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Abstract
We introduce the task of visual creative descrip-001
tion (VCD) and propose three key innovations:002
1) the C-CoC framework for structured creative003
cognition, 2) the PAINT dataset for systematic004
training and evaluation, and 3) VCD-Bench,005
the first multidimensional benchmark for vi-006
sual creativity. Our experiments on 10 models007
reveal significant limitations—while models008
excel in spatial reasoning, they struggle with009
color and plot evaluation, with these gaps re-010
maining across model sizes. These findings011
suggest the need for architectural innovations012
beyond simple parameter scaling.013

1 Introduction014

In recent years, AI-generated content (AIGC) has015

seen rapid advancements. Text-to-image (T2I)016

models can generate highly relevant visual com-017

positions based on textual prompts(Ramesh et al.,018

2022), while large language models (LLMs) have019

demonstrated remarkable capabilities in creative020

text generation, including Storys(Yuan et al., 2022),021

poetry(Belouadi and Eger, 2023), and advertising022

copy(Mita et al., 2024). However, a critical ques-023

tion remains underexplored: Can LLMs generate024

visual creative descriptions (VCDs) that drive the025

generation of more creative images? Despite the026

significant progress in both text and image gen-027

eration, research on LLM-based VCD generation028

remains largely unexplored.029

The fundamental challenge lies in the current030

paradigm, which treats creative generation as a031

black-box process, relying on "black-box access"032

for iterative prompt optimization (He et al., 2024).033

These methods focus solely on the final output034

while neglecting the cognitive process of creative035

ideation. This black-box nature gives rise to three036

key issues that make VCDs difficult to quantify,037

optimize, and evaluate:038

• Lack of Training Data – Human creativity is039

implicit and rarely recorded in a structured040

Figure 1: Visual Creative Description Task: Comparison
between Human Process and the C-CoC Framework.

way. Without high-quality datasets, LLMs 041

struggle to generate novel and visually action- 042

able descriptions, leading to unoriginal and 043

impractical outputs. 044

• Lack of Cognitive Modeling – Current meth- 045

ods do not model LLMs’ cognitive mecha- 046

nisms in VCD generation, preventing effective 047

simulation of human creative thinking, con- 048

ceptual associations, and iterative refinements, 049

hindering synthetic dataset creation. 050

• Lack of Evaluation Frameworks – The ab- 051

sence of cognitive modeling results in inade- 052

quate evaluation metrics. Existing NLP and 053

T2I metrics fail to capture key attributes of cre- 054

ative descriptions, making quality assessment 055

difficult. 056

To address these challenges, we draw inspira- 057

tion from cognitive science theories and propose a 058

new generation framework that is shown in Figure1 059

for visual creative description—Cognitive Chain 060

of Creativity (C-CoC). In this framework, Large 061
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Language Models (LLMs) replace Human Special-062

