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Abstract

Large Language Models (LLMs) face significant
deployment challenges due to their substantial
resource requirements. While low-bit quantized
weights can reduce memory usage and improve
inference efficiency, current hardware lacks native
support for mixed-precision General Matrix Mul-
tiplication (mpGEMM), resulting in inefficient
dequantization-based implementations. More-
over, uniform quantization methods often fail to
capture weight distributions adequately, leading
to performance degradation. We propose GANQ
(GPU-Adaptive Non-Uniform Quantization), a
layer-wise post-training non-uniform quantiza-
tion framework optimized for hardware-efficient
lookup table-based mpGEMM. GANQ achieves
superior quantization performance by utilizing
a training-free, GPU-adaptive optimization al-
gorithm to efficiently reduce layer-wise quan-
tization errors. Extensive experiments demon-
strate GANQ’s ability to reduce the perplexity
gap from the FP16 baseline compared to state-of-
the-art methods for both 3-bit and 4-bit quanti-
zation. Furthermore, when deployed on a single
NVIDIA RTX 4090 GPU, GANQ’s quantized
models achieve up to 2.57× speedup over the
baseline, advancing memory and inference effi-
ciency in LLM deployment.

1. Introduction
Large language models (LLMs) have demonstrated impres-
sive performance across various domains (Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023a;b; Dubey
et al., 2024; Gemini Team et al., 2023; Chowdhery et al.,
2023; Zhang et al., 2023; Wang et al., 2023; Arefeen et al.,
2024; Li et al., 2024a; Huang et al., 2024). However, their
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deployment for inference remains challenging due to de-
manding resource requirements. For example, the LLaMA-
3-70B (Dubey et al., 2024) model needs at least 140 GB of
GPU memory in FP16, which exceeds current GPU capaci-
ties. While larger LLMs often yield better accuracy (Kaplan
et al., 2020), these substantial resource demands hinder the
practical deployment of LLMs, posing a barrier to their
widespread adoption.

Quantization is a promising solution to reduce inference
costs for LLMs. For example, 4-bit weight quantization
can reduce memory usage for model loading by nearly 75%
compared to FP16. In general, quantization techniques
are categorized into quantization-aware training (QAT) and
post-training quantization (PTQ). QAT integrates quanti-
zation into the training process to achieve higher accuracy
but is computationally expensive, often requiring extensive
samples and significant GPU hours (Liu et al., 2024). This
makes QAT impractical for large models. In contrast, PTQ
is a cost-effective alternative that applies quantization after
training, making it the preferred choice for LLMs (Nagel
et al., 2020; Yao et al., 2022; Frantar et al., 2022; Xiao et al.,
2023; Dettmers et al., 2023; Kim et al., 2024; Lin et al.,
2024; Shao et al., 2024; Ma et al., 2024; Li et al., 2024b).
Among PTQ methods, weight-only quantization, which uses
low-precision weights while retaining high-precision activa-
tions, has become a particularly attractive approach. By re-
ducing memory traffic and alleviating memory-bound bottle-
necks, weight-only quantization accelerates inference (Kim
et al., 2024; Lin et al., 2024). Additionally, compared to
weight-activation quantization, it avoids significant accu-
racy degradation by preserving the precision of activations,
ensuring better model performance.

Despite its promise, weight-only quantization faces two
key challenges. First, it shifts the core computation of
LLM inference from standard General Matrix Multiplication
(GEMM) to mixed-precision GEMM (mpGEMM), where
low-precision weights (e.g., INT4/3/2) are multiplied with
high-precision activations (e.g., FP16). Current hardware
lacks native support for mpGEMM, necessitating dequanti-
zation to upscale low-bit weights into supported formats
(see the left part of Figure 1(a)). This additional step
introduces inefficiencies, particularly in large-batch sce-
narios, undermining the expected performance gains (Mo
et al., 2024). Second, most existing methods rely on uni-
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(b) Violin plots of LLaMA-2-7B’s first decoder layer weights.

Figure 1. (a) A comparison of two mpGEMM implementations: a dequantization-based approach (left) versus a LUT-based method
(right). (b) Violin plots showing the first decoder layer’s weight distribution in the LLaMA-2-7B model, clearly illustrating their deviation
from a uniform distribution.

form quantization Q : R → [0, 2N − 1] ∩ Z defined as
Q(x) = clamp(⌊x

s ⌉) + z, 0, 2N − 1), where ⌊·⌉ denotes
rounding N is the target bit width, s is the scaling factor,
and z is the zero-point (Frantar et al., 2022; Xiao et al.,
2023; Dettmers et al., 2023; Lin et al., 2024; Shao et al.,
2024; Ma et al., 2024; Li et al., 2024b). However, LLM
weight distributions are often highly non-uniform (see Fig-
ure 1(b)), making uniform quantization inadequate and re-
sulting in suboptimal representations, particularly due to
outliers. Techniques such as introducing learnable scale and
zero-point parameters (Shao et al., 2024), applying affine
transformations to preprocess weights (Ma et al., 2024),
or splitting weights into various components and quantiz-
ing those that are easier to process (Dettmers et al., 2023;
Li et al., 2024b), have been proposed to mitigate these is-
sues. While these methods improve accuracy, they primarily
address challenges within the uniform quantization frame-
work rather than fundamentally enhancing the quantization
method itself. Furthermore, they often increase computa-
tional complexity during inference due to the extra opera-
tions they require.

To address these issues, we propose GANQ (GPU-Adaptive
Non-Uniform Quantization), a layer-wise post-training non-
uniform quantization framework optimized for lookup table
(LUT)-based mpGEMM. In LUT-based mpGEMM (see
the right part of Figure 1(a)), complex computations are
replaced with simple table lookups, supported by several
GPU kernels (Kim et al., 2024; Mo et al., 2024; Guo
et al., 2024). The primary challenge then becomes how
to determine effective low-bit representations for the LUTs.
Existing non-uniform quantization methods often rely on
heuristic-based approaches, such as manually designed map-
pings (e.g., power-exponent functions (Yvinec et al., 2023))
or clustering-based methods with heuristic distance met-
rics (Han et al., 2015; Xu et al., 2018; Kim et al., 2024).
While these methods may achieve good results in specific
cases, their heuristic nature limits generalization and theoret-
ical grounding. In contrast, GANQ introduces a principled
optimization model for layer-wise LUT-based non-uniform
quantization, formulated as a mixed-integer quadratic pro-

gramming problem. This model minimizes the discrepancy
between the outputs of the quantized and original layers,
thereby preserving accuracy. To efficiently address this com-
plex model, GANQ utilizes its decomposable structure to
divide the original optimization task into multiple indepen-
dent one-dimensional subproblems, which can be processed
in parallel using GPU acceleration to achieve substantial
computational efficiency. Besides, GANQ employs an al-
ternating direction optimization framework that capitalizes
on the splittable structure of decision variables, effectively
reducing quantization error.

