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Abstract
To solve safety-critical decision-making prob-
lems, Inverse Constrained Reinforcement Learn-
ing (ICRL) infers constraints from expert demon-
strations and seeks to imitate expert preference
by utilizing these constraints. While prior ICRL
research commonly overlooks the discrepancy be-
tween the training and deploying environments,
we demonstrate that such a discrepancy can sig-
nificantly compromise the reliability of the in-
ferred constraints and thus induce unsafe move-
ments. Motivated by this finding, we propose
the Robust Constraint Inference (RCI) problem
and an Adaptively Robust ICRL (AR-ICRL) al-
gorithm to solve RCI efficiently. Specifically,
we model the impact of misspecified dynamics
with an opponent policy and learn a robust pol-
icy to facilitate safe control in a Markov Game.
Subsequently, we adjust our constraint model to
align the learned policies to expert demonstra-
tions, accommodating both soft and hard opti-
mality in our behavioral models. Empirical re-
sults demonstrate the significance of robust con-
straints and the effectiveness of the proposed
AR-ICRL algorithm under continuous and dis-
crete domains. The code is available at https:
//github.com/Jasonxu1225/AR-ICRL.

1. Introduction
When deploying a Reinforcement Learning (RL) algorithm
to practical applications, an important requirement is that
the agent’s behaviors should adhere to the constraints of
given tasks (Garcı́a & Fernández, 2015; Liu et al., 2021;
Brunke et al., 2022). However, due to the complexity of real-
world environments (e.g., auto-diagnosis, robot control, and
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autonomous driving), the underlying constraints are often
time-dependent, context-sensitive, and relevant to human
experience. How to accurately specify these constraints and
facilitate safe control remains a critical challenge.

To address this challenge, Inverse Constrained Reinforce-
ment Learning (ICRL) (Scobee & Sastry, 2020; Malik et al.,
2021) aims to recover the constraints respected by expert
agents from their demonstrations and learn the correspond-
ing policies. Compared to directly imitating the expert
behaviors, modeling constraints offer better interpretability
of experts’ preferences, and these constraints can potentially
support downstream applications within similar domains.

To study the validity of a learned constraint, a common ap-
proach is to examine whether an RL policy can replicate
expert demonstrations under this constraint. Existing ICRL
methods (Liu & Zhu, 2022; 2023; 2024; Liu et al., 2023;
Gaurav et al., 2023; Qiao et al., 2023) typically train and
test their constraints within an identical environment. This
configuration, nevertheless, contradicts the real-world set-
tings, where a discrepancy often arises between the training
dynamics and those encountered during deployment. Our
study illustrates such a discrepancy is not trivial in safe con-
trol. As the discrepancy scales, the efficacy of a learned
constraint is substantially undermined during deployment,
thereby causing the agent to perform dangerous movements.

In this work, we investigate how the mismatched environ-
mental dynamics influence the efficacy of constraints in
terms of ensuring safe control. Motivated by our findings,
we introduce the problem of Robust Constraint Inference
(RCI). This problem requires the constraints learned in the
training environment to generalize reliably to the testing
environments under an uncertainty set.

To effectively enable RCI, we propose the Adaptively Ro-
bust Inverse Constrained Reinforcement Learning (AR-
ICRL) algorithm. AR-ICRL alternatively solves:

1) Safety-Robust Policy Optimization that learns a control
policy that consistently executes safe actions while main-
taining robustness against the uncertainty of environmental
dynamics. By leveraging the game-theoretic framework,
we model the influence of uncertainty with adversarial at-
tacks from an opponent policy, and the robust policy can be
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effectively learned by solving a two-player Markov game.

2) Adaptive Constraint Inference from a Mixture Policy that
aims at aligning the inferred constraint with expert prefer-
ence. To achieve this goal, we propose an objective that
enables the cost function to maximize the likelihood of gen-
erating the expert demonstration under the maximum causal
entropy (Ziebart et al., 2010) framework, considering the
interplay between the robust policy and its adversarial coun-
terpart. Our objective can be customized to accommodate
both soft and hard optimality in behavioral models, which
play critical roles in inverse control (Skalse & Abate, 2023).

Upon successfully replicating expert demonstrations with
the mixture policy, the robust constraint can be extracted
from imitating behaviors with standard ICRL techniques.
In our experiment, we compare our AR-ICRL algorithm
against other baselines across different scales and types of
disturbances between the training and deploying dynamics.
The results demonstrate that AR-ICRL can learn a safe
control policy and the corresponding robust constraint.

Contribution. Our main contributions are: 1) We study
the impact of discrepancies between the training and de-
ployment environmental dynamics on the safety of control
policies. Based on our findings, we define the problem of
inferring robust constraints. 2) We introduce a novel AR-
ICRL algorithm for inferring the safe control policy and
the corresponding robust constraint based on the training
environment and expert demonstrations. 3) We validate the
effectiveness of the inferred constraints in ensuring safe
control across a variety of testing environments.

2. Related Works
Robust Reinforcement Learning. Robust RL studies the
approach to guarantee the robustness of control policy under
uncertainties, disturbances, or structural changes within the
environment (Moos et al., 2022). In this study, we primar-
ily study the robustness to model misspecification where
an agent is trained in one environment and performs in a
different, perturbed version of the environment. In this lit-
erature, while previous works (Morimoto & Doya, 2005;
Grau-Moya et al., 2016) mainly studied the discrete environ-
ments where the problem can be solved by robust dynamic
programming, some recent works (Mankowitz et al., 2020b;
Wang & Zou, 2021; Roy et al., 2017; Zhang et al., 2023)
proposed robust RL algorithms for continuous control by
optimizing the worst-case performance over the uncertainty
set. Additionally, there is a parallel strand of research ad-
dressing the inverse problem in the context of model mis-
match (Gangwani & Peng, 2020; Viano et al., 2021; 2022).
Unlike previous works that primarily focus on the robustness
in reward maximization, recent studies (Russel et al., 2020;
Mankowitz et al., 2020a; Wang et al., 2022; Meng et al.,
2023; Li et al., 2023) expanded the consideration of robust-

ness to safety constraints. However, unlike prior works that
study the forward control problem under safety-robustness,
our work considers an inverse constraint inference problem.

Inverse Constrained Reinforcement Learning. Inverse
Constrained Reinforcement Learning (ICRL) focuses on
recovering the underlying constraint respected by expert
agents from their demonstrations. Previous research pre-
dominantly concentrated on inferring implicit constraints by
identifying the permissibility of actions within certain states.
Scobee & Sastry (2020) proposed to infer implicit constraint
set under the maximum entropy framework (Ziebart et al.,
2008), which was restricted to discrete environments. Sub-
sequent works (Malik et al., 2021; Gaurav et al., 2023)
extended the approach to continuous environments by uti-
lizing neural networks to approximate constraints. Towards
uncertainty-aware constraint inference, McPherson et al.
(2021); Baert et al. (2023) incorporated maximum causal
entropy (Ziebart et al., 2010) principle into ICRL. Liu et al.
(2023); Papadimitriou et al. (2023) applied variational in-
ference and Bayesian Monte Carlo to infer the posterior
distribution of constraints. Xu & Liu (2024) utilized the dis-
tributional Bellman operator and a flow-based trajectory gen-
erator for handling uncertainties. Notably, these works com-
monly focused on applying the inferred constraints within
the same environment from which they were learned. In
contrast, our work aims to infer robust constraints adaptable
to various environments with misspecification, offering a
more realistic application of ICRL.

3. Problem Formulation
Constrained Markov Decision Process. Our environment
is based on a Constrained Markov Decision Process (CMDP)
MT
c := (S,A,T, r, c, ϵ, µ0, γ), where: 1) S and A denote

the space of states and actions. 2) T(s′|s, a) defines the
transition distribution. 3) r(s, a) and c(s, a) denote the re-
ward and cost function (we assume c ≥ 0). 4) ϵ defines the
threshold of the constraint, where ϵ = 0 refers to a hard con-
straint, enforcing absolute satisfaction, while ϵ > 0 denotes
a soft constraint, permitting a certain degree of constraint
violation. 5) µ0 denotes the initial state distribution. 6)
γ ∈ [0, 1) is the discount factor. In our empirical study, we
mainly study an episodic setting where the game ends at
some terminating state or time horizon.

Constrained Reinforcement Learning (CRL). Under a
CMDP MT

c with cost function c and transition function T,
the goal of CRL is to find an optimal policy π(·|s) such that:

argmax
π

Eµ0,T,π

[ H∑
t=0

γt
(
r(st, at) + βH[π(·|st)]

)]
s.t. Eµ0,T,π

[ H∑
t=0

γtc(st, at)
]
≤ ϵ (1)
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where H and H[π(·|st)] denote the planning horizon and
the causal entropy (Ziebart et al., 2010).

Definition 3.1. (Mismatched MDPs) We define a CMDP
MT
c := (S,A,T, r, c, ϵ, µ0, γ), to be mismatched with an-

other CMDP MT′

c := (S,A,T′, r, c, ϵ, µ0, γ) if they differ
only in transition functions (i.e., T ̸= T′). We define a set
of mismatched CMDPs as Mm = {MT

c ,M
T′

c , . . . }, where
their transition functions differ from each other.

Under this setting, we define the robustness of a policy:

Definition 3.2. (Absolute Policy Robustness) We claim a
policy π∀ to have absolute robustness if it consistently satis-
fies the constraints across all possibly mismatched CMDPs:

Eµ0,T,π∀

[ H∑
t=0

γtc(st, at)
]
≤ ϵ, ∀MT

c ∈ Mm (2)

However, identifying such absolutely robust policy presents
a significant challenge and may not be feasible in many
environments, which we show as follows:

Proposition 3.3. Let {MT
c ,M

T′

c } define two mismatched
CMDPs in Mm. Let Π define the space of policy π :
S → ∆(A) and T define the transition space. Let
Qc,π
MT
c
(s, a) = ET,π[

∑H
t=0 c(st, at) | s0 = s, a0 = a] and

V c,π
MT
c
(s) = Ea∼π[Qc,π

MT
c
(s, a)] define the value functions for

discounted cumulative costs under policy π. Let dπMT
c

define
the normalized occupancy measure by following policy π in
the CMDP MT

c . It holds that:

(a) ∃π ∈ Π and ∃(T,T′) ∈ T s.t. Eµ0,π[Q
c,π
MT
c
(s, a)] ≤ ϵ,

but Eµ0,π[Q
c,π

MT′
c

(s, a)] > ϵ.

(b) ∀π ∈ Π, If dπMT
c
(T′ − T)V c,π

MT′
c

> ϵ(1−γ)
γ , then

Eµ0,π[Q
c,π

MT′
c

(s, a)] > ϵ.

The proof is shown in Appendix B.1. Specifically, Propo-
sition 3.3 (a) shows that there always exists a policy that
satisfies constraints in one environment but violates the con-
straint in another. Proposition 3.3 (b) shows that all the
policies in one environment may violate the constraint in an-
other environment as long as their divergence is big enough.

Accordingly, deriving a policy solely from the learning en-
vironment and expecting it to consistently ensure safety
across various deployment environments poses substantial
challenges. A more realistic approach would be to assume
that the discrepancy between the learning and testing envi-
ronments is bounded under an uncertainty set.