ists as Cognitive Operators, executing Cognitive063

Transitions across multiple reasoning stages to sim-064

ulate human thought processes in visual creative065

ideation.066

Our framework starts with structured Expressed067

Entity information and progressively generates vi-068

sually creative textual descriptions that align with069

communication principles. These descriptions then070

drive text-to-image (T2I) generation, enhancing071

both the creativity and visual expressiveness of072

the generated images. This approach not only im-073

proves the quality of creative image generation074

but also introduces an evaluable and optimizable075

method for creative generation.076

To mitigate the issue of missing training data, we077

construct and annotate the PAINT (Product Artis-078

tic Image Narrative Texts) dataset based on the C-079

CoC framework. PAINT is a dedicated dataset for080

visual creative description tasks, providing struc-081

tured descriptions that exhibit novelty, executability,082

and communicability. By filling the gap in training083

data, PAINT enhances the generalization capability084

of LLMs in visual creative description tasks.085

Furthermore, we introduce VCD-Bench (Visual086

Creative Description Benchmark), an evaluation087

framework specifically designed to assess the un-088

derstanding and evaluation capabilities of LLMs in089

visual creative description. Our focus includes the090

following core questions:091

• Do LLMs’ evaluations of creative descriptions092

align with human judgments?093

• How do LLMs differ from human evaluators094

across various dimensions of visual creative095

description?096

• Are there significant differences among dif-097

ferent LLMs in their evaluation of creative098

descriptions across various dimensions?099

The key contributions of this study include:100

1. C-CoC Framework: We propose C-CoC, an101

LLM-based generation approach for visual102

creative description. This approach employs103

cognitive modeling to establish a multi-stage104

reasoning mechanism, enhancing the inter-105

pretability and controllability of LLMs in cre-106

ative text generation.107

2. PAINT Dataset: We construct the PAINT108

dataset, leveraging C-CoC to generate large-109

scale, high-quality visual creative descriptions.110

This dataset addresses the training data gap in 111

LLM-based visual creativity tasks and pro- 112

vides standardized data support for model 113

training and evaluation. 114

3. VCD-Bench Benchmark: We introduce 115

VCD-Bench, the first benchmark dedicated 116

to assessing LLM’s visual creative capabil- 117

ities. By comparing LLM-generated scores 118

with human evaluations, VCD-Bench quanti- 119

tatively measures performance in visual cre- 120

ative description tasks, offering a systematic 121

evaluation framework for future research. 122

2 Related Work 123

2.1 Text-to-Image Generation 124

Recent advances in Text-to-Image (T2I) models 125

have significantly improved the semantic alignment 126

between textual descriptions and generated images. 127

Early approaches relied on Generative Adversar- 128

ial Networks (GANs) (Goodfellow et al., 2014) to 129

map textual inputs to visual outputs. Later, autore- 130

gressive models such as DALL·E (Ramesh et al., 131

2021) and ImageGPT (Chen et al., 2020) lever- 132

aged token-based sequence prediction to enhance 133

text-conditioned generation. Currently, Diffusion 134

Models have become the dominant paradigm in 135

T2I tasks, achieving state-of-the-art results in both 136

fidelity and semantic consistency. Models such as 137

Imagen (Saharia et al., 2022), FLUX (Black-Forest- 138

Labs, 2024) and Stable Diffusion (Rombach et al., 139

2022) leverage latent diffusion processes to gener- 140

ate high-quality images with fine-grained details. 141

Several recent research endeavors advocate for 142

extensions of T2I models, aiming to increase their 143

fidelity to user prompts(Epstein et al., 2023)(Chefer 144

et al., 2023)(Wu et al., 2023). However, despite 145

these improvements, the T2I models remain highly 146

dependent on the quality of their textual inputs. 147

2.2 Prompt optimization 148

With the enhancement of text-to-image alignment 149

capabilities in T2I models, the quality of gener- 150

ated images has become increasingly dependent on 151

well-crafted textual inputs. In recent years, many 152

researchers have attempted to optimize prompts to 153

achieve better image generation outcomes, such 154

as refining task instruction prompts using training 155

data (Guo et al., 2023; Fernando et al., 2023).Some 156

studies focus on optimizing individual T2I prompts 157

at the multimodal inference stage (Mañas et al., 158

2024). For instance, reinforcement learning has 159
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been employed to fine-tune large language mod-160

els to enhance the aesthetic quality of generated161

images, while (Valerio et al., 2023) have concen-162

trated on filtering out non-visual prompt elements163

to improve visual consistency.164

Current prompt optimization research predomi-165

nantly refines and modifies pre-existing ideas, es-166

sentially functioning as a form of faithful and ele-167

gant machine translation(Zhan et al., 2024) of ex-168

isting concepts. However, my work focuses on169

creative generation from scratch, emphasizing the170

ideation process rather than merely optimizing or171

adapting existing prompts.172

2.3 Cognitive Modeling173

Creativity in human cognition has been extensively174

studied in cognitive science and psychology, where175

it is often conceptualized as a structured process176

rather than an arbitrary generation of ideas (Boden,177

2004; Finke et al., 1996). One of the most influ-178

ential models, the Geneplore Model (Finke et al.,179

1996), characterizes creativity as a two-phase pro-180

cess:181

• Generative Phase: The cognitive system182

constructs an initial structured representation183

based on existing knowledge, forming a stable184

foundation for subsequent transformation.185

• Exploratory Phase: The system refines, re-186

structures, or blends these initial representa-187

tions to produce novel and creative outputs.188

This hierarchical perspective aligns with re-189

search on structured cognitive processing, where190

creativity emerges from a balance between stabil-191

ity and flexibility (Smith et al., 1995). However,192

how to systematically model this process in com-193

putational systems, particularly in large language194

models (LLMs), remains an open challenge.195

Recent work has explored LLMs’ potential for196

creative generation (Yuan et al., 2022; Mita et al.,197

2024; Belouadi and Eger, 2023). Current methods198

fail to establish a generation paradigm for creative199

work, nor do they construct a systematic cogni-200

tive framework. The absence of such a structured201

model limits the controllability and novelty of the202

generated content.203

To address this, we propose the Cognitive Chain-204

based Creativity (C-CoC) framework, which de-205

composes creative cognition into four intercon-206

nected stages:207

1. Concept Decomposition (Cdecompose): Con- 208

structs symbolic core representations from in- 209

put data. This aligns with mental representa- 210

tion theory (Barsalou, 1999), which describes 211

how cognitive systems extract stable concep- 212

tual structures to facilitate downstream reason- 213

ing. 214

2. Base Expression (Dbase): Generates ini- 215

tial descriptions that conform to logical and 216

semantic structures, incorporating cognitive 217

frame theory (Minsky et al., 1974), which ex- 218

plains how prior knowledge structures influ- 219

ence interpretation and organization. 220

3. Cognitive Shift (Screative): Facilitates cross- 221

domain conceptual blending to introduce nov- 222

elty, inspired by conceptual blending theory 223

(Fauconnier and Turner, 2008), which de- 224

scribes creativity as a process of integrating 225

diverse conceptual spaces. 226

4. Creative Realization (D∗): Transforms ab- 227

stract creative output into actionable, exe- 228

cutable descriptions. This process follows 229

principles of top-down predictive processing 230

(Friston, 2005; Clark, 2013), ensuring gener- 231

ated content is both interpretable and applica- 232

ble. 233

Compared to prior LLM-based creative gener- 234

ation methods, C-CoC provides a structured cog- 235

nitive pathway that guides the generative process 236

from stable representations to creative transforma- 237

tions. By explicitly modeling cognitive shifts and 238

integrating structured processing, our approach en- 239

hances both the controllability and novelty of gen- 240

erated content, moving beyond traditional heuristic- 241

driven methods. 242

3 Cognitive Chain of Creativity 243

Framework 244

Visual Creative Description (VCD) is the task 245

of generating textual descriptions that depict cre- 246

ative image content. The goal is to produce de- 247

scriptions that are not only creative, feasible, and 248

visually expressive but also align with the expected 249

aesthetic and narrative requirements of the gener- 250

ated image. Fundamentally, this process involves a 251

structured cognitive transformation, where the de- 252

scription must balance attribute preservation, con- 253

ceptual breakthrough, and aesthetic alignment to 254

ensure that the generated text both conveys the key 255
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information of the subject and inspires high-quality256