In addition, although GANQ is designed as a base quan-
tization method, it is fully compatible with current tech-
niques for handling outliers, such as splitting weights into
sparse components (to address outliers) and quantized com-
ponents (Dettmers et al., 2023; Kim et al., 2024), thereby
enabling further performance enhancements.

We evaluate GANQ extensively across various model fam-
ilies and sizes on language modeling tasks. The results
show that GANQ consistently outperforms previous meth-
ods in quantization performance. Moreover, GANQ is
highly resource-efficient and easy to implement. For in-
stance, GANQ processes the LLaMA-2-7B model on a sin-
gle NVIDIA RTX 4090 GPU in approximately one hour,
using only 128 samples, each containing 2,048 tokens. Fur-
thermore, our deployed models on the NVIDIA RTX 4090
GPU achieve up to 2.57× speedups over the FP16 base-
line by leveraging LUT-based inference kernels (Kim et al.,
2024). These results highlight the effectiveness of GANQ
in both quantization quality and inference efficiency.

2. Related Work
Quantization for LLMs. Quantization reduces the bit-
precision of neural networks, resulting in smaller models
and faster inference. It has become a key direction for
compressing LLMs given their growing size and inference
costs. Current quantization methods for LLMs are broadly
categorized into QAT (Liu et al., 2024) and PTQ (Nagel
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et al., 2020; Yao et al., 2022; Frantar et al., 2022; Xiao et al.,
2023; Dettmers et al., 2023; Kim et al., 2024; Lin et al.,
2024; Shao et al., 2024; Ma et al., 2024; Li et al., 2024b).
QAT integrates quantization into the training process, pre-
serving high performance but incurring prohibitive training
costs, making it impractical for LLMs. In contrast, PTQ
applies quantization to pretrained models, requiring only a
small subset of data and modest computational resources,
making it particularly appealing for LLMs. PTQ methods
can be further classified into wight-only quantization and
weight-activation quantization.

Weight-only quantization focuses on compressing model
weights into low-bit formats. For example, GPTQ (Fran-
tar et al., 2022) utilizes the optimal brain surgeon frame-
work (Hassibi & Stork, 1992) for quantization and recon-
struction. OmniQuant (Shao et al., 2024) introduces learn-
able parameters to determine quantization factors (e.g., scale
and zero-point), while AffineQuant (Ma et al., 2024) extends
this idea by incorporating a learnable matrix to preprocess
weights before quantization. Weight-activation quantization
compresses both weights and activations, often addressing
their quantization jointly. For example, SmoothQuant (Xiao
et al., 2023) shifts quantization difficulty from activations to
weights using manually designed scaling factors. Similarly,
SVDQuant (Li et al., 2024b) applies this approach while
further decomposing weights into low-rank and quantized
components.

While weight-activation quantization can offer broader com-
pression, studies (Kim et al., 2024; Lin et al., 2024) have
shown that LLM inference, especially during generation,
is heavily memory-bound, with weight access dominating
activation access by orders of magnitude. Consequently,
weight-only quantization is more effective for on-device de-
ployment of LLMs. In this work, we focus on weight-only
PTQ for its efficiency and suitability for LLMs.

Outlier Mitigation. Due to the widely used uniform quan-
tization mapping and the inherent non-uniform distribu-
tion of LLM weights, a key challenge is the presence of
outliers. These outliers unnecessarily expand the quan-
tization range (see Figure 1(b)), comprising quantization
performance. Recent methods have been proposed to ad-
dress this issue. For example, SpQR (Dettmers et al.,
2023) and SqueezeLLM (Kim et al., 2024) retain outliers
in sparse matrices while applying quantization to the re-
maining weights to mitigate their impact on overall perfor-
mance. AWQ (Lin et al., 2024) independently quantizes the
channel-wise salient weights to improve performance, and
SVDQuant (Li et al., 2024b), as mentioned, decomposes
weights into low-rank and quantized components. While
these methods effectively handle outliers and enhance quan-
tization performance, they often introduce additional com-
putational overhead during inference. For instance, SpQR

and SqueezeLLM require both mpGEMM and sparse matrix
multiplication, whereas SVDQuant adds an extra low-rank
computation branch.

In this work, we propose a direct solution by introducing
a non-uniform quantization framework that adapts to the
distribution of LLM weights. Furthermore, our method is
compatible with these outlier-handling techniques, enabling
further performance enhancements when combined.

LUT-based Inference Kernel. Low-bit quantized LLMs
depend on mpGEMM for efficient inference. This oper-
ation, which involves multiplying low-precision weights
with higher-precision activations, presents a critical com-
putational challenge. Current hardware lacks native sup-
port for mpGEMM, compelling existing implementations
to adopt dequantization-based workarounds (Frantar et al.,
2022; Lin et al., 2024; Shao et al., 2024; Ma et al., 2024; Li
et al., 2024b). LUT-based methods offer a compelling al-
ternative by eliminating dequantization overhead. Through
efficient substitution of arithmetic operations with table
lookups (Kim et al., 2024; Mo et al., 2024; Guo et al.,
2024), these approaches demonstrate particular suitability
for mpGEMM acceleration.

Unlike previous work focused on kernel-level optimizations,
our research instead targets fundamental improvements in
LUT-based quantization accuracy and compatibility with
existing kernels.

Non-Uniform Quantization. The non-uniform distribu-
tion of weights in LLMs highlights the importance of non-
uniform quantization. However, existing non-uniform quan-
tization methods often rely on heuristic-based approaches,
limiting their generalization and theoretical grounding. NU-
PES (Yvinec et al., 2023) replaces uniform quantization
with power-exponent functions and employs gradient-based
optimization to learn the exponent parameter. Other meth-
ods focus on identifying shared weights, thereby forming
a codebook, which is suitable for LUT-based mpGEMM.
For example, Han et al. (2015) apply k-means cluster-
ing to minimize the Euclidean distance between weights
and centroids in convolutional neural networks (CNNs),
while Xu et al. (2018) extend this approach by using a
loss-based metric for k-means clustering in CNNs. For
LLMs, SqueezeLLM (Kim et al., 2024) adapts this idea by
leveraging sensitivity-based k-means clustering, where the
sensitivity metric measures the extent to which the model is
perturbed after quantization. To mitigate the computational
expense of this calculation, SqueezeLLM approximates the
required Hessian matrix using the diagonal elements of the
Fisher information matrix (Fisher, 1925).

