
Rethinking Code Refinement: Learning to Judge Code Efficiency

Anonymous ACL submission

Abstract
Large Language Models (LLMs) have demon-001
strated impressive capabilities in understanding002
and generating codes. Due to these capabilities,003
many recent methods are proposed to automat-004
ically refine the codes with LLMs. However,005
we should rethink that the refined codes (from006
LLMs and even humans) are not always more007
efficient than their original versions. On the008
other hand, running two different versions of009
codes and comparing them every time is not010
ideal and time-consuming. Therefore, in this011
work, we propose a novel method based on the012
code language model that is trained to judge013
the efficiency between two different codes (gen-014
erated across humans and machines) by either015
classifying the superior one or predicting the016
relative improvement. We validate our method017
on multiple programming languages with mul-018
tiple refinement steps, demonstrating that the019
proposed method can effectively distinguish be-020
tween more and less efficient versions of code.021

1 Introduction022

Large Language Models (LLMs) have shown sig-023

nificant success across a wide range of tasks, ex-024

tending from natural language understanding to025

programming-related activities (Brown et al., 2020;026

Chen et al., 2021; Achiam et al., 2023; Touvron027

et al., 2023; Rozière et al., 2023; Abdin et al.,028

2024). Specifically, thanks to their capabilities029

in understanding and generating codes, LLMs are030

able to allow developers to save time, reduce errors,031

and boost their productivity (Shen et al., 2022).032

For example, several recent studies have utilized033

LLMs to optimize and refine the existing code034

bases (Madaan et al., 2023; Chen et al., 2023b).035

Also, more recent work has been proposed to iter-036

atively refine the generated codes from LLMs by037

judging them with LLMs (Zelikman et al., 2023).038

Another noteworthy approach involves using LLMs039

to check the functional correctness of the generated040

codes from LLMs (Dong et al., 2023a).041

However, despite huge advancements made in 042

the field of LLMs for code generation, the afore- 043

mentioned studies assume that the codes generated 044

and refined from LLMs are more efficient than their 045

originals. However, as shown in Figure 1, our ob- 046

servations contradict this assumption, showing that 047

LLM-generated and -refined codes do not always 048

perform better. To handle this issue, while one may 049

calculate the efficiencies of codes both before af- 050

ter modifications by actually executing them, this 051

process introduces unnecessary inefficiencies, and 052

may be very costly and time-consuming. 053

In this work, to overcome those challenges, we 054

introduce a new task of judging the efficiency of the 055

refined code over its original version. In addition, 056

not only LLMs but also human coders may degrade 057

the efficiency of codes during refinement; thus, our 058

task of judging the efficiency between two codes 059

involves all the possible pairs of code modification 060

sources, including human-human, human-machine, 061

and machine-machine. Then, to address this new 062

task, we propose a new model (based on the code 063

LM) that is trained to compare efficiencies between 064

two codes. Specifically, given a code pair (one is 065

original and the other is refined from it), the code 066

LM is trained to classify which one is more efficient 067

or predict how much the refined code is efficient. 068

We experimentally validate the effectiveness of 069

our efficiency judgement model on multiple code 070

refinement scenarios with multiple programming 071

languages. The results show that our judgement 072

model can identify the more efficient code among 073

two different versions, substantially outperforming 074

baselines. Our contributions are as follows: 075

• We point out that the refined codes from LLMs or 076

humans do not always improve their efficiency. 077

• We introduce a novel approach that judges the 078

efficiency of two different versions of codes. 079

• We validate our model on multiple code refine- 080

ment scenarios, demonstrating its effectiveness. 081

1



(A) Existing Work (B) Our approach (C) Improvement Statistic

n = input()

total = 0
for i in range(2, n+1, 2):

total += i

n = input()

total = 0
for i in range(1, n+1):

if i % 2 == 0:
total += i

Original Refined

LLM 0.7Ori.

Which one is 
more efficient?

How much has
it improved?

Original

Refined

Figure 1: (A) Existing code refinement approaches sometimes generate the code which has inferior efficiency to the original code.
(B) Our proposed approach identifies the efficient code among two different versions of codes (before and after modifications),
and further predicts its relative improvement. (C) We categorize the refined code according to its efficiency gain (%) compared
to the original into three classes: Degradation (less than 0.9), Non-Improvement (0.9 to 1.1), and Improvement (greater than 1.1).

