 4799 7320
GPT 40 Mini ~ Self-Refine 9242 7644 4003 83.03 91.00 9.02 51.60 70.60
Self-Consistency 9477 7726 4040 8500 93.00 N/A N/A N/A
Uni. Self-Consistency ~ 94.47 76.80 3839 80.51 94.00 8.84 5020 72.60
Ours 94.69 7825 4217 8511 94.00 9.13 5585 74.20

Table 2: Performance comparison on Gemma 2 and Qwen2.5 across tasks. GSM8K, MATH, GPQA,
MMLU, SVAMP, and MBPP scores are accuracy percentages. MATH is evaluated on a 500 sample
subsets and Alpaca-eval is excluded due to resource constraints. MT-bench is on a 1-10 scale.

Model Method Tasks
GSMS8K MATH GPQA MMLU SVAMP ‘ MT-bench MBPP
Best-of-N (Oracle) 93.03 84.00 50.45 78.43 9133 | 874 61.80
Greedy 87.11 73.20 31.74 65.91 88.00 7.99 57.60
Gemma 2 9B Self-Refine 87.04 72.60 31.70 65.43 87.67 8.35 57.40
Self-Consistency 89.08 75.00 33.26 69.04 88.33 N/A N/A
Uni. Self-Consistency 88.25 72.80 31.92 65.84 86.33 8.30 57.20
GSA (Ours) 89.61 76.00 34.82 69.11 88.33 8.35 57.40
Best-of-N (Oracle) 97.19 98.00 63.17 86.41 95.00 ‘ 9.22 80.20
Greedy 94.62 94.40 39.51 79.07 92.33 8.63 72.00
Qwen 2.5 14B Self-Refine 94.62 94.60 40.18 79.34 92.67 8.65 71.80
Self-Consistency 95.68 95.80 40.40 79.79 93.00 N/A N/A
Uni. Self-Consistency 95.68 9540 40.62 79.64 92.67 8.66 73.00
GSA (Ours) 95.75 96.20 41.74 79.92 93.00 8.99 73.80

Under review as a conference paper at ICLR 2026

Table [T] summarizes performance across models, tasks, and methods. Our approach consistently
outperforms both universal self-consistency and self-refine, demonstrating the advantage of generative
aggregation over model-based selection or feedback. Notably, universal self-consistency and self-
refine sometimes underperform compared to greedy decoding (e.g., GPQA with GPT-40 Mini),
supporting our hypothesis that standard LLM training does not sufficiently develop discriminative
capabilities.

The Best-of-N (Oracle) results show varying headroom for improvement, with larger gains from our
method when oracle accuracy significantly exceeds greedy decoding—indicating GSA effectively
exploits diverse, high-quality candidates.

On mathematical and knowledge-based tasks, our method matches or surpasses self-consistency
despite using fewer candidates (3 vs. 4). With Llama 3, we achieve comparable performance on
GSMS8K and MMLU and improvements on MATH and GPQA. For open-ended tasks where self-
consistency is inapplicable, GSA still yields consistent gains. Notably, with GPT-40 Mini, we observe
strong improvements on Alpaca-Eval and MT-bench, highlighting the method’s broad applicability
across both structured and open-ended settings.

] = GSA (ours) | -o~ GSA (ours)]
& usc + =% 92 usc ///"\"——\,,,\ 55 . —
o — a] 4
78| SC 27: : 90 SCe-]
0 —o— Best-of-N 50
o) s 2 88| 2
g g & 457 ~
3 T]
< < . <
f 84 :]
] e] o
82 @]
744 30
10 20 30 40 80 py» A T 1 . s e
Num of responses “Temperature ' “Temperature '
(a) GSMSK (b) GPQA

Figure 2: Comparison with
different number of responses Figure 3: Comparison of baselines performance with different
on MATH with GPT 40 mini. temperature and N = 3 on GSM8K and GPQA with Llama 3 8B.

4.3 ABLATION STUDIES

Number of responses. We analyze how the number of responses (/V) affects different aggregation
methods’ performance on MATH with GPT 40 mini (tested on a 20% subset due to API constraints).
Note that here we apply same diverse responses for all baselines to compare the aggregation methods,
with self-consistency requiring one less model call as it uses majority voting for aggregation. We
apply this setting for the rest of ablation studies to better compare the aggregation methods.

As shown in Figure[2] all methods improve significantly when moving from greedy decoding (N = 1)
to multiple responses. Our method consistently outperforms the universal self-consistency baseline
across different values of IV, demonstrating the advantage of leveraging generative capabilities over
attempting to select the best response. Both our method and self-consistency continue to benefit
from more responses, indicating their ability to effectively aggregate information from a larger set of
examples, while the universal self-consistency baseline shows diminishing returns and even a slight
decline at larger IV, suggesting that selecting among many samples can be challenging.

Sampling temperatures. We investigate how sampling temperature affects the performance of
different methods on GSM8K and GPQA with Llama 3 8B. All methods show a clear pattern where
performance improves as temperature increases from 0.2 to 1.0, then degrades at higher temperatures.
With low temperature, the responses lack diversity, resulting in similar performance across methods.

