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Abstract

We introduce the task of visual creative descrip-
tion (VCD) and propose three key innovations:
1) the C-CoC framework for structured creative
cognition, 2) the PAINT dataset for systematic
training and evaluation, and 3) VCD-Bench,
the first multidimensional benchmark for vi-
sual creativity. Our experiments on 10 models
reveal significant limitations—while models
excel in spatial reasoning, they struggle with
color and plot evaluation, with these gaps re-
maining across model sizes. These findings
suggest the need for architectural innovations
beyond simple parameter scaling.

1 Introduction

In recent years, Al-generated content (AIGC) has
seen rapid advancements. Text-to-image (T2I)
models can generate highly relevant visual com-
positions based on textual prompts(Ramesh et al.,
2022), while large language models (LLMs) have
demonstrated remarkable capabilities in creative
text generation, including Storys(Yuan et al., 2022),
poetry(Belouadi and Eger, 2023), and advertising
copy(Mita et al., 2024). However, a critical ques-
tion remains underexplored: Can LLMs generate
visual creative descriptions (VCDs) that drive the
generation of more creative images? Despite the
significant progress in both text and image gen-
eration, research on LLM-based VCD generation
remains largely unexplored.

The fundamental challenge lies in the current
paradigm, which treats creative generation as a
black-box process, relying on "black-box access"
for iterative prompt optimization (He et al., 2024).
These methods focus solely on the final output
while neglecting the cognitive process of creative
ideation. This black-box nature gives rise to three
key issues that make VCDs difficult to quantify,
optimize, and evaluate:

* Lack of Training Data — Human creativity is
implicit and rarely recorded in a structured
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Figure 1: Visual Creative Description Task: Comparison
between Human Process and the C-CoC Framework.

way. Without high-quality datasets, LLMs
struggle to generate novel and visually action-
able descriptions, leading to unoriginal and
impractical outputs.

* Lack of Cognitive Modeling — Current meth-
ods do not model LLMs’ cognitive mecha-
nisms in VCD generation, preventing effective
simulation of human creative thinking, con-
ceptual associations, and iterative refinements,
hindering synthetic dataset creation.

* Lack of Evaluation Frameworks — The ab-
sence of cognitive modeling results in inade-
quate evaluation metrics. Existing NLP and
T2I metrics fail to capture key attributes of cre-
ative descriptions, making quality assessment
difficult.

To address these challenges, we draw inspira-
tion from cognitive science theories and propose a
new generation framework that is shown in Figurel
for visual creative description—Cognitive Chain
of Creativity (C-CoC). In this framework, Large



Language Models (LLMs) replace Human Special-
ists as Cognitive Operators, executing Cognitive
Transitions across multiple reasoning stages to sim-
ulate human thought processes in visual creative
ideation.

Our framework starts with structured Expressed
Entity information and progressively generates vi-
sually creative textual descriptions that align with
communication principles. These descriptions then
drive text-to-image (T2I) generation, enhancing
both the creativity and visual expressiveness of
the generated images. This approach not only im-
proves the quality of creative image generation
but also introduces an evaluable and optimizable
method for creative generation.

To mitigate the issue of missing training data, we
construct and annotate the PAINT (Product Artis-
tic Image Narrative Texts) dataset based on the C-
CoC framework. PAINT is a dedicated dataset for
visual creative description tasks, providing struc-
tured descriptions that exhibit novelty, executability,
and communicability. By filling the gap in training
data, PAINT enhances the generalization capability
of LL.Ms in visual creative description tasks.

Furthermore, we introduce VCD-Bench (Visual
Creative Description Benchmark), an evaluation
framework specifically designed to assess the un-
derstanding and evaluation capabilities of LLMs in
visual creative description. Our focus includes the
following core questions:

* Do LLMs’ evaluations of creative descriptions
align with human judgments?

¢ How do LLMs differ from human evaluators
across various dimensions of visual creative
description?

* Are there significant differences among dif-
ferent LLMs in their evaluation of creative
descriptions across various dimensions?

The key contributions of this study include:

1. C-CoC Framework: We propose C-CoC, an
LLM-based generation approach for visual
creative description. This approach employs
cognitive modeling to establish a multi-stage
reasoning mechanism, enhancing the inter-
pretability and controllability of LLMs in cre-
ative text generation.

2. PAINT Dataset: We construct the PAINT
dataset, leveraging C-CoC to generate large-
scale, high-quality visual creative descriptions.

This dataset addresses the training data gap in
LLM-based visual creativity tasks and pro-
vides standardized data support for model
training and evaluation.

3. VCD-Bench Benchmark: We introduce
VCD-Bench, the first benchmark dedicated
to assessing LLM’s visual creative capabil-
ities. By comparing LLM-generated scores
with human evaluations, VCD-Bench quanti-
tatively measures performance in visual cre-
ative description tasks, offering a systematic
evaluation framework for future research.

2 Related Work

2.1 Text-to-Image Generation

Recent advances in Text-to-Image (T2I) models
have significantly improved the semantic alignment
between textual descriptions and generated images.
Early approaches relied on Generative Adversar-
ial Networks (GANSs) (Goodfellow et al., 2014) to
map textual inputs to visual outputs. Later, autore-
gressive models such as DALL-E (Ramesh et al.,
2021) and ImageGPT (Chen et al., 2020) lever-
aged token-based sequence prediction to enhance
text-conditioned generation. Currently, Diffusion
Models have become the dominant paradigm in
T2I tasks, achieving state-of-the-art results in both
fidelity and semantic consistency. Models such as
Imagen (Saharia et al., 2022), FLUX (Black-Forest-
Labs, 2024) and Stable Diffusion (Rombach et al.,
2022) leverage latent diffusion processes to gener-
ate high-quality images with fine-grained details.
Several recent research endeavors advocate for
extensions of T2I models, aiming to increase their
fidelity to user prompts(Epstein et al., 2023 )(Chefer
et al., 2023)(Wu et al., 2023). However, despite
these improvements, the T2I models remain highly
dependent on the quality of their textual inputs.