2 Related Work082

Large Language Models for Code Large Lan-083

guage Models (LLMs), trained on extensive cor-084

pora with multi-billion parameters, exhibit remark-085

able performance across a broad spectrum of tasks086

involving both text and code (Brown et al., 2020;087

Li et al., 2022; Rozière et al., 2023; Li et al., 2023;088

Achiam et al., 2023; Abdin et al., 2024; Guo et al.,089

2024). These models, particularly those trained on090

code-specific datasets, have opened up a new era091

in software development by not only assisting with092

basic programming tasks but also enabling more093

complex activities such as code generation (Chen094

et al., 2023a; Nijkamp et al., 2023), translation (Yin095

and Neubig, 2018; Rozière et al., 2020; Cassano096

et al., 2023), and refinement (Yu et al., 2023; Shira-097

fuji et al., 2023). As such, these models are increas-098

ingly integrated into development environments,099

optimizing workflows, and reducing the time for de-100

velopment (Shen et al., 2022; Dong et al., 2023b).101

LLMs for Code Refinement Beyond basic code102

generation, LLMs are widely used to refine the ex-103

isting code bases. One of the early work in code104

refinement aims to detect and fix bugs in the codes105

by pre-training a transformer-based model on En-106

glish and source code, and then fine-tuning it on107

commits (relevant to the part fixing bugs and im-108

proving performance) (Garg et al., 2022). In a109

similar vein, another work proposes to refine the110

code with a sequence-to-sequence model that is111

trained to transform the original code to its opti-112

mized version of the code (Chen et al., 2023b).113

Additionally, recent work showcases that LLMs114

are able to recursively improve their own generated115

codes, progressively enhancing their outputs (Ze-116

likman et al., 2023). Further, Madaan et al. (2023)117

demonstrate that LLMs with sophisticated prompt-118

ing strategies (to adapt LLM for code optimization)119

can surpass human-level performance in code opti-120

mization tasks. However, despite these substantial121

achievements, prior studies have primarily focused 122

on code enhancement with limited attention to the 123

actual efficiency of the refined code. Meanwhile, 124

we focus on a different angle, proposing to judge 125

the efficiency of the refined codes in advance (with- 126

out executing them) based on our observation that 127

not all the refined codes have better efficiency. 128

LLM-Powered Code Evaluation The objective 129

of our work which aims to evaluate the efficiency 130

between two codes based on LLMs has a similar- 131

ity to work on LLMs for code evaluation. Early 132

work on it uses either a term-matching-based ap- 133

proach (similar to BLEU) or an embedding-based 134

approach (whose representations are obtained from 135

language models), to compare two codes (Ren et al., 136

2020; Zhou et al., 2023). However, as collecting 137

ground-truth answers for every evaluation is diffi- 138

cult, recent work has shifted towards using LLMs 139

to judge the quality of the generated code, such 140

as its utility or functional correctness, without the 141

need for comparisons to the reference code (Dong 142

et al., 2023a; Zhuo, 2024). Yet, unlike these ap- 143

proaches evaluating the single instance of the code 144

other than the efficiency, we aim to compare effi- 145

ciency in the setting where the code pair is given. 146

3 Method 147

We first provide a general description of code re- 148

finement, and then introduce our approach. 149

3.1 Code Refinement 150

Let us assume that the existing code base is de- 151

fined as c, which consists of a sequence of tokens 152

as follows: c = {c1, ..., cn}. Then, the objective 153

of code refinement (in this work) is to transform 154

the existing code base c into its improved version 155

c′ = {c′1, ..., c′m}, where the execution time for 156

c′ should be faster than c, formalized as follows: 157

Exec(c) > Exec(c′). Here, Exec is the code exe- 158

cution function that returns its runtime. 159

2



Table 1: Main results on the task of judging the code efficiency,
where easy denotes the dataset containing only the code pairs
whose efficiency difference is more than 10%.

All Easy
Python C++ All Python C++ All

Zero-shot 50.87 45.30 46.55 47.04 51.21 49.70
Few-shot 51.21 51.17 51.18 49.16 48.22 48.56
Zero-shot CoT 50.35 51.69 51.39 48.94 52.10 50.95
Few-shot CoT 50.52 50.87 50.79 49.50 48.09 48.60
Ours 72.49 62.08 64.42 77.65 70.14 72.86

It is worth noting that, in this work, we consider160

three different scenarios of code refinement. The161

first scenario involves a human-human interaction,162

where one developer revises the code originally163

authored by another. The second scenario, termed164

the human-machine scenario, consists of collabo-165

rative efforts between humans and machines. This166

practice has become increasingly prevalent in real-167

world software development environments, thanks168

to CodeLLMs (Chen et al., 2021; Rozière et al.,169

2023). Lastly, the machine-machine scenario, in-170

volves autonomous code refinement by machines,171

a process that has shown promise in various stud-172

ies (Zelikman et al., 2023; Madaan et al., 2023).173

Note that, despite the huge advancements made174

in the field of code refinement, we find that modi-175

fied codes from machines can occasionally reduce176

the efficiency of the original codes. Similarly, hu-177

man developers may diminish the efficiency of the178

codes during refinement. On the other hand, execut-179

ing the pair of original and modified codes at every180

refinement step is inefficient and time-consuming.181

3.2 Judging Code Efficiency182

To overcome the aforementioned limitation, we aim183

to predict the efficiency of the modified code over184

its original code, without actually executing them.185

This can be formulated by either the classification186

problem (where we classify the superior code) or187

the regression problem (where we predict the rel-188

ative improvement of the modified code over the189

original code), given a pair of original and modified190

codes. Also, note that we operationalize classifica-191

tion and regression problems with CodeLLMs, due192

to their capabilities in understanding codes.193

Specifically, given the code pair (e.g., c and c′),194

we concatenate it and provide it with the CodeLLM,195

formalized as follows: o = CodeLLM([c, c′]) where196

[·] is the concatenation operation, and o is the pre-197

diction output. Then, for the classification prob-198

lem, we formulate it as the next token prediction199

task, as follows: LC = −
∑T

t=1 log p(o|[c, c′], o ∈200

{A,B}), where A represents the improvement201

over the original code and vice versa for B. Simi-202

1.0 1.02 1.12 1.31 1.72 4.06
Absolute Improvement Percentage Buckets (%)

60

70

80

90

100

Av
er

ag
e 

Ac
c 

(%
)

65.10

71.50 69.79 70.98

79.17

92.75

Figure 2: Results with bucketing the code pairs according to
their absolute relative improvement in efficiency, on Python.