visual generation.257

In this work, we propose the Cognitive Chain258

of Creativity (C-CoC), a paradigm that employs259

large language models (LLMs) as Cognitive Op-260

erators to model creative image generation as a261

stepwise cognitive transitionprocess. Beginning262

with the structured information of an Expressed263

Entity, C-CoC systematically performs structured264

cognitive transformations across multiple reason-265

ing stages, progressing from conceptual association266

to creative optimization. The final output is a vi-267

sual creative description that ensures high-quality268

text-to-image (T2I) generation.269

3.1 Task Definition270

Given the fundamental information of an Expressed271

Entity, we define:272

P = {pname, pdesc, pattr} (1)273

where:274

• pname represents the entity name,275

• pdesc provides a brief textual description,276

• pattr = {a1, a2, ..., an} denotes a set of entity277

attributes (e.g., color, material, functionality).278

The system aims to generate a visual creative de-279

scription D∗ that satisfies the criteria of creativity,280

readability, and executability:281

D∗ = f(P,C) (2)282

where C denotes the constraints imposed by the283

Cognitive Chain of Creativity (C-CoC) paradigm,284

integrating knowledge from cognitive psychol-285

ogy, art theory, and visual composition principles.286

These constraints ensure that the generated descrip-287

tions are not only creative but also executable and288

interpretable by a T2I system. The final descrip-289

tion D∗ is then used to drive a T2I generator G,290

producing the expected image I∗:291

The process of generating visual creative descrip-292

tion is decomposed into four cognitive transition293

stages(3), where each stage applies structured rea-294

soning and transformation through LLMs as cogni-295

tive operators. The overall workflow is summarized296

in Algorithm 1.297

P → Cdecompose → Dbase → Screative → D∗ (3)298

Algorithm 1 Cognitive Chain-of-Thought Gen-
eration
Require: P,Θ,M, G
Ensure: D∗, I∗

for each P do
Cdecompose ← ExtractConcepts(P )
Dbase ← GenerateBase(M, Cdecompose)
for each θ ∈ Θ do

Screative ←
ApplyCognitiveShift(Dbase, θ)

end for
D∗ ← OptimizeForCreativity(Screative)
I∗ ← G(D∗)