2.2 Prompt optimization

With the enhancement of text-to-image alignment
capabilities in T2I models, the quality of gener-
ated images has become increasingly dependent on
well-crafted textual inputs. In recent years, many
researchers have attempted to optimize prompts to
achieve better image generation outcomes, such
as refining task instruction prompts using training
data (Guo et al., 2023; Fernando et al., 2023).Some
studies focus on optimizing individual T2I prompts
at the multimodal inference stage (Maifias et al.,
2024). For instance, reinforcement learning has



been employed to fine-tune large language mod-
els to enhance the aesthetic quality of generated
images, while (Valerio et al., 2023) have concen-
trated on filtering out non-visual prompt elements
to improve visual consistency.

Current prompt optimization research predomi-
nantly refines and modifies pre-existing ideas, es-
sentially functioning as a form of faithful and ele-
gant machine translation(Zhan et al., 2024) of ex-
isting concepts. However, my work focuses on
creative generation from scratch, emphasizing the
ideation process rather than merely optimizing or
adapting existing prompts.

2.3 Cognitive Modeling

Creativity in human cognition has been extensively
studied in cognitive science and psychology, where
it is often conceptualized as a structured process
rather than an arbitrary generation of ideas (Boden,
2004; Finke et al., 1996). One of the most influ-
ential models, the Geneplore Model (Finke et al.,
1996), characterizes creativity as a two-phase pro-
cess:

* Generative Phase: The cognitive system
constructs an initial structured representation
based on existing knowledge, forming a stable
foundation for subsequent transformation.

* Exploratory Phase: The system refines, re-
structures, or blends these initial representa-
tions to produce novel and creative outputs.

This hierarchical perspective aligns with re-
search on structured cognitive processing, where
creativity emerges from a balance between stabil-
ity and flexibility (Smith et al., 1995). However,
how to systematically model this process in com-
putational systems, particularly in large language
models (LLMs), remains an open challenge.

Recent work has explored LLMs’ potential for
creative generation (Yuan et al., 2022; Mita et al.,
2024; Belouadi and Eger, 2023). Current methods
fail to establish a generation paradigm for creative
work, nor do they construct a systematic cogni-
tive framework. The absence of such a structured
model limits the controllability and novelty of the
generated content.

To address this, we propose the Cognitive Chain-
based Creativity (C-CoC) framework, which de-
composes creative cognition into four intercon-
nected stages:

1. Concept Decomposition (Cgecompose): Con-
structs symbolic core representations from in-
put data. This aligns with mental representa-
tion theory (Barsalou, 1999), which describes
how cognitive systems extract stable concep-
tual structures to facilitate downstream reason-
ing.

2. Base Expression (Dy,s): Generates ini-
tial descriptions that conform to logical and
semantic structures, incorporating cognitive
frame theory (Minsky et al., 1974), which ex-
plains how prior knowledge structures influ-
ence interpretation and organization.

3. Cognitive Shift (Screative): Facilitates cross-
domain conceptual blending to introduce nov-
elty, inspired by conceptual blending theory
(Fauconnier and Turner, 2008), which de-
scribes creativity as a process of integrating
diverse conceptual spaces.

4. Creative Realization (D*): Transforms ab-
stract creative output into actionable, exe-
cutable descriptions. This process follows
principles of top-down predictive processing
(Friston, 2005; Clark, 2013), ensuring gener-
ated content is both interpretable and applica-
ble.

Compared to prior LLM-based creative gener-
ation methods, C-CoC provides a structured cog-
nitive pathway that guides the generative process
from stable representations to creative transforma-
tions. By explicitly modeling cognitive shifts and
integrating structured processing, our approach en-
hances both the controllability and novelty of gen-
erated content, moving beyond traditional heuristic-
driven methods.

3 Cognitive Chain of Creativity
Framework

Visual Creative Description (VCD) is the task
of generating textual descriptions that depict cre-
ative image content. The goal is to produce de-
scriptions that are not only creative, feasible, and
visually expressive but also align with the expected
aesthetic and narrative requirements of the gener-
ated image. Fundamentally, this process involves a
structured cognitive transformation, where the de-
scription must balance attribute preservation, con-
ceptual breakthrough, and aesthetic alignment to
ensure that the generated text both conveys the key



information of the subject and inspires high-quality
visual generation.

In this work, we propose the Cognitive Chain
of Creativity (C-CoC), a paradigm that employs
large language models (LLMs) as Cognitive Op-
erators to model creative image generation as a
stepwise cognitive transitionprocess. Beginning
with the structured information of an Expressed
Entity, C-CoC systematically performs structured
cognitive transformations across multiple reason-
ing stages, progressing from conceptual association
to creative optimization. The final output is a vi-
sual creative description that ensures high-quality
text-to-image (T2I) generation.

3.1 Task Definition

Given the fundamental information of an Expressed
Entity, we define:

P = {pname, Pdesc; Datir } (1)
where:
* DPname TE€presents the entity name,
* Ddesc provides a brief textual description,

* Par = {a1, az, ..., ay } denotes a set of entity
attributes (e.g., color, material, functionality).

The system aims to generate a visual creative de-
scription D* that satisfies the criteria of creativity,
readability, and executability:

D* = f(P,C) (2)

where C' denotes the constraints imposed by the
Cognitive Chain of Creativity (C-CoC) paradigm,
integrating knowledge from cognitive psychol-
ogy, art theory, and visual composition principles.
These constraints ensure that the generated descrip-
tions are not only creative but also executable and
interpretable by a T2I system. The final descrip-
tion D* is then used to drive a T2I generator G,
producing the expected image I*:

The process of generating visual creative descrip-
tion is decomposed into four cognitive transition
stages(3), where each stage applies structured rea-
soning and transformation through LLMs as cogni-
tive operators. The overall workflow is summarized
in Algorithm 1.