In contrast, we propose a principled optimization model for
layer-wise LUT-based non-uniform quantization for LLMs,
along with an efficient GPU-adaptive algorithms to solve it.
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3. Methodology
3.1. Optimization Model for Non-uniform Quantization

Consider a linear layer with weight matrix W ∈ Rm×n and
input activation X ∈ Rn×p, where n represents the input
hidden dimension, m the output dimension, and p = b× s
accounts for batched processing of b sequences each of
length s. As shown in the right part of Figure 1(a), LUT-
based quantization aims to compress W by representing its
elements using a codebook. Specifically, the elements of the
i-th channel in the quantized weight matrix W̃ are selected
from the codebook Ti = {ti,0, ti,1, . . . , ti,2N−1}, where N
is the bit-width of the quantization (e.g., 3 or 4 bits). Thus,
each element W̃i,j satisfies W̃i,j ∈ Ti.

In practice, LUT-based quantization stores two components:
a low-bit query matrix Q ∈ {0, 1, . . . 2N − 1}m×n, which
specifies the indices of values in the codebook, and the
codebook itself, T ∈ Rm×2N , which contains the quan-
tized values for each channel. For example, if Qij = 0,
then W̃i,j = ti,0. Compared to the widely used basic per-
channel uniform quantization (Frantar et al., 2022; Xiao
et al., 2023), which requires two parameters per channel
(i.e., scale and zero-point), this mechanism demands slightly
more storage. However, as min{m,n} ≫ 2N in practice,
the additional storage overhead is negligible. As shown in
Table 1, for typical model sizes, the storage usage of LUT-
based quantization remains comparable to the basic uniform
quantization, differing by less than 0.2%. Moreover, some
uniform quantization methods, such as OmniQuant (Shao
et al., 2024) and AffineQuant (Ma et al., 2024), also require
extra parameters.

To enable effective LUT-based non-uniform quantization,
we formulate an optimization model aimed at minimizing
the layer-wise output error.:

min
Q,T

∥WX− W̃X∥2F , s.t. W̃i,j = Ti,Qi,j
, ∀i, j, (1)

where ∥ · ∥F denotes the Frobenius norm, and Q and T are
the decision variables.

Note that the quantized output for each row (W̃X)i,: de-
pends only on its corresponding codebook Ti,: and query
vector Qi,:. Consequently, the model in (1) is inherently de-
composable across the rows of W. Leveraging this property,
the problem can be reformulated into m independent sub-
problems, which are highly parallelizable and particularly
suitable for GPU acceleration. Specifically, this paralleliza-
tion is achieved by expressing computations in matrix form,
which enables efficient matrix-vector and element-wise op-
erations across rows. Furthermore, each subproblem can
be expressed as a mixed-integer quadratic programming
problem:

min
Si,Ti

∥WiX−TiSiX∥2 s.t. 1⊤Si = 1⊤, ∀i, (2)

where Wi ∈ R1×n is the i-th row of W, Ti ∈ R1×2N is
the i-th row of T, Si ∈ {0, 1}2N×n is a column-wise one-
hot encoding matrix indicating the mapping of elements
from Ti, and 1 denotes an all-one vector.

The mixed-integer structure of Si introduces significant
combinatorial complexity, and the bilinear interaction be-
tween Si and Ti in the objective further compounds the
computational challenge, rendering the problem inherently
non-convex and non-smooth. These factors pose serious
difficulties for off-the-shelf solvers (Gurobi Optimization,
2025; IBM, 2025), especially in large-scale settings with
high-dimensional weight matrices and input activations. In
response, we develop a specialized, GPU-adaptive approach
tailored to navigate this complex search space while scaling
to practical problem sizes.

3.2. GPU-Adaptive Non-Uniform Quantization Method

To efficiently solve the model in (2) for LUT-based non-
uniform quantization, we employ an alternating direction
optimization framework. This framework iteratively up-
dates Si and Ti by decomposing the objective into two
subproblems. Each subproblem optimizes one decision vari-
able while keeping the other fixed. The iterative scheme is
outlined as follows:

Sk+1
i =argmin

Si

{
∥WiX−Tk

i SiX∥2 | 1⊤Si=1⊤}, (3)

Tk+1
i =argmin

Ti

{
∥WiX−TiS

k+1
i X∥2

}
. (4)

The Ti-subproblem in (4) is an unconstrained quadratic
program that admits a closed-form solution. Specifically,
consider the objective function of Ti-subproblem:

f(Ti) = ∥WiX−TiS
k+1
i X∥2. (5)

To minimize this function, we apply the first-order optimal-
ity condition. Taking the gradient of f(Ti) with respect to
Ti and setting it to zero yields:

∇f(Ti) = 2(WiX−TiS
k+1
i X)X⊤(Sk+1

i )⊤ = 0. (6)

Solving this matrix equation gives the closed-form update
for Ti:

Tk+1
i =WiXX⊤(Sk+1

i )⊤((Si)
k+1XX⊤(Sk+1

i )⊤)†, (7)

where (·)† denotes the Moore-Penrose inverse. Notably, the
matrix (Si)

k+1XX⊤(Sk+1
i )⊤ has dimensions 2N × 2N ,

which is relatively small in practice (e.g., 16 × 16 under
4-bit quantization), ensuring that the computation remains
efficient. Moreover, computing (7) involves only matrix-
vector multiplications, making it highly efficient for GPU
acceleration. Since the solutions to all Ti-subproblems
share the same formulation, they can be combined into a
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Table 1. Storage requirements for full-precision (FP16), basic per-channel uniform quantization (4-bit), and per-channel LUT-based non-
uniform quantization (4-bit) for weight matrix W ∈ Rm×n. Percentages indicate storage usage relative to full-precision representation.

CONFIGURATION FULL (FP16) BASIC UNIFORM (4-BIT) LUT-BASED (4-BIT)

Theory 2mn 0.5mn+ 4m 0.5mn+ 32m
m = n = 2048 (e.g., Wq in OPT-1.3B) 100.00% 25.10% 25.78%
m = n = 4096 (e.g., Wq in LLaMA-2-7B) 100.00% 25.05% 25.39%
m = n = 8192 (e.g., Wq in LLaMA-2-70B) 100.00% 25.02% 25.20%

single batch computation by stacking all Wi and Ti vectors
row-wise and organizing Si matrices into a tensor. Then,
matrix operations can be used to efficiently compute the
batch. This approach leverages modern GPUs’ parallel pro-
cessing capabilities, significantly reducing computational
overhead and improving overall efficiency.