The Oracle performance at this temperature also indicates limited diversity in the candidate pool.
As temperature increases to 1.0, all methods benefit from increased response diversity, with our
method achieve comparable performance to Self-consistency on GSM8K and better on GPQA,
while consistently outperforming universal self-consistency. Further increasing temperature leads to
performance degradation due to the decreased quality of sampled responses.

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of different sampling strategies on GSM8K for Gemma 2 9B with
N = 3. Temp. uses temperature sampling with 7' = 0.7, Prompt uses different prompt templates,
and Multi. generates responses in different languages.

Method Temp. Prompt Multi.
Best-of-N (Oracle) 92.49 92.95 92.80
Self-Consistency 88.48 88.86 89.84
Uni. Self-Consistency 88.25 88.17 89.16
Ours 89.61 89.23 89.31

Sampling strategies. Beyond temperature-based sampling, we explore two additional strategies
for generating diverse responses: (1) Prompt template variation uses different prompt templates
to obtain diverse responses with distinct format. (2) Multilingual generation makes use of the
multilingual capabilities of model, prompting them to answer the question in different languages.

Table [3|shows that all three sampling strategies achieve comparable performance on GSM8K using
Gemma 2 9B with NV = 3. Our method maintains strong performance across all strategies, indicating
our method’s robustness to the choice of sampling method. The multilingual sampling leads to slightly
better oracle and self-consistency performance, possibly because responses in different languages
provide more diversity. However, it require multilingual capabilities of the LLM.

Table 4: Performance comparison with adjusted model calls on GSM8K, MATH, and GPQA using
GPT-40 Mini. GSA uses 5 model calls while Self-Consistency uses 6 calls, resulting in lower
computational cost for GSA. All scores are accuracy percentages.

Method GSMSK MATH GPQA
Greedy 93.48 76.54 41.07
Self-Consistency (6 calls) 94.84 77.85 40.85
GSA (5 calls) 94.77 78.33 42.17

Adjusted model calls. While our main experiments fix the number of model calls to ensure fair
comparison across methods, we acknowledge that GSA incurs additional input tokens during the
aggregation step. However, input token costs are typically much lower than output token costs
(approximately 25% of output token pricing), making the overall cost difference modest.

Nevertheless, to better demonstrate GSA’s effectiveness, we conducted additional experiments with
adjusted model calls. Specifically, we tested GSA with 5 model calls against self-consistency
with 6 model calls on GSM8K, MATH, and GPQA. Under this setting, GSA actually incurs lower
computational costs than self-consistency while maintaining superior performance. As shown in
Table 4} GSA consistently outperforms self-consistency on MATH and GPQA while remaining
competitive on GSM8K.

4.4 DISCUSSIONS

Likelihood distribution. To further investigate our hypothesis that LLMs are better suited for
generating new responses than discriminative task, we analyze the normalized negative log-likelihood
(NLL) distributions of responses produced by our method and the universal self-consistency on the
Alpaca eval benchmark using Llama 3 8B. Figure] shows that our approach yields lower NLL values
compared to universal self-consistency, indicating higher model confidence when generating new
responses than when making selections.

We note that while lower NLL values may correlate with improved response quality, they alone are
insufficient for optimal response selection. Prior work (Wang et al.| [2023)) has shown that simply
selecting responses with the lowest NLL values performs substantially worse than self-consistency.

Fine-grained Performance Analysis To gain deeper insights into how our method and universal
self-consistency utilize multiple candidate responses, we conduct a detailed comparative analysis on
GPQA and MBPP with Llama 3 8B. We first categorize test samples based on the number of correct

Under review as a conference paper at ICLR 2026

nl USC
507 nL GSA (ours)

Frequency

0= " " " " amoo o nnom

T T
0 0.2 0.4 1.4 1.6 1.8

06 08 10 1.2
Negative Log-likelihood (NLL)

Figure 4: Distribution of normalized negative log-likelihood scores for responses generated on the
Alpaca eval using Llama 3 8B. Lower NLL indicates higher model confidence in token generation.

200 () GSA (ours —= 200 () GSA (ours)
(Jusc (Jusc
@) Both @ Both
> 150 (1) None 7150 None
c c
g 18 g 217
g 100 - 204 & 100 o
i . [
50 50
2 ® = ==
-
0 g 0 s 1 11
All correct Two correct One correct None correct All correct Two correct One correct None correct
(a) GPQA (b) MBPP

Figure 5: Comparison of our method vs. universal self-consistency on GPQA and MBPP with Llama
3 8B. Test cases are grouped by how many of the three candidates are correct. For each group, we
show the number of samples where both methods, only ours, only universal self-consistency, or
neither succeeded.

responses among the three candidates (3, 2, 1, or O correct). For each category, we then analyze
four possible outcomes: both our method and universal self-consistency succeed, only our method
succeeds, only universal self-consistency succeeds, or neither method succeeds.

Figure E] visualizes this breakdown. When all three candidates are correct, both methods consistently
produce correct answers. When two candidates are correct, both methods perform well, with our
approach succeeding on slightly more samples than universal self-consistency. The advantage of our
approach becomes more significant when only one candidate is correct. Notably, our method can
solve some cases where none of the original candidates were correct, demonstrating its ability to
synthesize a correct solution even from incorrect examples. In contrast, universal self-consistency
is limited to selecting from existing candidates and hence cannot succeed when all candidates are
incorrect.