end for
return D∗, I∗

3.1.1 Concept Decomposition (Cdecompose) 299

Extracts core concepts by analyzing entity at- 300

tributes: 301

Cdecompose = Φ(P,M) (4) 302

where Φ(·) identifies the key conceptual elements 303

from the entity’s attribute set.M denotes the cogni- 304

tive operator. 305

3.1.2 Base Expression (Dbase) 306

Generates a conventional visual description that 307

follows traditional description paradigms: 308

Dbase = Ψ(Cdecompose,M) (5) 309

where Ψ(·) transforms the extracted conceptual ele- 310

ments into a logically sound, attribute-aligned base 311

description. This stage ensures that the generated 312

text remains coherent and factually aligned with 313

the entity but does not yet introduce creativity en- 314

hancements. 315

3.1.3 Cognitive Shift (Screative) 316

Applies constraints from cognitive science, psy- 317

chology, and artistic principles using cognitive op- 318

erators to transform the base description into a 319

highly creative visual expression: 320

Screative = Ω(Dbase,Θ,M) (6) 321

where:Θ represents the constraints guiding the cog- 322

nitive transition,Ω(·) applies cognitive shifts to en- 323

sure the generated description aligns with both vi- 324

sual communication rules and creativity principles. 325

4



3.1.4 Creative Realization (D∗)326

3.1.5 Creative Realization (D∗)327

Produces the final creative description by incor-328

porating composition aesthetics, narrative logic,329

and stylistic consistency:330

D∗ = Γ(Screative) (7)331

where Γ(·) ensures that the transformed creative332

expression is both actionable and interpretable by333

the T2I model.334

3.2 Multimodal Alignment335

The ultimate goal of visual creative description gen-336

eration is to ensure that D∗ effectively drives text-337

to-image (T2I) generation, producing a visually338

aligned output I∗. Instead of relying on human spe-339

cialists for illustration, we leverage T2I models to340

simulate the drawing process, enabling automated341

creative visualization.342

I∗ = G(D∗) (8)343

where G represents the T2I generator.344

4 Visual Creative Description Benchmark345

4.1 Dataset Construction346

VCD Task involves generating textual descriptions347

that depict visual entities while ensuring creativ-348

ity, executability, and visual expressiveness. One349

concrete application of VCD is creative advertise-350

ment generation, where textual descriptions must351

accurately convey product information while main-352

taining visual appeal, brand identity, and market353

influence.354

To support research and benchmarking in this355

domain, we introduce PAINT (Product Advertise-356

ment Image Narrative Texts), a dataset specifi-357

cally designed for VCD tasks in product advertise-358

ments. PAINT provides high-quality text-image359

pairs to study and evaluate cognitive shifts and360

multimodal alignment within the VCD task. The361

dataset is systematically constructed following the362

C-CoC) framework to ensure consistency, control,363

and quality.364

4.1.1 Data Sources365

Expressed Entity Datais sourced from publicly366

available datasets.We utilize the Amazon Reviews367

dataset(Hou et al., 2024) collected by McAuley368

Lab in 2023. data preprocessing includes:369

Figure 2: Dataset Composition: The dataset consists of
three parts: text descriptions, model evaluations, human
evaluations, and visually aligned images.

• Filtering out samples containing discrimina- 370

tory or inappropriate content to ensure ethical 371

compliance. 372

• Extracting product title and description 373

as input while considering samples with miss- 374

ing or insufficient descriptions. 375

4.1.2 Data Generation 376

The dataset is generated under the constraints of 377

the C-CoC framework, leveraging large language 378

models (LLMs) for cognitive transitions and state- 379

of-the-art text-to-image (T2I) models for multi- 380

modal alignment that is shown in Figure2. 381

Cognitive Operators We employ ChatGPT-4o- 382

mini (OpenAI, 2024) as the LLM to execute cog- 383

nitive reasoning within the C-CoC framework and 384

generate visual creative descriptions. 385

Cognitive Shift Modeling The cognitive shift 386

process in visual creative description generation 387

requires domain-specific adaptation. In the case 388

of advertisement-based VCD tasks, the transfor- 389

mation must align with advertising principles and 390

artistic design conventions to ensure that the gen- 391

erated text both meets creative requirements and 392

optimally guides T2I models. 393

We introduce four key cognitive shift con- 394

straints based on theories from cognitive psy- 395

chology (Bruner, 1991; Green and Brock, 2000), 396

Gestalt visual principles (Arnheim, 1954; Palmer, 397

1999), and visual communication (Bar, 2004; Oliva 398

and Torralba, 2007): 399
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Θ = {θplot, θcolor, θvolume, θbackground} (9)400