Definition 3.4. (Relative Policy Robustness) We define a
policy, denoted as π∀̄, to have relative robustness if it consis-
tently satisfies the constraints across all mismatched CMDPs
which have transition dynamics being in the uncertainty set

T L
α = {αTL + (1 − α)T̄, ∀T̄ ∈ T }, where 0 ≤ α ≤ 1.

Here TL signifies the transition of a reference CMDP MTL

c .
Such a relatively robust policy should satisfy:

Eµ0,T,π∀̄

[ H∑
t=0

γtc(st, at)
]
≤ ϵ, ∀MT

c ∈ MT Lα
c (3)

where MT Lα
c denotes the set of CMDPs having their transi-

tions being in the uncertainty set T L
α .

In our problem setting, TL denotes the learning environ-
ment, which serves as the centroid of the uncertainty set,
and α measures the size of the uncertainty set. Note that
the set T L

α is equivalent to the (s; a)-rectangular uncertainty
set (Iyengar, 2005) centered around TL. From now on, we
focus on the relative robustness unless specifically stated.

Inverse Constrained Reinforcement Learning (ICRL).
In the ICRL problem, the cost signals c(s, a) are not readily
observable. Instead, the learner has access to expert demon-
strations De which is distributed according to the optimal
expert policy π∗

MTe

c∗
that implicitly respects the underlying

ground-truth constraints Eµ0,Te,π∗ [
∑H
t=0 γ

tc∗(st, at)] ≤ ϵ.

Under this setting, the goal of ICRL is to recover this con-
straint from expert demonstrations De. For brevity, we
define the constraint C, parameterised by c, ϵ and T, as a
mapping from a policy π to binary variables (feasibility of
π). In alignment with previous works (Malik et al., 2021),
we study hard constraints such that ϵ = 0, and T can be
estimated by interacting with the environment under the
online RL setting. Consequently, inferring the constraints
can be simplified to learn the cost function c.

Building upon the insights from Proposition 3.3, we con-
tend that it is significant for ICRL algorithms to consider the
potential discrepancies in transition dynamics between the
training and applied environments. As Figure 1 shows, even
if we recover the true constraints c∗ from expert demonstra-
tions De, there is no guarantee that the corresponding opti-
mal policy π∗

MT
c∗

can remain safe in a different mismatched
CMDP. This limitation poses a substantial challenge to the
effective deployment of ICRL in practical applications.

To handle the challenge and learn an optimal globally ro-
bust policy, we propose the following Robust Constraint
Inference problem:
Definition 3.5. (Robust Constraint Inference (RCI)) Sup-
pose that there exists a class of transitions T L

α centered
around the learning transition TL. Given a demonstration
dataset De that respects c∗ (unknown). The goal of the RCI
is to infer a robust constraint c∀ such that the optimal policy
trained under the corresponding CMDP MTL

c∀
is safe across

all environments within MT Lα
c∗ (i.e., satisfying Eq. (3)).

Note that we do not require explicit knowledge of the expert
policy and environment. The core requirement is that these

3



Robust Inverse Constrained Reinforcement Learning under Model Misspecification

Figure 1. An example of the robust constraint under windy Grid-
world environments (check Section 5.1 for details). The training
environment (left) has no wind, while the testing environments
(middle and right) have stochastic upward winds. The left figure
shows the expert trajectory and ground-truth constraint in the train-
ing environment. The middle figure shows although the inferred
constraint matches the ground-truth constraint, the learned policy
still violates constraints during testing. The right figure shows the
robust constraint prevents violating the ground-truth constraint.

demonstrations respect the ground-truth constraints. For
simplicity, we assume the expert environment is identical to
the learning environment in this work.

4. Learning Robust Constraint via Inverse
Reinforcement Learning

To infer robust constraints that can be generalized to
the environment with mismatched dynamics, we propose
the Adaptively-Robust Inverse Constrained Reinforcement
Learning (AR-ICRL) algorithm. Specifically, AR-ICRL
solves the RCI problem by alternatively solving: 1) a
forward control problem to perform policy update under
the mismatched dynamics and the inferred constraint (Sec-
tion 4.1); 2) a backward behaviors alignment problem that
minimizes the discrepancy between the policy model and
expert demonstrations by updating constraints (Section 4.2).
AR-ICRL converges when the disturbed policy matches the
expert policy. The robust constraint can be extracted from
the learned robust policy (Section 4.3).

4.1. Safety-Robust Policy Optimization
In this section, we derive a game-theoretic method to learn
the robust policy that can consistently satisfy the inferred
constraint across all mismatched CMDP M ∈ MT Lα

c .

Following Malik et al. (2021), the permissibility indicator
ϕ(s, a) denotes the probability that performing an action
a under the state s is feasible, and the cost is defined as
c(s, a) = − log ϕ(s, a). Under this definition, adhering to
constraints can be interpreted as ensuring feasibility. The
CRL problem (Obj. (1)) can then be formalized as follows:

max
π∈Π

E
[ H∑
t=0

γt
(
r(st, at) + βH[π(·|st)]

)
| π,ML

]
s.t. E

[ H∑
t=0

γt log ϕ(st, at) | π,ML
]
≥ ϵe(ϕ) (4)

where ϵe(ϕ) = EDe

[∑H
t=0 γ

t log ϕ(set , a
e
t )
]
, and ML de-

notes the learning CMDP with transition TL. The Lagrange
dual problem is given by:

g(λ) = max
π∈Π

E
[ H∑
t=0

γt
(
r(st, at) + βH[π(·|st)]

)
+

λ log ϕ(st, at) | π,ML
]
− λϵe(ϕ) (5)

where λ ≥ 0 denotes the Lagrange multiplier. Since our
objective is to find the safety-robust policy that can respect
the constraint across all mismatched CMDPs MT Lα (the
subscript c is omitted for brevity), we optimize the policy to
ensure constraint satisfaction under the worst-case transition
among T L

α as follows:

max
π∈Π

min
M̄∈MTLα

E
[ H∑
t=0

γtλ log ϕ(st, at) | π, M̄
]
+ (6)

E
[ H∑
t=0

γt
(
r(st, at) + βH[π(·|st)]

)
| π,ML

]
− λϵe(ϕ)

To solve the problem, inspired by Viano et al. (2021), the
minimization over the environmental classes can be inter-
preted as the minimization over the opponent policies πop

that take over the agent and perform the worst actions:

Proposition 4.1. For the mismatched CMDPs MT Lα with
the transitions bounded in the uncertainty set T L

α = {αTL+
(1− α)T̄, ∀T̄ ∈ T }, we have

min
M̄∈MTLα

E
[ H∑
t=0

γt log ϕ(st, at) | π, M̄
]

(7)

≤ min
πop∈Π

E
[ H∑
t=0

γt log ϕ(st, at) | απ + (1− α)πop,ML
]

The proof can be found in Appendix B.2. For clarity, we
use πpl to represent the original task policy, which con-
siders both rewards and costs (safety), and πop to denote
the opponent policy that specifically targets safety. Since
minimizing the objective can be effectively achieved by
minimizing its upper bound, the proposition enables us to
formulate the Lagrangian problem into a two-player Markov
game as follows:

(8)min
λ

max
πpl∈Π

min
πop∈Π

E
[
λ

H∑
t=0

γt log ϕ(st, at) | απpl + (1− α)πop,ML
]
+

E
[ H∑
t=0

γt(r(st, at) + βH[πpl(·|st)]) | πpl,ML
]
− λϵe(ϕ)

where apl is the action of the player policy πpl and aop is
chosen by the opponent policy πop as the adversarial attack.
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4.2. Adaptive Constraint Inference from Mixture Policy
This section focuses on inferring the underlying constraint c
under the framework of a two-player Markov game. Specif-
ically, given the expert demonstration dataset De, we need
to infer the underlying constraint that the expert adheres to
in the presence of the opponent policy πop.

Following previous ICRL works (Scobee & Sastry, 2020;
Malik et al., 2021), we update the feasibility function ϕω
(parameterized with ω) by maximizing the likelihood of gen-
erating expert demonstrations. Inspired by Gleave & Toyer
(2022), we define the discounted likelihood as follows:

Definition 4.2. For a trajectory τ = (s0, a0, s1, . . . , sH+1),
its discounted likelihood with policy π and transition T is:

pπMT(τ) = µ0(s0)

H∏
t=0

T(st+1|st, at)π(at|st)γ
t

(9)

Intuitively, when γ = 1, the discounted likelihood is equiva-
lent to the traditional likelihood of τ under the policy π. For
γ ≤ 1, the probabilities of performing later actions in the
trajectory are regularized towards 1 by raising them to γt.

We can then derive the gradient of the log-likelihood of
generating expert demonstrations, which accommodates
both hard and soft behaviors from the opponent. We’ll start
with the scenario involving the hard optimal opponent.

Assumption 4.3. On a state s̃, if ã = argmaxQc,∗
MT
c
(s̃, a)

where Qc,∗
MT
c
(s, a) = Eπcmax,T

[
∑H
t=0 γ

tc(st, at) | s0 =

s, a0 = a] and πcmax defines the cost maximization policy,
then the expert agent will not select ã, i.e., πe(ã|s̃) = 0.

Intuitively, we assume the expert preference πe will not over-
lap with that of the deterministic cost maximizing policy
πcmax. This assumption is reasonable since cost maximiza-
tion action is not safe and thus sub-optimal for the expert
agent. Based on this assumption, we can show that:

Proposition 4.4. (Log-likelihood gradient with hard opti-
mal opponent) Let πmix = απpl+(1−α)πop define the mix-

ture policy. Let EDe

[
log pπ

mix

MT
c

(τ)
]

define its likelihood of
generating the expert demonstration in the training environ-
ment ML with estimated costs function c(·) = − log ϕω(·).
Let πop denote a deterministic cost maximization policy, and
the player policy πpl follows the soft optimal representation:

πpl(at|st) = ϕω(st, at)
λ· (10)

exp
(
γEst+1 [V

soft,pl
MT
c

(st+1)] + r(st, at)− V soft,pl
MT
c

(st)
)

where the value function for player policy is defined as:

V soft,pl
MT
c

(s) = E
[ H∑
t=0

γt[r(st, at) + λ log ϕω(st, at)+

βH(πpl(·|st))] | s0 = s
]

(11)

The gradient of our log-likelihood ∇ωEDe

[
log pπ

mix

MT
c

(τ)
]

can be represented by:

(12)

EDe

[ H∑
t=0

γtλ∇ω log ϕω(·)
]
− Eπpl

[ H∑
t=0

γtλ∇ω log ϕω(·)
]

The proof is in Appendix B.3. Note that even though the
opponent’s representation is left out in the gradient due
to Assumption 4.3, πop implicitly influences the results
because of mixture sampling (πmix = απpl+(1−α)πop).
Under this setting, the opponent policy πop serves as a
worst-case safety attacker, aiming to maximize cumulative
costs. Conversely, the player policy πpl incorporates causal
entropy into its decision-making process, leading to the
adoption of a softmax representation (Ziebart et al., 2010),
which aligns well with our forward problem (Obj. (8)).
In our implementation, we mainly follow this setting in a
discrete environment where examining the value of each
action is computationally tractable (see Appendix A.1).