5 CONCLUSION

In this paper, we introduced Generative Self-Aggregation (GSA), a novel prompting method that
improves LLMs’ performance without relying on discriminative judgments and can be applied to
open-ended tasks. Our approach demonstrates that LLMs can effectively aggregate information
from multiple solutions through generative processes, utilizing diverse reasoning paths to produce
enhanced responses. GSA requires neither additional training nor external feedback, making it readily
applicable across different model architectures and domains. Our extensive empirical evaluation
across diverse tasks demonstrates that GSA outperforms existing self-correction and universal self-
consistency methods that rely on LLMs’ discriminative capabilities. As future work, GSA could be
used to generate high-quality supervised data for model fine-tuning, and specialized training focused
on enhancing LLMs’ aggregation capabilities may further improve performance.

Under review as a conference paper at ICLR 2026

REFERENCES

ACKLEY, D. H., HINTON, G. E. and SEINOWSKI, T. J. (1985). A learning algorithm for boltzmann
machines. Cogn. Sci., 9 147-169.

AKYUREK, A. F., AKYUREK, E., KALYAN, A., CLARK, P., WIJAYA, D. T. and TANDON, N.
(2023). RLAF: generating natural language feedback with reinforcement learning for repairing
model outputs. In ACL (1). Association for Computational Linguistics.

AUSTIN, J., ODENA, A., NYE, M. 1., BOSMA, M., MICHALEWSKI, H., DOHAN, D., JIANG, E.,
CalL C.J,, TERRY, M, LE, Q. V. and SUTTON, C. (2021). Program synthesis with large language
models. CoRR, abs/2108.07732.

BAI Y., KADAVATH, S., KUNDU, S., ASKELL, A., KERNION, J., JONES, A., CHEN, A., GOLDIE,
A., MIRHOSEINI, A., MCKINNON, C., CHEN, C., OLSSON, C., OLAH, C., HERNANDEZ, D.,
DRAIN, D., GANGULI, D., L1, D., TRAN-JOHNSON, E., PEREZ, E., KERR, J., MUELLER, J.,
LADISH, J., LANDAU, J., NDOUSSE, K., LUKOSIUTE, K., LOVITT, L., SELLITTO, M., ELHAGE,
N., SCHIEFER, N., MERCADO, N., DASSARMA, N., LASENBY, R., LARSON, R., RINGER, S.,
JOHNSTON, S., KRAVEC, S., SHOWK, S. E., FORT, S., LANHAM, T., TELLEEN-LAWTON, T.,
CONERLY, T., HENIGHAN, T., HUME, T., BOWMAN, S. R., HATFIELD-DODDS, Z., MANN, B.,
AMODEI, D., JOSEPH, N., MCCANDLISH, S., BROWN, T. and KAPLAN, J. (2022). Constitutional
AI: harmlessness from Al feedback. CoRR, abs/2212.08073.

BANG, Y., CAHYAWIJAYA, S., LEE, N., DA1, W., Su, D., WILIE, B., LOVENIA, H., JI1, Z., YU,
T., CHUNG, W., Do, Q. V., XU, Y. and FUNG, P. (2023). A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity. In IJJCNLP (1). Association for
Computational Linguistics.

CHEN, J. C., SAHA, S. and BANSAL, M. (2024a). Reconcile: Round-table conference improves rea-
soning via consensus among diverse llms. In ACL (7). Association for Computational Linguistics.

CHEN, X., AKSITOV, R., ALON, U,, REN, J., X1A0, K., YIN, P., PRAKASH, S., SUTTON, C.,
WANG, X. and ZHOU, D. (2023). Universal self-consistency for large language model generation.
CoRR, abs/2311.17311.

CHEN, X., LIN, M., SCHARLI, N. and ZHOU, D. (2024b). Teaching large language models to
self-debug. In ICLR. OpenReview.net.

COBBE, K., KOSARAIU, V., BAVARIAN, M., CHEN, M., JUN, H., KAISER, L., PLAPPERT, M.,
TWOREK, J., HILTON, J., NAKANO, R., HESSE, C. and SCHULMAN, J. (2021). Training verifiers
to solve math word problems. CoRR, abs/2110.14168.

Du, Y, L1, S., TORRALBA, A., TENENBAUM, J. B. and MORDATCH, I. (2024). Improving
factuality and reasoning in language models through multiagent debate. In ICML. OpenReview.net.