The primary challenge lies in the Si-subproblem (3), which
is a discrete, non-convex, and non-smooth combinatorial
optimization problem. In the case of 4-bit quantization, each
element of Si can assume one of 16 possible values. A brute-
force search over all combinations would require O(16n)
operations, rendering it computationally prohibitive. There-
fore, developing efficient solution techniques is essential for
practical applications.

To address the Si-subproblem, we propose an efficient
method that leverages the problem’s inherent structure. The
objective in (3) can be expanded as:

∥WiX−Tk
i SiX∥2 (8)

=(Wi −Tk
i Si)(XX⊤)(Wi −Tk

i Si)
⊤. (9)

Then, consider the Cholesky decomposition of XX⊤:

XX⊤ = LL⊤, (10)

where L is a lower triangle matrix, meaning all its entries
above the diagonal are zero.
Remark 3.1. If XX⊤ is not positive definite, which is rare
but can occur in cases like the fc2 layer of OPT models,
we can add λI (λ > 0) to guarantee positive definiteness
before Cholesky decomposition. Specifically, for any non-
zero vector v, adjusted matrix satisfies v⊤(XX⊤+λI)v =
∥X⊤v∥2 + λ∥v∥2 > 0. This preconditioning is a standard
technique in numerical linear algebra.

Remark 3.1 describes a basic strategy to ensure positive
definiteness by augmenting the matrix XX⊤ with a scaled
identity matrix. However, selecting an appropriate λ man-
ually can be cumbersome and suboptimal. In practice, we
adopt an adaptive preconditioning approach that enforces di-
agonal dominance, inherently ensuring positive definiteness
without requiring manual hyperparameter tuning. Details
are provided in Appendix A.

By combining (9) and (10), we have:

(Wi −Tk
i Si)(XX⊤)(Wi −Tk

i Si)
⊤ (11)

=(Wi −Tk
i Si)(LL

⊤)(Wi −Tk
i Si)

⊤ (12)

=∥WiL−Tk
i SiL∥2. (13)

Leverage the structure of L, we minimize (13) using a back-
substitution approach to efficiently derive a sub-optimal
solution to (3). Specifically, there is

∥WiL−Tk
i SiL∥2 (14)

=

n−1∑
j=0

(
(WiL)j −

(
Tk

i SiL
)
j

)2

(15)

=

n−1∑
j=0

n−1∑
u=j

(
Wi,u −Tk

i (Si):,u

)
Lu,j

2

. (16)

Following (16), we can solve for Si from the last column
(j = n− 1) to the first column (j = 0), minimizing each of
the n squared terms respectively. The (n− 1)-th column of
L has only one nonzero entry in rows u ≥ n − 1, namely
Ln−1,n−1. Therefore, for j = n− 1, the residual involves
a single term:(

Wi,n−1 −Tk
i (Si):,n−1

)
Ln−1,n−1. (17)

Minimizing with respect to (Si):,n−1 gives that it should
select an element from Tk

i that satisfies

idx = argmin
s

∣∣Wi,n−1 −Tk
i,s

∣∣ . (18)

Then, we set (Si)idx,n−1 = 1 and all other elements in this
column to 0.

Once (Si):,n−1 is determined, the process moves to the
(n− 2)-th column. The residual becomes(

Wi,n−2 −Tk
i (Si):,n−2

)
Ln−2,n−2 (19)

+
(
Wi,n−1 −Tk

i (Si):,n−1

)
Ln−1,n−2, (20)

where (20) is a constant value given (Si):,n−1. In the follow-
ing steps, we refer to Wi,n−1−Tk

i (Si):,n−1 as rn−1. Then,
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Figure 2. An illustration of the back-substitution framework for determining Si, leveraging the lower triangular structure of L.

we solve for (Si):,n−2 by minimizing the square of (19) –
(20):

idx = argmin
s

∣∣∣∣Wi,n−2 +
rn−1Ln−1,n−2

Ln−2,n−2
−Tk

i,s

∣∣∣∣ , (21)

and we set (Si)idx,n−2 = 1 and the rest of (Si):,n−2 = 0.

This back-substitution process continues for j = n −
3, . . . , 0. At each step the element of (Si)idx,j set to 1 is
determined as

idx = argmin
s

∣∣∣∣∣∣Wi,j +
1

Lj,j

n−1∑
u=j+1

ruLu,j −Tk
i,s

∣∣∣∣∣∣ . (22)

where ru = Wi,u −Tk
i (Si):,u.

Figure 2 illustrates the back-substitution framework for ef-
ficiently determining Si. Since the solution processes for
Si, i = 0, 1, . . . ,m − 1 are independent, similar to the
batch solving of Ti-subproblems described earlier, we can
stack all Wi and Ti vectors row-wise and organize the Si

matrices into a tensor. This allows the back-substitution
process to be performed for the entire problem using matrix
operations, leveraging modern GPUs’ parallel processing
capabilities to enhance overall efficiency.

Finally, the full pseudocode of GANQ for layer-wise LUT-
based non-uniform quantization is presented in Algorithm 1.

3.3. Compatibility with Outlier-Handling Techniques

GANQ provides a foundational framework for LUT-based
non-uniform quantization and is inherently compatible with
existing techniques for handling outliers in weight ma-
trices. Among these techniques, a widely adopted ap-
proach involves splitting the weight matrix into a sparse
matrix for outliers and a quantized matrix for the remain-
ing weights. For example, SpQR (Dettmers et al., 2023)
and SqueezeLLM (Kim et al., 2024) extract outliers into
a separate sparse matrix to mitigate their impact on the
quantization process.

Algorithm 1 GANQ: GPU-Adaptive Layer-Wise LUT-
Based Non-Uniform Quantization

Input: W∈Rm×n, X∈Rn×p, initial codebook T0∈Rm×2N ,
number of iterations K
Output: Updated TK and query matrix QK∈{0, 2N−1}m×n

Initialize S0 = 0m×2N×n # tensor format
Compute H = XX⊤

Compute L = Cholesky(H) # Cholesky decomposition
for k ← 0 to K − 1 do

Initialize r = 0m×1 # previous residual vector
for j ← n− 1 to 0 do

idx = argmins

∣∣∣W:,j +
r

Lj,j
−Tk

:,s

∣∣∣ # row-wise

Qk+1
:,j = idx

Update Sk+1
:,:,j using idx # one-hot encoding

r = (W:,j: −TkSk+1
:,:,j:)Lj:,j−1 # update residual

end for
Tk+1=WH(Sk+1)⊤((Sk+1)H⊤(Sk+1)⊤)† # batch update

end for
Return TK ,QK

In our framework, the weight matrix W can similarly be
decomposed into a sparse component Wsparse, containing ex-
tracted outliers, and a dense component Wdense, processed
through GANQ. Appendix B details our outlier extraction
method, which identifies outliers using a small ratio thresh-
old r (e.g., r = 0.5% of total parameters) while preserving
the remaining weights for quantization. This decomposition
reduces quantization range, thereby enhancing the quantiza-
tion performance.