• Plot Creativity (θplot): Inspired by narrative401

psychology (Bruner, 1991; Green and Brock,402

2000), this constraint ensures that the adver-403

tisement leverages storytelling techniques to404

enhance audience engagement and informa-405

tion retention.406

• Color Creativity (θcolor): Based on color psy-407

chology (Elliot and Maier, 2014; Labrecque408

and Milne, 2012), this constraint enhances409

emotion-driven branding by leveraging spe-410

cific color associations.411

• Volume Creativity (θvolume): Rooted in412

Gestalt theory (Arnheim, 1954; Palmer, 1999),413

this constraint regulates the spatial dominance414

of visual elements, enhancing focal hierarchy415

and image composition.416

• Background Creativity (θbackground): De-417

rived from scene semantics (Bar, 2004; Oliva418

and Torralba, 2007), this constraint ensures419

that object-background relationships reinforce420

visual coherence and symbolic meaning.421

Multimodal Alignment To ensure the dataset’s422

cross-modal consistency, we employ the open-423

source text-to-image model FLUX.1-dev(Black-424

Forest-Labs, 2024) for alignment.425

Evaluation Metrics We set scoring metrics for426

the four dimensions to evaluate their impact on427

the overall creative output. These metrics ensure428

that the advertisement adheres to cognitive shift429

principles and meets creative requirements. The430

detailed criteria for these scoring metrics can be431

found in the AppendixB.432

Human Annotation Each cognitive transition is433

evaluated by three annotators. Scores are given for434

each dimension, and a majority vote determines the435

final score. If model and human judgments differ,436

the transition is marked as discrepant. The voting437

system reflects general public aesthetic preferences,438

addressing the subjective nature of aesthetic judg-439

ments.440

5 Experimental Analysis441

We employed VCD-BENCH to evaluate the per-442

formance of large language models (LLMs) in as-443

sessing visual creative descriptions. This experi- 444

ment investigates the models’ capacity to infer vi- 445

sual concepts based solely on textual descriptions, 446

given their lack of direct visual perception. The 447

evaluation is conducted using three key metrics: (1) 448

consistency with human ratings (Spearman correla- 449

tion), (2) numerical deviation from human scores 450

(Mean Squared Error, MSE), and (3) classification 451

accuracy in distinguishing high-quality from low- 452

quality descriptions (F1-score and Accuracy). The 453

goal is to assess the ability of LLMs to infer aes- 454

thetic and compositional quality from linguistic 455

cues alone. 456

5.1 Consistency with Human Ratings 457

We used the Spearman correlation coefficient to 458

assess the alignment between LLM-generated eval- 459

uations and human ratings across four dimensions: 460

plot coherence (plot), color composition (color), 461

spatial volume (volume), and background detail 462

(bg). The results, shown in Figure 4, indicate that 463

all models continue to show relatively low corre- 464

lation scores, suggesting that LLMs still face chal- 465

lenges in fully capturing human evaluative criteria 466

in visual creativity assessment. 467

Figure 4: Heatmap of Spearman Correlation

Among the models, gemma-2-27b-it achieves 468

the highest average Spearman correlation across 469

all dimensions, with ρ = 0.031259 for plot, ρ = 470

−0.027016 for color, ρ = 0.017742 for volume, 471

and ρ = 0.071857 for background. In contrast, phi- 472

4 exhibits poor correlation in the volume dimension 473

with ρ = −0.098203, though it still achieves mod- 474

erate correlations for plot and background. For the 475

complete data, please refer to Appendix B.2.1. 476

Breaking down the performance across dimen- 477

sions: 478

• Volume dimension: llama-3.3-70b-instruct 479

achieves the highest correlation (ρ = 480

0.084856), indicating a relatively better grasp 481

6



Figure 3: Evaluation scores MSE by Dimension and Model

Dimension Plot Color Volume Background Overall

Model Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

gpt-4o-mini 51.23 60.32 44.86 51.45 51.69 50.00 12.10 19.49 44.00 60.83 35.10 44.51 48.31 58.14 27.47 37.31 48.33 56.23 32.27 41.71
llama-3.3-70b-instruct 55.36 58.72 76.66 66.50 49.84 48.73 64.86 55.65 59.28 65.64 76.02 70.45 50.49 55.56 63.22 59.14 55.53 59.40 73.27 65.61
llama-3.2-11b-vision-instruct 45.76 54.05 32.47 40.57 47.71 35.85 13.10 19.19 39.68 58.54 12.37 20.43 43.93 49.51 30.00 37.36 45.76 54.05 32.47 40.57
deepseek-V3 44.85 55.48 21.63 31.12 48.00 42.31 21.02 28.09 38.77 57.14 17.31 26.57 44.92 53.66 12.09 19.73 44.85 54.48 21.63 31.12
nova-lite-v1 52.38 59.05 56.61 57.81 52.00 50.39 40.76 45.07 46.15 61.38 42.79 50.42 55.38 60.00 60.99 60.49 52.38 59.05 56.61 57.81
gemma-2-27b-it 55.53 59.40 73.27 65.61 49.50 48.02 58.22 52.63 55.37 65.97 63.64 64.78 54.61 58.59 67.44 62.70 55.53 59.40 73.27 65.61
phi-4 53.19 58.08 67.25 62.33 46.91 46.77 74.36 57.43 52.62 64.84 56.73 60.51 52.92 60.58 45.60 52.04 53.19 58.08 67.25 62.33
gemma-2-9b-it 55.05 58.45 75.03 65.71 49.69 48.21 71.05 57.45 57.14 63.82 76.21 69.47 54.61 58.59 67.44 62.70 55.05 58.45 75.03 65.71
claude-3-haiku 44.24 54.69 18.74 27.92 49.35 45.07 21.33 28.96 37.94 58.06 9.09 15.72 48.31 58.14 27.47 37.31 44.24 54.69 18.74 27.92
llama-3.1-405b-instruct 54.41 58.88 72.20 64.86 51.69 50.98 75.73 60.94 53.62 61.38 68.99 64.96 53.61 61.38 68.99 64.96 54.41 58.88 72.20 64.86

Table 1: Overall and Per-Dimension Classification Evaluation Results (%)

of spatial reasoning and object fullness in text482

descriptions.483

• Background dimension: claude-3-haiku484

shows the strongest alignment (ρ =485

0.091889), suggesting it may be more sen-486

sitive to textual cues related to scene depth,487

environmental detail, or artistic framing.488

• Plot and color dimensions: Correlation scores489

remain generally low, with llama-3.3-70b-490

instruct achieving ρ = −0.052644 for plot491

and ρ = 0.005578 for color. This highlights492

a significant limitation in LLMs’ ability to493

infer narrative structure and aesthetic color494

harmony from text alone.495

A key observation is that some models perform496

well in specific dimensions but struggle in others.497

For example, phi-4 shows moderate correlation in498

the background dimension (ρ = 0.052088), but499

negative correlations in plot and volume, indicating500

that LLMs exhibit non-uniform proficiency across 501

different visual attributes. 502

5.2 Numerical Deviation from Human Scores 503

We further examined the numerical accuracy of 504

LLM-generated scores by computing the Mean 505

Squared Error. A lower MSE indicates that the 506

model’s absolute scoring is closer to human rat- 507

ings. 508

gemma-2-27b-it achieves the lowest average 509

MSE (2.5339), demonstrating the smallest devi- 510

ation from human scores, followed by llama-3.3- 511

70b-instruct (2.5874). In contrast, claude-3-haiku 512

and deepseek-V3 exhibit significantly higher MSE 513

values, suggesting greater difficulty in predicting 514

scores that align with human evaluations. 515

5.3 Binary Classification Performance 516

In the binary classification task of distinguishing 517

high-quality from low-quality descriptions, llama- 518

3.3-70b-instruct achieves the highest F1-score 519
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(66.50%) and Accuracy (55.36%), making it520