larly, for the regression problem, we train the model 203

to predict the relative improvement of the refined 204

code over its original by minimizing this prediction 205

value with the actual relative improvement. 206

4 Experiment 207

We now describe experimental setups and results. 208

4.1 Experimental Setups 209

Dataset To validate the efficacy of our approach 210

to judge code efficiency, we should collect pairs 211

of two different versions of codes before and af- 212

ter modifications. Here, we consider three differ- 213

ent scenarios of code editing, and, for the cases 214

where humans refine the code, we use a dataset 215

of code edits made by humans from Madaan et al. 216

(2023). For the other scenarios where the machine 217

improves the human- or machine-generated codes, 218

we prompt the Code LLM (namely DeepSeek- 219

Coder-Instruct-7B) (Guo et al., 2024) to refine the 220

given codes for better efficiency. Specifically, start- 221

ing with the codes generated by humans from the 222

existing dataset, we generate the machine-refined 223

codes with the Code LLM. In addition, from those 224

machine-generated codes, we similarly prompt 225

the Code LLM to improve them. Through these 226

steps, we can obtain pairs of human-human, human- 227

machine, and machine-machine code versions. 228

Baselines and Our Model In this work, as we 229

tackle a novel problem of judging code efficiency, 230

there are no direct baselines available to compare. 231

Therefore, we turn to compare our approach against 232

the basic models powered by LLMs. Specifically, 233

given a code pair, we perform zero-shot and few- 234

shot prompting with LLMs, to decide which one is 235

more efficient. In addition, we also enhance those 236

strategies with Chain-of-Thought prompting (Wei 237

et al., 2022), to elicit the reasoning ability of LLMs 238

with the instruction: "Let’s think step by step". For 239

our model, we use the classifier (predicting the 240

class of the efficient code) for main experiments, 241

and provide the performance of the other (predict- 242

ing the relative improvement) during analysis. We 243

use DeepSeek-Coder-Instruct-1.3B for all models. 244

3



Table 2: Breakdown results for varying the code refinement
scenarios. ’H’ indicates Human and ’M’ indicates Machine.

Statistics Breakdown Acc

Scenarios Avg. Improve Degrade % Improve % Python C++ All

H-H 1.08 37.19 21.85 80.43 64.43 67.88
M-M 1.32 30.69 32.25 60.77 55.84 57.03
H-M 1.29 31.26 30.76 67.27 61.55 62.87

Table 3: Results with predicting the relative difference of the
modified code over its original code in efficiency. Corr denotes
the Spearman’s rank correlation coefficient, and Acc denotes
the accuracy where we convert prediction values into classes.

All Easy
Corr Acc Corr Acc

Python 0.66 76.38 0.64 82.88
C++ 0.50 66.69 0.63 80.16
Python & C++ 0.56 68.87 0.66 81.17

4.2 Experimental Results245

Main Results We report the main results in Ta-246

ble 1, and, from this, we observe that our method247

consistently outperforms all baseline models across248

all settings. In addition, our model is particularly ef-249

fective in scenarios where there is a clear difference250

in code efficiency — specifically, a difference ex-251

ceeding 10% (the easy setting). To examine the per-252

formance of our model more granularly based on253

varying degrees of efficiency differences between254

code pairs, we bucketize the code pairs based on255

their efficiency differences. As shown in Figure 2,256

the performance of our model increases when the257

difference between two codes becomes larger.258

Results with Varying Refinement Scenarios It259

is worth noting that our code refinement scenario260

is categorized as human-human, human-machine,261

and machine-machine, and we report their break-262

down results in Table 2. From this, we first observe263

that the percentage of efficiency improvement in264

code refinement scenarios is low, which is around265

20% to 30%, and it is similar to the percentage of266

efficiency degradation. In addition, the average im-267

provement made by machines is 30%, meanwhile,268

the improvement by humans is around 10%. On the269

other hand, as shown in the Breakdown Acc col-270

umn, our model can more effectively identify the271

code improved by humans (rather than machines).272

Relative Improvement Prediction Results In273

addition to classifying the efficient code given the274

code pair, we can further predict how much it is275

improved. For this task, we measure the perfor-276

mance of our model, by ranking all the code pairs277

based on their relative improvements and compar-278

ing them with predicted improvements. Also, if the279

prediction score exceeds 1.00, we classify this case280

that there is an improvement during refinement. As281

Table 4: Generalization results by varying the training data.

Training Datasets Python C++ All

Python 72.75 58.26 61.52
C++ 57.53 60.32 57.90

Python & C++ 72.49 62.08 64.42

Table 5: With different Code LLMs, we report their average
relative improvement (Avg), as well as the percentage of their
degradation and improvement in efficiency. Acc (H) and (M)
denote the accuracy on human- and machine-generated codes.

LLM Avg Degrade % Improve % Acc (H) Acc (M)

DSC 1.3 31.22 31.51 80.43 65.49
CodeQwen 1.33 28.01 29.12 80.60 58.86
Granite 1.13 21.46 24.55 76.69 48.97
gpt-3.5 1.00 25.34 21.45 78.29 53.72