4. Experiments
4.1. Settings

Quantization. We evaluate GANQ on weight-only non-
uniform quantization. The default configuration employs
INT4/3 per-channel weight quantization.

Models. We comprehensively evaluate GANQ on a range of
models, including OPT (Zhang et al., 2022), LLaMA (Tou-
vron et al., 2023a), LLaMA-2 (Touvron et al., 2023b),
LLaMA-3 (Meta AI, 2024a), and LLaMA-3.2 (Meta AI,
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2024b) model families. Specifically, we assess its per-
formance across OPT-125M, OPT-350M, OPT-1.3B, OPT-
2.7B, OPT-6.7B, LLaMA-7B, LLaMA-2-7B, LLaMA-3-8B,
LLaMA-3.2-1B, LLaMA-3.2-3B, LLaMA-3.2-1B-Instruct,
and LLaMA-3.2-3B-Instruct models.

Evaluation. Following prior work (Frantar et al., 2022;
Shao et al., 2024; Ma et al., 2024; Kim et al., 2024), we
evaluate the quantized models by reporting perplexity on
language datasets, specifically using the WikiText-2 (Merity
et al., 2017), C4 (Raffel et al., 2020), and PTB (Marcus
et al., 1994) datasets. Consistent with established prac-
tice, we use a sequence length of 2,048 across all models.
Additionally, we assess accuracy on zero-shot tasks, in-
cluding ARC Easy, ARC Challenge (Clark et al., 2018),
WinoGrande (Sakaguchi et al., 2021), BoolQ (Clark et al.,
2019), RTE (Wang et al., 2018), HellaSwag (Zellers et al.,
2019), and GSM8K (Cobbe et al., 2021), facilitated by the
LM Harness library (Gao et al., 2021). Long-context ca-
pabilities are evaluated using LongBench (Bai et al., 2024)
under its standard protocol.

Baselines. For basic weight-only quantization, we com-
pare GANQ with standard round-to-nearest uniform quan-
tization (RTN), GPTQ (Frantar et al., 2022), and Omni-
Quant (Shao et al., 2024). For weight-only quantization
with outlier handling, we compare with GPTQ, OmniQuant,
and AWQ (Lin et al., 2024), each using a group size of 128,
as well as SqueezeLLM (Kim et al., 2024).

Setup. We implement GANQ using the PyTorch (Paszke
et al., 2019) and utilize the HuggingFace Transformers li-
brary (Wolf, 2019) for model and dataset management. Our
implementation is publicly available1. All experiments are
conducted on a single NVIDIA RTX 4090 GPU. For calibra-
tion data, we follow the methodology outlined in previous
works (Frantar et al., 2022; Shao et al., 2024; Kim et al.,
2024). Specifically, we use 32 sequences for OPT models
and 128 sequences for LLaMA models. Each sequence con-
sists of 2,048 tokens, sampled from the first shard of the C4
dataset.

Latency Profiling. Using Torch CUDA profiler, we mea-
sure single-sequence (batch size 1) generation of 1024 to-
kens on a single NVIDIA RTX 4090 GPU, reporting CUDA
time and peak memory usage with LUT-based inference
kernels in (Kim et al., 2024).

4.2. Main Results

Weight-only Quantization. The results in Table 2 present
the WikiText-2 perplexity of quantized OPT, LLaMA,
LLaMA-2, and LLaMA-3 models under 4-bit and 3-bit
configurations across different model sizes (with additional

1The code is available at https://github.com/Evans
-Z/GANQ

perplexity results on the C4 and PTB datasets as well as
results of quantized LLaMA-3.2 models in Appendix C). As
shown, GANQ consistently outperforms baseline methods
such as RTN, GPTQ, and OmniQuant across all configura-
tions. For 4-bit quantization, GANQ achieves the lowest
perplexity across both OPT and LLaMA models, with no-
table improvements. Remarkably, on OPT-2.7B, GANQ’s
perplexity (12.33) even outperforms the full-precision FP16
model (12.47). GANQ also demonstrates strong perfor-
mance with 3-bit quantization, maintaining competitive per-
plexity reductions across model sizes. For example, on OPT-
6.7B, GANQ’s perplexity is 11.39, compared to 15.11 for
GPTQ and 13.47 for OmniQuant. These results underscore
GANQ’s effectiveness in both 4-bit and 3-bit quantization,
achieving substantial perplexity reductions across various
model scales. The “–” in Table 2 indicates that OmniQuant
cannot quantize LLaMA-3-8B on a single NVIDIA RTX
4090 GPU due to memory constraints or the unavailability
of the pre-quantized model.

The results in Table 3 show the zero-shot performance of the
quantized LLaMA-2-7B model across six tasks under 4-bit
and 3-bit quantization. GANQ outperforms baseline meth-
ods such as RTN, GPTQ, and OmniQuant in both bit-width
configurations. With 4-bit quantization, GANQ achieves an
average accuracy of 64.23%, which is comparable to the full-
precision model (64.47%). For 3-bit quantization, GANQ
maintains strong performance with an average accuracy of
62.22%, significantly surpassing other baseline methods.
These results demonstrate GANQ’s ability to preserve high
task performance, even under aggressive quantization.

Table 4 presents a performance comparison of 4-bit quan-
tized LLaMA-3.2 1B-Instruct and 3B-Instruct models on
two tasks: LongBench, which evaluates long-context capa-
bilities, and GSM8K, which assesses reasoning-intensive
tasks. Both tasks are evaluated in zero-shot settings with-
out chain-of-thought prompting. GANQ consistently out-
performs baseline methods on both tasks, highlighting its
robustness. In contrast, RTN exhibits extreme sensitiv-
ity to model scale, collapsing on LLaMA-3.2-1B-Instruct.
Similarly, GPTQ achieves near-zero GSM8K accuracy on
LLaMA-3.2-3B-Instruct, consistent with the perplexity re-
sults reported in Table 10, and encounters LongBench exe-
cution errors (i.e., skip special tokens failures) de-
spite identical experimental setups. Compared to RTN and
GPTQ, OmniQuant leverages learnable quantization param-
eters, leading to relatively stable performance. However,
it still falls short of GANQ’s results. These findings un-
derscore GANQ’s ability to deliver superior performance
across diverse tasks.