the most stable classifier. gemma-2-27b-it and521

llama-3.1-405b-instruct also perform well (F1 ≈522

65.61%), but with slightly higher recall than pre-523

cision, suggesting a tendency to over-predict the524

"good" class.525

Breaking down performance by dimension:526

• Plot dimension: llama-3.1-405b-instruct527

achieves the highest F1-score (0.7469), indi-528

cating strong text-based reasoning in assess-529

ing narrative structure.530

• Volume dimension: llama-3.3-70b-instruct531

performs best (F1 = 0.7045), consistent with532

its superior correlation in this category.533

• Background dimension: gemma-2-27b-it534

achieves the highest F1-score (0.6761), sug-535

gesting it is more effective at differentiating536

high- and low-quality background descrip-537

tions.538

• Color dimension: All models perform sig-539

nificantly worse in this dimension, with the540

best F1-score reaching only 0.583, indicating541

that LLMs struggle to evaluate color-related542

aesthetics using only textual descriptions.543

6 Discussion544

Our experimental analysis provides critical insights545

into the capabilities and limitations of LLMs in546

evaluating visual creative descriptions. The consis-547

tently low Spearman correlations across all models548

(averaging ρ < 0.1) indicate a fundamental mis-549

alignment between LLM-based assessments and550

human judgment in creative evaluation tasks. This551

discrepancy is particularly evident in the color (best552

ρ = 0.040) and plot (worst ρ = −0.098) dimen-553

sions, suggesting that LLMs face significant chal-554

lenges in understanding abstract aesthetic princi-555

ples and narrative coherence from textual descrip-556

tions alone.557

Dimension-specific performance patterns reveal558

an intriguing dichotomy: models achieved rela-559

tively better mean squared error (MSE) scores560

in volume (2.402–2.655) and background (2.411–561

2.686) compared to color (2.441–2.746) and plot562

(2.734–2.981). We hypothesize that this may stem563

from spatial attributes being more amenable to564

linguistic encoding (e.g., the phrase “dominant565

foreground object” implies control over volume),566

whereas color harmony and narrative structure rely567

on implicit visual knowledge that text-based mod- 568

els cannot reliably access. 569

Furthermore, the classification results ex- 570

pose fundamental limitations in current LLM 571

architectures. While llama-3.3-70b-instruct 572

achieved a 66.50% F1-score in volume classifica- 573

tion—indicating moderate competence in judging 574

spatial composition—all models performed near 575

chance levels (45–55% accuracy) in color assess- 576

ment. This suggests that without explicit visual 577

perception mechanisms, LLMs cannot reliably sim- 578

ulate human aesthetic judgment for certain creative 579

dimensions, despite their strong linguistic capabili- 580

ties. 581

Even state-of-the-art models remain far from 582

human-level performance. This gap underscores 583

the need for new training paradigms that incorpo- 584

rate cognitive principles of visual creativity. 585

7 Conclusion 586

We introduce visual creative description tasks and 587

present three key innovations to address them: 588

• 1) The C-CoC framework for structured cre- 589

ative cognition modeling. 590

• 2) The PAINT dataset enabling systematic 591

training and evaluation. 592

• 3) VCD-Bench, the first multidimensional 593

benchmark for visual creativity assessment. 594

Our evaluation of 10 models highlights critical lim- 595

itations across all dimensions. While the models 596

show relatively better performance in spatial rea- 597

soning compared to other aspects, they all fall short 598

in color and plot evaluation. These gaps persist con- 599

sistently across different model sizes, suggesting 600

that architectural innovations are necessary beyond 601

just scaling parameters. Future work should fo- 602

cus on integrating lightweight visual encoders and 603

cognitive alignment objectives. By bridging lin- 604

guistic and visual creativity, this work aims to push 605

the boundaries of creative collaboration between 606

models and human-like cognitive processes. 607

Limitation 608

The PAINT dataset focuses on product advertise- 609

ments, which may limit the generalizability of our 610

findings to other creative domains such as artistic 611

illustrations or social media content. The complex- 612

ity of the annotation task, which involves multiple 613

dimensions and requires a voting mechanism to 614
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ensure consistency, also restricted the size of the615

dataset. Future work should aim to expand the616

dataset to capture a broader range of creative con-617

texts, which will allow for a more comprehensive618

evaluation of C-CoC’s versatility.619

Additionally, our evaluation was based solely on620

textual inputs, overlooking the potential of multi-621

modal models, which combine vision and language.622

While this approach isolates linguistic creativity, it623

misses the opportunity to leverage modern vision-624

language models for grounded aesthetic reasoning,625

which could yield richer insights. Moreover, all626

human evaluations were conducted by annotators627

from similar cultural backgrounds, potentially in-628

troducing bias in color symbolism and narrative629

preference. Cross-cultural validation is essential630

for more global applications.631

Finally, the C-CoC framework employs a linear632

creative process, whereas human creativity is of-633

ten recursive, involving ongoing refinement. The634

staged approach used here may oversimplify the635

dynamic interactions between concept generation636

and critical evaluation in more complex creative637

workflows.638

Ethical Statement639

This study adheres to all relevant ethical guide-640

lines. The dataset and model utilized are publicly641

available and employed in accordance with their re-642

spective licenses. Ethical standards were followed643

throughout the annotation process, with informed644

consent obtained from all annotators. It should645

be noted that this text was initially drafted with646

the assistance of an AI language model to enhance647

its clarity and accuracy. Moreover, we conducted648

rigorous internal reviews to further guarantee that649

every step in this study, from data collection to650

model deployment, strictly adhered to the highest651

ethical benchmarks.652
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A PAINT Dataset834