DUBEY, A., JAUHRI, A., PANDEY, A., KADIAN, A., AL-DAHLE, A., LETMAN, A., MATHUR,
A., SCHELTEN, A., YANG, A., FAN, A., GOYAL, A., HARTSHORN, A., YANG, A., MI-
TRA, A., SRAVANKUMAR, A., KORENEV, A., HINSVARK, A., RAO, A., ZHANG, A., RO-
DRIGUEZ, A., GREGERSON, A., SPATARU, A., ROZIERE, B., BIRON, B., TANG, B., CHERN,
B., CAUCHETEUX, C., NAYAK, C., BI, C., MARRA, C., MCCONNELL, C., KELLER, C.,
TOURET, C., WU, C., WONG, C., FERRER, C. C., NIKOLAIDIS, C., ALLONSIUS, D., SONG,
D., PINTZ, D., LIVSHITS, D., ESIOBU, D., CHOUDHARY, D., MAHAJAN, D., GARCIA-OLANO,
D., PERINO, D., HUPKES, D., LAKOMKIN, E., ALBADAWY, E., LOBANOVA, E., DINAN, E.,
SMITH, E. M., RADENOVIC, F., ZHANG, F., SYNNAEVE, G., LEE, G., ANDERSON, G. L.,
NAIL, G., MIALON, G., PANG, G., CUCURELL, G., NGUYEN, H., KOREVAAR, H., XU, H.,
TOUVRON, H., ZAROV, 1., IBARRA, I. A., KLOUMANN, I. M., MISRA, 1., EvTiIMOV, 1., COPET,
J., LEE, J., GEFFERT, J., VRANES, J., PARK, J., MAHADEOKAR, J., SHAH, J., VAN DER LINDE,
J., BILLOCK, J., HONG, J., LEE, J., Fu, J., CHI, J., HUANG, J., L1U, J., WANG, J., YU, J.,
BITTON, J., SPISAK, J., PARK, J., ROCCA, J., JOHNSTUN, J., SAXE, J., JIA, J., ALWALA, K. V.,
UprASANI, K., PLAWIAK, K., L1, K., HEAFIELD, K., STONE, K. and ET AL. (2024). The llama 3
herd of models. CoRR, abs/2407.21783.

10

Under review as a conference paper at ICLR 2026

FARINHAS, A., DE SOUZA, J. G. C. and MARTINS, A. F. T. (2023). An empirical study of translation
hypothesis ensembling with large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10,
2023 (H. Bouamor, J. Pino and K. Bali, eds.). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2023.emnlp—-main.733

Fu, X., LASKAR, M. T. R., CHEN, C. and TN, S. B. (2023). Are large language models reliable
judges? A study on the factuality evaluation capabilities of 1lms. CoRR, abs/2311.00681.

Gou, Z., SHAO, Z., GONG, Y., SHEN, Y., YANG, Y., DUAN, N. and CHEN, W. (2024). CRITIC:
large language models can self-correct with tool-interactive critiquing. In /CLR. OpenReview.net.

HENDRYCKS, D., BURNS, C., BASART, S., ZOU, A., MAZEIKA, M., SONG, D. and STEINHARDT,
J. (2021a). Measuring massive multitask language understanding. In /ICLR. OpenReview.net.

HENDRYCKS, D., BURNS, C., KADAVATH, S., ARORA, A., BASART, S., TANG, E., SONG, D. and
STEINHARDT, J. (2021b). Measuring mathematical problem solving with the MATH dataset. In
NeurIPS Datasets and Benchmarks.

HoLTZMAN, A., Buys, J., Du, L., FORBES, M. and CHOI, Y. (2020). The curious case of neural
text degeneration. In /CLR. OpenReview.net.

HUANG, J., CHEN, X., MISHRA, S., ZHENG, H. S., YU, A. W., SONG, X. and ZHOU, D. (2024).
Large language models cannot self-correct reasoning yet. In /CLR. OpenReview.net.

JINNAIL Y., MORIMURA, T., ARIU, K. and ABE, K. (2024). Regularized best-of-n sampling to
mitigate reward hacking for language model alignment. CoRR, abs/2404.01054.

Kawmol1, R., ZHANG, Y., ZHANG, N., HAN, J. and ZHANG, R. (2024). When can llms actually
correct their own mistakes? A critical survey of self-correction of llms. CoRR, abs/2406.01297.

KM, G., BALDI, P. and MCALEER, S. (2023). Language models can solve computer tasks. In
NeurlPS.

LI, X., ZHANG, T., DuBoOI1s, Y., TAORI, R., GULRAJANI, 1., GUESTRIN, C., LIANG, P. and
HAsHIMOTO, T. B. (2023). Alpacaeval: An automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

LiN, L., Fu, J., L1u, P, L1, Q., GONG, Y., WAN, J., ZHANG, F., WANG, Z., ZHANG, D. and GAI,
K. (2024). Just ask one more time! self-agreement improves reasoning of language models in
(almost) all scenarios. In Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024 (L. Ku, A. Martins and V. Srikumar,
eds.). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2024.findings—acl.230

MADAAN, A., TANDON, N., GUPTA, P., HALLINAN, S., GAO, L., WIEGREFFE, S., ALON, U.,
DzIRI, N., PRABHUMOYE, S., YANG, Y., GUPTA, S., MAJUMDER, B. P., HERMANN, K.,
WELLECK, S., YAZDANBAKHSH, A. and CLARK, P. (2023). Self-refine: Iterative refinement
with self-feedback. In NeurIPS.

MAHAN, D., PHUNG, D., RAFAILOV, R., BLAGDEN, C., LILE, N., CASTRICATO, L., FRANKEN,
J., FINN, C. and ALBALAK, A. (2024). Generative reward models. CoRR, abs/2410.12832.

OPENALI (2023). GPT-4 technical report. CoRR, abs/2303.08774.