Weight-only Quantization with Outlier Handling. To mit-
igate outlier impact, methods like RTN, GPTQ, AWQ, and
OmniQuant divide per-channel distributions into smaller
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Table 2. WikiText-2 perplexity (↓) of quantized models under 4-bit and 3-bit. GANQ outperforms state-of-the-art methods.

Method Bit-width OPT LLaMA

125M 350M 1.3B 2.7B 6.7B 7B 2-7B 3-8B

Full 16 27.66 22.00 14.63 12.47 10.86 5.68 5.47 6.13

RTN 4 37.11 25.94 48.18 16.73 12.14 6.29 6.12 8.53
GPTQ 4 31.08 23.99 15.60 12.88 11.45 6.95 6.08 2.4e2
OmniQuant 4 30.98 23.34 15.25 12.84 11.25 5.92 5.88 –
GANQ 4 28.58 23.04 14.94 12.33 10.70 5.83 5.65 6.61

RTN 3 1.3e3 64.56 1.3e4 1.3e4 5.8e3 25.54 5.4e2 2.2e3
GPTQ 3 52.48 34.47 21.60 16.95 15.11 16.65 9.46 1.4e2
OmniQuant 3 42.43 29.64 18.22 19.47 13.47 6.79 7.08 –
GANQ 3 35.98 29.42 17.05 14.10 11.39 6.33 6.25 8.83

Table 3. Accuracies (%, ↑) of the quantized LLaMA-2-7B model on 6 zero-shot tasks under 4-bit and 3-bit quantization.

Method Bit-width HellaSwag BoolQ RTE WinoGrande Arc-e Arc-c Mean

Full 16 57.12 77.68 63.18 69.06 76.35 43.43 64.47

RTN 4 55.59 73.61 59.57 68.43 74.03 41.30 62.09
GPTQ 4 55.66 74.43 57.76 57.72 75.25 42.32 60.52
OmniQuant 4 55.66 75.69 63.90 68.19 74.33 39.85 62.94
GANQ 4 56.10 77.31 65.70 68.75 74.96 42.58 64.23

RTN 3 30.93 42.54 52.71 52.17 34.76 21.33 39.07
GPTQ 3 47.55 67.03 55.60 59.75 64.60 33.11 54.61
OmniQuant 3 52.58 72.11 57.40 64.72 68.73 36.43 58.66
GANQ 3 53.85 75.02 62.82 67.48 73.36 40.78 62.22

Table 4. Performance comparison of 4-bit quantized LLaMA-3.2
1B-Instruct and 3B-Instruct models on LongBench (↑) and GSM8K
(↑) datasets.

Method 1B-Instruct 3B-Instruct

LongBench GSM8K (%) LongBench GSM8K (%)

FP16 11.5 32.90 12.7 64.97

RTN 0.2 4.17 12.1 37.68
GPTQ – 11.14 – –
OmniQuant 8.9 16.53 11.5 54.74
GANQ 11.7 27.75 12.5 60.50

blocks (typically of size 128). SqueezeLLM retains a small
percentage of outliers (e.g., 0.5%) and a fixed number of
full rows (default: 10). GANQ can integrate seamlessly
with SqueezeLLM’s outlier handling mechanism. We eval-
uate this integration through experiments. Due to memory
constraints, OmniQuant cannot quantize LLaMA-3-8B, and
SqueezeLLM is limited to models up to 2.7B. We use re-
sults directly from their paper for these cases if available.
Additionally, SqueezeLLM’s current code does not support
OPT-350M. For GANQ, we retain 0.5% outliers for all OPT
models and LLaMA-3-8B. Additionally, we retain 10 full
rows for LLaMA-7B and LLaMA-2-7B to ensure a fair
comparison with SqueezeLLM.

As shown in Table 5, GANQ⋆ (indicating GANQ integrated
with outlier handling) outperforms other baselines. Further-
more, when retaining only 0.5% of outliers for LLaMA-
7B and LLaMA-2-7B, we observe the following results:
LLaMA-7B (5.78 for 4-bit, 6.20 for 3-bit), LLaMA-2-7B
(5.60 for 4-bit, 6.10 for 3-bit), which still outperform all
other methods except for SqueezeLLM.

4.3. Profiling

Table 6 reports CUDA time, speedup, and peak memory us-
age for GANQ and GANQ⋆, measured on a single NVIDIA
RTX 4090 GPU while generating 1,024 tokens with a batch
size of 1 on OPT-6.7B and LLaMA-7B. GANQ achieves up
to a 2.57× speedup over the FP16 baseline, with peak mem-
ory usage reduced to 4.10 GB for OPT-6.7B and 3.30 GB
for LLaMA-7B under 3-bit quantization. While GANQ⋆

provides improved quantization accuracy through outlier
handling, it incurs slightly higher inference latency due to
additional sparse matrix operations. Therefore, the choice
between GANQ and GANQ⋆ should be guided by the de-
sired trade-off between accuracy and runtime efficiency.

The above results demonstrate that GANQ is fully compati-
ble with existing LUT-based inference kernels (Kim et al.,
2024). Moreover, GANQ stands to benefit from ongoing
engineering advancements in this class of kernels, such as
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Table 5. WikiText-2 perplexity (↓) of quantized models under 4-bit and 3-bit. GANQ outperforms state-of-the-art methods.

Method Bit-width OPT LLaMA

125M 350M 1.3B 2.7B 6.7B 7B 2-7B 3-8B

Full 16 27.66 22.00 14.63 12.47 10.86 5.68 5.47 6.13

RTN (g128) 4 30.49 24.51 15.29 12.80 11.15 5.96 5.72 6.73
GPTQ (g128) 4 29.78 23.40 14.91 12.50 10.99 6.40 5.65 8.97
AWQ (g128) 4 29.09 1.3e4 14.93 12.70 10.96 5.78 5.60 6.53
OmniQuant (g128) 4 29.57 22.85 14.88 12.66 11.04 5.79 5.62 –
SqueezeLLM 4 28.51 – 14.83 12.60 10.92 5.77 5.57 –
GANQ⋆ 4 28.16 22.84 14.53 12.19 10.69 5.76 5.57 6.50

RTN (g128) 3 50.61 36.33 1.2e2 2.6e2 22.87 7.01 6.66 12.07
GPTQ (g128) 3 37.93 28.21 16.33 13.57 11.30 8.68 6.43 19.87
AWQ (g128) 3 35.75 1.7e4 16.31 13.56 11.39 6.35 6.24 8.22
OmniQuant (g128) 3 35.61 27.65 16.16 13.28 11.23 6.30 6.23 –
SqueezeLLM 3 32.59 – 15.76 13.43 11.31 6.13 5.96 –
GANQ⋆ 3 32.35 26.84 15.52 13.11 11.13 6.08 5.93 7.46

Table 6. CUDA time (s), speedup (↑), and peak memory (GB) (↓) for GANQ and GANQ⋆ using the LUT-based inference kernel from (Kim
et al., 2024) on OPT-6.7B and LLaMA-7B models.