This section provides an overview of the dataset835

. The dataset consists of 330 input expressed en-836

tity, which are derived from 33 different product837

categories. For each category, 10 samples were838

selected, totaling 330 input items. These items are839

used as the starting point for generating creative840

descriptions through the C-CoC process.841

The dataset was used to generate 1980 descrip-842

tions through a six-step C-CoC process. The six843

steps are:844

1. Concept Decomposition (1 Layer)845

2. Base Expression (1 Layer)846

3. Cognitive Shift (4 Layers)847

The six-step generation process is illustrated in848

Figure 5, showing how input data undergoes de-849

composition, expression generation, and cognitive850

shifts.851

For each Base Expression and Cognitive Shift,852

images were generated, resulting in 1650 images.853

These images primarily served as a reference for854

the generated descriptions. Human evaluators pro-855

vided 7920 annotations, where the ratings were856

mainly focused on the textual descriptions. How-857

ever, when the image description aligned with the858

text, the evaluators also considered the aesthetic859

quality of the images, including factors such as vi-860

sual appeal, clarity, and relevance to the generated861

description.862

A.1 Diversity Analysis863

The dataset shows high diversity in Distinct-1 and864

Distinct-2, especially at the phrase level (Distinct-865

2), with values close to 0.98 for all dimensions,866

indicating significant variation in the text content867

and low redundancy.868

Metric plot color volumn bg

Distinct-1 0.804 0.820 0.814 0.799
Distinct-2 0.978 0.982 0.981 0.972
Self-BLEU-1 0.164 0.197 0.202 0.225
Self-BLEU-2 0.049 0.061 0.052 0.096

Table 2: Metrics for Text Diversity Analysis

B Evaluation Metrics 869

B.1 Cognitive Transition Evaluation Criteria 870

This study designs four independent evaluation cri- 871

teria based on four cognitive transition dimensions 872

θk ∈ {θplot, θcolor, θvolume, θbackground}. For each ex- 873

pression object i ∈ I , the scores before and after 874

cognitive transition are calculated for each dimen- 875

sion θk.The Prompts are illustrated in Figure6 876

B.1.1 LLM Scoring Mechanism 877

For each expression object i ∈ I and each cognitive 878

transition dimension θk, the large language model 879

(LLM) is required to score the text before cogni- 880

tive transition Tbase,i and the text after cognitive 881

transition Tshift,i,k: 882

abase
i,k , ashift

i,k 883

Then, the cognitive transition increment is calcu- 884

lated: 885

∆Smodel
i,k = ashift

i,k − abase
i,k 886

where: 887

• If ∆Smodel
i,k > 0, it indicates that the cognitive 888

transition in this dimension has enhanced the 889

creativity of the text. 890

• If ∆Smodel
i,k < 0, it indicates that the cogni- 891

tive transition in this dimension has made the 892

description too abstract or inconsistent with 893

the visual expression logic, lowering the text 894

quality. 895

B.1.2 Human Annotation and Ground Truth 896

Construction 897

To ensure the reliability of Ground Truth, each 898

cognitive transition data point is evaluated by three 899

independent annotators j ∈ J . For each expression 900

object i ∈ I , the three individual scores for each 901

cognitive transition dimension θk are obtained: 902

(abase
i,k,j , a

shift
i,k,j), j ∈ J 903

11

https://doi.org/10.1145/3490099.3511105
https://doi.org/10.18653/v1/2024.acl-long.53
https://doi.org/10.18653/v1/2024.acl-long.53
https://doi.org/10.18653/v1/2024.acl-long.53


