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Abstract

We present a novel multi-agent RL approach, Selective Multi-Agent PER, in which
agents share with other agents a limited number of transitions they observe during
training. They follow a similar heuristic as is used in (single-agent) Prioritized
Experience Replay, and choose those transitions based on their td-error. The
intuition behind this is that even a small number of relevant experiences from other
agents could help each agent learn. Unlike many other multi-agent RL algorithms,
this approach allows for largely decentralized training, requiring only a limited
communication channel between agents. We show that our approach outperforms
baseline no-sharing decentralized training and state-of-the art multi-agent RL
algorithms. Further, sharing only a small number of experiences outperforms
sharing all experiences between agents, and the performance uplift from selective
experience sharing is robust across a range of hyperparameters and DQN variants.

1 Introduction

Multi-Agent Reinforcement Learning (RL) is often considered a hard problem: The environment
dynamics and returns depend on the joint actions of all agents, leading to significant variance and
non-stationarity in the experiences of each individual agent. Much recent work [24, 18] in multi-agent
RL has focused on mitigating the impact of these. Our work goes in a different direction: leveraging
the presence of other agents to collaboratively explore the environment more quickly.

We present a novel multi-agent RL approach that allows agents to share a small number of experiences
with other agents. The intuition is that if one agent discovers something important in the environment,
then sharing this with the other agents should help them learn faster. However, it is crucial that
only important experiences are shared - we will see that sharing all experiences indiscriminately
will not improve learning. To this end, we take inspiration from a well-established technique in
single-agent RL, prioritized experience replay (PER) [25]. With PER an off-policy algorithm such
as DQN [19] will sample experiences not uniformly, but proportionally to “how far off” the current
policy’s predictions are in each state, formally the temporal difference (td) error . We use this same
metric to prioritize which experiences to share with other agents.

We dub the resulting multiagent RL approach “selective multiagent PER” or “suPER”. In this, agents
independently use a DQN algorithm to learn, but with a twist: Each agent relays its highest-td-error
experiences to the other agents, who insert them directly into their replay buffer, which they use for
learning. This approach has several advantages:

1. It consistently leads to faster learning and higher eventual performance, across hyperparam-
eter settings.
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2. Unlike many “centralized training, decentralized execution” approaches, the suPER learning
paradigm allows for (semi-) decentralized training, requiring only a limited bandwidth
communication channel between agents.

3. The paradigm is agnostic to the underlying decentralized training algorithm, and can enhance
many existing DQN variations.

In addition to the specific algorithm we develop, this work also introduces two key conceptual
novelties.

4. We show that communication can improve multi-agent RL even during training. Most
prior work consider "learning to communicate", also known as emergent communication,
which is a difficult problem but may improve coordination at convergence. We show that
"communicate to learn" can also drastically improve performance during training.

5. Related to this, we introduce the paradigm of “decentralized training with communication”.
This is a ‘middle ground between established approaches of decentralized and centralized
training (including “centralized training, decentralized execution”).

In the remainder of the paper, we will discuss related literature and technical preliminaries; introduce
our novel algorithm in detail; describe experimental evaluation and results; and suggest avenues for
future work.

2 Related Work

Multi-Agent RL approaches in the literature can be broadly categorized according to the degree of
awareness of each learning agent of the other agents in the system [32]. On one end of this spectrum
is independent or decentralized learning where multiple learning agents (in the same environment)
are unaware or agnostic to the presence of other agents in the system [31, 15]. From the perspective
of each agent, learning regards the other agents as part of the non-stationary environment. At the
opposing end of the spectrum, in centralized control a single policy controls all agents. In between
these two, a number of related strands of research have emerged.

Approaches nearer the decentralized end of the spectrum often use communication between the
agents [39, 6, 10]. Several forms of cooperative communication have been formulated, by which
agents can communicate various types of messages, either to all agents or to specific agent groups
through dedicated channels [14, 28, 21, 22]. While communication among agents could help with
coordination, training emergent communication protocols also remains a challenging problem; recent
empirical results underscore the difficulty of learning meaningful emergent communication protocols,
even when relying on centralized training [13]. Related to this, and often used in conjunction, is
modeling other agents [2, 13, 7, 37], which equips agent with some model of other agent’s behavior.

This in turn is related to a number of recent approaches using centralized training but decentralized
execution. A prevailing paradigm within this line of work assumes a training stage during which
a shared network (such as a critic) can be accessed by all agents to learn decentralised (locally-
executable) agent policies [18, 1, 23, 7, 24]. These approaches successfully reduce variance during
training, e.g. through a shared critic accounting for other agents’ behavior, but rely on joint observa-
tions and actions of all agents. Within this paradigm, and perhaps closest related to our own work,
[5] introduces an approach in which agents share (all of their) experiences with other agents. While
this is based on an on-policy actor-critic algorithm, it uses importance sampling to incorporate the
off-policy data from other agents, and the authors show that this can lead to improved performance
in sparse-reward settings. Our work also relies on sharing experiences among agents, but crucially
relies on selectively sharing only some experiences. 1

Off-Policy RL The approach we present in this paper relies intrinsically on off-policy RL algorithms.
Most notable in this class is DQN [19], which achieved human-level performance on a wide variety

1Interestingly, in the appendix to the arXiv version of that paper, the authors state that experience sharing
in DQN did not improve performance in their experiments, in stark contrast with the result we will present in
this paper. We believe this may be because their attempts shared experiences indiscriminately, compared to our
selective sharing approach. We will see that sharing all experiences does not improve performance as much or as
consistently as selective sharing.
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of Atari 2600 games. Various improvements have been made to this algorithm since then, including
dueling DQN [35], Double DQN (DDQN) [34], Rainbow [11] and Ape-X [12]. Prioritized Experience
Replay [25] improves the performance of many of these, and is closely related to our own work. A
variant for continuous action spaces is DDPG [27]. Off-policy actor-critic algorithms [9, 17] have
also been developed, in part to extend the paradigm to continuous control domains.