shown in Table 3, we observe both the high rank 282

correlation coefficient and high accuracy, demon- 283

strating the effectiveness of our approach even in 284

this actual improvement prediction setting. 285

Generalization on Different Languages To see 286

the generalization ability of our approach to dif- 287

ferent programming languages, we train the model 288

with Python, C++ or both, and measure the perfor- 289

mance on Python and C++. As shown in Table 4, 290

we observe that the model trained on one language 291

can be generalizable to the other language, perhaps 292

due to the algorithmic similarities in their codes. 293

Results with Different Code LLMs To see the 294

performance of different Code LLMs in refining 295

the given codes (in terms of efficiency), and to see 296

the performance of our efficiency judgement model 297

trained with the code pairs constructed by different 298

LLMs, we change the code refinement model from 299

DeepSeekCoder (DSC) to recent CodeQwen (Bai 300

et al., 2023), Granite (Mishra et al., 2024), and GPT- 301

3.5. As shown in Table 5, we find that DSC and 302

CodeQwen are superior in improving the efficiency 303

of codes when refining them. Yet, the percentage of 304

improvement made by each model is comparable 305

to the percentage of degradation, which supports 306

again our motivation that we should rethink code 307

refinement. Lastly, our model is able to identify the 308

more efficient code among two different versions 309

of models made across different LLMs. 310

5 Conclusion 311

In this work, we pointed out that the codes refined 312

by humans or machines are sometimes inferior than 313

originals, and to tackle this, we introduced a novel 314

approach to identify the more efficient code given 315

a pair of codes before and after modifications. We 316

validated our method on multiple code editing sce- 317

narios involving both humans and machines, show- 318

casing its substantial efficacy despite its simplicity. 319

4



Limitation320

In this work, we aim to judge the efficiency of two321

different versions of codes, demonstrating that our322

approach can distinguish the more efficient code.323

However, there are some areas that future work may324

improve upon. First, we perform experiments with325

two widely used programming languages, such as326

Python and C++, and it may be promising to con-327

sider other languages, particularly those used less328

frequently. In addition, in terms of measuring the329

code efficiency, we consider its execution time,330

meanwhile, there may be additional factors to con-331

sider, such as memory usage, I/O operations, and332

the underlying OS environment. Future work may333

incorporate these factors to perform a more holistic334

assessment of program efficiency. Lastly, beyond335

predicting the efficient code, future work may ex-336

plore its interpretability, providing the reasons why337

certain codes are more efficient than others at a338

more fine-grained level (e.g., lines of codes).339

Ethic Statement340

We believe this work does not have particular con-341

cerns about ethics. This is because, it strictly fo-342

cuses on the technological aspect of comparing343

code efficiency, which does not engage in the uneth-344

ical use of LLMs for manipulating software codes,345

user data, or any other sensitive information.346

References347

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad348
Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-349
san Awadalla, Nguyen Bach, Amit Bahree, Arash350
Bakhtiari, Harkirat Singh Behl, Alon Benhaim,351
Misha Bilenko, Johan Bjorck, Sébastien Bubeck,352
Martin Cai, Caio C’esar Teodoro Mendes, Weizhu353
Chen, Vishrav Chaudhary, Parul Chopra, Allison Del354
Giorno, Gustavo de Rosa, Matthew Dixon, Ronen355
Eldan, Dan Iter, Abhishek Goswami, Suriya Gu-356
nasekar, Emman Haider, Junheng Hao, Russell J.357
Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin,358
Piero Kauffmann, Nikos Karampatziakis, Dongwoo359
Kim, Mahoud Khademi, Lev Kurilenko, James R.360
Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung361
Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam362
Mitra, Hardik Modi, Anh Nguyen, Brandon Norick,363
Barun Patra, Daniel Perez-Becker, Thomas Portet,364
Reid Pryzant, Heyang Qin, Marko Radmilac, Corby365
Rosset, Sambudha Roy, Olli Saarikivi, Amin Saied,366
Adil Salim, Michael Santacroce, Shital Shah, Ning367
Shang, Hiteshi Sharma, Xianmin Song, Olatunji368
Ruwase, Xin Wang, Rachel Ward, Guanhua Wang,369
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,370
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,371

Cheng-Yuan Zhang, Cyril Zhang, Jianwen Zhang, 372
Li Lyna Zhang, Yi Zhang, Yunan Zhang, and Xiren 373
Zhou. 2024. Phi-3 technical report: A highly capa- 374
ble language model locally on your phone. ArXiv, 375
abs/2404.14219. 376

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, 377
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 378
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 379
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 380
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 381
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, 382
Jake Berdine, Gabriel Bernadett-Shapiro, Christo- 383
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made- 384
laine Boyd, Anna-Luisa Brakman, Greg Brockman, 385
Tim Brooks, Miles Brundage, Kevin Button, Trevor 386
Cai, Rosie Campbell, Andrew Cann, Brittany Carey, 387
Chelsea Carlson, Rory Carmichael, Brooke Chan, 388
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, 389
Ruby Chen, Jason Chen, Mark Chen, Benjamin 390
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 391
Dave Cummings, Jeremiah Currier, Yunxing Dai, 392
Cory Decareaux, Thomas Degry, Noah Deutsch, 393
Damien Deville, Arka Dhar, David Dohan, Steve 394
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 395
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 396
Sim’on Posada Fishman, Juston Forte, Isabella Ful- 397
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 398
Goel, Tarun Gogineni, Gabriel Goh, Raphael Gontijo- 399
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 400
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 401
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 402
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 403
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 404
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 405
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 406
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 407
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo 408
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, In- 409
gmar Kanitscheider, Nitish Shirish Keskar, Tabarak 410
Khan, Logan Kilpatrick, Jong Wook Kim, Christina 411
Kim, Yongjik Kim, Hendrik Kirchner, Jamie Ryan 412
Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz 413
Kondraciuk, Andrew Kondrich, Aris Konstantini- 414
dis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, 415
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, 416
Jade Leung, Daniel Levy, Chak Ming Li, Rachel 417
Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, 418
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Ade- 419
ola Makanju, Kim Malfacini, Sam Manning, Todor 420
Markov, Yaniv Markovski, Bianca Martin, Katie 421
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 422
McKinney, Christine McLeavey, Paul McMillan, 423
Jake McNeil, David Medina, Aalok Mehta, Jacob 424
Menick, Luke Metz, Andrey Mishchenko, Pamela 425
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. 426
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 427
M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev 428
Nayak, Arvind Neelakantan, Richard Ngo, Hyeon- 429
woo Noh, Ouyang Long, Cullen O’Keefe, Jakub W. 430
Pachocki, Alex Paino, Joe Palermo, Ashley Pantu- 431
liano, Giambattista Parascandolo, Joel Parish, Emy 432
Parparita, Alexandre Passos, Mikhail Pavlov, Andrew 433
Peng, Adam Perelman, Filipe de Avila Belbute Peres, 434