P — C1decompose — D base 7 Screative — D* (3)

Algorithm 1 Cognitive Chain-of-Thought Gen-
eration
Require: P,O, M,G
Ensure: D* I*
for each P do
Clecompose < ExtractConcepts(P)
Dygse < GenerateBase (M, Cecompose)
for cach § € © do
Screative <~
ApplyCognitiveShift( Dyyse, 0)
end for
D* + OptimizeForCreativity (Screative )
I + G(D¥)
end for
return D* [*

3.1.1 Concept Decomposition (Cgecompose)

Extracts core concepts by analyzing entity at-
tributes:

Cdecompose = (I)(P ; M) (4)

where ®(-) identifies the key conceptual elements
from the entity’s attribute set..M denotes the cogni-
tive operator.

3.1.2 Base Expression (Dpgase)

Generates a conventional visual description that
follows traditional description paradigms:

Dbase = \Il(Cdecomposea M) (5)

where ¥(-) transforms the extracted conceptual ele-
ments into a logically sound, attribute-aligned base
description. This stage ensures that the generated
text remains coherent and factually aligned with
the entity but does not yet introduce creativity en-
hancements.

3.1.3 Cognitive Shift (Screative)

Applies constraints from cognitive science, psy-
chology, and artistic principles using cognitive op-
erators to transform the base description into a
highly creative visual expression:

Screative = Q(Dbasea @7 M) (6)

where:© represents the constraints guiding the cog-
nitive transition,{(-) applies cognitive shifts to en-
sure the generated description aligns with both vi-
sual communication rules and creativity principles.



3.1.4 Creative Realization (D*)
3.1.5 Creative Realization (D*)

Produces the final creative description by incor-
porating composition aesthetics, narrative logic,
and stylistic consistency:

D* = 11(Screative) (7)

where I'(-) ensures that the transformed creative
expression is both actionable and interpretable by
the T2I model.

3.2 Multimodal Alignment

The ultimate goal of visual creative description gen-
eration is to ensure that D* effectively drives text-
to-image (T2I) generation, producing a visually
aligned output I*. Instead of relying on human spe-
cialists for illustration, we leverage T2I models to
simulate the drawing process, enabling automated
creative visualization.

I* = G(DY) 3)
where G represents the T2I generator.

4 Visual Creative Description Benchmark

4.1 Dataset Construction

VCD Task involves generating textual descriptions
that depict visual entities while ensuring creativ-
ity, executability, and visual expressiveness. One
concrete application of VCD is creative advertise-
ment generation, where textual descriptions must
accurately convey product information while main-
taining visual appeal, brand identity, and market
influence.

To support research and benchmarking in this
domain, we introduce PAINT (Product Advertise-
ment Image Narrative Texts), a dataset specifi-
cally designed for VCD tasks in product advertise-
ments. PAINT provides high-quality text-image
pairs to study and evaluate cognitive shifts and
multimodal alignment within the VCD task. The
dataset is systematically constructed following the
C-CoC) framework to ensure consistency, control,
and quality.

4.1.1 Data Sources

Expressed Entity Datais sourced from publicly
available datasets.We utilize the Amazon Reviews
dataset(Hou et al., 2024) collected by McAuley
Lab in 2023. data preprocessing includes:

I

|

1

1

I
Visual
1 Alignment |
|

|

1

|

Figure 2: Dataset Composition: The dataset consists of
three parts: text descriptions, model evaluations, human
evaluations, and visually aligned images.

* Filtering out samples containing discrimina-
tory or inappropriate content to ensure ethical
compliance.

* Extracting product title and description
as input while considering samples with miss-
ing or insufficient descriptions.

4.1.2 Data Generation

The dataset is generated under the constraints of
the C-CoC framework, leveraging large language
models (LLMs) for cognitive transitions and state-
of-the-art text-to-image (T2I) models for multi-
modal alignment that is shown in Figure?2.

Cognitive Operators We employ ChatGPT-4o-
mini (OpenAl, 2024) as the LLM to execute cog-
nitive reasoning within the C-CoC framework and
generate visual creative descriptions.

Cognitive Shift Modeling The cognitive shift
process in visual creative description generation
requires domain-specific adaptation. In the case
of advertisement-based VCD tasks, the transfor-
mation must align with advertising principles and
artistic design conventions to ensure that the gen-
erated text both meets creative requirements and
optimally guides T2I models.

We introduce four key cognitive shift con-
straints based on theories from cognitive psy-
chology (Bruner, 1991; Green and Brock, 2000),
Gestalt visual principles (Arnheim, 1954; Palmer,
1999), and visual communication (Bar, 2004; Oliva
and Torralba, 2007):
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* Plot Creativity (0,1o): Inspired by narrative
psychology (Bruner, 1991; Green and Brock,
2000), this constraint ensures that the adver-
tisement leverages storytelling techniques to
enhance audience engagement and informa-
tion retention.

* Color Creativity (0..10:): Based on color psy-
chology (Elliot and Maier, 2014; Labrecque
and Milne, 2012), this constraint enhances
emotion-driven branding by leveraging spe-
cific color associations.

¢ Volume Creativity (fyoume): Rooted in
Gestalt theory (Arnheim, 1954; Palmer, 1999),
this constraint regulates the spatial dominance
of visual elements, enhancing focal hierarchy
and image composition.