3 Preliminaries

Reinforcement learning (RL) deals with learning optimal policies for sequential decision making
in environments for which the dynamics are not fully known [29]. Multi-Agent Reinforcement
Learning extends RL to multi-agent settings. A common model is a Markov game, or stochastic
game defined as a tuple ⟨S,A,R, T , γ⟩ with states S, joint actions A = {Ai}ni=1 as a collection of
action sets Ai, one for each of the n agents, R = {Ri}ni=1 as a collection of reward functions Ri

defining the reward ri(at, st) that each agent receives when the joint action at ∈ A is performed
at state st, and T as the probability distribution over next states when a joint action is performed.
In the partially observable case, the definition also includes a joint observation function, defining
the observation for each agent at each state. In this framework, at each time step an agent has an
experience e =< St, At, Rt+1St+1 >, where the agent performs action At at state St after which
reward Rt+1 is received and the next state is St+1. We focus here on decentralized execution settings
in which each agent follows its own individual policy πi and seeks to maximize its discounted
accumulated return. In the special case where rewards are shared between all agents a Markov Game
is also called a decentralized POMDP or dec-POMDP. We do not require this assumption, but we do
require that the Markov game is symmetric or anonymous, meaning all agents have the same action
and observation spaces and the environment reacts identically to their actions.

Among the variety of RL solution approaches [30, 29], we focus here on value-based methods that
use state and action estimates to find optimal policies. Such methods typically use a value function
Vπ(s) to represent the expected value of following policy π from state s onward, and a Q-function
Qπ(s, a), to represent for a given policy π the expected rewards for performing action a in a given
state s and following π thereafter.

Q-learning [36] is a temporal difference (td) method that considers the difference in Q values between
two consecutive time steps. Formally, the update rule is

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a′

Q(St+1, a
′
)−Q(St, At))]

Where, α is the learning rate or step size setting the amount by which values are updated during
training. The learned action-value function, Q, directly approximates q∗, the optimal action-value
function. During training, in order to guarantee convergence to an optimal policy, Q-learning typically
uses an ϵ-greedy selection approach, according to which the best action is chosen with probability
1− ϵ, and a random action, otherwise.

Given an experience et, the td-error represents the difference between the Q-value estimate and actual
reward gained in the transition and the discounted value estimate of the next best actions. Formally,

td(et) = |R+ γmax
a′

Q(S′, a′)−Q(S,A)| (1)

In the vanilla version of Q-learning Q-values are stored in a table, which is impractical in many
real-world problem due to large state space size. In deep Q-Learning (DQN) [20], the Q-value
table is replaced by a function approximator typically modeled using a neural network such that
Q(s, a, θ) ≈ Q∗(s, a), where θ denotes the neural network parameters.

Replay Buffer (RB) and Prioritized RB: In their simplest form, RL algorithms use and discard
incoming data after updating the policy. To increase efficiency an experience replay buffer (Lin, 1992)
was suggested. This is a memory structure that enables online reinforcement learning algorithms to
store and replay past experiences by sampling them from memory. This allows mixing experiences
from different time steps in to a single policy update, allowing rare experiences to be used more than
once.

Evidence shows the replay buffer to stabilize training of the value function for DQN [19, 20] and
to reduce the amount of experiences required for an RL-agent to complete the learning process and
achieve convergence [25].
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Initial approaches that used a replay buffer, uniformly sampled experiences from the buffer. However,
some transitions are more effective for the learning process of an RL agents then others. Transitions
may be more or less surprising, redundant, or task-relevant. Some transitions may not be immediately
useful to the agent, but might become so when the agent competence increases [26]. Prioritized
Experience Replay (PER) [25] explores the idea that replaying and learning from some transitions,
rather than others, can enhance the learning process. PER suggests replacing the standard sampling
method, where transitions are replayed according to the frequency they were collected from the
environment, with a td-error based method, where transitions are sampled according to the value of
their td-error.

As a further extension, stochastic prioritization balances between strictly greedy prioritization and
uniform random sampling. Hence, the probability of sampling transition i is defined as:

P (i) =
pαi∑
k p

α
k

(2)

where pi > 0 is the priority associated to transition i and α determines the weight of the priority
(α = 0 is uniform sampling). The value of pi is determined according to the magnitude of the
td-error, such that pi = |δi|+ ϵ, δi is the td-error and ϵ is a small positive constant that guarantees
that transitions for which the td-error is zero have a non-zero probability of being sampled from the
buffer.

4 suPER: Selective Multi-Agent Prioritized Experience Replay

Our approach is rooted in the same intuition as PER: that not all experiences are equally relevant. We
use this insight to help agents learn by sharing between them only a (small) number of their most
relevant experiences. Our approach builds on standard DQN algorithms, and adds this experience
sharing mechanism between collecting experiences and performing gradient updates, in each iteration
of the algorithm:

1. (DQN) Collect a rollout of experiences, and insert each agent’s experiences into their own
replay buffer.