Additionally, in Equation (10), ϕ(st, at) ∈ [0, 1] determines
whether performing action at under the state st is feasible,
and λ effectively controls its strength of behavior regular-
ization (larger λ indicates stronger constraint). Notably, we
have πpl(at|st) = 0 when ϕ(·) = 0, which is consistent
with the enforcement of hard constraints.

To drive comprehensive results, we derive an additional
objective to update ϕω when the opponent policy πop is
also soft-optimal. This approach is independent of Assump-
tion 4.3, broadening the applicability of our methods.

Proposition 4.5. (Log-likelihood gradient with soft optimal
opponent) Let πmix = απpl+(1−α)πop define the mixture
policy. Let the player policy πpl follow the soft optimal
representation (Equation (10)), and the opponent policy πop

follow the soft optimal representation as follows:

πop(at|st) = (13)

exp
(
γEst+1

[V soft,op
MT
c

(st+1)]− log ϕω,t − V soft,op
MT
c

(st)
)

V soft,op
MT
c

(s)=E

[
H∑
t=0

γt[− log ϕω,t+βH(πop(·|st))] |s0=s

]

where for brevity, we denote ϕω,t = ϕω(st, at). We can
derive a lower bound for EDe [log p

πmix

MT
c

(τ)]:

EDe

[
log pπ

mix

MT
c

(τ)
]
≥ L(De,MT

c , α) = (14)

EDe

[
H∑
t=0

γtα
(
Qsoft,pl
MT
c

(st, at)− V soft,pl
MT
c

(st)
)]

+

EDe

[
H∑
t=0

γt(1− α)
(
Qsoft,op
MT
c

(st, at) + V soft,op
MT
c

(st)
)]

+ C
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where C indicates a constant. The gradient of our log-
likelihood ∇ωL(De,MT

c , α) can be represented by:

EDe [

H∑
t=0

γt(αλ+ α− 1)∇ω log ϕω,t]− (15)

αλEπpl [
H∑
t=0

γt∇ω log ϕω,t]+(1−α)Eπop [
H∑
t=0

γt∇ω log ϕω,t]

The proof is shown in Appendix B.4. When α=1, it sim-
plifies to the traditional ICRL objective. In this framework,
we can update ϕω(·) by maximizing the lower bound of log-
likelihood EDe [log p

πmix

MT
c

(τ)]. In our implementation, we
follow this setting in the continuous state-action space (Ap-
pendix A.2) where softmax policy representation performs
better than hardmax ones (Haarnoja et al., 2018).

4.3. Extract Robust Constraint

Robust Constraint Distillation. In the proposed AR-ICRL
algorithm, we infer a robust policy by alternatively updat-
ing the policy models (πpl and πop (see Section 4.1) and
the permitsibility function ϕω (representing constraint, see
Section 4.2) until the mixture policy πmix can reproduce
expert demonstration (Line 8 in Algorithm 1). After this
process, the player’s policy πpl is a robust policy that fol-
lows expert movements under the influence of adversarial
attack from πop. However, our goal is to infer a constraint
that enables safe control without modeling the opponent, to
achieve it, we consider distilling the robustness from policy
to constraint. Specifically, we use πpl as the expert policy
and run regular ICRL algorithms to recover the robust cost
function c∀ = − log ϕ∀ in the learning environment ML.
To accelerate learning, we can initialize ϕ∀ with the esti-
mated ϕω, and adapt the scale of constraints (represented
by ϕ∀) until a regular imitating policy π̂ can reproduce the
robust behaviors πpl.
Proposition 4.6. (Constraint Robustness) Let πmec̃ define
the optimal policy under the learning CMDP MTL

c̃ with
the cost function c̃ inferred by MEICRL. Let πroĉ define the
optimal policy under MTL

ĉ under the robust cost function
ĉ inferred by Algorithm 1. Let V c,π

MT′
c∗
(s) define the value

function of the true cost under the CMDP MT′

c∗ and policy
π. Assume that c̃ = c∗, and Eµ0

[V c,πe

MTe

c∗
(s)] = ϵ. The

following inequality must hold:

(a) ∃T′ ∈ {T : maxs,a |T− TL| ≤ 2(1− α)} such that
Eµ0

[V
c,πmec̃
MT′
c∗

(s)] ≥ ϵ.

(b) ∀T′ ∈ {T : maxs,a |T− TL| ≤ 2(1− α)} such that
Eµ0

[V
c,πroĉ
MT′
c∗

(s)] ≤ ϵ.

The proof is in Appendix B.5. This demonstrates that the
standard MEICRL algorithm faces challenges in deducing

the robust constraint when confronted with perturbed en-
vironments. In contrast, the proposed algorithm is able to
ensure the constraint robustness in the face of such environ-
mental mismatches.

Leveraging the aforementioned ideas for robust constraint
inference, Algorithm 1 shows the procedure of AR-ICRL.

Algorithm 1 Adaptively Robust Inverse Constrained Rein-
forcement Learning (AR-ICRL)

1: Input: Expert trajectories De, opponent strength 1−α,
learning environment ML and stopping criteria ξ.

2: Initialize player and opponent policies (πpl and πop).
3: Set ∀(s, a), ϕω(s, a) = 1 (e.g., cω(·) = 0).
4: repeat
5: Update πpl and πop with objective (8).
6: Collect nominal trajectories D̂ by rollout with

πmix = απpl + (1− α)πop in the ML.
7: Update cω by ascending the gradient (12) or (15).
8: until |ρD̂ − ρDe | ≤ ξ (ρ is the occupancy measure).
9: Set πpl as the expert policy, and extract the robust cost

c∀ in ML with classical ICRL algorithms.
10: Output: Robust policy πpl, robust constraint c∀.

5. Empirical Evaluation
In this section, we empirically evaluate the efficacy of the
proposed AR-ICRL algorithm in both discrete and continu-
ous environments under transition dynamics mismatch. Fur-
thermore, we furnish a series of visualization outcomes to
offer a more in-depth insight into AR-ICRL’s effectiveness.

Experimental Settings. Our experiment results are mainly
based on a public ICRL benchmark (Liu et al., 2023). How-
ever, in contrast to previous ICRL works that use the same
environment for training and testing, our study evaluates our
model in testing environments where their dynamics differ
from those used for training. This discrepancy allows us
the study whether the robust constraint can facilitate safe
control. Throughout our experiment, we mainly use the
following metrics: 1) Constraint Violation Rate measures
the probability that a policy violates the constraint in a tra-
jectory, which is the top concern in this work. 2) Episode
Costs accumulates the total costs in the whole episode. 3)
Feasible Rewards calculates the total rewards obtained by
the agent before violating any constraints.

Comparison Methods. We utilize the following base-
lines besides the proposed AR-ICRL: 1) Maximum
Entropy Inverse Constrained Reinforcement Learning
(MEICRL) (Malik et al., 2021) follows the maximum en-
tropy (Ziebart et al., 2008) framework with PPO-Lagrange
method for constrained policy optimization. 2) Binary Clas-
sifier Constraint Learning (BC2L) simply utilizes a binary
classifier as the constraint model. 3) Variational ICRL (VI-
CRL) (Liu et al., 2023) captures the epistemic uncertainty
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in constraint inference using a Beta distribution. 4) In-
verse Reachable Constrained Optimization (IRCO) extends
the Reachable Constrained Optimization (RCO) (Yu et al.,
2022) with the maximum entropy inverse constraint infer-
ence, which utilizes reachability analysis and feasible sets
for constrained policy optimization.

5.1. Model Performance in Discrete Environments
In this experiment, we develop three distinct Gridworld en-
vironments, each characterized by unique constraints. As
depicted in the top row of Figure 2, the primary task for the
agent in these environments is to navigate from an initial lo-
cation (red) to a designated target (blue), while avoiding the
unobservable constraints (black). Given the expert demon-
stration, we train the agents under the transition dynamics
without disturbances and evaluate these agents under up-
ward winds (disturbances). Specifically, the scale of t wind
is controlled by a predetermined probability (denoted as pw).
A stronger wind (with larger pw) exerts an upward force on
the agent’s selected action with a higher probability. Based
on this discrete environment, we compare our method ex-
clusively with the well-known MEICRL method to examine
the significance of robustness in ICRL.

Figure 2. Three Gridworld settings and the testing performance of
different methods under different levels of upwind.

Figure 2 shows the constraint violation rate in three stochas-
tic windy Gridwords with different levels of wind strength
pw during testing. The corresponding reward curve is shown
in Figure 6 in Appendix D.1. The results show that as the
wind strength pw increases, all the methods exhibit a greater
probability of violating constraints across the environments.
However, by incorporating the safety attacks into the train-
ing process, AR-ICRL shows a notably lower incidence of
constraint violations compared to MEICRL. It also benefits
the accumulation of higher feasible rewards by achieving the
goal while avoiding the constraint. Moreover, larger oppo-
nent strength (lower α) can enhance the policy’s safety under
the mismatch between training and testing environments.
This indicates the significance of modeling the adversarial

attacks from the introduced opponent.

5.2. Model Performance in Continuous Environments
Based on the ICRL benchmark (Liu et al., 2023), we conduct
experiments on three continuous robot control tasks with
predefined constraints, including Blocked Half-Cheetah,
Blocked Ant, and Crippled Walker. For Blocked Half-
Cheetah and Blocked Ant tasks, we implement a constraint
that confines the X-coordinate position of the agents to ≥ 3,
and for the Crippled Walker task, we impose a constraint
on the thigh angle θ of the agent, limiting it to |θ| ≤ 0.6.
Each experiment is repeated with four random seeds, over
which the mean ± standard deviation (std) results are re-
ported. Additionally, for fairness and simplicity, we keep
α = 0.95 in the AR-ICRL across the environments. Please
check Appendix C.1 for more environmental details.

To assess the model’s performance under misspecified en-
vironments, we train the agents in a noise-free environ-
ment. Subsequently, we test their performance by in-
troducing three different types of noises to simulate the
discrepancies that might be encountered in practice: 1)
Fully random noise: We integrate the Gaussian noise into
the transition function, formulated as pT (st+1|st, at) =
T (st, at) +N (µ, σ). This method introduces randomness
across the entire spectrum of state transitions, introducing
variability in the agents’ responses. 2) Partially random
noise: This type of noise differs from the fully random vari-
ant by being more targeted. Instead of affecting the entire
agent, it is applied only to the specific constrained feature
in the state space (e.g., the position of the Blocked Half-
cheetah). 3) Attack noise: This type of noise encourages
the agent to violate safety constraints (e.g., the noise in
the Blocked Half-Cheetah environment is applied to push
the agents backward). For each type of noise, we define
three scales - large, medium, and small - to represent vary-
ing degrees of mismatch between the training and testing
environments. Note that the fully random noise remains
consistent across the environments whereas partially ran-
dom noise and attack noise are customized for each specific
task (refer to Appendix C.2). Under such designs, we evalu-
ate the model’s adaptability and robustness under different
scales of environmental discrepancy.