* Background Creativity (Opackground): De-
rived from scene semantics (Bar, 2004; Oliva
and Torralba, 2007), this constraint ensures
that object-background relationships reinforce
visual coherence and symbolic meaning.

Multimodal Alignment To ensure the dataset’s
cross-modal consistency, we employ the open-
source text-to-image model FLUX.1-dev(Black-
Forest-Labs, 2024) for alignment.

Evaluation Metrics We set scoring metrics for
the four dimensions to evaluate their impact on
the overall creative output. These metrics ensure
that the advertisement adheres to cognitive shift
principles and meets creative requirements. The
detailed criteria for these scoring metrics can be
found in the AppendixB.

Human Annotation Each cognitive transition is
evaluated by three annotators. Scores are given for
each dimension, and a majority vote determines the
final score. If model and human judgments differ,
the transition is marked as discrepant. The voting
system reflects general public aesthetic preferences,
addressing the subjective nature of aesthetic judg-
ments.

5 Experimental Analysis

We employed VCD-BENCH to evaluate the per-
formance of large language models (LLMs) in as-

sessing visual creative descriptions. This experi-
ment investigates the models’ capacity to infer vi-
sual concepts based solely on textual descriptions,
given their lack of direct visual perception. The
evaluation is conducted using three key metrics: (1)
consistency with human ratings (Spearman correla-
tion), (2) numerical deviation from human scores
(Mean Squared Error, MSE), and (3) classification
accuracy in distinguishing high-quality from low-
quality descriptions (F1-score and Accuracy). The
goal is to assess the ability of LLMs to infer aes-
thetic and compositional quality from linguistic
cues alone.

5.1 Consistency with Human Ratings

We used the Spearman correlation coefficient to
assess the alignment between LLM-generated eval-
uations and human ratings across four dimensions:
plot coherence (plot), color composition (color),
spatial volume (volume), and background detail
(bg). The results, shown in Figure 4, indicate that
all models continue to show relatively low corre-
lation scores, suggesting that LLMs still face chal-
lenges in fully capturing human evaluative criteria
in visual creativity assessment.

Spearman Correlation
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Figure 4: Heatmap of Spearman Correlation

Among the models, gemma-2-27b-it achieves
the highest average Spearman correlation across
all dimensions, with p = 0.031259 for plot, p =
—0.027016 for color, p = 0.017742 for volume,
and p = 0.071857 for background. In contrast, phi-
4 exhibits poor correlation in the volume dimension
with p = —0.098203, though it still achieves mod-
erate correlations for plot and background. For the
complete data, please refer to Appendix B.2.1.

Breaking down the performance across dimen-
sions:

* Volume dimension: llama-3.3-70b-instruct
achieves the highest correlation (p =
0.084856), indicating a relatively better grasp
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Figure 3: Evaluation scores MSE by Dimension and Model
Dimension Plot Color Volume Background Overall

Model Acc Prec Rec Fl Acc Prec Rec Fl Acc Prec Rec Fl Acc Prec Rec Fl Acc Prec Rec Fl
gpt-40-mini 51.23 60.32 44.86 51.45 51.69 50.00 12.10 19.49 44.00 60.83 35.10 44.51 48.31 58.14 27.47 37.31 48.33 56.23 32.27 41.71
llama-3.3-70b-instruct 55.36 58.72 76.66 66.50 49.84 48.73 64.86 55.65 59.28 65.64 76.02 70.45 50.49 55.56 63.22 59.14 55.53 59.40 73.27 65.61
llama-3.2-11b-vision-instruct 45.76 54.05 32.47 40.57 47.71 35.85 13.10 19.19 39.68 58.54 12.37 20.43 43.93 49.51 30.00 37.36 45.76 54.05 32.47 40.57
deepseek-V3 44.85 5548 21.63 31.12 48.00 42.31 21.02 28.09 38.77 57.14 17.31 26.57 44.92 53.66 12.09 19.73 44.85 54.48 21.63 31.12
nova-lite-v1 52.38 59.05 56.61 57.81 52.00 50.39 40.76 45.07 46.15 61.38 42.79 50.42 55.38 60.00 60.99 60.49 52.38 59.05 56.61 57.81
gemma-2-27b-it 55.53 59.40 73.27 65.61 49.50 48.02 5822 52.63 55.37 65.97 63.64 64.78 54.61 58.59 67.44 62.70 55.53 59.40 73.27 65.61
phi-4 53.19 58.08 67.25 62.33 4691 46.77 7436 57.43 52.62 64.84 56.73 60.51 52.92 60.58 45.60 52.04 53.19 58.08 67.25 62.33
gemma-2-9b-it 55.05 58.45 75.03 65.71 49.69 4821 71.05 57.45 57.14 63.82 76.21 69.47 54.61 58.59 67.44 62.70 55.05 58.45 75.03 65.71
claude-3-haiku 44.24 54.69 18.74 27.92 49.35 45.07 21.33 28.96 37.94 58.06 9.09 15.72 4831 58.14 27.47 37.31 44.24 54.69 18.74 27.92
llama-3.1-405b-instruct 54.41 58.88 72.20 64.86 51.69 50.98 75.73 60.94 53.62 61.38 68.99 64.96 53.61 61.38 68.99 64.96 54.41 58.88 7220 64.86

Table 1: Overall and Per-Dimension Classification Evaluation Results (%)

of spatial reasoning and object fullness in text
descriptions.

* Background dimension: claude-3-haiku
shows the strongest alignment (p
0.091889), suggesting it may be more sen-
sitive to textual cues related to scene depth,
environmental detail, or artistic framing.

* Plot and color dimensions: Correlation scores
remain generally low, with llama-3.3-70b-
instruct achieving p = —0.052644 for plot
and p = 0.005578 for color. This highlights
a significant limitation in LLMs’ ability to
infer narrative structure and aesthetic color
harmony from text alone.