2. (suPER) Each agent shares their most relevant experiences, which are inserted into all the
other agents’ replay buffers.

3. (DQN) Each agent samples a minibatch of experiences from their own replay buffer, and
performs gradient descent on it.

Steps 1 and 3 are standard DQN; we merely add an additional step between collecting experiences
and learning on them. As a corollary, this same approach works for any standard variants of steps 1
and 3, such as dueling DQN [35], DDQN [34], Rainbow [11] and other DQN improvements. Beyond
DQN and its variants, suPER could in principle apply to any off-policy RL algorithm. Algorithm 1
gives a more detailed listing of this algorithm. Notice that the only interaction between the agents
training algorithms is in the experience sharing step. This means that the algorithm can easily be
implemented in a decentralized manner with a (limited) communications channel.

4.1 Experience Selection

We describe here three variants of the suPER algorithm, that differ in how they select experiences to
be shared.

Deterministic quantile-based experience selection The learning algorithm keeps a list l of the
(absolute) td-errors of its last k experiences (k = 1500 by default). For a configured bandwidth β and
a new experience et, the agent shares the experience if its absolute td-error |td(et)| is at least as large
as the k ∗ β-largest absolute td-error in l. In other words, the agent aims to share the top β-quantile
of its experiences, where the quantile is calculated over a sliding window of recent experiences.

|td(et)| ≥ quantileβ({et′}tt′=t−k)
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Algorithm 1 suPER algorithm for DQN
for each training iteration do

Collect a batch of experiences b ▷ DQN
for each agent i do ▷ DQN

Insert bi into bufferi ▷ DQN
end for ▷ DQN
for each agent i do ▷ suPER

Select b∗i ⊆ bi of experiences to share1 ▷ suPER
for each agent j ̸= i do ▷ suPER

Insert b∗i into bufferj ▷ suPER
end for ▷ suPER

end for ▷ suPER
for each agent i do ▷ DQN

Sample a train batch bi from bufferi ▷ DQN
Learn on train batch bi ▷ DQN

end for ▷ DQN
end for

1 See section “Experience Selection”

Deterministic Gaussian experience selection In this, the learning algorithm calculates the mean µ
and variance σ2 of the (absolute) td-errors of the k most recent experiences (k = 1500 by default). It
then shares an experience et if

|td(et)| ≥ µ+ c · σ2 (3)

where c is a constant chosen such that 1− cdfN (c) = β. In other words, we use the c-quantile of
a normal distribution with the (sample) mean and variance of most recent experiences. We include
and benchmark this variant for two reasons. One, intuitively, we might want to be more sensitive to
clusters of outliers, where using a quantile of the actual data might include only part of the cluster,
while a Gaussian model might lead to the entire cluster being included. Two, mean and variance
could be computed iteratively without keeping a buffer of recent td-errors, and thereby reducing
memory requirements. We aim to benchmark if this approximation impacts performance.

Stochastic weighted experience selection Finally, and most closely related to classical single-
agent PER, this variant shares each experience with a probability that’s proportional to its absolute
td-error. In PER, given a train batch size b, we sample b transitions from the replay buffer without
replacement, weighted by each transition’s td-error. In suPER, we similarly aim to sample a β
fraction of experiences, weighted by their td-errors. However, in order to be able to sample transitions
online, we calculate for each experience individually a probability that approximates sampling-
without-replacement in expectation. Formally, taking pi = |td(ei)|, we broadcast experience et with
probability

p = min
(
1, β · pαi∑

k p
α
k

)
similarly to equation 2, and taking the sum over a sliding window over recent experiences. It is
easy to see that if β = 1/batchsize, this is equivalent to sampling a single experience, weighted
by td-error, from the sliding window. For larger bandwidth β, this approximates sampling multiple
experiences without replacement: If none of the β · pα

i∑
k pα

k
terms are greater than 1, this is exact. If

we have to truncate any of these terms, we slightly undershoot the desired bandwidth.

In our current experiments, we share experiences and update all quantiles, means and variances once
per sample batch, for convenience and performance reasons; However, we could do both online, i.e.
after every sampled transition, in real-world distributed deployments. We do not expect this to make
a significant difference.

5 Experiments and Results

We evaluate the suPER approach on a number of multiagent benchmark domains.
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5.1 Algorithm and control benchmarks

Baseline: DQN As a baseline, we use a fully independent DQN algorithm. The algorithm samples
a sequence of experiences using joint actions from all the agents’ policies, and then inserts each
agent’s observation-action-reward-observation transitions into that agent’s replay buffer. Each agent’s
policy is periodically trained using a sample from its own replay buffer, sampled using PER. We refer
to this baseline as simply “DQN” in the remainder of this section and in figures.

suPER-DQN We implement suPER on top of the DQN baseline. Whenever a batch of experiences
is sampled, each agent shares only its most relevant experiences (according to one of the criteria
described in the previous section) which are then inserted into all other agents’ replay buffers. As
above, we run the suPER experience sharing on whole sample batches. All DQN hyperparame-
ters are unchanged - the only difference from the baseline is the addition of experience sharing
between experience collection and learning. This allows for controlled experiments with like-for-like
comparisons.