PAN, L., ALBALAK, A., WANG, X. and WANG, W. Y. (2023). Logic-lm: Empowering large
language models with symbolic solvers for faithful logical reasoning. In EMNLP (Findings).
Association for Computational Linguistics.

PATEL, A., BHATTAMISHRA, S. and GOYAL, N. (2021). Are NLP models really able to solve simple
math word problems? In NAACL-HLT. Association for Computational Linguistics.

PAUL, D., ISMAYILZADA, M., PEYRARD, M., BORGES, B., BOSSELUT, A., WEST, R. and
FALTINGS, B. (2024). REFINER: reasoning feedback on intermediate representations. In EACL
(1). Association for Computational Linguistics.

11

https://doi.org/10.18653/v1/2023.emnlp-main.733
https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.18653/v1/2024.findings-acl.230

Under review as a conference paper at ICLR 2026

REIN, D., Hou, B. L., STICKLAND, A. C., PETTY, J., PANG, R. Y., DIRANI, J., MICHAEL, J.
and BOWMAN, S. R. (2023). GPQA: A graduate-level google-proof q&a benchmark. CoRR,
abs/2311.12022.

RIVIERE, M., PATHAK, S., SESSA, P. G., HARDIN, C., BHUPATIRAJU, S., HUSSENOT, L.,
MESNARD, T., SHAHRIARI, B., RAME, A., FERRET, J., L1u, P., TAFTI, P., FRIESEN, A.,
CASBON, M., RAMOS, S., KUMAR, R., LAN, C. L., JEROME, S., TSITSULIN, A., VIEILLARD,
N., STANCZYK, P., GIRGIN, S., MOMCHEV, N., HOFFMAN, M., THAKOOR, S., GRILL, J.,
NEYSHABUR, B., BACHEM, O., WALTON, A., SEVERYN, A., PARRISH, A., AHMAD, A.,
HUTCHISON, A., ABDAGIC, A., CARL, A., SHEN, A., BROCK, A., COENEN, A., LAFORGE, A.,
PATERSON, A., BASTIAN, B., P10T, B., WU, B., ROYAL, B., CHEN, C., KUMAR, C., PERRY, C.,
WELTY, C., CHOQUETTE-CHOO, C. A., SINOPALNIKOV, D., WEINBERGER, D., VIJAYKUMAR,
D., ROGOZINSKA, D., HERBISON, D., BANDY, E., WANG, E., NOLAND, E., MOREIRA, E.,
SENTER, E., ELTYSHEV, E., VISIN, F., RASSKIN, G., WEI, G., CAMERON, G., MARTINS, G.,
HASHEMI, H., KLIMCZAK-PLUCINSKA, H., BATRA, H., DHAND, H., NARDINI, 1., MEIN, J.,
ZHOU, J., SVENSSON, J., STANWAY, J., CHAN, J., ZHOU, J. P., CARRASQUEIRA, J., ILJAZI,].,
BECKER, J., FERNANDEZ, J., VAN AMERSFOORT, J., GORDON, J., LIPSCHULTZ, J., NEWLAN,
J.,J1,J., MOHAMED, K., BADOLA, K., BLACK, K., MILLICAN, K., MCDONELL, K., NGUYEN,
K., SODHIA, K., GREENE, K., SIOSUND, L. L., Usul, L., SIFRE, L., HEUERMANN, L., LAGO,
L. and MCNEALUS, L. (2024). Gemma 2: Improving open language models at a practical size.
CoRR, abs/2408.00118.

SHINN, N., CASSANO, F., GOPINATH, A., NARASIMHAN, K. and YAO, S. (2023). Reflexion:
language agents with verbal reinforcement learning. In NeurIPS.

SNELL, C., LEE, J., XU, K. and KUMAR, A. (2024). Scaling LLM test-time compute optimally can
be more effective than scaling model parameters. CoRR, abs/2408.03314.

STENGEL-ESKIN, E., PRASAD, A. and BANSAL, M. (2024). Regal: Refactoring programs to
discover generalizable abstractions. In JCML. OpenReview.net.

STIENNON, N., OUYANG, L., WU, J., ZIEGLER, D. M., LOWE, R., Voss, C., RADFORD, A.,
AMODEI, D. and CHRISTIANO, P. F. (2020). Learning to summarize from human feedback.
CoRR, abs/2009.01325.

THAKUR, A. S., CHOUDHARY, K., RAMAYAPALLY, V. S., VAIDYANATHAN, S. and HUPKES, D.
(2024). Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges. CoRR,
abs/2406.12624.

WANG, J., WANG, J., ATHIWARATKUN, B., ZHANG, C. and Z0U, J. (2024a). Mixture-of-agents
enhances large language model capabilities. CoRR, abs/2406.04692.

WANG, Q., WANG, Z., SU, Y., TONG, H. and SONG, Y. (2024b). Rethinking the bounds of LLM
reasoning: Are multi-agent discussions the key? In ACL (1). Association for Computational
Linguistics.

WANG, X., WEI, J., SCHUURMANS, D., LE, Q. V., CHI, E. H., NARANG, S., CHOWDHERY, A.
and ZHOU, D. (2023). Self-consistency improves chain of thought reasoning in language models.
In ICLR. OpenReview.net.