A key observation is that some models perform
well in specific dimensions but struggle in others.
For example, phi-4 shows moderate correlation in
the background dimension (p = 0.052088), but
negative correlations in plot and volume, indicating

that LLMs exhibit non-uniform proficiency across
different visual attributes.

5.2 Numerical Deviation from Human Scores

We further examined the numerical accuracy of
LLM-generated scores by computing the Mean
Squared Error. A lower MSE indicates that the
model’s absolute scoring is closer to human rat-
ings.

gemma-2-27b-it achieves the lowest average
MSE (2.5339), demonstrating the smallest devi-
ation from human scores, followed by llama-3.3-
70b-instruct (2.5874). In contrast, claude-3-haiku
and deepseek-V3 exhibit significantly higher MSE
values, suggesting greater difficulty in predicting
scores that align with human evaluations.

5.3 Binary Classification Performance

In the binary classification task of distinguishing
high-quality from low-quality descriptions, llama-
3.3-70b-instruct achieves the highest F1-score



(66.50%) and Accuracy (55.36%), making it
the most stable classifier. gemma-2-27b-it and
llama-3.1-405b-instruct also perform well (F1 ~
65.61%), but with slightly higher recall than pre-
cision, suggesting a tendency to over-predict the
"good" class.

Breaking down performance by dimension:

* Plot dimension: llama-3.1-405b-instruct
achieves the highest F1-score (0.7469), indi-
cating strong text-based reasoning in assess-
ing narrative structure.

¢ Volume dimension: llama-3.3-70b-instruct
performs best (F1 = 0.7045), consistent with
its superior correlation in this category.

¢ Background dimension: gemma-2-27b-it
achieves the highest F1-score (0.6761), sug-
gesting it is more effective at differentiating
high- and low-quality background descrip-
tions.

* Color dimension: All models perform sig-
nificantly worse in this dimension, with the
best F1-score reaching only 0.583, indicating
that LLMs struggle to evaluate color-related
aesthetics using only textual descriptions.

6 Discussion

Our experimental analysis provides critical insights
into the capabilities and limitations of LLMs in
evaluating visual creative descriptions. The consis-
tently low Spearman correlations across all models
(averaging p < 0.1) indicate a fundamental mis-
alignment between LLM-based assessments and
human judgment in creative evaluation tasks. This
discrepancy is particularly evident in the color (best
p = 0.040) and plot (worst p = —0.098) dimen-
sions, suggesting that LLMs face significant chal-
lenges in understanding abstract aesthetic princi-
ples and narrative coherence from textual descrip-
tions alone.

Dimension-specific performance patterns reveal
an intriguing dichotomy: models achieved rela-
tively better mean squared error (MSE) scores
in volume (2.402-2.655) and background (2.411—
2.686) compared to color (2.441-2.746) and plot
(2.734-2.981). We hypothesize that this may stem
from spatial attributes being more amenable to
linguistic encoding (e.g., the phrase “dominant
foreground object” implies control over volume),
whereas color harmony and narrative structure rely

on implicit visual knowledge that text-based mod-
els cannot reliably access.

Furthermore, the classification results ex-
pose fundamental limitations in current LLM
architectures. While llama-3.3-70b-instruct
achieved a 66.50% F1-score in volume classifica-
tion—indicating moderate competence in judging
spatial composition—all models performed near
chance levels (45-55% accuracy) in color assess-
ment. This suggests that without explicit visual
perception mechanisms, LLMs cannot reliably sim-
ulate human aesthetic judgment for certain creative
dimensions, despite their strong linguistic capabili-
ties.

Even state-of-the-art models remain far from
human-level performance. This gap underscores
the need for new training paradigms that incorpo-
rate cognitive principles of visual creativity.

7 Conclusion

We introduce visual creative description tasks and
present three key innovations to address them:

* 1) The C-CoC framework for structured cre-
ative cognition modeling.

* 2) The PAINT dataset enabling systematic
training and evaluation.

¢ 3) VCD-Bench, the first multidimensional
benchmark for visual creativity assessment.

Our evaluation of 10 models highlights critical lim-
itations across all dimensions. While the models
show relatively better performance in spatial rea-
soning compared to other aspects, they all fall short
in color and plot evaluation. These gaps persist con-
sistently across different model sizes, suggesting
that architectural innovations are necessary beyond
just scaling parameters. Future work should fo-
cus on integrating lightweight visual encoders and
cognitive alignment objectives. By bridging lin-
guistic and visual creativity, this work aims to push
the boundaries of creative collaboration between
models and human-like cognitive processes.

Limitation

The PAINT dataset focuses on product advertise-
ments, which may limit the generalizability of our
findings to other creative domains such as artistic
illustrations or social media content. The complex-
ity of the annotation task, which involves multiple
dimensions and requires a voting mechanism to



ensure consistency, also restricted the size of the
dataset. Future work should aim to expand the
dataset to capture a broader range of creative con-
texts, which will allow for a more comprehensive
evaluation of C-CoC’s versatility.

Additionally, our evaluation was based solely on
textual inputs, overlooking the potential of multi-
modal models, which combine vision and language.
While this approach isolates linguistic creativity, it
misses the opportunity to leverage modern vision-
language models for grounded aesthetic reasoning,
which could yield richer insights. Moreover, all
human evaluations were conducted by annotators
from similar cultural backgrounds, potentially in-
troducing bias in color symbolism and narrative
preference. Cross-cultural validation is essential
for more global applications.

Finally, the C-CoC framework employs a linear
creative process, whereas human creativity is of-
ten recursive, involving ongoing refinement. The
staged approach used here may oversimplify the
dynamic interactions between concept generation
and critical evaluation in more complex creative
workflows.