Indiscriminate sharing-all-experiences suPER-DQN We also compare against a DQN variant
that shares all experiences among agents. In this variant, whenever a batch of experiences is sampled,
every agent’s trajectory is inserted into all the agents’ replay buffers. This can be seen as both a
suPER variant (when testing if experience sharing is helpful in general) or as a baseline (when testing
if selectivity in experience sharing is helpful).

Parameter-Sharing DQN In parameter-sharing, all agents share the same policy parameters. Note
that this is different from joint control, in which a single policy controls all agents simultaneously; In
parameter sharing, each agent is controlled independently by a copy of the policy. It is also different
from share-all suPER-DQN, in which a different policy is trained for each agent.

DQN and Dueling DDQN For all of the above, we consider both variants based on standard DQN,
as well as variants based on dueling double DQN (DDQN). In the remainder of the text, whenever
we write DDQN we mean dueling double DQN, and similarly for suPER-DDQN, parameter-sharing
DDQN, etc. Whenever we write DQN we mean standard non-dueling, non-double DQN.

Multi-Agent Baselines We further compare against standard multi-agent RL algorithms, specifi-
cally MADDPG [18], QMIX [24] and SEAC [5]. Like parameter-sharing, these are all considered
“centralized training, decentralized execution” approaches.

5.2 Environments

SISL: Pursuit is a semi-cooperative environment, where a group of pursuers has to capture a group
of evaders in a grid-world with an obstacle, The evaders (blue) move randomly, while the pursuers
(red) are controlled by RL agents. If a group of two or more agents fully surround an evader, they
each receive a reward, and the evader is removed from the environment. The episode ends when all
evaders have been captured, or after 500 steps, whichever is earlier. Pursuers also receive a (very
small) reward for being adjacent to an evader (even if the evader is not fully surrounded), and a
(small) negative reward each timestep, to incentivize them to complete episodes early. We use 8
pursuers and 30 evaders.

MAgent: Battle is a semi-adversarial environment, where two groups of opposing teams are
battling against each other. An agent is rewarded 0.2 points for attacking agents in the opposite team,
and 5 points if the other agent is killed. All agents start with 10 health points (HP) and lose 2 HP in
each attack received, while regaining 0.1 HP in every turn. Once killed, an agent is removed from the
environment. An episode ends when all agents from one team are killed. The action space, of size 21
is identical for all agents, with (8) options to attack, (12) to move and one option to do nothing. Since
no additional reward is given for collaborating with other agents in the same team, it is considered to
be more challenging to form collaboration between agents in this environment. We use a map of size
18× 18 and 6 agents per team.

MAgent: Adversarial Pursuit is a predator-prey environment, with two types of agents, prey and
predator. The predators navigate through obstacles in the map with the purpose of tagging the prey.
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Figure 1: Performance of suPER-dueling-DDQN variants with target bandwidth 0.1 on all three
domains. For Pursuit, performance is the total mean episode reward from all agents. For Battle and
Adversarial-Pursuit, performance is the total mean episode reward from all agents in the sharing team
(blue team in Battle, prey team in Adversarial-Pursuit). Shaded areas indicate one standard deviation.

An agent in the predators team is rewarded 1 point for tagging a prey, while a prey is rewarded −1
when being tagged by a predator. Unlike in the Battle environment, prey agents are not removed from
the game when being tagged. Note that prey agents are provided only with a negative or zero reward
(when manage to avoid attacks), and their aim is thus to evade predator agents. We use 8 prey agents,
and 4 predator agents.

5.3 Experimental Setup

In Pursuit, we train all agents concurrently using the same algorithm, for each of the algorithms listed.
Note that only the pursuers are agents in this domain, whereas the evaders move randomly. In the
standard variants of Battle and Adversarial-Pursuit, we first pre-train a set of agents using independent
dueling DDQN, all agents on both teams being trained together and independently. We then take the
pre-trained agents of the opposing team (red team in Battle, predator team in Adversarial-Pursuit),
and use these to control the opposing team during main training of the blue respectively prey team.
In this main training phase, only the blue / prey team agents are trained using each of the suPER and
benchmark algorithms, whereas the red / predator team are controlled by the pre-trained policies with
no further training. Figures 1 and 3 show learning curves from the main training phase.

5.4 Performance Evaluation

Figure 1 shows learning curves of suPER implented on dueling DDQN (“suPER DDQN”), with
stochastic, gaussian and quantile experience selection and target bandwidth 0.1, compared to standard
no-sharing dueling DDQN, share-all suPER-DDQN, parameter-sharing dueling DDQN, as well
as MADDPG, QMIX and SEAC. Figure 3 similarly shows suPER implemented on (non-dueling,
non-double) DQN (“suPER DQN”) ocmpared to non-sharing DQN, share-all suPER-DQN, parameter-
sharing DQN, and the same multiagent algorithms as above (MADDPG, QMIX, SEAC; learning
curves duplicated from Figure 1 for comparison). In both Figures 1 and 3 in Battle and Adversarial-
Pursuit, the opposing team consists of agents pre-trained using non-sharing dueling DDQN (the
same set of opposing agents are used for all the algorithms shown). In Figure 4 we show a subset of
algorithms (suPER-DDQN, DDQN and share-all suPER-DDQN) training against a set of co-evolving
agents. In this, the opposing team agents are also randomized at the start of training, and train together
with the first team, but the opposing team agents do not utilize suPER experience sharing.
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Comparison Against Baseline DQN We find that suPER (red curves) consistently outperforms
the baseline DQN/DDQN algorithm (solid green curve), often significantly. For instance for DDQN
(Fig. 1), in Pursuit suPER-DDQN achieves over twice the reward of no-sharing DDQN at convergence,
increasing from 180.7 (std.dev 2.8) to 450.5 (std.dev 9.9) for quantile suPER-DDQN measured at
800k training steps. In both Battle and Adversarial-Pursuit, we enabled suPER-sharing for only one
of the two teams each, and see that this significantly improved performance of the sharing team (as
measured by sum of rewards of all agents in the team across each episode), especially mid-training.
For instance in Battle, the blue team performance increase from -19.0 (std.dev 11.0) for no-sharing
DDQN to 5.5 (std.dev 8.7) for quantile suPER-DDQN at 150k timesteps. In Adversarial-Pursuit, the
prey performance increased from -712.3 (std.dev 55.3) to -508.0 (std.dev 34.2) at 300k timesteps. In
the Appendix, we similarly see that suPER-DQN outperforms DQN in Figure 3 in both environments,
and that suPER-DDQN significantly outperforms DDQN with co-evolving opponent agents especially
early in training (Fig. 4).