5

https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048


Michael Petrov, Henrique Pondé de Oliveira Pinto,435
Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong,436
Tolly Powell, Alethea Power, Boris Power, Elizabeth437
Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya438
Ramesh, Cameron Raymond, Francis Real, Kendra439
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,440
Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani441
Santurkar, Girish Sastry, Heather Schmidt, David442
Schnurr, John Schulman, Daniel Selsam, Kyla Shep-443
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,444
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie445
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,446
Benjamin D. Sokolowsky, Yang Song, Natalie Stau-447
dacher, Felipe Petroski Such, Natalie Summers, Ilya448
Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine449
Thompson, Phil Tillet, Amin Tootoonchian, Eliz-450
abeth Tseng, Preston Tuggle, Nick Turley, Jerry451
Tworek, Juan Felipe Cer’on Uribe, Andrea Val-452
lone, Arun Vijayvergiya, Chelsea Voss, Carroll L.453
Wainwright, Justin Jay Wang, Alvin Wang, Ben454
Wang, Jonathan Ward, Jason Wei, CJ Weinmann,455
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian456
Weng, Matt Wiethoff, Dave Willner, Clemens Win-457
ter, Samuel Wolrich, Hannah Wong, Lauren Work-458
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,459
Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Woj-460
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar-461
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang462
Zhuang, William Zhuk, and Barret Zoph. 2023. Gpt-463
4 technical report.464

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,465
Xiaodong Deng, Yang Fan, Wenhang Ge, Yu Han,466
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang467
Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang468
Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren,469
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong470
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang471
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian472
Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen473
Yu, Yu Bowen, Hongyi Yuan, Zheng Yuan, Jianwei474
Zhang, Xing Zhang, Yichang Zhang, Zhenru Zhang,475
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and476
Tianhang Zhu. 2023. Qwen technical report. ArXiv,477
abs/2309.16609.478

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie479
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind480
Neelakantan, Pranav Shyam, Girish Sastry, Amanda481
Askell, Sandhini Agarwal, Ariel Herbert-Voss,482
Gretchen Krueger, Tom Henighan, Rewon Child,483
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,484
Clemens Winter, Christopher Hesse, Mark Chen, Eric485
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,486
Jack Clark, Christopher Berner, Sam McCandlish,487
Alec Radford, Ilya Sutskever, and Dario Amodei.488
2020. Language models are few-shot learners. In Ad-489
vances in Neural Information Processing Systems 33:490
Annual Conference on Neural Information Process-491
ing Systems 2020, NeurIPS 2020, December 6-12,492
2020, virtual.493

Federico Cassano, John Gouwar, Francesca Lucchetti,494
Claire Schlesinger, Carolyn Jane Anderson, Michael495

Greenberg, Abhinav Jangda, and Arjun Guha. 2023. 496
Knowledge transfer from high-resource to low- 497
resource programming languages for code llms. 498
ArXiv, abs/2308.09895. 499

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, 500
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a. 501
Codet: Code generation with generated tests. In 502
The Eleventh International Conference on Learning 503
Representations, ICLR 2023, Kigali, Rwanda, May 504
1-5, 2023. OpenReview.net. 505

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 506
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed- 507
wards, Yura Burda, Nicholas Joseph, Greg Brockman, 508
Alex Ray, Raul Puri, Gretchen Krueger, Michael 509
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, 510
Brooke Chan, Scott Gray, Nick Ryder, Mikhail 511
Pavlov, Alethea Power, Lukasz Kaiser, Moham- 512
mad Bavarian, Clemens Winter, Philippe Tillet, Fe- 513
lipe Petroski Such, David W. Cummings, Matthias 514
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel 515
Herbert-Voss, William H. Guss, Alex Nichol, Igor 516
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew 517
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 518
Morikawa, Alec Radford, Matthew M. Knight, Miles 519
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 520
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 521
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 522
ing large language models trained on code. ArXiv, 523
abs/2107.03374. 524

Zimin Chen, Sen Fang, and Monperrus Martin. 2023b. 525
Supersonic: Learning to generate source code opti- 526
mizations in c/c++. ArXiv, abs/2309.14846. 527

Yihong Dong, Ji Ding, Xue Jiang, Zhuo Li, Ge Li, 528
and Zhi Jin. 2023a. Codescore: Evaluating code 529
generation by learning code execution. ArXiv, 530
abs/2301.09043. 531

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 532
2023b. Self-collaboration code generation via chat- 533
gpt. ArXiv, abs/2304.07590. 534

Spandan Garg, Roshanak Zilouchian Moghaddam, 535
Colin B. Clement, Neel Sundaresan, and Chen 536
Wu. 2022. Deepperf: A deep learning-based ap- 537
proach for improving software performance. ArXiv, 538
abs/2206.13619. 539

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 540
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 541
Yu Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 542
feng Liang. 2024. Deepseek-coder: When the large 543
language model meets programming - the rise of code 544
intelligence. ArXiv, abs/2401.14196. 545