Ethical Statement

This study adheres to all relevant ethical guide-
lines. The dataset and model utilized are publicly
available and employed in accordance with their re-
spective licenses. Ethical standards were followed
throughout the annotation process, with informed
consent obtained from all annotators. It should
be noted that this text was initially drafted with
the assistance of an Al language model to enhance
its clarity and accuracy. Moreover, we conducted
rigorous internal reviews to further guarantee that
every step in this study, from data collection to
model deployment, strictly adhered to the highest
ethical benchmarks.
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A PAINT Dataset

This section provides an overview of the dataset
. The dataset consists of 330 input expressed en-
tity, which are derived from 33 different product
categories. For each category, 10 samples were
selected, totaling 330 input items. These items are
used as the starting point for generating creative
descriptions through the C-CoC process.

The dataset was used to generate 1980 descrip-
tions through a six-step C-CoC process. The six
steps are:

1. Concept Decomposition (1 Layer)
2. Base Expression (1 Layer)

3. Cognitive Shift (4 Layers)

The six-step generation process is illustrated in
Figure 5, showing how input data undergoes de-
composition, expression generation, and cognitive
shifts.

For each Base Expression and Cognitive Shift,
images were generated, resulting in 1650 images.
These images primarily served as a reference for
the generated descriptions. Human evaluators pro-
vided 7920 annotations, where the ratings were
mainly focused on the textual descriptions. How-
ever, when the image description aligned with the
text, the evaluators also considered the aesthetic
quality of the images, including factors such as vi-
sual appeal, clarity, and relevance to the generated
description.

A.1 Diversity Analysis

The dataset shows high diversity in Distinct-1 and
Distinct-2, especially at the phrase level (Distinct-
2), with values close to 0.98 for all dimensions,
indicating significant variation in the text content
and low redundancy.
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Metric plot color volumn bg

Distinct-1 0.804 0.820 0.814 0.799
Distinct-2 0.978 0982 0981 0.972
Self-BLEU-1 0.164 0.197 0.202  0.225
Self-BLEU-2 0.049 0.061 0.052  0.096

Table 2: Metrics for Text Diversity Analysis

B Evaluation Metrics

B.1 Cognitive Transition Evaluation Criteria

This study designs four independent evaluation cri-
teria based on four cognitive transition dimensions
O € {9p10t7 Ocolor, Ovolume ebackground}- For each ex-
pression object ¢ € I, the scores before and after
cognitive transition are calculated for each dimen-
sion 0. The Prompts are illustrated in Figure6

B.1.1 LLM Scoring Mechanism

For each expression object ¢ € I and each cognitive
transition dimension 6, the large language model
(LLM) is required to score the text before cogni-
tive transition Ti,ee ; and the text after cognitive
transition Tgpif i k-
base shift

Qi Ak
Then, the cognitive transition increment is calcu-
lated:

base

model __ _shift
ASi,kz = — Qi

where:

o If ASModel > 0, it indicates that the cognitive
transition in this dimension has enhanced the
creativity of the text.

o If ASmodel < 0, it indicates that the cogni-
tive transition in this dimension has made the
description too abstract or inconsistent with
the visual expression logic, lowering the text
quality.

B.1.2 Human Annotation and Ground Truth
Construction

To ensure the reliability of Ground Truth, each
cognitive transition data point is evaluated by three
independent annotators j € .J. For each expression
object ¢ € I, the three individual scores for each
cognitive transition dimension 6, are obtained:

shift

(abase i,k,j)’

ik jed
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Zydeco Chop Chop Cajun Seasoning Base, 8 Ounce Resealable Bags (Pack of Two - 1 Pound Total)

['Zydeco Chop Chop is a blend of Dehydrated Onion, Dehydrated Garlic, Dehydrated Red and
Green Bell Pepper, Dehydrated Celery, Dehydrated Green Onion, and Dehydrated Parsley flakes.
Created from a rich tradition rooted deep in Cajun culture, Zydeco Chop Chop is already blended
P = {Pname; Paese; Parrr Jand ready to use in anything from traditional Cajun favorites to regular American fare......."]

1
: Zydeco Chop Chop Cajun Seasoning Base is a convenient seasoning blend that contains dehydrated onions, garlic, |
I Cdecompose bell peppers, celery, green onions, and parsley. It enhances the flavor of various dishes, especially traditional Cajun |
| cuisine. :

|

|

1 In a brightly lit kitchen, a bottle of Zydeco Chop Chop Cajun Seasoning Base stands proudly,
i D base surrounded by fresh ingredients: dehydrated onions, garlic, bell peppers, celery, green onions,
: and parsley. The seasoning’s vibrant colors shine, while its enticing aroma fills the air.
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2. Does it vividly depict a unique or strange scene?
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4. Does it incorporate imaginative elements based on reality?
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I 1. Does it introduce novel elements or scenarios? Color
1 2. Does it vividly depict a unique or strange scene?

| 3. Are the unique elements aligned with the overall theme?

| 4. Does it incorporate imaginative elements based on reality?

| 5. Does the description avoid abstract expressions (e.g., "beautiful melody")?

. Does the description avoid abstract expressions (e.g., "beautiful melody")?
. Is it suitable as an image advertisement for the following product: ‘{title}'?

. Does it introduce novel elements or scenarios? Volume
. Does it vividly depict a unique or strange scene?
. Are the unique elements aligned with the overall theme?

1 1. Does it introduce novel elements or scenarios? Background
2

2

4. Does it incorporate imaginative elements based on reality?

5

6

1
1 2. Does it vividly depict a unique or strange scene?

1 3. Are the unique elements aligned with the overall theme?

| 4. Does it incorporate imaginative elements based on reality?

| 5- Does the description avoid abstract expressions (e.g., "beautiful melody')?