Selective and Indiscriminate Sharing When comparing suPER with bandwidth 0.1 (red lines)
against suPER with indiscriminate sharing ("DDQN share-all", dashed orange line), we see that
selective experience sharing produces a much greater and more consistent performance improve-
ment than indiscriminate sharing. This is most extreme in Pursuit, where indiscriminate sharing
performs similar to, but slightly worse than, the DQN/DDQN baselines at convergence. It is also
visible in Adversarial-Pursuit especially early in training, but not significant in Battle. We note that
indiscriminate sharing still outperforms baselines early in training even in Pursuit.

Comparison Against Other Multi-Agent RL Algorithms suPER performs significantly better
than SEAC (solid blue), MADDPG (dashed violet) and QMIX (dotted purple). MADDPG and QMIX
performed very poorly on all domains despite extensive attempts at hyperparameter tuning. SEAC
shows some learning in Pursuit, but remains well below even baseline DDQN performance, again
despite extensive hyperparameter tuning. We have also run experiments with SEAC in Pursuit for
significantly longer (not shown in the figure), and saw that performance eventually settles around
100-200 episode reward depending on hyperparamters and random seed. One experiment showed
signs of additional learning much later on and began to surpass 200 episode reward (baseline DDQN)
around 1.7M timesteps. However, we have not seen SEAC approach suPER performance in any
experiment.

Comparison Against Parameter-Sharing suPER (red) significantly outperforms parameter-
sharing DQN/DDQN (dotted turquoise line) in Pursuit and performs similar to it in Battle, whereas
parameter-sharing performs significantly better in Adversarial-Pursuit. This holds for both the
respective DQN and DDQN variants in Pursuit and Adversarial-Pursuit.

6 Conclusion & Discussion

Conclusion We present selective multiagent PER, a selective experience-sharing mechanism that
can improve DQN-family algorithms in multiagent settings. Conceptually, our approach is rooted in
the same intuition that Prioritized Experience Replay was based on, which is that td-error is a useful
approximation of how much an agent could learn from a particular experience.

Experimental evaluation on DQN and dueling DDQN shows improved performance compared to
fully decentralized training (as measured in sample efficiency and/or converged performance) across
a range of hyperparameters of the underlying algorithm, and in multiple benchmark domains. We
see most consistent performance improvements with suPER and a target bandwidth of 0.01-0.1 late
in training, more consistent than indiscriminate experience sharing. Given that this effect appeared
consistently across a wide range of hyperparameters and multiple environments, as well as on both
DQN and dueling DDQN, the suPER approach may be useful as a general-purpose multi-agent RL
technique. Equally noteworthy is a significantly improved performance early in training even at very
low bandwidths. We consider this to be a potential advantage in future real-world applications of
RL where sample efficiency and rapid adaption to new environments are crucial. suPER consistently
and significantly outperforms MADDPG, QMIX and SEAC, and outperforms parameter sharing in
Pursuit (but underperforms in Adversarial-Pursuit, and shows equal performance in Battle).
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Discussion Our selective experience approach improves performance of both DQN and dueling
DDQN baselines, and does so across a range of environments and hyperparameters. It outperforms
state-of-the-art multi-agent RL algorithms, in particular MADDPG, QMIX and SEAC. The only
pairwise comparison that suPER loses is against parameter sharing in Adversarial-Pursuit, in line with
a common observation that in practice parameter sharing often outperforms sophisticated multi-agent
RL algorithms. However, we note that parameter sharing is an entirely different, fully centralized
training paradigm. Furthermore, parameter sharing is limited in its applicability, and does not work
well if agents need to take on different roles or behavior to successfully cooperate. We see this
in the Pursuit domain, where parameter sharing performs poorly, and suPER outperforms it by a
large margin. The significantly higher performance than QMIX, MADDPG and SEAC is somewhat
expected given that baseline non-sharing DQN algorithms often show state-of-the-art performance in
practice, especially with regard to sample efficiency.