WELLECK, S., LU, X., WEST, P.,, BRAHMAN, F., SHEN, T., KHASHABI, D. and CHOI, Y. (2023).
Generating sequences by learning to self-correct. In /CLR. OpenReview.net.

YANG, A., YANG, B., ZHANG, B., Hul, B., ZHENG, B., YU, B., L1, C., Liu, D., HUANG, F.,
WEI, H., LIN, H., YANG, J., TU, J., ZHANG, J., YANG, J., YANG, J., ZHOU, J., LIN, J., DANG,
K., Lu, K., Bao, K., YANG, K., YU, L., L1, M., XUE, M., ZHANG, P., ZHU, Q., MEN, R., LIN,
R., LI, T, X1A, T., REN, X., REN, X., FAN, Y., SU, Y., ZHANG, Y., WAN, Y., LIU, Y., Cul, Z.,
ZHANG, Z. and QIU, Z. (2024). Qwen2.5 technical report. CoRR, abs/2412.15115.

ZHENG, L., CHIANG, W., SHENG, Y., ZHUANG, S., WU, Z., ZHUANG, Y., LIN, Z., L1, Z., L1, D,
XING, E. P., ZHANG, H., GONZALEZ, J. E. and STOICA, I. (2023). Judging llm-as-a-judge with
mt-bench and chatbot arena. In NeurIPS.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CASE STUDY

We present two examples on coding and mathematical reasoning tasks to provide insights into how our
method operates. As shown in Figure[6] we demonstrate how GSA effectively aggregates information
from diverse candidate solutions to generate improved responses. In the coding task, the diverse
candidates showcase different strategies, each with distinct limitations. Our method aggregates these
approaches into an improved solution that combines simplicity of the first solution and the counting
in the second. In the math task, while all candidates correctly determine that Jame’s cousin’s age in 8
years, two responses make errors in calculating the current age difference. The third response reaches
the correct answer but employs a less intuitive algebraic approach using variables. Our method’s
response preserves the more straightforward calculation path seen in the first two responses, and
correctly derive the final answer.

A.2 IMPLEMENTATION DETAILS AND PARAMETERS

We conduct all experiments using inference-only settings, utilizing A6000 40GB GPUs and vLLM
for efficient inference with open-source models, while accessing GPT-40-mini through the OpenAl
API service. For mathematical reasoning tasks, we set the maximum new token length to 2048,
extending it to 4096 for GPQA and MMLU. When evaluating open-ended tasks (MT-bench, Alpaca
eval, MBPP), we adhere to the default settings specified by each benchmark’s evaluation convention.
For all open-source models, we maintain a consistent top-p value of 0.95 during inference.

The temperature settings for candidate generation are tuned based on empirical performance of
self-consistency and our method across different models and tasks. For LLaMA-3, we employ
temperatures of 1.0 for GSM8K and GPQA, 0.7 for MATH, SVAMP, MMLU, and MT-bench, 0.5
for MTbench, and 0.8 for Alpaca eval. GPT-40-mini uses a consistent temperature of 0.7 across all
tasks except Alpaca eval, where we set it to 1.0. Gemma-2 maintains a uniform temperature of 0.7.
Qwen-2.5 uses task-specific settings: 0.7 for GSM8K and MT-bench, 1.0 for GPQA, and 0.5 for
MBPP. For the aggregation step, we employ greedy decoding (temperature = 0) for closed-ended
tasks while maintaining task-specific temperature settings for open-ended benchmarks.

A.3 LLM USAGE

In preparing this paper, large language models (LLMs) such as ChatGPT were used only for light
editing purposes, including minor grammar checking and sentence polishing. No part of the research
ideation, methodology design, experimental execution, or analysis was conducted with the assistance
of LLMs.

A.4 FuLL SETS OF PROMPTS
We list the full details of the prompts used for candidates generation, universal self-consistency and

our method on each task. We apply zero-shot setting for all baselines and hence do not require
constructing any few-shot examples.

A.5 GSMS8K AND SVAMP

Question: {question}
Please put the final answer at the end of your response in the format "
Answer: <number>". Let’s solve this step by step:

Listing 1: Candidates generation prompt for GSM8K and SVAMP

Question: {gquestion}
Here are some potential responses:
{responses_text}

13

Under review as a conference paper at ICLR 2026

Problem: Write a python function to find the sum of : Problem: Jame will turn 27 in 5 years. In 8 years his cousin will be 5
repeated elements in a given array, considering only 1 years younger than twice his age. How many years separate the age of
those elements that are < a specified number n. | the two now?