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 546
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 547
Marone, Christopher Akiki, Jia Li, Jenny Chim, 548
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 549
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 550
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 551
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 552

6

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:263134555
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:261048815
https://api.semanticscholar.org/CorpusID:261048815
https://api.semanticscholar.org/CorpusID:261048815
https://openreview.net/pdf?id=ktrw68Cmu9c
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:262824943
https://api.semanticscholar.org/CorpusID:262824943
https://api.semanticscholar.org/CorpusID:262824943
https://api.semanticscholar.org/CorpusID:256105296
https://api.semanticscholar.org/CorpusID:256105296
https://api.semanticscholar.org/CorpusID:256105296
https://api.semanticscholar.org/CorpusID:258179537
https://api.semanticscholar.org/CorpusID:258179537
https://api.semanticscholar.org/CorpusID:258179537
https://api.semanticscholar.org/CorpusID:250089308
https://api.semanticscholar.org/CorpusID:250089308
https://api.semanticscholar.org/CorpusID:250089308
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867


Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,553
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo554
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp555
Patel, Dmitry Abulkhanov, Marco Zocca, Manan556
Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhat-557
tacharyya, W. Yu, Swayam Singh, Sasha Luccioni,558
Paulo Villegas, Maxim Kunakov, Fedor Zhdanov,559
Manuel Romero, Tony Lee, Nadav Timor, Jennifer560
Ding, Claire Schlesinger, Hailey Schoelkopf, Jana561
Ebert, Tri Dao, Mayank Mishra, Alexander Gu,562
Jennifer Robinson, Carolyn Jane Anderson, Bren-563
dan Dolan-Gavitt, Danish Contractor, Siva Reddy,564
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-565
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf,566
Arjun Guha, Leandro von Werra, and Harm de Vries.567
2023. Starcoder: may the source be with you! ArXiv,568
abs/2305.06161.569

Yujia Li, David Choi, Junyoung Chung, Nate Kush-570
man, Julian Schrittwieser, Rémi Leblond, Tom, Ec-571
cles, James Keeling, Felix Gimeno, Agustin Dal572
Lago, Thomas Hubert, Peter Choy, Cyprien de,573
Masson d’Autume, Igor Babuschkin, Xinyun Chen,574
Po-Sen Huang, Johannes Welbl, Sven Gowal,575
Alexey, Cherepanov, James Molloy, Daniel Jaymin576
Mankowitz, Esme Sutherland Robson, Pushmeet577
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and578
Oriol Vinyals. 2022. Competition-level code genera-579
tion with alphacode. Science, 378:1092 – 1097.580

Aman Madaan, Alex Shypula, Uri Alon, Milad581
Hashemi, Parthasarathy Ranganathan, Yiming Yang,582
Graham Neubig, and Amir Yazdanbakhsh. 2023.583
Learning performance-improving code edits. ArXiv,584
abs/2302.07867.585

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang586
Shen, Aditya Prasad, Adriana Meza Soria, Michele587
Merler, Parameswaran Selvam, Saptha Surendran,588
Shivdeep Singh, Manish Sethi, Xuan-Hong Dang,589
Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew590
Coleman, Matthew White, Mark Lewis, Raju Pavu-591
luri, Yan Koyfman, Boris Lublinsky, Maximilien592
de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank593
Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal,594
Hima Patel, Yousaf Shah, Petros Zerfos, Heiko Lud-595
wig, Asim Munawar, Maxwell Crouse, Pavan Ka-596
panipathi, Shweta Salaria, Bob Calio, Sophia Wen,597
Seetharami R. Seelam, Brian M. Belgodere, Carlos598
Fonseca, Amith Singhee, Nirmit Desai, David Cox,599
Ruchir Puri, and Rameswar Panda. 2024. Granite600
code models: A family of open foundation models601
for code intelligence.602

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan603
Wang, Yingbo Zhou, Silvio Savarese, and Caiming604
Xiong. 2023. Codegen: An open large language605
model for code with multi-turn program synthesis. In606
The Eleventh International Conference on Learning607
Representations, ICLR 2023, Kigali, Rwanda, May608
1-5, 2023. OpenReview.net.609

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie610
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and611

Shuai Ma. 2020. Codebleu: a method for automatic 612
evaluation of code synthesis. ArXiv, abs/2009.10297. 613

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, 614
Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi, 615
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom 616
Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P 617
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wen- 618
han Xiong, Alexandre D’efossez, Jade Copet, Faisal 619
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, 620
Thomas Scialom, and Gabriel Synnaeve. 2023. Code 621
llama: Open foundation models for code. ArXiv, 622
abs/2308.12950. 623

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanus- 624
sot, and Guillaume Lample. 2020. Unsupervised 625
translation of programming languages. In Advances 626
in Neural Information Processing Systems 33: An- 627
nual Conference on Neural Information Processing 628
Systems 2020, NeurIPS 2020, December 6-12, 2020, 629
virtual. 630

Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, 631
Yankun Zhen, and Ge Li. 2022. Incorporating do- 632
main knowledge through task augmentation for front- 633
end javascript code generation. In Proceedings of 634
the 30th ACM Joint European Software Engineering 635
Conference and Symposium on the Foundations of 636
Software Engineering, ESEC/FSE 2022, Singapore, 637
Singapore, November 14-18, 2022, pages 1533–1543. 638
ACM. 639

Atsushi Shirafuji, Md. Mostafizer Rahman, Md. 640
Faizul Ibne Amin, and Yutaka Watanobe. 2023. Pro- 641
gram repair with minimal edits using codet5. In 12th 642
International Conference on Awareness Science and 643
Technology, iCAST 2023, Taichung, Taiwan, Novem- 644
ber 9-11, 2023, pages 178–184. IEEE. 645