Table 1 shows the evaluation results with large-scale noises.
Check Table 3, Table 4, and Table 5 in Appendix D.2 for
the results without noise, and with medium and small scales
of noises. The bolding value means the best result (the high-
est reward, lowest cost, and lowest violation rate) in each
setting. We can find that almost all the methods encounter
challenges in maintaining consistent safety when tested in
a disparate environment, which highlights the significance
of considering the potential mismatch during the training
process. Moreover, larger randomness tends to result in a
more pronounced decrease in model performance. How-
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Table 1. Evaluation results in three environments with large-scale random noises. Each value is reported as the mean ± standard deviation
for 50 episodes and 4 seeds.

Env Method
Large Scale

Fully Random Noise
Large Scale

Partially Random Noise
Large Scale

Attack Noise
Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Blocked
Half-Cheetah

MEICRL 464.3±140.1 144.0±89.2 40%±18% 2431.2±2032.8 11.3±25.2 48%±12% 1223.6±1137.0 308.2±216.8 76%±23%
BC2L 591.8±117.6 261.1±83.8 60%±6% 708.6±812.0 95.2±193.0 65%±10% 22.5±7.5 973.1±12.7 100%±0%

VICRL 426.0±236.1 266.4±163.7 52%±25% 1668.4±1583.5 37.9±105.5 50%±8% 803.9±712.1 411.6±211.2 80%±13%
IRCO 540.4±56.9 133.2±49.4 43%±13% 2682.3±2185.1 8.4±21.4 43%±8% 1476.2±428.5 78.8±16.2 72%±13%

AR-ICRL 727.8±87.3 90.6±10.1 31%±10% 2968.9±1842.7 10.1±27.6 34%±2% 1691.0±398.4 47.6±16.2 63%±8%

Blocked
Ant

MEICRL 1950.1±551.8 130.7±13.7 59%±5% 3472.8±399.0 96.5±26.6 70%±5% 1420.2±1223.1 154.0±103.4 56%±30%
BC2L 1418.9±227.6 114.9±22.2 58%±9% 6218.7±1089.1 88.7±45.1 65%±8% 5487.8±2880.4 146.1±123.5 55%±42%

VICRL 1388.3±82.4 130.5±15.8 68%±4% 5650.6±2227.9 91.1±57.6 69%±12% 5698.3±4870.1 191.3±169.5 54%±45%
IRCO 1702.0±288.4 118.1±41.1 60%±10% 3508.4±546.5 91.8±38.1 67%±7% 1780.5±1123.9 178.6±110.9 58%±20%

AR-ICRL 2326.2±56.8 109.3±26.6 53%±4% 4382.9±366.3 75.4±17.6 59%±6% 2498.1±1075.7 113.8±98.0 44%±16%

Crippled
Walker

MEICRL 45.6±8.8 4.45±2.86 38%±18% 223.0±69.7 11.5±8.1 74%±24% 93.1±34.7 16.7±11.0 75%±39%
BC2L 46.6±6.6 4.73±1.77 39%±17% 211.4±107.7 11.8±6.1 77%±17% 36.5±16.0 14.8±9.7 71%±39%

VICRL 50.8±5.9 3.54±1.54 40%±8% 259.8±39.7 9.4±4.1 74%±5% 24.7±9.0 42.4±47.7 74%±22%
IRCO 44.2±2.5 3.43±2.67 34%±16% 171.1±21.8 11.4±9.2 69%±24% 63.4±85.2 30.5±20.1 68%±14%

AR-ICRL 52.4±11.3 3.79±1.10 31%±9% 272.6±65.1 6.8±2.3 65%±12% 143.6±19.2 10.8±8.9 53%±37%

ever, compared to other methods, AR-ICRL consistently
exhibits fewer constraint violations across the environments
regardless of the extent of the noise scales and types. This
underscores the safety robustness of AR-ICRL and the ef-
fectiveness of utilizing the robust constraint for addressing
the transition dynamics mismatch. Interestingly, we find
BC2L and VICRL demonstrate relatively higher rewards in
the Blocked Ant environment. This is due to their unique
approach to predicting step-wise costs, which differs from
the primarily MEICRL-based mechanisms employed by the
other two methods. Nevertheless, despite their ability to
attain higher rewards, it is essential to note that they can not
guarantee safety, which is our primary concern.

5.3. Results Visualization
To better understand the effectiveness of AR-ICRL, we
visualize the learned constraints and trajectories.

Figure 3. The trajectories generated by MEICRL and AR-ICRL in
three Gridworld settings under the UpWind pw = 0.1.

Trajectories in Gridworlds. We visualize the trajectories
generated by MEICRL and AR-ICRL in three windy Grid-
worlds in Figure 3. Check Figure 7 in Appendix D.1 for
trajectories without wind. We can find that by training
with the safety opponent, AR-ICRL tends to consistently

maintain a larger distance from the constrained locations.
This strategy effectively reduces the likelihood of violating
constraints when deployed to a perturbed environment.

Robust Constraint Visualization. Figure 4 illustrates the
robust constraints in three Gridworlds recovered by AR-
ICRL. We can find that compared to the original constraints
(Figure 2), the recovered constraints offer greater robustness
against underlying perturbations.

Figure 4. The robust constraints recovered by AR-ICRL under
three Gridworld environments.

In terms of the continuous environments, we visualize the
constraints inferred by MEICRL and AR-ICRL by sampling
from the state-action spaces. Figure 5 shows the results in
the Blocked Ant environment, where red curves are gener-
ated by synthetic sampling data and blue points denote the
agent’s recorded position with the corresponding predicted
cost during testing. We find that the constraint recovered
by AR-ICRL is generally more conservative than MEICRL,
leading to safer policy strategies.

6. Limitation
Requirement for environment interaction. AR-ICRL oper-
ates in an online learning framework, where direct interac-
tion with the environment is necessary for policy improve-
ment and constraint inference. This approach may not be
feasible in situations where interactions are costly or haz-
ardous. Extending our model to offline settings could offer
a safer and more practical alternative.
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Figure 5. The recovered constraint in the Blocked Ant environ-
ment by MEICRL and AR-ICRL. Check Figure 8, 9, and 10 in
Appendix D.2 for complete results.

Assumption of the uncertainty set. Our approach assumes
that the discrepancy between training and deployment envi-
ronments is bounded. This assumption may not always hold
in real-world scenarios where environmental dynamics can
be highly unpredictable and not easily represented within a
predefined uncertainty set.

7. Conclusion
In this study, we highlight the critical importance of Inverse
Constrained Reinforcement Learning (ICRL) algorithms
in acknowledging and addressing the potential discrepan-
cies between training and deployment environments. We
introduce the Adaptively Robust Inverse Constrained Re-
inforcement Learning (AR-ICRL) approach as a pioneer-
ing solution to the Robust Constraint Inference problem,
facilitating safe control. By alternatively solving the safety-
robust policy optimization and adaptive constraint inference
problem, AR-ICRL effectively learns a robust policy that
adheres to inferred constraints and further deduces a ro-
bust constraint. Future efforts will focus on enhancing the
algorithm’s generalization capabilities, computational effi-
ciency, and adaptability to real-world applications, aiming
for broader applicability and improved safety.

Acknowledgements
This work is supported in part by the Shenzhen Funda-
mental Research Program (General Program) under grant
JCYJ20230807114202005, Guangdong-Shenzhen Joint Re-
search Fund under grant 2023A1515110617, GuangDong
Basic and Applied Basic Research Foundation under grant
2024A1515012103, National Key R&D Program of China
under grant No.2022ZD0116004, Shenzhen Science and
Technology Program ZDSYS20211021111415025, and
Guangdong Provincial Key Laboratory of Mathematical
Foundations for Artificial Intelligence (2023B1212010001).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

consequences of our work, none of which we feel must be
specifically highlighted here.

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-

forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Baert, M., Mazzaglia, P., Leroux, S., and Simoens, P. Max-
imum causal entropy inverse constrained reinforcement
learning. arXiv preprint arXiv:2305.02857, 2023.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou,
S., Panerati, J., and Schoellig, A. P. Safe learning in
robotics: From learning-based control to safe reinforce-
ment learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

Gangwani, T. and Peng, J. State-only imitation with transi-
tion dynamics mismatch. In International Conference on
Learning Representations (ICLR), 2020.

Garcı́a, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Jounral of Machine Learning
Research, 16:1437–1480, 2015.

Gaurav, A., Rezaee, K., Liu, G., and Poupart, P. Learning
soft constraints from constrained expert demonstrations.
In International Conference on Learning Representations
(ICLR), 2023.

Gleave, A. and Toyer, S. A primer on maximum causal
entropy inverse reinforcement learning. arXiv preprint
arXiv:2203.11409, 2022.

Grau-Moya, J., Leibfried, F., Genewein, T., and Braun,
D. A. Planning with information-processing constraints
and model uncertainty in markov decision processes. In
European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases
(ECML-PKDD), pp. 475–491, 2016.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International Conference on Machine Learning (ICML),
pp. 1352–1361, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Con-
ference on Machine Learning (ICML), pp. 1856–1865,
2018.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30:257–280, 2005.

9



Robust Inverse Constrained Reinforcement Learning under Model Misspecification

Li, Z., Hu, C., Wang, Y., Yang, Y., and Li, S. E. Safe rein-
forcement learning with dual robustness. arXiv preprint
arXiv:2309.06835, 2023.

Liu, G., Luo, Y., Gaurav, A., Rezaee, K., and Poupart, P.
Benchmarking constraint inference in inverse reinforce-
ment learning. In International Conference on Learning
Representations (ICLR), 2023.

Liu, S. and Zhu, M. Distributed inverse constrained rein-
forcement learning for multi-agent systems. In Neural
Information Processing Systems (NeurIPS), pp. 33444–
33456, 2022.

Liu, S. and Zhu, M. Learning multi-agent behaviors from
distributed and streaming demonstrations. In Neural In-
formation Processing Systems (NeurIPS), 2023.

Liu, S. and Zhu, M. Meta inverse constrained reinforce-
ment learning: Convergence guarantee and generaliza-
tion analysis. In International Conference on Learning
Representations (ICLR), 2024.

Liu, Y., Halev, A., and Liu, X. Policy learning with con-
straints in model-free reinforcement learning: A survey.
In International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 4508–4515, 2021.

Malik, S., Anwar, U., Aghasi, A., and Ahmed, A. Inverse
constrained reinforcement learning. In International Con-
ference on Machine Learning (ICML), pp. 7390–7399,
2021.

Mankowitz, D. J., Calian, D. A., Jeong, R., Paduraru, C.,
Heess, N., Dathathri, S., Riedmiller, M., and Mann, T.
Robust constrained reinforcement learning for continu-
ous control with model misspecification. arXiv preprint
arXiv:2010.10644, 2020a.

Mankowitz, D. J., Levine, N., Jeong, R., Abdolmaleki, A.,
Springenberg, J. T., Shi, Y., Kay, J., Hester, T., Mann,
T. A., and Riedmiller, M. A. Robust reinforcement learn-
ing for continuous control with model misspecification.
In International Conference on Learning Representations
(ICLR), 2020b.

McPherson, D. L., Stocking, K. C., and Sastry, S. S. Max-
imum likelihood constraint inference from stochastic
demonstrations. In IEEE Conference on Control Technol-
ogy and Applications (CCTA), pp. 1208–1213, 2021.