Method Bit-width OPT-6.7B LLaMA-7B

CUDA time Speedup (↑) Peak Memory (↓) CUDA time Speedup (↑) Peak Memory (↓)

Full 16 16.76 1.0 12.91 17.86 1.00 13.06

GANQ 4 7.47 2.24 4.88 8.46 2.11 4.14
GANQ⋆ 4 10.39 1.61 5.13 9.82 1.82 4.12

GANQ 3 6.51 2.57 4.10 7.48 2.39 3.30
GANQ⋆ 3 10.73 1.56 4.39 8.85 2.02 3.32

those proposed in (Guo et al., 2024; Mo et al., 2024), which
can further enhance implementation efficiency and overall
inference performance.

4.4. Quantization Cost

Among the evaluated methods, RTN, GPTQ, and AWQ
are the most efficient in GPU memory usage and quan-
tization time, due to their layer-wise heuristic approach.
However, they trade off model performance. In contrast,
OmniQuant and SqueezeLLM require gradient information,
leading to higher memory demands. OmniQuant can quan-
tize 7B models on a single NVIDIA RTX 4090 GPU but
fails for 8B models and takes over 3 hours for 7B quan-
tization. SqueezeLLM, which requires global gradients,
can only quantize models up to 2.7B. GANQ leverages
GPU-adaptive, parallel row-wise computation to quantize
7B models in approximately 1 hour for K = 10. Consider-
ing both model performance and quantization cost, GANQ
is an effective solution.

5. Conclusion
In this work, we introduce GANQ, a GPU-adaptive non-
uniform quantization framework for efficient deployment
and inference of LLMs. GANQ introduces a principled opti-
mization model for layer-wise LUT-based quantization, for-
mulated as a mixed-integer quadratic programming problem,
and solves it efficiently using a GPU-adaptive alternating
direction optimization algorithm. Extensive experiments
demonstrate that GANQ reduces perplexity compared to
state-of-the-art methods in 3-bit and 4-bit quantization set-
tings, while preserving high accuracy. Additionally, GANQ
achieves up to 2.57× speedup over FP16 baselines on a sin-
gle NVIDIA RTX 4090 GPU, showcasing its substantial im-
provements in both memory usage and inference efficiency.
GANQ is highly resource-efficient, easy to implement, and
compatible with existing techniques for handling outliers,
making it a highly flexible solution for large-scale LLM de-
ployment. These results highlight GANQ’s potential to en-
able practical and efficient deployment of high-performance
LLMs across a wide range of hardware configurations.
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A. Ensuring Positive Definiteness via Diagonal Dominance
In some cases, such as the fc2 layer of OPT models, the matrix XX⊤ may fail to be positive definite. While this is
uncommon in our experiments, it is important to handle such situations before performing Cholesky decomposition in
Algorithm 1, which requires a positive definite matrix. To ensure this, we enforce diagonal dominance via a small adjustment
to the matrix.

Specifically, a symmetric matrix A is guaranteed to be positive definite if it is diagonally dominant with strictly positive
diagonal entries, meaning |aii| ≥

∑
j ̸=i |aij | for all i. To utilize this property, let us denote Σ = XX⊤, where diagonal

elements satisfy Σii ≥ 0. We compute an adaptive offset vector δ, where each component δi is calculated as:

δi = max

 n∑
j=1

|Σi,j | − 2Σi,i, 10
−8

 , (23)

where Σi,j denotes the element at the i-th row and j-th column of Σ. Subsequently, we obtain a diagonally dominant matrix
by adding this adaptive diagonal offset and perform the Cholesky decomposition:

L = Cholesky (Σ+Diag(δ)) , (24)

where Diag(δ) generates a diagonal matrix from the vector δ, and L is the resulting lower-triangular Cholesky factor.
This adaptive preconditioning procedure efficiently ensures numerical stability and positive definiteness, facilitating robust
computation without manual parameter adjustments.

To evaluate sensitivity to preconditioning approaches (the standard fixed λ illustrated in Remark 3.1 versus our adaptive
method), we conduct 4-bit quantization experiments on OPT-125M and report the resulting perplexity on WikiText-2 in
Table 7.

Table 7. WikiText-2 perplexity (↓) of 4-bit quantized OPT-125M under different preconditioning strategies.

XX⊤ + λI Method in (23) – (24)
λ = 0.5 λ = 1.0 λ = 10.0 λ = 40.0 λ = 100.0

29.14 29.04 28.98 29.05 29.09 28.58

The results show that quantization accuracy of GANQ is largely insensitive to the choice of preconditioning. The adaptive
method achieve the best result, with fixed λ yielding similar results. All results outperforms baselines, confirming the
robustness.

B. Outlier Extraction Method
In this section, we describe the method we implemented to extract outliers from the matrix W. This method decomposes W
into two components: a sparse component Wsparse, which contains the extracted outliers, and a dense component Wdense,
which consists of the remaining non-outlier values. We then perform quantization on Wdense to enhance quantization
performance.

The pseudocode is shown in Algorithm 2. This decomposition is achieved through a row-wise outlier extraction process based
on an extraction ratio r, where 0 < r < 1 (e.g., 0.5%). The process begins by computing a tail percentile p = 1− 0.5× r,
which determines the boundaries for identifying outliers in each row symmetrically. For each row of the weight matrix,
the algorithm sorts the values in ascending order and computes the upper and lower cutoff values corresponding to the
percentiles p and 1 − p. These cutoff values define the outliers, which are those values that fall either above the upper
percentile or below the lower percentile. An outlier mask M is then created, where values that are identified as outliers are
marked with 1, and non-outliers are marked with 0. The sparse component Wsparse is obtained by multiplying the weight
matrix W element-wise with the outlier mask, while the dense component Wdense is obtained by subtracting the sparse
component from the original matrix.
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Algorithm 2 Outlier Extraction and Weight Decomposition
Input: Weight matrix W ∈ Rm×n, outlier extraction ratio 0 < r < 1
Output: Sparse component Wsparse, Dense component Wdense
p← 1− 0.5× r # compute tail percentile
M← 0 # initialize outlier mask M with zeros
upper← ⌊n× p⌋
Wsorted ← sort(W[:]) # row-wise sorting
cupper ←Wsorted[:, upper] # upper cutoff values
lower← ⌈n× (1− p)⌉
clower ←Wsorted[:, lower] # lower cutoff values
O← (W ≥ cupper) ∨ (W ≤ clower) # identify outliers
M[O]← 1 # mark outliers in the mask
Wsparse ←W ◦M # extract outliers
Wdense ←W −Wsparse # extract non-outliers
Return Wsparse,Wdense