It is noteworthy that deterministic (aka “greedy”) experience selection seems to perform slightly
better than stochastic experience selection, while in PER the opposite is generally the case [25]. We
have two hypotheses for why this is the case. One, we note that in PER, the motivation for stochastic
prioritization is to avoid low-error experiences never being sampled (nor re-prioritized) in many draws
from the buffer. On the other hand, in suPER we only ever consider each experience once. Thus, if
in stochastic experience selection a high-error experience through random chance is not shared on
this one opportunity, it will never be seen by other agents. In a sense, we may prefer deterministic
experience selection in suPER for the same reason we prefer stochastic selection in PER, which is to
avoid missing out on potentially valuable experiences. Two, in all our current experiments we used
(stochastic) PER when sampling training batches from the replay buffer of each agent. When using
stochastic suPER, each experience therefore must pass through two sampling steps before being
shared and trained on by another agent. It is possible that this dilutes the probability of a high-error
experience being seen too much.

Our algorithm is different from the “centralized training, decentralized execution” baselines we
compare against in the sense that it does not require fully centralized training. Rather, it can be
implemented in a decentralized fashion with a communications channel between agents. We see that
performance improvements scale down even to very low bandwidth, making this feasible even with
limited bandwidth. We think of this scheme as “decentralized training with communication” and
hope this might inspire other semi-decentralized algorithms. In addition to training, we note that such
a “decentralized with communication” approach could potentially be deployed during execution, if
agents keep learning. While this is beyond the scope of the current paper, in future work we would
like to investigate if this could help when transferring agents to new domains, and in particular with
adjusting to a sim-to-real gap. Our work also shows that communication in multi-agent RL can
improve training performance.

We would also like to point out a slight subtlety in our theoretical motivation for suPER: We use the
sending agent’s td-error as a proxy for the usefulness of an experience for the receiving agent. We
believe that this is justified in symmetric settings, and our experimental results support this. However,
we stress that this is merely a heuristic, and one which we do not expect to work in entirely asymmetric
domains. For future work, we would be interested to explore different experience selection heuristics.
As an immediate generalization to a more theoretically grounded approach, we wonder if using the
td-error of each (potential) receiving agent could extend suPER to asymmetric settings, and if it
could further improve performance even in symmetric settings. While this would effectively be a
centralized-training approach, if it showed similar performance benefits as we have seen in symmetric
settings for suPER, it could nevertheless be a promising avenue for further work. Beyond this, we
would be interested to explore other heuristics for experience selection. For instance, we are curious
if the sending agent could learn to approximate each receiver’s td-error locally, and thus retain the
decentralized-with-communication training capability of our current approach. However, given that
td-error is intrinsically linked to current policy and thus highly non-stationary, we expect there would
be significant practical challenges to this.

Finally, we focus on the DQN family of algorithms in this paper. In future work, we would like to
explore suPER in conjunction with other off-policy RL algorithms such as SAC [9, 17] and DDPG
[27]. The interplay with experience sampling methods other than PER, such as HER [3] would also
be interesting. If the improvements we see in this work hold for other algorithms and domains as
well, this could improve multi-agent RL performance in many settings.
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Figure 2: Performance of quantile suPER with varying bandwidth in Pursuit at 1-2M timesteps (left)
and at 250k timesteps (right).

A Additional Experiment Analysis

A.1 Co-Evolving Team Experiments

In Battle and Adversarial-Pursuit we further show a variant where the opposing team are co-evolving
with the blue / prey team. In this variant, all agents start from a randomly initialized policy and
train concurrently, using a DDQN algorithm. However, only the blue / prey team share experiences
using the suPER mechanism. We only do this for the DDQN baseline as well as discriminate and
share-all suPER variants. This is in part because some of the other baseline algorithms do not support
concurrently training opposing agents with a different algorithm in available implementations; and in
part because we consider this variant more relevant to real-world scenarios where fully centralized
training may not be feasible. We aim to show here how sharing even a small number of experiences
changes the learning dynamics versus to non-sharing opponents. Figure 4 shows this variant.

A.2 Bandwidth Sensitivity

In the Pursuit domain, we performed an analysis of the performance of suPER-DDQN for varying
target bandwidths ranging from 0.0001 to 1 (sharing all experiences). Figure 2 (left) shows the
converged performance of suPER-DDQN with quantile-based experience selection in Pursuit. A label
of “DQN” indicates that no sharing is taking place, i.e. decentralized DDQN; a label of “all” indicates
that all experiences are shared, without any prioritized selection. Numerical labels give different
target bandwidths. Two things stand out to us: First, sharing all experiences indiscriminately does not
result in increased performance. In fact, at convergence, it results in slightly lower performance than
no-sharing DDQN. Second, there is a clear peak of performance around a target bandwidth of 0.01
- 0.1, which also holds for gaussian and stochastic experience selection (we refer the reader to the
appendix for more details). We conclude that sharing experiences selectively is crucial for learning to
benefit from it.

Furthermore, it is noteworthy that early in training, even small bandwidths show significantly higher
performance than no-sharing DDQN. Figure 2 (right) shows performance at 250k timesteps, where
even a target bandwidth of 0.0001 shows significantly improved performance over baseline. This
suggests the applicability of suPER to settings where agents need to adapt rapidly to an unknown
environment, even if communication is very limited. Indiscriminate sharing of all experiences again
did not show a performance benefit at this stage of training. It did show increased performance
(similar to selective sharing) very early in training, which we attribute to the faster replay buffer fill
rate it entails. After replay buffers had been filled this performance improvement vanished.