Meng, J., Zhu, F., Ge, Y., and Zhao, P. Integrating safety
constraints into adversarial training for robust deep rein-
forcement learning. Information Sciences, 619:310–323,
2023.

Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D.,
and Peters, J. Robust reinforcement learning: A review

of foundations and recent advances. Machine Learning
and Knowledge Extraction, pp. 276–315, 2022.

Morimoto, J. and Doya, K. Robust reinforcement learning.
Neural Computation, 17(2):335–359, 2005.

Narasimhan, H., Cotter, A., Zhou, Y., Wang, S., and Guo, W.
Approximate heavily-constrained learning with lagrange
multiplier models. In Neural Information Processing
Systems (NeurIPS), pp. 8693–8703, 2020.

Papadimitriou, D., Anwar, U., and Brown, D. S. Bayesian
methods for constraint inference in reinforcement learn-
ing. Transactions on Machine Learning Research, 2023.

Perolat, J., Scherrer, B., Piot, B., and Pietquin, O. Approx-
imate dynamic programming for two-player zero-sum
markov games. In International Conference on Machine
Learning (ICML), pp. 1321–1329, 2015.

Qiao, G., Liu, G., Poupart, P., and zhiqiang xu. Multi-modal
inverse constrained reinforcement learning from a mix-
ture of demonstrations. In Neural Information Processing
Systems (NeurIPS), 2023.

Roy, A., Xu, H., and Pokutta, S. Reinforcement learning
under model mismatch. In Neural Information Processing
Systems (NeurIPS), pp. 3043–3052, 2017.

Russel, R. H., Benosman, M., and Van Baar, J. Ro-
bust constrained-mdps: Soft-constrained robust policy
optimization under model uncertainty. arXiv preprint
arXiv:2010.04870, 2020.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-dimensional continuous control using
generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR), 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Scobee, D. R. R. and Sastry, S. S. Maximum likelihood
constraint inference for inverse reinforcement learning.
In International Conference on Learning Representations,
(ICLR), 2020.

Skalse, J. and Abate, A. Misspecification in inverse rein-
forcement learning. In AAAI Conference on Artificial
Intelligence, pp. 15136–15143, 2023.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward con-
strained policy optimization. In International Conference
on Learning Representations (ICLR), 2019.

Viano, L., Huang, Y., Kamalaruban, P., Weller, A., and
Cevher, V. Robust inverse reinforcement learning under
transition dynamics mismatch. In Neural Information
Processing Systems (NeurIPS), pp. 25917–25931, 2021.

10



Robust Inverse Constrained Reinforcement Learning under Model Misspecification

Viano, L., Huang, Y., Kamalaruban, P., Innes, C., Ra-
mamoorthy, S., and Weller, A. Robust learning from
observation with model misspecification. In International
Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 1337–1345, 2022.

Wang, Y. and Zou, S. Online robust reinforcement learning
with model uncertainty. In Neural Information Processing
Systems (NeurIPS), pp. 7193–7206, 2021.

Wang, Y., Miao, F., and Zou, S. Robust constrained rein-
forcement learning. arXiv preprint arXiv:2209.06866,
2022.

Xu, S. and Liu, G. Uncertainty-aware constraint inference
in inverse constrained reinforcement learning. In Interna-
tional Conference on Learning Representations (ICLR),
2024.

Yu, D., Ma, H., Li, S., and Chen, J. Reachability constrained
reinforcement learning. In International Conference on
Machine Learning (ICML), pp. 25636–25655, 2022.

Zhang, J., Zheng, Y., Zhang, C., Zhao, L., Song, L., Zhou,
Y., and Bian, J. Robust situational reinforcement learning
in face of context disturbances. In International Confer-
ence on Machine Learning (ICML), pp. 41973–41989,
2023.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI Conference on Artificial Intelligence, pp. 1433–
1438, 2008.

Ziebart, B. D., Bagnell, J. A., and Dey, A. K. Modeling in-
teraction via the principle of maximum causal entropy. In
International Conference on Machine Learning (ICML),
pp. 1255–1262, 2010.

11



Robust Inverse Constrained Reinforcement Learning under Model Misspecification

A. Practical Implementation
In this section, we introduce the practical implementation of our AR-ICRL algorithm.

A.1. Solving Markov Game in Discrete Environment

In the forward pass of our AR-ICRL algorithm (Section 4.1), optimizing the objective (8) involves updating the player and
opponent policies together. This process can be viewed as solving a two-player Markov game in a CMDP. To solve this
game in the discrete environment, by following Viano et al. (2021), we model the impact of movements from both players
based on the joint cost Q function:

Qtwo
c (s, apl, aop) = Eπpl,πop,Ttwo,α

[
−

H∑
t=0

γt log ϕω,α(·) | s0 = s, apl0 = apl, aop0 = aop
]

(16)

where 1) ϕω,α(st, a
pl
t , a

op
t ) = αϕω(st, a

pl
t ) + (1− α)ϕω(st, a

op
t ) is the cost at time step t (we use ϕω,α,t(·) for shorthand),

2) apl and aop are the actions of the player and opponent, and 3) Ttwo,α
(
s′ | s, apl, aop

)
= αT

(
s′ | s, apl

)
+ (1 −

α)T (s′ | s, aop) denotes the transition dynamics of two players. We further define the worst-case Q function as:

Qpl
c (s, a

pl, aop) = max
πop

Qtwo
c (s, apl, aop) (17)

Note that Qpl
c indicates the ability of the player πpl to minimize the cost (ensure safety) under the worst-case safety attacker

in the long term starting from (s, apl, aop), which can be estimated by the following Bellman equation (Perolat et al., 2015):

Qpl
c (st, a

pl
t , a

op
t ) =

∑
st+1

Ttwo,α(st+1 | st, aplt , a
op
t ) ·

[
− log ϕω,α,t(·) + γV pl

c (st+1)
]

(18)

where V pl
c (st) =

∑
aplt

πpl(aplt |st)maxaopt Qpl
c (st, a

pl
t , a

op
t ).

To better capture the player policy πpl that is robust under attacks, we define the following robust sets (Li et al., 2023):

Definition A.1. (Robust state set) The robust state set for the player policy πpl under the worst-case safety attacks is defined
as:

Sπ
pl

∀ =
{
s ∈ S | min

apl
max
aop

Qpl
c (s, a

pl, aop) ≤ ϵ
}

(19)

Note that for s ∈ Sπ
pl

∀ , the player policy πpl can be safe in states regardless of any opponent’s attacks. For s /∈ Sπ
pl

∀ , there
exists some corresponding opponent policy πop that will drive the agent to violate the constraint.

Definition A.2. (Robust action set) The robust action set Aπpl

∀ for the player policy πpl specified by the robust state set
Sπ

pl

∀ is defined as:

Aπpl

∀ =
{
apl | ∀s ∈ Sπ

pl

∀ ,max
aop

Qpl
c (s, a

pl, aop) ≤ ϵ
}

(20)

Proposition A.3. Given a state s ∈ Sπ
pl

∀ , if the player always adopts the action in the robust action set (i.e., apl ∈ Aπpl

∀ ),
the system will consistently stay in Sπ

pl

∀ no matter what opponent policy πop is adopted.

The proof is shown in Appendix B.6. Based on this proposition, we divide s ∈ S into two sets:

1) if s ∈ Sπ
pl

∀ , we optimize the player πpl to maximize rewards within the robust action set Aπpl

∀ :

πpl(apl|s) =
1
apl∈Aπpl∀

expQpl
r (s, a

pl)∑
a′ expQ

pl
r (s, a′)

(21)

where the reward Q function is defined by:

Qpl
r (s, a

pl) =Eπpl,T
[ H∑
t=0

γtr(st, at) + βH[πpl(·|st)]|s0 = s, a0 = apl
]

(22)

12
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which can be updated by the soft Bellman equation:

Qpl
r (st, a

pl
t ) =

∑
st+1,rt

T(st+1 | st, aplt )
[
rt + γV pl

r (st+1)
]

(23)

where V pl
r (st) =

∑
aplt

πpl(aplt |st)
[
Qpl
r (st, a

pl
t ) + βH[πpl(·|st)]

]
.

2) if s /∈ Sπ
pl

∀ , which means that the constraint will be violated sooner or later under the worst-case safety opponent, the
player should be updated to execute the safest action to drive the agent back to Sπ

pl

∀ as soon as possible (minimize costs).

Since we do not have a robust set from the beginning, following Li et al. (2023), we train a safety robust player policy πplc
in advance by using the cost Q function and then fix it, which aims to minimize the cost values. On the other hand, the

target policy πpl is designed to maximize rewards within the robust state set Sπ
pl
c

∀ determined by the fixed safety policy πplc ,
and strive for the minimize cost value if outside of the set. Under such designs, our algorithm can solve the constrained
optimization problem without the Lagrange multiplier, which can better ensure safety without violations. The procedure of
the proposed safety-robust policy iteration algorithm is shown in Algorithm 2.

Algorithm 2 Safety-Robust Policy Iteration
Input: Target player πpl, safety player πplc and opponent πopc , reward Q-function Qpl

r (s, a), cost Q-function Qpl
c (s, a, o),

cost function cω , opponent strength 1− α.
while not converged do

while not converged do
Solve the cost Q function by Equation (18).
for s ∈ S do
πplc (a|s) = argmina{maxoQ

pl
c (s, a, o)}.

πopc (o|s) = argmaxo{minaQ
pl
c (s, a, o)}.

end for
end while
Solve the reward Q function by Equation (23).

for s ∈ S
πplc
∀ do

πpl(apl|s) =
1
apl∈Aπpl∀

expQplr (s,apl)∑
a′ expQ

pl
r (s,a′)

end for
for s /∈ S

πplc
∀ do

πpl(s) = πplc (s).
end for

end while

A.2. Two Players’ Game in Continuous Environment

In this section, we solve the above Markov Game to the continuous state-action space under a CMDP. Instead of applying
the value-based policy representation (e.g., argmaxQ-function), we parameters both player’s and opponent’s policies
(e.g., construct πplθ and πopψ ). We further define the joint value function for costs as Vc(s) = Eπplθ ,πopψ [Qc(s, a

pl, aop)] and
similarity for the joint value function for rewards Vr.

During learning, given a state st, the agent executes the mixture policy πmixθ,ψ (a|s) = απplθ (a|s)+ (1−α)πopψ (a|s), , transits
to the next state st+1, and received the reward rt and the cost ct accordingly. Based on these observations, we extend
Proximal Policy Optimization (PPO) (Schulman et al., 2017) to optimize both the player policy πplθ and the opponent policy
πopψ with the following objectives:

min
ζ

max
θ

Eπmixθ,ψ ,T,µ0

[
Lclipr (s, a)− λζ(s)L

clip
c (s, a)

]
(24)

max
ψ

Eπmixθ,ψ ,T,µ0
[Lclipc (s, a)] (25)

13
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where 1) λζ(s) ≥ 0 denotes the Lagrange multiplier network parameterized with ζ (Narasimhan et al., 2020), and 2)

Lclipr (s, a) = min
[
πmix
θ,θ′ (a|s)
πmixold (a|s)Ar(s, a), clip(

πmix
θ,θ′ (a|s)
πmixold (a|s) , 1 − ω, 1 + ω)Ar(s, a)

]
, where the reward advantage is computed

with an entropy term (Baert et al., 2023). Its cost counterpart Lclipc (s, a) is based on cost advantages Ac computed with the
Generative Advantage Estimation (GAE) (Schulman et al., 2016).