C. Additional Results
The results in Table 8 present the C4 perplexity of various quantized models under 4-bit and 3-bit configurations across
different model sizes. As shown, GANQ outperforms baseline methods such as RTN, GPTQ, and OmniQuant across all
configurations. For 4-bit quantization, GANQ achieves the lowest perplexity across both OPT and LLaMA models, with
notable improvements. GANQ also demonstrates strong performance with 3-bit quantization, maintaining competitive
perplexity reductions across model sizes. On OPT-6.7B, GANQ’s perplexity is 13.68, compared to 17.00 for GPTQ
and 15.51 for OmniQuant. These results highlight GANQ’s effectiveness in both 4-bit and 3-bit quantization, achieving
substantial perplexity reductions across a wide range of model scales. The symbol “–” in Table 8 indicates that OmniQuant
cannot quantize LLaMA-3-8B on a single NVIDIA RTX 4090 GPU due to memory constraints, or the quantized model is
unavailable in their model zoo.

Table 8. C4 perplexity (↓) of quantized models under 4-bit and 3-bit. GANQ outperforms state-of-the-art methods.

Method Bit-width OPT LLaMA

125M 350M 1.3B 2.7B 6.7B 7B 2-7B 3-8B

Full 16 26.56 22.59 16.07 14.34 12.71 7.34 7.26 9.45

RTN 4 33.89 26.21 27.49 18.83 14.37 8.12 8.16 13.35
GPTQ 4 29.08 24.64 17.00 14.99 13.18 8.83 7.87 51.33
OmniQuant 4 28.76 23.85 16.85 14.93 13.10 7.66 7.77 –
GANQ 4 27.72 23.47 16.54 14.71 12.96 7.52 7.47 10.23

RTN 3 8.3e2 55.15 6.5e3 1.0e4 5.0e3 20.78 5.3e2 5.7e2
GPTQ 3 42.14 30.90 21.52 18.24 17.00 22.28 11.67 70.53
OmniQuant 3 36.37 28.82 19.61 19.10 15.51 8.75 9.38 –
GANQ 3 33.59 29.46 18.46 16.43 13.68 8.20 8.20 12.88

The results in Table 9 present the PTB perplexity of various quantized models under 4-bit and 3-bit configurations across
different model sizes. As shown, GANQ outperforms baseline methods such as RTN, GPTQ, and OmniQuant across all
configurations. For 4-bit quantization, GANQ achieves the lowest perplexity across OPT models with notable improvements.
GANQ also demonstrates strong performance with 3-bit quantization, maintaining competitive perplexity reductions across
model sizes. On OPT-6.7B, GANQ’s perplexity is 16.91, compared to 21.63 for GPTQ and 21.52 for OmniQuant. These
results highlight GANQ’s effectiveness in both 4-bit and 3-bit quantization, achieving substantial perplexity reductions
across a range of model sizes.

LLaMA-7B and LLaMA-2-7B perform similarly to the much smaller OPT-125M model in full-precision FP16 configuration
on the PTB dataset. Specifically, the FP16 versions of LLaMA-7B (41.15) and LLaMA-2-7B (37.91) do not achieve
significantly better perplexity than the OPT-125M model (38.99), highlighting the relative inefficiency of LLaMA models
on this dataset. Therefore, we focus on reporting results for OPT models, which demonstrate stronger performance in this
context.
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Table 9. PTB perplexity (↓) of quantized models under 4-bit and 3-bit. GANQ outperforms state-of-the-art methods.

Method Bit-width OPT

125M 350M 1.3B 2.7B 6.7B

Full 16 38.99 31.07 20.29 17.97 15.77

RTN 4 53.88 36.79 75.40 32.40 18.86
GPTQ 4 45.45 34.33 22.04 19.19 16.58
OmniQuant 4 42.53 33.80 21.79 19.00 16.18
GANQ 4 40.75 33.21 21.06 18.73 15.95

RTN 3 1.4e3 87.20 1.5e3 1.2e4 5.4e3
GPTQ 3 72.91 47.17 31.94 25.63 21.63
OmniQuant 3 59.56 42.65 26.87 29.82 21.52
GANQ 3 55.67 44.58 24.27 21.28 16.91

Table 10. Perplexity (↓) of quantized LLaMA-3.2 models on WikiText2 and C4. GANQ outperforms state-of-the-art methods.

Dataset Method Bit-width 1B 3B 1B-Instruct 3B-Instruct

WikiText-2

FP16 16 9.76 7.81 13.16 11.05

RTN 4 18.08 10.53 22.91 15.58
GPTQ 4 24.07 6.0e3 18.40 4.5e3
OmniQuant 4 12.90 8.87 16.31 12.33
GANQ 4 10.78 8.35 14.36 11.99

RTN 3 2.6e3 4.8e2 7.0e3 5.7e2
GPTQ 3 1.68e2 6.3e3 1.1e2 3.3e3
OmniQuant 3 4.3e2 14.82 34.89 19.55
GANQ 3 15.91 10.85 21.32 15.84

C4

FP16 16 14.02 11.34 21.30 16.50

RTN 4 27.98 15.89 35.23 22.15
GPTQ 4 41.27 2.1e3 27.99 3.2e3
OmniQuant 4 18.34 13.08 25.20 18.02
GANQ 4 15.53 12.21 22.81 17.35

RTN 3 2.9e3 4.1e2 6.7e3 5.3e2
GPTQ 3 1.5e2 1.6e3 1.2e2 2.0e3
OmniQuant 3 3.9e2 19.96 41.43 24.80
GANQ 3 22.09 15.36 29.18 21.30

Table 10 presents the perplexity of quantized LLaMA-3.2 models on WikiText-2 and C4 under 4-bit and 3-bit configurations.
GANQ consistently outperforms baseline methods (RTN, GPTQ, OmniQuant) across all model variants and bit-widths.
Our systematic optimization framework for layer-wise non-uniform quantization allows GANQ to adapt effectively to
varying weight distributions, unlike baseline methods, which demonstrate greater sensitivity and instability, especially at
3-bit quantization.
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