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter 646
Albert, Amjad Almahairi, Yasmine Babaei, Niko- 647
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, 648
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris- 649
tian Cantón Ferrer, Moya Chen, Guillem Cucurull, 650
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin 651
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, 652
Naman Goyal, Anthony S. Hartshorn, Saghar Hos- 653
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor 654
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. 655
Korenev, Punit Singh Koura, Marie-Anne Lachaux, 656
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai 657
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, 658
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew 659
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan 660
Saladi, Alan Schelten, Ruan Silva, Eric Michael 661
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross 662
Taylor, Adina Williams, Jian Xiang Kuan, Puxin 663
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An- 664
gela Fan, Melanie Kambadur, Sharan Narang, Aure- 665
lien Rodriguez, Robert Stojnic, Sergey Edunov, and 666
Thomas Scialom. 2023. Llama 2: Open foundation 667
and fine-tuned chat models. ArXiv, abs/2307.09288. 668

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 669
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 670

7

https://api.semanticscholar.org/CorpusID:258588247
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:256868633
https://api.semanticscholar.org/CorpusID:269614262
https://api.semanticscholar.org/CorpusID:269614262
https://api.semanticscholar.org/CorpusID:269614262
https://api.semanticscholar.org/CorpusID:269614262
https://api.semanticscholar.org/CorpusID:269614262
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1109/ICAST57874.2023.10359288
https://doi.org/10.1109/ICAST57874.2023.10359288
https://doi.org/10.1109/ICAST57874.2023.10359288
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998


and Denny Zhou. 2022. Chain-of-thought prompting671
elicits reasoning in large language models. In Ad-672
vances in Neural Information Processing Systems 35:673
Annual Conference on Neural Information Process-674
ing Systems 2022, NeurIPS 2022, New Orleans, LA,675
USA, November 28 - December 9, 2022.676

Pengcheng Yin and Graham Neubig. 2018. TRANX:677
A transition-based neural abstract syntax parser for678
semantic parsing and code generation. In Proceed-679
ings of the 2018 Conference on Empirical Methods680
in Natural Language Processing, EMNLP 2018: Sys-681
tem Demonstrations, Brussels, Belgium, October 31 -682
November 4, 2018, pages 7–12. Association for Com-683
putational Linguistics.684

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,685
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng686
Yin. 2023. Wavecoder: Widespread and versatile687
enhanced instruction tuning with refined data genera-688
tion. ArXiv, abs/2312.14187.689

E. Zelikman, Eliana Lorch, Lester Mackey, and690
Adam Tauman Kalai. 2023. Self-taught optimizer691
(stop): Recursively self-improving code generation.692
ArXiv, abs/2310.02304.693

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham694
Neubig. 2023. Codebertscore: Evaluating code gen-695
eration with pretrained models of code. In Proceed-696
ings of the 2023 Conference on Empirical Methods697
in Natural Language Processing, EMNLP 2023, Sin-698
gapore, December 6-10, 2023, pages 13921–13937.699
Association for Computational Linguistics.700

Terry Yue Zhuo. 2024. Ice-score: Instructing large lan-701
guage models to evaluate code. In Findings of the702
Association for Computational Linguistics: EACL703
2024, St. Julian’s, Malta, March 17-22, 2024, pages704
2232–2242. Association for Computational Linguis-705
tics.706

8

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/D18-2002
https://doi.org/10.18653/V1/D18-2002
https://doi.org/10.18653/V1/D18-2002
https://doi.org/10.18653/V1/D18-2002
https://doi.org/10.18653/V1/D18-2002
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:263620781
https://api.semanticscholar.org/CorpusID:263620781
https://api.semanticscholar.org/CorpusID:263620781
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.859
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.859
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.859
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148


Table 6: Dataset statistics. The first two rows represent the
code statistics made by humans and the other rows are the ones
made by machines. PL denotes the programming language.

PL Training Validation Test

Human Python 14936 761 562
Human C++ 27005 1316 2038

DSC Python 17079 1046 594
DSC C++ 35666 1290 1949
gpt-3.5 Python 10674 1306 724
CodeQwen Python 14854 227 207
Granite Python 20783 650 315

Table 7: Results on the DeepSeek-Coder-Instruct-7B model.

All Easy
Python C++ All Python C++ All

Zero-shot 52.50 47.91 48.88 51.62 49.05 49.98
Few-shot 54.50 49.86 50.90 55.87 49.81 52.00
Zero-shot CoT 54.50 49.86 50.90 55.53 52.73 53.75
Few-shot CoT 53.11 49.99 50.69 47.04 52.16 50.3
Ours 73.44 62.90 65.27 78.88 72.68 74.93

A Additional Experimental Setups707

Dataset Details We report the dataset statistics708

in Table 6. Note that, in order to obtain the stable709

code execution result to decide which code is more710

efficient than the other, we run every refined code711

with its original code three times and then select the712

one whose results are consistent across those three713

runs. In addition, the code execution is performed714

following the existing setup (Madaan et al., 2023).715

Fine-tuning Details We provide details on fine-716

tuning the efficiency judgment model: we fine-tune717

the Code LLM (namely, DeepSeek-Coder-Instruct-718

1.3B) over 10 epochs with a batch size of 16 and a719

learning rate of 2e-5, and we select the best epoch720

based on performance on the validation set.721

Prompts In Table 9, we provide the prompts used722

to elicit the Code LLM to refine the code and to723

predict the code efficiency (in classification and724

regression settings). For the efficiency prediction725

problem, we randomly shuffle the sequence of the726

original and its refined codes.727

B Additional Experimental Results728

Here, we provide additional experimental results.729

Results with Larger Models We conduct an730

auxiliary analysis to see how the performance of731

different methods changes if a model larger than732

DeepSeek-Coder-Instruct-1.3B (that we use for733

main experiments) is used. Specifically, we use734

its 7B model as the base code LLM and then clas-735

sify the efficient code given code pairs. As shown736

Table 8: Average accuracy results for code improvement clas-
sification with order perturbation across multiple different
runs, where we report the variance in parentheses.