Under this formulation, intuitively, if s /∈ Sπ
pl

∀ (i.e., the robust policy set), the safety can not be ensured, and we have
its cost advantage Ac(s, a) > 0. Therefore, the Lagrange multiplier λζ(s) will be significantly amplified until the cost
penalty (i.e., λζ(s)Lclipc ) dominates objective and forces the agent to adopt the safest action and move back to the robust
state set. Practically, we set an upper bound λmax to avoid hazardous situations. The proposed Safety-Robust Proximal
Policy Optimization algorithm is summarized in Algorithm 3. We also implement a conventional PPO-Lagrangian-based
(check Algorithm 1 in (Liu et al., 2023)) version of the proposed robust policy optimization, where the Lagrange multiplier
λ is updated by dual ascent instead of objective (24).

Algorithm 3 Safety-Robust Proximal Policy Optimization

Input: Player policy πplθ and opponent policy πopθ′ , joint reward value critic V r, joint cost value critic V c, cost function
cω , opponent strength 1− α, Lagrange multiplier λ, rollout rounds B, update rounds K.
Initialize state s0 from CMDP and the roll-out buffer D.
for b = 1, 2, . . . , B do

Perform policies πplθ and πopθ′ , and collect trajectories τb = [s0, a
pl
0 , aop0 , r0, c0, . . . , sH , aplH , aopH , rH , cH ].

Calculate reward advantages Art , reward returns Rt, cost advantages Act , and cost returns Ct via GAE (Schulman et al.,
2016) from the trajectory.
Add transition samples to the buffer D = D ∪ {st, aplt , a

op
t , rt, A

r
t , Rt, ct, A

c
t , Ct}Ht=0.

end for
for k = 1, 2, . . . ,K do

Sample a batch of transition data from D.
Update the reward and cost value functions by minimizing the mean-square loss with returns.
Update opponent policy parameters θ′ by (25).
Update player policy parameters θ by (24).
Update Lagrange multiplier parameters ζ by (24).

end for

B. Proof
Lemma B.1. If Qsoft(s, a) = E

[∑H
t=0 [r̄(st, at) +H(π(at|st))] |s0 = s, a0 = a

]
defines the soft-Q function (Haarnoja

et al., 2017). It holds that ED

[∑H
t=0 γ

t
(
Qsoft(st, at)− V soft(st)

)]
= ED

[∑H
t=0 γ

tr̄(st, at)
]
− V soft

Mc
(s0), where D is

the demonstration dataset.

Proof.

ED

[
H∑
t=0

γt
(
Qsoft(st, at)− V soft(st)

)]

= ED

[H−1∑
t=0

γt
(
r̄(st, at) + γET(·|st,at)[V

soft(st+1)]− V soft(st)
)
+ γH r̄(sH , aH)

]
= ED

[
H∑
t=0

γtr̄(st, at)

]
+ ED

[
H−1∑
t=0

γt+1ET[V
soft
Mc

(st+1)]−
H∑
t=0

γtV soft
Mc

(st)

]

= ED

[
H∑
t=0

γtr̄(st, at)

]
− V soft

Mc
(s0)

Lemma B.2. Let V soft(s) = E
[∑H

t=0 [r̄ω(st, at) +H(π(at|st))] |s0 = s
]

define the soft-value function (Haarnoja

14
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et al., 2017). The reward function r̄ω is parametered by ω. The gradient of ∇ωV
soft(st) can be represented as

Eπ
[∑H−t

ι=0 γι∇ω r̄ω(sι, aι)|s0 = st

]
where π represents the soft-optimal (soft-max) policy.

Proof.

∇ωV
soft(st) =∇ω log

∑
at∈A

expQsoft(st, at)

=

∑
at∈A ∇ω expQ

soft(st, at)∑
at∈A expQsoft(st, at)

=

∑
at∈A

(
expQsoft(st, at) · ∇ωQ

soft(st, at)
)

expV soft(st)

=
∑
at∈A

exp
(
Qsoft(st, at)− V soft(st)

)
· ∇ωQ

soft(st, at)

=
∑
at∈A

π(at|st) · ∇ωQ
soft(st, at)

=Eπ
[
∇ω r̄ω(st, at) + γET(·|st,at)

[
∇ωV

soft(st+1)
] ]

=Eπ

[
H−t∑
ι=0

γι∇ω r̄ω(sι, aι) | s0 = st

]

B.1. Proof of Proposition 3.3

Proof. (a) To prove the existence of such π, T and T′, we assume there exists a policy π and a transition T satisfying
Eµ0,π[Q

c,π
MT
c
(s, a)] = ϵ. In this way, we only need to show ∃T′, π s.t. Eµ0,π[Q

c,π

MT′
c

(s, a)]− Eµ0,π[Q
c,π
MT
c
(s, a)] > 0.

Consider the simulation lemma (Agarwal et al., 2019):

Qc,π

MT′
c

−Qc,π
MT
c
= γ(I − γπT′)−1(T′ − T)V c,π

MT
c

We know that ∀(s, a), (I − γπT′)−1
(s,a),(s′,a′) > 01, and V c,π

MT
c
(s) ≥ 0 (since c(s, a) ≥ 0). Define the safe states set

Ss = {s ∈ S | V c,π
MT
c
(s) ≤ ϵ} and unsafe states set Su = {s ∈ S | V c,π

MT
c
(s) > ϵ}.

Consider such a T′: 1) ∀s′ ∈ Su, T′
(s,a),(s′) = T(s,a),(s′) + α; 2) ∀s′ ∈ Ss, T′

(s,a),(s′) = T(s,a),(s′) − β, where 0 ≤
α ≤ 1, 0 ≤ β ≤ 1, and α · |Ss| = β · |Su|. This T′ can ensure that ∀(s, a), [(T′ − T)V c,π

MT
c
](s, a) ≥ 0, and thus

(Qc,π

MT′
c

−Qc,π
MT
c
)(s, a) ≥ 0. The equality holds only when ∀s′ ∼ T(·|s, a) ∈ Ss (i.e., ∀s′ ∈ Su, T(s′|s, a) = 0). In this case,

we modify the T′ such that: 1) ∀s′ ∈ Su, T′(s′|s, a) = 1
|Su| ; 2) ∀s′ ∈ Ss, T′(s′|s, a) = 0, which ensures strict inequality.

(b) Consider the simulation lemma (Agarwal et al., 2019):

Eµ0,π∗ [Qc,π∗

MT′
c

(s, a)]− Eµ0,π∗ [Qc,π∗

MT
c
(s, a)]

= ρπ
∗

µ0
γ(I − γπ∗T)−1(T′ − T)V c,π∗

MT′
c

=
γ

1− γ
dπ

∗

MT
c
(T′ − T)V c,π∗

MT′
c

> ϵ

Since Eµ0,π∗ [Qc,π∗

MT
c
(s, a)] ≥ 0, we have Eµ0,π∗ [Qc,π∗

MT′
c

(s, a)] > ϵ

1M(x),(y) indicates the element of xth row and yth column
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B.2. Proof of Proposition 4.1

For brevity, we define F =
∑H
t=0 γ

t log ϕ(st, at) as the safety (feasibility) objective, we can show that:

min
M̄∈MTLα

E
[
λF | π, M̄

]
= min

T̄∈T Lα
E
[
λF | π, µ0, T̄

]
(a)

≤ min
T̃∈T̃ Lα

E
[
λF | π, µ0, T̃

]
(b)
= min
πop∈Π

E
[
λF | απ + (1− α)πop, µ0,T

L
]

(26)

where T L
α (s′ | s, a) = {αTL(s′ | s, a) + (1 − α)T̄(s′ | s, a),∀T̄ ∈ T }, and T̃ L

α (s′ | s, a) = {αTL(s′ | s, a) + (1 −
α)

∑
a π(a|s)T̄(s′ | s, a),∀T̄ ∈ T ,∀π ∈ Π}. In specific, (a) hold since T̃ L

α ⊂ T L
α , (b) hold due to Section 3.1 in (Tessler

et al., 2019).

B.3. Proof of Proposition 4.4

Proof. The log-likelihood of generating the expert demonstration De is defined as:

EDe

[
log pπ

mix

MT
c

(τ)
]
=

[
H∑
t=0

γt log πmixMT
c
(at|st) + log µ0(s0) +

H∑
t=0

log T(st+1|st, at)

]
(1)
=EDe

[
H∑
t=0

γt log[απpl
MT
c
(at|st) + (1− α)πop

MT
c
(at|st)] + log µ0(s0) +

H∑
t=0

log T(st+1|st, at)

]
(2)
=EDe

[
H∑
t=0

γt[logα+ log πpl
MT
c
(at|st)] + log µ0(s0) +

H∑
t=0

log T(st+1|st, at)

]
(3)
=EDe

[
H∑
t=0

γt
(
Qsoft,pl
MT
c

(st, at)− V soft,pl
MT
c

(st)
)]

+ C

(4)
=EDe

[
H∑
t=0

γt [r(st, at) + λ log ϕ(st, at)]

]
− V soft,pl

MT
c

(s0) + C

In this way, we can further define:

(1) holds due to the definition of πmixMT
c
(at|st) = απpl

MT
c
(at|st) + (1− α)πop

MT
c
(at|st).

(2) holds since the cost maximization policy πop
MT
c
(a|s) = argmaxQc,∗

MT
c
(s̃, a) is deterministic, and based on Assump-

tion 4.3, we have that ∀(s, a), if ρπ
e

MT
c
(s, a) > 0, then πop

MT
c
(a|s) = 0.

(3) holds since πpl
MT
c
(at|st) = exp

(
Qsoft,pl
MT
c

(st, at)− V soft,pl
MT
c

(st)
)

, and the constant C is irrelevant to costs.

(4) holds due to Lemma B.1, where r̄(·) = r(·) + λ log ϕ(·).

Our constraint function ϕω(s, a) is parameters by ω. We infer the constraint function by maximizing the gradient of the
log-likelihood of generating the demonstration data: ω = argmaxω EDe

[
log pMT

c
(τ)

]
.