Figure 5: Generation Overview

Figure 6: Evaluation Prompt

12



The cognitive transition increment for each annota-904

tor is then calculated as:905

∆Shuman
i,k,j = ashift

i,k,j − abase
i,k,j906

Next, the voting system is applied based on the907

signs of the increments reported by the annotators:908

• If two or more annotators report a positive909

increment, the cognitive transition is classified910

as a positive improvement.911

• If two or more annotators report a non-positive912

increment (i.e., negative or zero), the cognitive913

transition is classified as a negative decrease.914

The final cognitive transition score is determined915

by averaging the scores of the majority vote:916

∆Shuman
i,k =

1

|Jmajority|
∑

j∈Jmajority

(ashift
i,k,j − abase

i,k,j)917

where Jmajority represents the annotators who be-918

long to the majority vote.919

For each cognitive transition increment, the clas-920

sification of positive, negative, or discrepant cases921

is as follows:922

• Positive Increment: If ∆Smodel
i,k > 0 and923

∆Shuman
i,k > 0, the cognitive transition is clas-924

sified as a positive improvement.925

• Negative Increment: If ∆Smodel
i,k < 0 and926

∆Shuman
i,k < 0, the cognitive transition is clas-927

sified as a negative decrease.928

• Discrepant Case: If the model and human929

judgments are in opposite directions, the cog-930

nitive transition is classified as discrepant.931

B.1.3 Annotator Identity932

The annotation process involves five postgraduate933

students who possess extensive expertise in natural934

language processing. This ensures the reliability935

and consistency of the annotated data. Their back-936

ground in NLP contributes to the rigor and accuracy937

of the cognitive transition assessments, thereby en-938

hancing the credibility of the annotations.939

B.2 Consistency Evaluation Between LLM940

and Human Ratings941

To assess whether the LLM has the ability to judge942

creative transitions, we calculate the consistency943

between its scores and human ratings.944

B.2.1 Spearman Rank Correlation 945

For each cognitive transition dimension θk, the 946

Spearman Rank Correlation between the LLM 947

score ∆Smodel
i,k and human score ∆Shuman

i,k is cal- 948

culated: 949

ρk =

∑
i∈I(R

mod
i,k − R̄mod

k )(Rhum
i,k − R̄hum

k )√∑
i∈I(R

mod
i,k − R̄mod

k )2
√∑

i∈I(R
hum
i,k − R̄hum

k )2
950

where: 951

• Rmodel
i,k and Rhuman

i,k are the rank values of the 952

model and human scores, respectively. 953

• R̄model
k and R̄human

k are the mean values of the 954

model and human scores, respectively. 955

• A higher ρk indicates that the model’s scoring 956

is closer to human judgment. 957

For the complete data, refer to Table3. 958

B.2.2 Mean Squared Error (MSE) 959

The mean squared error (MSE) between the LLM 960

score and the human score is calculated: 961

MSEk =
1

|I|
∑
i∈I

(∆Smodel
i,k −∆Shuman

i,k )2 962

where: 963

• A lower MSEk indicates that the LLM’s 964

scores are closer to human ratings. 965

For the complete data, refer to Table 4. 966

C Testing Model list 967

We tested the following models in this study: 968

• Google: 969

– google/gemma-2-27b-it (GemmaTeam, 970

2024) 971

– google/gemma-2-9b-it (GemmaTeam, 972

2024) 973

• Meta: 974

– meta-llama-3.3-70b-instruct (MetaAI, 975

2024b) 976

– meta-llama-3.2-11b-vision-instruct 977

(MetaAI, 2024c) 978

– meta-llama-3.1-405b-instruct (MetaAI, 979

2024a) 980

• Anthropic: 981
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– anthropic/claude-3-haiku (Anthropic,982

2024)983

• Microsoft:984

– microsoft/phi-4 (Abdin et al., 2024)985

• Amazon:986

– amazon/nova-lite-v1 (Intelligence, 2024)987

• Deepseek:988

– deepseek-V3 (DeepSeek-AI, 2024)989

• OpenAI:990

– gpt-4o-mini (OpenAI, 2024)991

D Annotation Instructions992

This section provides a concise overview of the993

annotation process. Detailed instructions are dis-994

played in Figures 7 and 8, while the Label Studio995

interface setup is shown in Figure 9.996

D.1 Overview997

The annotation tasks are divided into four cate-998

gories: 1. Story Creativity 2. Color Creativity 3.999

Volume Creativity 4. Background Creativity1000

Each category has specific evaluation criteria,1001

which include analyzing the text description, com-1002

paring it with the corresponding creative picture,1003

and scoring based on creativity and relevance. An-1004

notators are required to follow standardized proce-1005

dures to ensure consistency and accuracy.1006

D.2 Scoring Guidelines1007

The scoring system ranges from 0 to 5 points, as1008

described in the instructions. Higher scores indi-1009

cate better alignment with task requirements and1010

increased novelty in the described scenes.1011
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Model Plot Color Volume Background

gpt-4o-mini -0.016659 0.000775 -0.034206 0.082822
llama-3.3-70b-instruct -0.063425 0.024775 0.088258 0.018349
llama-3.2-11b-vision-instruct -0.071466 -0.031215 0.044520 0.004729
deepseek-V3 0.008927 -0.020354 -0.067282 0.015250
nova-lite-v1 -0.006940 0.019765 -0.028856 0.078937
gemma-2-27b-it 0.042933 -0.010640 0.017705 0.067116
phi-4 -0.003633 -0.011429 -0.079310 0.056719
gemma-2-9b-it -0.041644 0.032320 0.008456 0.042995
claude-3-haiku -0.001715 -0.037606 -0.051797 0.112270
llama-3.1-405b-instruct -0.021820 0.040628 0.009954 -0.032808

Table 3: Spearman Correlation by Model and Dimension

Model Plot MSE Color MSE Volume MSE Background MSE Average MSE

gpt-4o-mini 2.962 2.573 2.640 2.546 2.680
llama-3.3-70b-instruct 2.847 2.536 2.402 2.648 2.608
llama-3.2-11b-vision-instruct 2.981 2.746 2.492 2.686 2.726
deepseek-V3 2.797 2.709 2.655 2.656 2.704
nova-lite-v1 2.894 2.573 2.629 2.411 2.627
gemma-2-27b-it 2.734 2.620 2.519 2.466 2.589
phi-4 2.877 2.638 2.617 2.486 2.654
gemma-2-9b-it 2.842 2.524 2.561 2.547 2.618
claude-3-haiku 2.896 2.701 2.656 2.467 2.705
llama-3.1-405b-instruct 2.778 2.441 2.431 2.672 2.581

Table 4: Mean Squared Error (MSE) for Each Model Across Different Dimensions
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Figure 7: Annotation instruction1

Figure 8: Annotation instruction2
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Figure 9: Label Studio Setting
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