A.3 Experience Selection

We see that at target bandwidth 0.1, quantile (solid red lines) and gaussian (dashed red) experience
selection perform very similar across all domains. Stochastic experience selection (dotted red)
performs similar or worse than both other variants, but generally still comparably or better than
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Figure 3: Performance of suPER-DQN variants with target bandwidth 0.1 on Pursuit and Adversarial-
Pursuit. For Pursuit, performance is the total mean episode reward from all agents. For Adversarial-
Pursuit, performance is the total mean episode reward from all agents in the prey team. Shaded areas
indicate one standard deviation.
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Figure 4: Performance of suPER-dueling-DDQN variants with target bandwidth 0.1 on all Battle
and Adversarial=Pursuit, with co-evolving opponents. Performance is the total mean episode reward
from all agents in the sharing team (blue team in Battle, prey team in Adversarial-Pursuit). Shaded
areas indicate one standard deviation.

baseline DQN/DDQN. Gaussian experience selection performed similarly to the quantile selection
we designed it to approximate. Its actual used bandwidth was however much less responsive to target
bandwidth than the other two variants (e.g. in Pursuit at target bandwidth 0.001, Gaussian suPER
consumed 0.018 actual bandwidth). We believe this demonstrates that in principle approximating the
actual distribution of td-errors using mean and standard deviation is feasible, but that more work is
needed in determining the optimal value of c in equation 3.

A.4 Stability Across Hyperparameters

We evaluate suPER across a range of hyperparameter settings such as differing train batch sizes and
exploration configurations, and find that it consistently improves performance over baseline DDQN
in al settings. Appendix B shows this in more detail.

B Stability across hyperparameters

Figure 5 shows performance of no-sharing DDQN and suPER-DDQN for different hyperparam-
eters. As we can see, suPER-DDQN outperforms no-sharing DDQN consistently across all the
hyperparameter settings considered.
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Figure 5: Performance of DDQN and suPER-DDQN (gaussian experience selection, target bandwidth
0.1) for differing hyperparameter settings of the underlying DDQN algorithm. Top: Different learning
rates and rollout fragment lengths in Pursuit. Bottom: Different exploration settings in Pursuit and
co-evolving variants of Batle and Adversarial-Pursuit. Hyperparameters otherwise identical to those
used in Figure 1. Performance measured at 1M timesteps in Pursuit, 300k timesteps in Battle, 400k
timesteps in Adversarial-Pursuit.

C Additional Analysis of Bandwidth Sensitivity

We present here a more detailed analysis of bandwidth sensitivity of suPER-DDQN in the three
experience selection modes we discuss in the main text. Figure 6 shows the mean performance across
five seeds for gaussian (left), quantile (middle) and stochastic (right) experience selection, at 1-2M
timesteps (top) and at 250k timesteps (bottom). We can see that at 1-2M timesteps and a target
bandwidth of 0.1, all three experience selection criteria perform similary. One thing that stands out is
that stochastic selection has much lower performance at other target bandwidths, and also much less
performance uplift compared to no-sharing DDQN at 250k timesteps at any bandwidth. Gaussian
experience selection appears to be less sensitive to target bandwidth, but upon closer analysis we
found that it also was much less responsive in terms of how much actual bandwidth it used at different
settings. Figure 7 (left) shows the actual bandwidth used by each selection criterion at different target
bandwidths. We can see that quantile and stochastic experience hit their target bandwidth very well in
general.2 What stands out, however, is that gaussian selection vastly overshoots the target bandwidth
at lower settings, never going significantly below 0.01 actual bandwidth.

What is a fairer comparison therefore is to look at performance versus actual bandwidth used for each
of the approaches, which we do in Figure 7 (middle, at 1-2M timesteps, and right, at 250k timesteps).
For these figures, we did the following: First, for each experience selection approach and target band-
width, we computed the mean performance and mean actual bandwidth across the five seeds. Then,
for each experience selection mode, we plotted these (meanactualbandwidth,meanperformance)
(one for each target bandwidth) in a line plot.3 The result gives us a rough estimate of how each
approach’s performance varies with actual bandwidth used. We see again that stochastic selection
shows worse performance than quantile at low bandwidths, and early in training. We also see that

2Quantile selection overshoots at 1e-4 (0.0001) target bandwidth and is closer to 1e-3 actual bandwidth
usage, which we attribute to a rounding error, as we ran these experiments with a window size of 1500 (1.5e+3),
and a quantile of less than a single element is not well-defined.

3Because each data point now has variance in both x- and y-directions, it is not possible to draw error bars
for these.
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Figure 6: Performance of suPER with different experience selection and varying bandwidth in Pursuit
at 1-2M timesteps (top) and at 250k timesteps (bottom).

gaussian selection very closely approximates quantile selection. Notice that gaussian selection never
hits an exact actual bandwidth of 0.1, and so we cannot tell from these data if it would match quantile
selection’s performance at its peak. However, we can see that at the actual bandwidths that gaussian
selection does hit, it shows very similar performance to quantile selection. As stated in the main
text, our interpretation of this is that using mean and variance to approximate the exact distribution
of absolute td-errors is a reasonable approximation, but that we might need to be more clever in
selecting c in equation 3.