. Does the description avoid abstract expressions (e.g., "beautiful melody")?
Lé Is it suitable as an image advertisement for the following product: “{title}'?

Figure 6: Evaluation Prompt
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The cognitive transition increment for each annota-
tor is then calculated as:
human __ _shift base
Aszkj 7a7,k?] _azk’,j
Next, the voting system is applied based on the
signs of the increments reported by the annotators:

 If two or more annotators report a positive
increment, the cognitive transition is classified
as a positive improvement.

* If two or more annotators report a non-positive
increment (i.e., negative or zero), the cognitive
transition is classified as a negative decrease.

The final cognitive transition score is determined
by averaging the scores of the majority vote:

1

A Shuman —
‘Jmajority’ j

( shift

A base )

i,k,j
€J, majority

where Jnajority T€presents the annotators who be-
long to the majority vote.

For each cognitive transition increment, the clas-
sification of positive, negative, or discrepant cases
is as follows:

¢ Positive Increment: If AS{“ISdel > 0 and

AS?‘,;man > (0, the cognitive transition is clas-
sified as a positive improvement.

¢ Negative Increment: If AS;n,gdel < 0 and

AS?‘,;ma“ < 0, the cognitive transition is clas-
sified as a negative decrease.

* Discrepant Case: If the model and human
judgments are in opposite directions, the cog-
nitive transition is classified as discrepant.

B.1.3 Annotator Identity

The annotation process involves five postgraduate
students who possess extensive expertise in natural
language processing. This ensures the reliability
and consistency of the annotated data. Their back-
ground in NLP contributes to the rigor and accuracy
of the cognitive transition assessments, thereby en-
hancing the credibility of the annotations.

B.2 Consistency Evaluation Between LLM
and Human Ratings

To assess whether the LLM has the ability to judge
creative transitions, we calculate the consistency
between its scores and human ratings.
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B.2.1 Spearman Rank Correlation

For each cognitive transition dimension 6, the
Spearman Rank Correlation between the LLM
score AS;“,Sdel and human score AS?‘,’Cma“ is cal-
culated: 7

Zie[ ( Rmod Rmod) ( Rhum R}];um)

k= —
\/ziEI(R?,]Igd _ R?Od)2\/ZiEI(R?:;€m _ Rt];um)Q
where:

. Rm"del and Rh“man are the rank values of the
model and human scores, respectively.

. R};“’del and R],;“ma“ are the mean values of the
model and human scores, respectively.

* A higher py, indicates that the model’s scoring
is closer to human judgment.

For the complete data, refer to Table3.

B.2.2 Mean Squared Error (MSE)

The mean squared error (MSE) between the LLM
score and the human score is calculated:

Z Smodel

el

MSE,, = ASPyman?

1]

where:

* A lower MSE,, indicates that the LLM’s
scores are closer to human ratings.

For the complete data, refer to Table 4.

C Testing Model list

We tested the following models in this study:

* Google:
— google/gemma-2-27b-it (GemmaTeam,
2024)

— google/gemma-2-9b-it (GemmaTeam,
2024)

¢ Meta:

— meta-llama-3.3-70b-instruct (MetaAl,
2024b)

— meta-llama-3.2-11b-vision-instruct
(MetaAl, 2024c¢)

— meta-llama-3.1-405b-instruct (MetaAl,
2024a)

* Anthropic:



— anthropic/claude-3-haiku  (Anthropic,
2024)

¢ Microsoft:

— microsoft/phi-4 (Abdin et al., 2024)

e Amazon:

— amazon/nova-lite-v1 (Intelligence, 2024)

* Deepseek:
— deepseek-V3 (DeepSeek-Al, 2024)

* OpenAl:
— gpt-4o-mini (OpenAl, 2024)

D Annotation Instructions

This section provides a concise overview of the
annotation process. Detailed instructions are dis-
played in Figures 7 and 8, while the Label Studio
interface setup is shown in Figure 9.

D.1 Overview

The annotation tasks are divided into four cate-
gories: 1. Story Creativity 2. Color Creativity 3.
Volume Creativity 4. Background Creativity

Each category has specific evaluation criteria,
which include analyzing the text description, com-
paring it with the corresponding creative picture,
and scoring based on creativity and relevance. An-
notators are required to follow standardized proce-
dures to ensure consistency and accuracy.

D.2 Scoring Guidelines

The scoring system ranges from 0 to 5 points, as
described in the instructions. Higher scores indi-
cate better alignment with task requirements and
increased novelty in the described scenes.
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Model Plot Color Volume Background
gpt-40-mini -0.016659  0.000775 -0.034206 0.082822
llama-3.3-70b-instruct -0.063425 0.024775  0.088258 0.018349
llama-3.2-11b-vision-instruct  -0.071466 -0.031215  0.044520 0.004729
deepseek-V3 0.008927 -0.020354 -0.067282 0.015250
nova-lite-v1 -0.006940 0.019765 -0.028856 0.078937
gemma-2-27b-it 0.042933  -0.010640 0.017705 0.067116
phi-4 -0.003633 -0.011429 -0.079310 0.056719
gemma-2-9b-it -0.041644  0.032320  0.008456 0.042995
claude-3-haiku -0.001715 -0.037606 -0.051797 0.112270
llama-3.1-405b-instruct -0.021820  0.040628  0.009954 -0.032808

Table 3: Spearman Correlation by Model and Dimension

Model Plot MSE Color MSE Volume MSE Background MSE Average MSE
gpt-4o-mini 2.962 2.573 2.640 2.546 2.680
llama-3.3-70b-instruct 2.847 2.536 2.402 2.648 2.608
Ilama-3.2-11b-vision-instruct 2.981 2.746 2.492 2.686 2.726
deepseek-V3 2.797 2.709 2.655 2.656 2.704
nova-lite-v1 2.894 2.573 2.629 2411 2.627
gemma-2-27b-it 2.734 2.620 2.519 2.466 2.589
phi-4 2.877 2.638 2.617 2.486 2.654
gemma-2-9b-it 2.842 2.524 2.561 2.547 2.618
claude-3-haiku 2.896 2.701 2.656 2.467 2.705
Ilama-3.1-405b-instruct 2.778 2.441 2431 2.672 2.581

Table 4: Mean Squared Error (MSE) for Each Model Across Different Dimensions
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o Annotation Guide

This guide aims to provide a standardized annotation method to ensure the accuracy and consistency of the task. During the annotation process, please follow the following rules and handle them

systematically according to the task categories.