∇ωEDe
[
log pMT

c
(τ)

]
=EDe

[
H∑
t=0

γtλ∇ω log ϕω(st, at)

]
+∇ωV

soft,pl
Mc

(s0)

(1)
=E(s,a)∼De

[
H∑
t=0

γtλ∇ω log ϕω(st, at)

]
+ E(s,a)∼πpl

MT
c

[
H∑
t=0

γt∇ωλ log ϕω(st, at)

]

(1) holds due to Lemma B.2, where r̄ω(·) = r(·) + λ log ϕω(·).
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B.4. Proof of Proposition 4.5

Proof. The log-likelihood of generating the expert demonstration De is defined as:

EDe

[
log pπ

mix

MT
c

(τ)
]

=

[
H∑
t=0

γt log πmixMT
c
(at|st) + log µ0(s0) +

H∑
t=0

log T(st+1|st, at)

]
(1)
=EDe

[
H∑
t=0

γt log[απpl
MT
c
(at|st) + (1− α)πop

MT
c
(at|st)] + log µ0(s0) +

H∑
t=0

log T(st+1|st, at)

]
(2)

≥EDe

[
H∑
t=0

γt log[(πpl
MT
c
(at|st))α · (πop

MT
c
(at|st))1−α] + log µ0(s0) +

H∑
t=0

log T(st+1|st, at)

]
(3)
=EDe

[
H∑
t=0

γtα
(
Qsoft,pl
MT
c

(st, at)− V soft,pl
MT
c

(st)
)]

+ EDe

[
H∑
t=0

γt(1− α)
(
Qsoft,op
MT
c

(st, at)− V soft,op
MT
c

(st)
)]

+ C

(4)
=EDe

[
H∑
t=0

γtα [r(st, at) + λ log ϕ(st, at)]

]
− αV soft,pl

MT
c

(s0)−

(1− α)EDe

[
H∑
t=0

γt [log ϕ(st, at)]

]
− (1− α)V soft,op

MT
c

(s0) + C

=EDe

[
H∑
t=0

γt [αr(st, at) + (αλ+ α− 1) log ϕ(st, at)]

]
− αV soft,pl

MT
c

(s0)− (1− α)V soft,op
MT
c

(s0) + C

=L(De,MT
c , α)

(1) holds due to the definition of πmixMT
c
(at|st) = απpl

MT
c
(at|st) + (1− α)πop

MT
c
(at|st).

(2) holds due to the Weighted AM-GM Inequality:

(w1a1 + w2a2 + · · ·+ wnan) ≥ aw1
1 · aw2

2 · · · awnn

if w1 + w2 + · · ·+ wn = 1 and a1 + a2 + · · ·+ an are not negative.

(3) holds since both πpl
MT
c

and πop
MT
c

are soft-optimal, i.e., πpl
MT
c
(at|st) = exp

(
Qsoft,pl
MT
c

(st, at)− V soft,pl
MT
c

(st)
)

,

πop
MT
c
(at|st) = exp

(
Qsoft,op
MT
c

(st, at)− V soft,op
MT
c

(st)
)

, and the constant C is irrelevant to costs.

(4) holds due to Lemma B.1. In addition, according to the definition of Qsoft,pl
MT
c

, we have r̄(·) = r(·) + λ log ϕ(·).
According to the definition of Qsoft,op

MT
c

, we have r̄(·) = − log ϕ(·).

Our constraint function ϕω(s, a) is parameters by ω. We infer the constraint function by maximizing the gradient of the
log-likelihood of generating the demonstration data: ω = argmaxω L(De,MT

c , α).

∇ωL(De,MT
c , α) =EDe

[
H∑
t=0

γt(αλ+ α− 1)∇ω log ϕω(st, at)

]
− α∇ωαV

soft,pl
MT
c

(s0)− (1− α)∇ωV
soft,op
MT
c

(s0)

(1)
=E(s,a)∼De

[
H∑
t=0

γt(αλ+ α− 1)∇ω log ϕω(st, at)

]
− αλE(s,a)∼πpl

MT
c

[
H∑
t=0

γt∇ω log ϕω(st, at)

]
+

(1− α)E(s,a)∼πop
MT
c

[
H∑
t=0

γt∇ω log ϕω(st, at)

]
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(1) holds due to Lemma B.2. In addition, according to the definition of V soft,pl
MT
c

, we have r̄ω(·) = r(·) + λ log ϕω(·).
According to the definition of V soft,op

MT
c

, we have r̄ω = − log ϕω(·).

B.5. Proof of Proposition 4.6

Proof. For brevity, let πL := πmec̃ , πpl := πroĉ .

To prove (a), we show the existence of such a policy πL as follows:

Eµ0
[V c,πL

MT′
c∗

(s)]− Eµ0
[V c,πL

MTL

c∗
(s)] = Eµ0,πL [Q

c,πL

MT′
c∗
(s, a)]− Eµ0,πL [Q

c,πL

MTL

c∗
(s, a)]

(1)
= ρπ

L

µ0
γ(I − γπLTL)−1(T′ − TL)V c,πL

MT′
c∗

(2)
=

γ

1− γ
dπ

L

MTL

c∗
(T′ − TL)V c,πL

MT′
c∗

≥ 0

(1) applies the simulation lemma (Agarwal et al., 2019).

(2) holds due to that dπ
L

MTL

c∗
≥ 0 defines the normalized occupancy measure by following policy πL in the CMDP MTL

c∗ .

We know that there exists a T′ ∈ {T : maxs,a |T− TL| ≤ 2(1− α)} that makes (T′ − TL) ≥ 0, and V c,πL

MT′
c∗

≥ 0.

Since c̃ = c∗, and there exists a policy πL such that Eµ0
[V c,πL

MTL

c∗
(s)] = Eµ0

[V c,πe

MTe

c∗
(s)] = ϵ. According to the above inequality,

we have that Eµ0 [V
c,πL

MT′
c∗

(s)] ≥ ϵ.

To prove (b), we show that ∀T′ ∈ {T : maxs,a |T− TL| ≤ 2(1− α)}, the following inequality must hold:

Eµ0
[V c,πpl

MT′
c∗

(s)] ≤ max
T′∈T Lα

Eµ0
[V c,πpl

MT′
c∗

(s)]

(1)

≤ max
πop∈Π

Eµ0 [V
c,απpl+(1−α)πop

MTL

c∗
(s)]

(2)
= Eµ0

[V
c,απpl+(1−α)πop

MTL

c∗
(s)]

= Eµ0
[V c,πmix

MTL

c∗
(s)]

= Eµ0 [V
c,πe

MTe

c∗
(s)]

= ϵ

(1) holds due to Proposition 4.1.

(2) holds due to the fact that the trained opponent policy πop is indeed the cost-maximization policy (see objective (8)).

B.6. Proof of Proposition A.3

Proof. Given a state st ∈ Sπ
pl

∀ , if the player policy takes the action aplt ∈ Aπpl

∀ , according to the definition of robust action
set, we have:

Qpl
c (st, a

pl
t , a

op
t ) ≤ ϵ, ∀aopt ∈ A
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In this work, since we focus on the hard constraint (ϵ = 0) and the cost function Qpl
c (st, a

pl
t , a

op
t ) ≥ 0, the problem reduces

to Qpl
c (st, a

pl
t , a

op
t ) = 0. By Equation (18), we have:

Qpl
c (st, a

pl
t , a

op
t ) =

∑
st+1

Ttwo,α(st+1 | st, aplt , a
op
t ) ·

[
− log ϕω,α,t(·) + γmax

aopt+1

Qpl
c (st+1, π

pl(aplt+1 | st+1), a
op
t+1)

]
= 0

Since the cost c = − log ϕω(·) ≥ 0 and γ ≥ 0, regarding any of the possible state st+1 after the transition, we have

max
aopt+1

Qpl
c (st+1, π

pl(aplt+1 | st+1), a
op
t+1) = 0

which means that

min
aplt+1

max
aopt+1

Qpl
c (st+1, a

pl
t+1, a

op
t+1) = 0

According to the definition of Sπ
pl

∀ , we have st+1 ∈ Sπ
pl

∀ . By recursion, we can prove the proposition completely.

C. Experimental Details
C.1. Environmental Details

Gridword. The Gridworld environment is a map with a number of grids to move. We establish three unique scenarios,
as depicted in Figure 2. At each moment, the agent has the freedom to move to any of the 8 neighboring grids by taking
a single step. Commencing from the initial position, the agent receives a reward of 1 when it successfully reaches the
target location while adhering to the imposed constraints, and a reward of 0 for any other circumstances. Furthermore, we
introduce adjustments to the environment to mimic a degree of randomness when testing. In particular, we construct a
Windy Gridworld with an upward-blowing wind in the environment, where with a predetermined probability the agent will
be further pushed northward based on its intended action.

Blocked Half-Cheetah. Within this setting, the agent commands a bipedal robot with a pair of legs. The agent has 18
observation dimensions and 6 action dimensions. The agent’s reward hinges on the distance the robot covers between
successive time intervals and is adjusted by a penalty linked to the magnitude of the input action. The game persists until
reaching a maximum time step of 1000. Notably, given the robot’s ease of backward movement compared to forward, we
establish a blocked area where the X-coordinate is less than -3. Consequently, the robot’s movement is confined to the
region where the X-coordinate is greater than or equal to -3.

Blocked Ant. Within this particular environment, the agent takes charge of a quadrupedal robot. The agent has 113
observation dimensions and 8 action dimensions. The agent’s rewards are contingent on both the robot’s distance from the
origin and the additional benefit gained for maintaining stability. The game concludes upon reaching a maximum time
step of 500. Just like the Blocked Half-Cheetah environment, we apply a constraint that restricts movement within the
X-coordinate region of less than -3. Consequently, the robot is exclusively allowed to operate within the realm where the
X-coordinate is greater than or equal to -3.

Crippled Walker. In this setting, the agent assumes control of a bipedal robot, tasked with the challenge of teaching it
how to walk. The agent has 18 observation dimensions and 6 action dimensions. The game concludes under two distinct
conditions: when the robot loses its balance or when it reaches the maximum time step of 500. The agent’s reward is
ascertained based on the distance the robot covers between two consecutive time intervals, offset by a penalty proportional
to the magnitude of the input action. Different from the above tasks that constrain the locations, we investigate the constraint
with angle in this task. Specifically, we impose a constraint on the thigh angle θ of the agent, limiting it to |θ| ≤ 0.6.
Consequently, the robot is prevented from running too quickly to keep stable.

C.2. Noise Designs

Fully Random Noise. To simulate the transition dynamics mismatch between the training and testing environment, we
directly add the fully random noise into the transition function. Specifically, we incorporate a Gaussian noise η ∼ N (µ, σ)
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into the transition function at each step such that p (st+1 | st, at) = T (st, at) + η. Since our approach assumes that the
mismatch between training and deployment environments is bounded in the uncertainty set T L

α , where the hyperparameter,
1− α, serves as a measure of the extent to which our model can effectively handle potential variations in environmental
dynamics to maintain safety. In this experiment, we fix α = 0.95 across the environments, representing the intended
mismatch during the training process. To align with it, we utilize the consistent pair of µ = 0 with σ = 0.1, 0.05 and 0.01
to represent the larger, equal, and smaller noise than the assumed one.

Partially Random Noise. In contrast to the fully random noise introduced into the overall transition function, partially
random noise represents an alternative form of randomness with a more specific focus. To clarify, rather than introducing
the Gaussian noise to the entire transition function, it is exclusively applied to the particular restricted elements of the
agent, which serves as a more specific disturbance. We carefully select a set of appropriate scales of the partially random
noise for each task as follows: 1) Blocked Half-Cheetah: σ = 1, 0.8, 0.5 on the X-coordinate of the agent; 2) Blocked Ant:
σ = 1, 0.5, 0.2 on the X-coordinate of the agent; 3) Crippled Walker: σ = 0.1, 0.05, 0.01 on the thigh of the agent.