All Easy

Python C++ All Python C++ All

Zero-shot 50.26 (0.7) 47.02 (5.9) 47.75 (2.9) 48.49 (4.2) 49.94 (3.2) 49.42 (0.2)
Few-shot 50.43 (1.2) 50.00 (2.7) 50.10 (2.3) 49.61 (0.4) 48.32 (0.0) 48.79 (0.1)

Zero-shot CoT 49.70 (0.9) 50.53 (2.7) 50.34 (2.2) 48.94 (0.0) 50.29 (6.6) 49.80 (2.7)
Few-shot CoT 49.27 (3.2) 49.79 (2.3) 49.67 (2.5) 50.62 (2.5) 48.03 (0.0) 48.97 (0.3)

Ours 71.67 (1.3) 62.09 (0.0) 64.25 (0.1) 77.60 (0.0) 70.52 (0.3) 73.09 (0.1)

0 200 400 600 800 1000 1200
Prediction Ranking

0

200

400

600

800

1000

1200

La
be

l R
an

ki
ng

Data points
Spearman s rank correlation coefficient value=0.66

Figure 3: Visualization of the Spearman’s rank correlation
between the ranks of the actual relative improvements and the
predicted relative improvements of code pairs, for our model.

in Table 7, we observe results similar to those ob- 737

tained from the smaller 1.3B model, where our 738

model is consistently superior to other baselines. 739

Analysis on Bias for Code Sequence In our code 740

efficiency judgment task, we put a sequence of 741

two codes in the input of Code LLMs, and the 742

Code LLMs may have a bias in this sequence (e.g., 743

predicting the code at the last more often). To 744

see whether they have such a bias, we conduct 745

an additional experiment, flipping the order of the 746

code pairs in the input. We report the results in 747

Table 8, and, from this, we observe that there are 748

no such the notable bias in the sequence of codes. 749

Visualization of Rank Correlation To visualize 750

how accurate the predicted results of relative im- 751

provements of code pairs from our model are, we 752

compare their ranks with the ground-truth ranks 753

calculated by actual relative improvements of code 754

pairs. As shown in Figure 3 where we present a 755

scatter plot of rank correlations along with their 756

coefficient value, we observe that the results from 757

our approach have a positive correlation with the 758

ground truth, demonstrating its effectiveness in pre- 759

dicting the relative improvement of code pairs. 760

9



Qualitative Analysis We provide some example761

codes in Python and C++ in Figures 4 and 5. From762

these two examples, we observe that, despite the763

difference in grammar across different program-764

ming languages, code pairs from them can share765

the same underlying algorithms. This result sup-766

ports our finding on generalization ability that our767

model trained on one programming language can768

be generalizable to other languages (See Table 4).769

10



Table 9: A list of prompts that we used for code refinement and efficiency predictions. It is worth noting that the variable inside
the parentheses {} is replaced with its actual code.

Types Prompts

Code Refinement Update the given code to make it more efficient. {Original code}

Efficiency Classification

Given a selection of code, determine which one is the most efficient in
computing.
A: {Original code or Refined code}
B: {Refined code or Original code}

Efficiency Regression

Given two sets of code, assess how much Code B has improved compared
to Code A.
A. {Original code}
B. {Refined code}

1 # Python Example
2 N = int(eval(input()))
3 print (((N*(N-1))//2))

1 // C++ Example
2 #include <iostream >
3 using namespace std;
4 int main() {
5 long long int n;
6 cin >>n;
7 cout <<n*(n-1)/2<< endl;
8 }

Figure 4: Generated Python and C++ samples for the question "For an integer N, we will choose a permutation {P1, P2, ..., PN}
of {1, 2, ..., N}. Then, for each i = 1, 2, ..., N, let Mi be the remainder when i is divided by Pi. Find the maximum possible
value of M1 +M2 + · · ·+MN . Constraints N is an integer satisfying 1 ≤ N ≤ 109".

1 # Python Example
2 from math import floor ,ceil
3

4 X = int(eval(input()))
5 cash = 100
6 count = 0
7 while cash < X:
8 cash=floor(cash *1.01)
9 count += 1

10

11 print(count)

1 // C++ Example
2 #include <bits/stdc ++.h>
3 using namespace std;
4 int main() {
5 long long X;
6 cin >> X;
7

8 int year =0;
9 long long s=100;

10

11 while(s<X){
12 s=s*1.01;
13 year ++;
14 }
15 cout << year << endl;
16 }

Figure 5: Generated Python and C++ samples for the question "Takahashi has a deposit of 100 yen (the currency of Japan) in
AtCoder Bank. The bank pays an annual interest rate of 1% compounded annually. (A fraction of less than one yen is discarded.)
Assuming that nothing other than the interest affects Takahashi’s balance, in how many years does the balance reach X yen or
above for the first time?".

11


	Introduction
	Related Work
	Method
	Code Refinement
	Judging Code Efficiency

	Experiment
	Experimental Setups
	Experimental Results

	Conclusion
	Additional Experimental Setups
	Additional Experimental Results