@ Task Categories

The annotation tasks are divided into four categories, cach with different evaluation criteria:

1. Story Creativity
« Pay attention to the storytelling, plot development in the picture, and its relevance to the product.
2. Color Creativity
« Focus on color matching, visual impact, and whether the colors enhance the product's attractiveness.
3. Volume & Shape Creativity
+ Concentrate on the object shape, product structure, and the expression of volume.
4. Background & Scene Creativity
* Notice the construction of the background environment, the creation of atmosphere, and the interaction between the main body and the background.

Requirements for Annotation Tasks

Each task consists of the following core parts:

1. Introduction to Basic Product Information
« Explain the purpose, characteristics, and main functions of the product to ensure that annotators fully understand it.
2. Description of the Creative Picture Advertisement
« Provide the text description of the creative picture advertisement for the product.
3. Schematic Diagram of the Picture Description
* Present a schematic diagram to assist in understanding the described scene, ensuring that annotators can accurately evaluate.

4. Scoring
* Score the quality of the text description to ensure that the description meets the task requirements.

Figure 7: Annotation instructionl

¢ Annotation Methods

Sort by Task Category

« Before formal annotation, it is recommended to sort by task category (label) first to improve efficiency and reduce frequent switching between different tasks.

Read Basic Product Information

« Before annotation, carefully read the product introduction to ensure understanding of its functions, features, and market positioning.

Analyze the Picture

« Observe the picture content and compare it with the description to form a preliminary judgment.

« The picture is only used as auxiliary reference, and the focus is on evaluating the quality of the text description.
(@ Scoring Guidelines

* The scoring is based on the accuracy of the text description, not just the aesthetics of the picture.
* When the picture conforms to the text description, the aesthetics of the picture can be one of the reference factors for scoring.

* The scores are comparative in nature, and the same score should be given when the performance is consistent.

lil Scoring Criteria

Score Scoring Criteria
0 points The described scene has no creativity under this criterion
1 point The picture description is unremarkable under this criterion

2-3 points  Generally meets the requirements but still lacks novelty

4-5points Meets the requirements and the described scene is refreshing

Figure 8: Annotation instruction2
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Annotation
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Projects / New Project #2 / Settings / Labeling Interface

Labeling Interface

Browse Templates Code Visual

1 <View>

2 <1 EERSEE —>

3 41" style="margin-bottom: 10px; font-weight: bold;" />

4 margin-bottom: 20px; display: flex; flex-direction: column; gap: 10px

5 padding: 10px; background-color: #f9f9f9; border: 1px solid #ddd; border-radiu
6 <Text name="score_0" value="0 %: BXAHLITE TRIN/LFHEE" style="line-height: 1.5;" />

7

8 padding: 10px; background-color: #f9f9f9; border: 1px solid #ddd; border-radiu
9 <Text name="score_1" value="1 %): Bi(&$3" style="line-height: 1.5;" />

10

1 padding: 10px; background-color: #f99f9; border: 1px solid #ddd; border-radiu
12 "score_2_3" value="2-3 %: LLE(RF" style="line-height: 1.5;" />

13

14 padding: 10px; background-color: #f9f9f9; border: 1px solid #ddd; border-radiu
15 <Text name="score_4_5" value="4-5 %: +# {5 AIAEIRI" style="line-height: 1.5;" />

16 </View>

17 </View>

18

19 <l BRINER —>

20 <Header value="Evaluation Criteria" style="margin-bottom: S5px; font-weight: bold;" />

21 <Text name="evaluation_criteria" value="$evaluation_criteria" style="margin-bottom: 10px;" />
22

23 |- FREMEREE ——

24 <Header value="Product Information:" style="margin-bottom: 5px; font-weight: bold;" />

25 <Text name="product_info" value="$product_info" style="margin-bottom: 20px;" />

26

27

28 Image 1:" sty

29 image1” valu

30 Description: * style="font-weight

31 "descriptionl" value $descriptionl" style="margin-bottor 10px;" />

32 <Rating name="ratingl" toName="imagel" value="Creativity Score (1-5)" mil

33

34 <1 @2 —>

35  <Header value="Image 2:" style="margin-top: 20px;" />

36  <Image name="image2" value="$image2" style="width: 40@px; height: auto; margin-bottom: 10px;"
37 <Header value="Description: " style="font-weight: bold; margin-bottom: S5px;" />

38 <Text name="description2" value="$description2" style='margin-bottom: 10px;" />

39 <Rating name="rating2" toName="image2" value="Creativity Score (1-5)" mil

40

a1 <t— HIEE —>

42 <Header value="Labels:" style="margin-top: 20px; font-weight: bold;" />

43 <Labels name="image_labels" toName="imagel" choice="single">

44 <Label valu

Configure the labeling interface with tags.

"plot_1" background="red" />

See all available tags.

Ul Preview
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Evaluation Criteria
Sample: Your text will go here.
Product Information:

Sample: Your text will go here.

Image 1:

Description:
Sample: Your text will go here.

Image 2:

Figure 9: Label Studio Setting
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