Improved response: Improved response:

Let's break down the problem step by step.Jame will turn 27 in 5 years, so his current age is 27 -
5=22.In 8 years, his cousin will be 5 years younger than twice his age. Let’s find his cousin’s age
in 8 years. Jame’s age in 8 years will be 22 + 8 = 30. Twice his age will be 2 * 30 = 60. So, his
cousin‘s age in 8 years will be 60 - 5 = 55. Since his cousin’s age in 8 years is 55, his current age is
55 - 8 =47. Now, let's find the difference in their current ages: Jame’s current age = 22. Cousin‘s
current age = 47. The difference in their ages is: 47 - 22 = 25. Answer: 25

def find_Sum(arr, n)
sum=0
for iin range(0, len(arr))
if arri] <= n and arr.count(arr[i]) > 1
sum += arr[i]
return sum

’ ’
| Diverse candidates: i i Diverse candidates: H
1 Il 1
: def find_Sum(arr, n): : : : Let's break this problem down step by step. Jame will turn 27 in 5 years, so his current ageis 27 | |
1 =0 ! : -5=22.In 8 years, his cousin will be 5 years younger than twice his age. Let’s find his cousin‘s :
H f‘)(" n "]:gc'w' epta)) ' I'1 | agein 8years. Jame’s age in 8 years will be 22 + 8 = 30. Twice his age will be 2 * 30 = 60. So, his !
1 ! j’r:\[‘l::r"r i 1 : : cousin‘s age in 8 years will be 60 - 5 = 55. Since his cousin’s age in 8 years is 55, his current age is | |
: CRTTNGHD 6 : 1 : 55 - 8 =47. Now, let’s find the difference in their current ages: Jame's current age = 22. Cousin’s :
1 11, | currentage = 47 - 8 = 39. The difference in their ages is: 39 - 22 = 17. Answer: 17 1
} def find_Sum(arr, K): H " !
: count_dict = {} : ! !
H for num in arr. i]] -] H
1 if num in count_dict: 11, | Let’s break down the problem step by step. Jame will turn 27 in 5 years, so his current age is:27 |
: count_dict[num] += 1 : 11| -5=22.In 8 years, his cousin’s age will be:2 * (Jame's age in 8 years) — 5. First, let’s find Jame'’s :
! else 1 1} | agein 8 years: 22 + 8 = 30. Now, we can plug this into the equation:2 * 30-5=60-5=55.50,in |
: count_dict[num] =1 : : ! | 8 years, Jame’s cousin will be 55. To find the difference in their current ages, we subtract Jame’s :
1 P SIS "y : current age from his cousin’s current age: 55 - 22 = 33. The final answer is: Answer: 33 1
| or key, value in count_dict.items() v 1
! fvalue > 1 and key <= k iy 6 !
! st 6 h !
] return sum 1 'R B N . . 1
: : ! Let’s break this problem down step by step. We know that Jame will turn 27 in 5 years, so his 1
| def find_Sum(arr, target): 1 : current age is 27 - 5 = 22 years old. We also know that in 8 years, his cousin will be 5 years :
: seen = set() : 11 | younger than twice Jame’s age. Let’s call Jame’s age in 8 years “J”. Then, his cousin‘s age in 8 1
' repeated_sum =0 i 11| vears will be 2J - 5. We can set up an equation based on this information:) = 22 + 8 (since Jame’s :
: for num in arr. : : 1 | ageincreases by 8 years). J = 30. Now we can find his cousin‘s age in 8 years: Cousin’s age = 2J - !
1 if num in seen. 1 : 5=2(30) - 5= 60 - 5= 55. So, his cousin will be 55 years old in 8 years. To find the difference in :
H _‘re FEEREELED =TT | 11| their ages now, we subtract Jame's current age from his cousin’s current age: Cousin’s current !
1 e ! : age = 55 - 8 = 47. Jame’s current age = 22. Difference in ages = 47 - 22 = 25. Answer: 25 1
' seen.add(num) ° i H
1 return repeated_sum [1
\ RN !

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6: Examples of successful GSA applications. Left: Combining different coding approaches
to create a simpler and correct implementation. Right: Preserving clear reasoning structure while
avoiding calculation errors.

Given these solutions, please consider their consistency, and please
provide a correct solution to the question with clear reasoning and step-—
by-step calculations.

Please put the final answer at the end of your response in the format "
Answer: <number>".

Listing 2: Aggregation prompt for GSM8K and SVAMP

Question: {question}
Here are some potential responses:
{responses_text}

Given these solutions, please consider their consistency and choose a
correct one. Give me clear explanation of your choice and put the index
of the correct answer at the end of the response. Please put the index in
the format "Index: <index>". The index should be in the range of 1 to {
num_responsest}.

Listing 3: Universal Self-Consistency prompt for GSM8K and SVAMP

For prompting variation in ablation study, we use the following prompt:

Prompt 1

Question: {guestion}

Please put the final answer at the end of your response in the format "
Answer: <number>". Let’s solve this step by step:

Prompt 2

Question: {gquestion}

Imagine you are explaining this problem to a student learning math for
the first time. Be clear and concise, and end your explanation with "
Answer: <number>".

14

Under review as a conference paper at ICLR 2026

Prompt 3

Question: {gquestion}

Solve the problem step by step, checking for potential errors along the
way. Provide the final answer at the end: "Answer: <number>".

Multilingual

[{language}] Question: {question}

Please put the final answer at the end of your response in the format "
Answer: <number>". Let’s solve this step by step using {language}:

Listing 4: Prompt variation for GSM8K

A.6 MATH

Question: {gquestion}
Please put the final answer at the end of your response in the form of \\
boxed{...}. Let’s solve this step by step:

Listing 5: Candidates generation prompt for MATH

Question: {guestion}
Here are some potential responses:
{responses_text}

Given these solutions, please consider their consistency, and please
provide a correct solution to the question with clear reasoning and step-—
by-step calculations.