Attack Noise. Given our primary emphasis on safety, we employ attack noise to replicate scenarios where constraints are
more prone to violation during deployment. This assessment tests the model’s resilience under worst-case conditions. We
assume that the attack noise possesses knowledge of the ground-truth constraints and uses it to prompt the agent to breach
those constraints. Specifically, the attack noise is sampled from a uniform distribution U(0, b), where the set of different
scales of attack noise for each task is designed as follows: 1) Blocked Half-Cheetah: b = 0.4, 0.35, 0.3 on the X-coordinate
of the agent to push it backward; 2) Blocked Ant: b = 0.1, 0.05, 0.02 on the X-coordinate of the agent to push it backward;
3) Crippled Walker: b = 0.1, 0.05, 0.01 on the thigh of the agent to push it larger.

C.3. Hyperparameters

We summarize the main hyperparameters in this work in Table C.3.

Table 2. List of the utilized hyperparameters in this work. To ensure equitable comparisons, we maintain consistency in the parameters of
the same neural networks across different models.

Parameters
Blocked

Half-Cheetah
Blocked

Ant
Crippled
Walker

General
Expert Rollouts 10 50 50
Max Length 1000 500 500
Gamma 0.99 0.99 0.99
Forward Timesteps 200000 200000 200000

PPO
Steps 2048 2048 2048
Reward-GAE-λ 0.95 0.9 0.9
Cost-GAE-λ 0.95 0.9 0.9
Policy Network 64, 64 64, 64 64, 64
Reward Network 64, 64 64, 64 64, 64
Cost Network 64, 64 64, 64 64, 64
Policy Learning Rate 3e-4 3e-5 1e-4

Lagrangian
Penalty-based Methods

Penalty Initial Value 1 0.1 0.1
Penalty Learning Rate 0.1 0.05 0.1

Network-based Methods
Maximum Lambda Network 50 50 50
Lambda Network Learning Rate 1e-5 3e-5 1e-5

Constraint Function
Network 20 40, 40 64
Learning Rate 0.005 0.005 0.003
Backward Iterations 10 5 10
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D. More Experimental Results
D.1. More Results in Discrete Environments

Figure 6 illustrates the feasible rewards obtained by different methods under different levels of upwind in three Gridworld
environments.

Figure 6. The feasible rewards of different methods under different levels of upwind.

Figure 7 shows the trajectories generated by MEICRL and AR-ICRL in the ideal training environments without wind,
serving as a supplementary result of trajectories with wind (Figure 3). We find that larger opponent strength (lower α) could
lead to more conservative policies that are more robust against dynamics mismatches.

Figure 7. The trajectories generated by MEICRL and AR-ICRL in three Gridworld settings without wind.

D.2. More results in Continuous Environments

Table 3 shows the evaluation results tested within the identical training environment. Table 4 and Table 5 present the results
with medium and small scales of noises in the testing environments, respectively.
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Table 3. Evaluation results in three environments without noise. Each value is reported as the mean ± standard deviation for 50 episodes
and 4 seeds.

Env Method
Traning Env without Noise

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Blocked
Half-Cheetah

MEICRL 3768.2±630.7 0.00±0.00 0%±0%
BC2L 2467.4±509.4 8.03±13.90 2%±4%

VICRL 3198.2±1158.6 1.43±2.47 1%±2%
IRCO 3818.3±340.1 0.00±0.00 0%±0%

AR-ICRL 3621.1±384.6 0.00±0.00 0%±0%

Blocked
Ant

MEICRL 4546.1±1720.9 0.00±0.00 0%±0%
BC2L 11478.1±740.8 0.14±0.24 1%±1%

VICRL 9246.2±2388.4 0.00±0.00 0%±0%
IRCO 6698.6±761.0 1.15±1.98 2%±3%

AR-ICRL 6082.3±1381.9 0.00±0.00 0%±0%

Crippled
Walker

MEICRL 2483.2±221.8 0.06±0.10 1%±2%
BC2L 1618.5±865.3 3.31±0.65 12%±4%

VICRL 2223.8±358.0 0.00±0.00 0%±0%
IRCO 2059.5±266.1 0.07±0.07 2%±2%

AR-ICRL 2918.8±99.3 0.00±0.00 0%±0%

Table 4. Evaluation results in three environments with medium scale noises. Each value is reported as the mean ± standard deviation for
50 episodes and 4 seeds.

Env Method
Medium Scale

Fully Random Noise
Medium Scale

Partially Random Noise
Medium Scale
Attack Noise

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Blocked
Half-Cheetah

MEICRL 1092.8±457.1 10.1±15.4 5%±9% 2956.2±689.6 6.9±2.9 32%±6% 1894.2±1260.1 100.2±84.3 57%±29%
BC2L 1076.2±278.4 45.5±51.9 17%±12% 957.7±486.9 66.7±60.2 40%±15% 76.6±81.7 941.9±50.1 98%±2%

VICRL 1026.3±460.1 17.6±28.8 7%±10% 2235.1±1050.5 18.5±14.8 35%±10% 1588.2±1367.7 397.5±348.1 62%±27%
IRCO 1128.6±163.9 12.5±8.9 5%±3% 2528.6±332.7 5.0±0.5 27%±2% 3228.5±611.2 43.9±16.8 25%±12%

AR-ICRL 1589.0±324.4 3.6±3.2 1%±1% 3178.0±322.3 4.4±1.3 24%±4% 3679.0±323.1 35.2±10.2 20%±8%

Blocked
Ant

MEICRL 1198.8±408.2 25.7±18.5 18%±9% 4701.7±1179.6 35.8±18.6 35%±11% 2770.4±1634.2 73.9±53.7 37%±28%
BC2L 955.4±98.1 29.2±10.3 17%±6% 8721.9±1618.5 33.5±27.2 37%±10% 9030.8±2697.9 62.5±58.2 31%±30%

VICRL 1032.6±289.1 28.8±6.6 19%±8% 8083.1±3712.2 41.0±20.1 39%±20% 8785.1±4349.5 85.2±82.1 34%±36%
IRCO 757.5±207.9 41.5±17.3 18%±7% 4758.5±886.8 35.2±33.2 34%±16% 3978.6±1142.2 81.2±78.4 37%±27%

AR-ICRL 1292.4±263.2 18.1±3.7 12%±5% 5782.6±1039.3 13.2±2.8 21%±9% 4986.0±1659.4 34.8±29.9 19%±11%

Crippled
Walker

MEICRL 164.6±40.1 3.46±2.97 34%±23% 835.0±438.1 4.46±2.54 41%±27% 409.2±241.1 12.2±9.6 55%±21%
BC2L 171.4±55.1 4.09±2.15 38%±14% 694.4±437.5 5.73±4.94 47%±27% 240.8±156.5 3.5±1.8 57%±33%

VICRL 197.8±36.1 2.75±0.88 28%±8% 1246.8±185.3 1.22±0.67 27%±8% 355.4±262.7 6.5±4.1 54%±31%
IRCO 104.2±21.4 7.88±6.28 30%±18% 910.1±232.7 1.87±0.75 26%±17% 331.1±230.6 3.8±1.1 27%±12%

AR-ICRL 237.6±35.7 2.29±0.81 24%±9% 1138.5±152.9 1.19±0.43 22%±12% 451.2±122.8 1.9±0.5 18%±2%

Table 5. Evaluation results in three environments with small-scale noises. Each value is reported as the mean ± standard deviation for 50
episodes and 4 seeds.

Env Method
Small Scale

Fully Random Noise
Small Scale

Partially Random Noise
Small Scale
Attack Noise

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Feasible
Reward

Episode
Cost

Constraint
Violation Rate

Blocked
Half-Cheetah

MEICRL 3191.1±393.5 2.51±4.35 1%±1% 3684.2±642.1 2.22±0.89 11%±2% 3180.2±1468.1 30.1±19.5 29%±26%
BC2L 1682.4±523.9 14.80±25.71 4%±7% 1273.8±498.4 38.30±35.14 29%±13% 199.8±236.0 848.5±171.2 98%±4%

VICRL 2768.6±993.7 1.19±2.06 1%±1% 2798.6±1143.3 14.42±9.95 16%±6% 2479.1±1534.5 268.0±169.8 41%±21%
IRCO 3298.0±215.8 2.17±3.07 1%±1% 3718.0±164.7 0.87±0.19 10%±1% 3926.6±368.0 32.1±19.5 12%±4%

AR-ICRL 3358.2±343.4 0.00±0.00 0%±0% 4049.5±260.2 0.81±0.19 8%±2% 4369.7±390.5 16.8±14.7 5±3%

Blocked
Ant

MEICRL 3831.2±1339.5 2.08±0.61 1%±1% 4890.7±1653.6 8.74±5.58 6%±4% 3890.2±1749.1 11.3±11.8 10%±7%
BC2L 9068.0±1573.7 1.25±2.07 2%±3% 11708.1±2213.5 7.74±6.69 6%±6% 10987.5±2195.6 12.5±14.8 9%±10%

VICRL 7813.3±1368.1 1.22±1.31 2%±2% 10892.0±3113.8 10.70±6.34 9%±7% 11976.0±3139.4 18.1±28.5 9%±13%
IRCO 5258.8±1129.4 0.00±0.00 0%±0% 6579.7±442.9 9.91±17.21 6%±11% 5538.5±656.9 22.1±16.8 14%±12%

AR-ICRL 5967.9±744.5 0.00±0.00 0%±0% 6892.2±669.3 0.00±0.00 0%±0% 6056.1±1338.7 0.0±0.0 0%±0%

Crippled
Walker

MEICRL 1056.0±268.5 1.24±0.78 19%±10% 2321.7±203.6 0.0±0.0 0%±0% 2294.5±298.2 0.11±0.05 6%±4%
BC2L 1178.3±628.7 3.06±4.54 16%±14% 2059.5±121.2 0.0±0.0 0%±0% 1398.7±759.6 2.01±3.08 16%±13%

VICRL 1467.2±196.9 1.25±0.14 15%±2% 2210.1±424.7 0.0±0.0 0%±0% 2053.1±386.5 0.02±0.03 1%±1%
IRCO 800.4±40.2 2.48±2.42 12%±10% 1893.8±231.6 0.0±0.0 0%±0% 1243.0±190.5 0.00±0.00 0%±0%

AR-ICRL 1865.8±184.2 0.00±0.00 0%±0% 2483.0±243.4 0.0±0.0 0%±0% 2439.4±228.6 0.00±0.00 0%±0%
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Figure 8, Figure 9, and Figure 10 visualize the learned constraints by MEICRL and AR-ICRL in the Blocked Ant, Blocked
Half-cheetah, and Crippled Walker respectively. Specifically, the red curve in the left is the predicted constraint distribution
by utilizing synthetic samples, and the blue points are the recorded information (e.g., x-position or thigh angle) of the policy
with the predicted costs. The right figure is a histogram that shows the number of states with a specific feature value (e.g.,
x-position) during testing. By observing the results, we find that compared to MEICRL, AR-ICRL can enable safer control
and keep a relative distance from the constraint locations. This can be attributed to the fact that the policy must resist the
attacks from the opponent policy when training.
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Figure 8. Visualization results in Blocked Ant environment with MEICRL and AR-ICRL.
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Figure 9. Visualization results in Blocked Half-Cheetah environment with MEICRL and AR-ICRL.
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Figure 10. Visualization results in Cirppled Walker environment with MEICRL and AR-ICRL.
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