Please put the final answer at the end of your response in the form of \\
boxed{...}.

Listing 6: Aggregation prompt for MATH

Question: {gquestion}
Here are some potential responses:
{responses_text}

Given these solutions, please consider their consistency and choose a
correct one. Give me clear explanation of your choice and put the index
of the correct answer at the end of the response. Please put the index in
the format "Index: <index>". The index should be in the range of 1 to {
num_responses}.

Listing 7: Universal Self-Consistency prompt for MATH

A.7 GPQA

Question: {guestion}
Choices: {choices}

Please select an answer for the question from the above choices. Put the
final answer as a **single letterxx at the end of the response in the
format "The correct answer is (insert answer here)". Let’s think step by
step:

Listing 8: Candidates generation prompt for GPQA

{question and choices}

Here are some potential responses:
{responses_text}

15

Under review as a conference paper at ICLR 2026

Given these solutions, please analyze their consistency and correctness,
and then provide a correct solution with clear reasoning.

Put the final answer as a single letter at the end of your response in
the format "The correct answer is (insert answer here)".

Listing 9: Aggregation prompt for MMLU

{question and choices}

Here are some potential responses:
{responses_text}

Given these solutions, please consider their consistency and choose a

correct one. Give me clear explanation of your choice and put the index
(1-{num_responses}) of the correct answer at the end of the response.

Put the index of the correct answer as a single number in the format "The
correct index 1s (insert index here)".

Listing 10: Universal Self-Consistency prompt for GPQA

A.8 MMLU

Question: {gquestion}
Choices: {choices}

Please select an answer for the question from the above choices. Put the
final answer as a **single letterxx at the end of the response in the
format "The correct answer i1s (insert answer here)". Let’s think step by
step:

Listing 11: Candidates generation prompt for MMLU

{question and choices}

Here are some potential responses:
{responses_text}

Please review the given solutions, and then provide a correct answer with
clear reasoning.

Put the final answer as a single letter at the end of your response in

the format "The correct answer is (insert answer here)".

Listing 12: Aggregation prompt for MMLU

{question and choices}

Here are some potential responses:
{responses_text}

Please review the given solutions, and then give me the index (1—{

num_responses}) of the correct answer at the end of the response.

Put the index of the correct answer as a single number in the format "The
correct index 1s (insert index here)".

Listing 13: Universal Self-Consistency prompt for MMLU

A.9 MT-BENCH

{query}
Below are some responses to this instruction:
{responses_text}

16

Under review as a conference paper at ICLR 2026

Please review the above responses and generate a better response to the
instruction: <{query}>.

Listing 14: Aggregation prompt for MT-bench

{query}
Below are some responses to this instruction:
{responses_text}

Please review the above responses and choose a best response by providing
the index (l-{n_responses}) of the best response. Please put the index
at the end of your response in the format "Index: <number>"."""

Listing 15: Universal Self-Consistency prompt for MT-bench

A.10 ALPACA EvAL

###Instruction:

1) xxReviewx* the following problem and the reference solutions provided.
2) *xProvidex* your own answer to the problem.

3) xxProvidex** a brief explanation of your reasoning.

###Reference Solutions:
{references_text}
###Input:

Here is the problem:
{question}

Listing 16: Aggregation prompt for Alpaca Eval

Instruction:

1) xxReviewxx the following problem and the reference solutions provided.
2) #**Provide onlyxx the index number of the best solution of the correct
solution in the format "Index: <number>".

3) xxProvidexx a brief explanation of your reasoning.

##4# Reference Solutions:
{solutions_text}

Input:

Here is the problem:
{question}

Listing 17: Universal Self-Consistency prompt for Alpaca Eval

A.11 MBPP

Here is the problem:

{prompt }

Reference Solutions:

{references_text}

Instructions:

1. Review the above solutions.

2. xxGeneratexx a Python function that solves the Problem.

3. xxProvidexx a brief explanation of your reasoning.

4. xxEnsurexx your code is enclosed within a ‘‘‘python‘‘'‘' code block.

Listing 18: Aggregation prompt for MBPP

Instruction:

1) xxReviewxx the following problem and the reference solutions provided.
2) #**xProvide onlyxx the index number of the best solution of the correct
solution in the format "Index: <number>".

17

Under review as a conference paper at ICLR 2026

3) xxProvidexx a brief explanation of your reasoning.

Reference Solutions:
{solutions_text}

Input:

Here is the problem:
{prompt }

Listing 19: Universal Self-Consistency prompt for MT-bench

18

	Introduction
	Related work
	Self-consistency
	Self-correction
	Choose-from-N Methods
	Multi-model Collaboration

	Methodology
	Diverse Response Generation
	Context-Enriched Response Synthesis

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Discussions

	Conclusion
	Appendix
	Case Study
	Implementation Details and Parameters
	LLM Usage
	Full Sets Of Prompts
	GSM8K and SVAMP
	MATH
	GPQA
	MMLU
	MT-bench
	Alpaca Eval
	MBPP