D Experiment Hyperparameters & Details

We performed all experiments using the open-source library RLlib [16]. Experiments in Figure 1
and 3 were ran using RLlib version 2.0.0; experiments in other figures were run using version 1.13.0.
Environments used are from PettingZoo [33], including SISL [8] and MAgent [38]. The suPER
algorithm was implemented by modifying RLlib’s standard DQN algorithm to perform the suPER
experience sharing between rollout and training. Table 3 lists all the algorithm hyperparameters
and environment settings we used for all the experiments. Experiments in the “Stability across
hyperparameters” section had hyperparameters set to those listed in Table 3 except those specified
in Figure 5. Any parameters not listed were left at their default values. Hyperparameters were
tuned using a grid search; some of the combinations tested are also discussed in the “Stability across
hyperparameters” section. For DQN, DDQN and their suPER variants, we found hyperparameters
using a grid search on independent DDQN in each environment, and then used those hyperparameters
for all DQN/DDQN and suPER variants in that environment. For all other algorithms we performed a
grid search for each algorithm in each environment. For MADDPG and QMIX, we attempted further
optimization using the Python HyperOpt package [4], however yielding no significant improvement
over our manual grid search. For SEAC, we performed a grid search in each environment, but
found no better hyperparameters than the default. We found a CNN network architecture using
manual experimentation in each environment, and then used this architecture for all algorithms except
MADDPG and QMIX where we used a fully connected net for technical reasons. We tested all other
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Figure 7: Left: Actual bandwidth used (fraction of experiences shared) at different target bandwidths.
Middle, right: Performance compared to actual bandwidth used at 1-2M and 250k timesteps.

algorithms using both the hand-tuned CNN as well as a fully connected network, and found that the
latter performed significantly worse, but still reasonable (and in particular significantly better than
MADDPG and QMIX using the same fully connected network, on all domains).

All experiments were repeated with three seeds. All plots show the mean and standard deviation of
these seeds at each point in training. For technical reasons, individual experiment runs did not always
report data at identical intervals. For instance, one run might report data when it had sampled 51000
environment timesteps, and another run might report at 53000 environment timesteps. In order to still
be able to report a meaningful mean and standard deviation across repeated runs, we rounded down
the timesteps reported to the nearest k steps, i.e. taking both the data above to represent each run’s
performance at 50000 steps. We set k to the target reporting interval in each domain (8000 timesteps
in Pursuit, 6000 timesteps in the other two domains). Where a run reported more than once in a
10000 step interval, we took the mean of its reports to represent that run’s performance in the interval.
Mean and standard deviation were calculated across this mean performance for each of the five seeds.
To increase legibility, we applied smoothing to Figures 1 and 3 using an exponential window with
α = 0.3 for Pursuit, α = 0.1 for Battle, and α = 0.25 for Adversarial-Pursuit. This removes some
noise from the reported performance, but does not change the relative ordering of any two curves.

E Implementation & Reproducibility

All source code is included in the supplementary material and will be made available on publication
under an open-source license. We refer the reader to the included README file, which contains
instructions to recreate the experiments discussed in this paper.

17



Table 1: Hyperparameter Configuration Table - SISL: Pursuit
Environment Parameters
HyperParameters Value HyperParameters Value
max cycles 500 x/y sizes 16/16
shared reward False num evaders 30
horizon 500 n catch 2
surrounded True num agents(pursuers) 8
tag reward 0.01 urgency reward -0.1
constrained window 1.0 catch rewards 5
obs range 7

CNN Network
CNN layers [32,64,64] Kernel size [2,2]
Strides 1

suPER / DQN / DDQN
learning rate 0.00016 final exploration epsilon 0.001
batch size 32 nframework torch
prioritized replay_alpha 0.6 prioritized replay eps 1e-06
dueling True target network update_freq 1000
buffer size 120000 rollout fragment length 4
initial exploration epsilon 0.1

MADDPG
Actor lr 0.00025 Critic lr 0.00025
NN(FC) [64,64] tau 0.015
framework tensorflow actor feature reg 0.001

SEAC
learning rate 3e-4 adam eps 0.001
batch size 5 use gae False
framework torch gae lambda 0.95
entropy coef 0.01 value loss coef 0.5
max grad norm 0.5 use proper time limits True
recurrent policy False use linear lr decay False
seac coef 1.0 num processes 4
num steps 5

QMIX
learning rate 0.00016 mixing embed dim 32
optim alpha 0.99 optim eps 0.00001
grad clip 10 NN architecture RLlib default
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Table 2: Hyperparameter Configuration Table- MAgent: Battle
Environment Parameters
HyperParameters Value HyperParameters Value
minimap mode False step reward -0.005
Num blue agents 6 Num red agents 6
dead penalty -0.1 attack penalty -0.1
attack opponent reward 0.2 max cycles 1000
extra features False map size 18

CNN Network
CNN layers [32,64,64] Kernel size [2,2]
Strides 1

suPER / DQN / DDQN
learning rate 1e-4 batch size 32
framework torch prioritized replay_alpha 0.6
prioritized replay eps 1e-06 horizon 1000
dueling True target network update_freq 1200
rollout fragment length 5 buffer size 90000
initial exploration epsilon 0.1 final exploration epsilon 0.001

MADDPG
Actor lr 0.00025 Critic lr 0.00025
NN(FC) [64,64] tau 0.015
framework tensorflow actor feature reg 0.001

SEAC
learning rate 3e-4 adam eps 0.001
batch size 5 use gae False
framework torch gae lambda 0.95
entropy coef 0.01 value loss coef 0.5
max grad norm 0.5 use proper time limits True
recurrent policy False use linear lr decay False
seac coef 1.0 num processes 4
num steps 5

QMIX
learning rate 0.00016 mixing embed dim 32
optim alpha 0.99 optim eps 0.00001
grad clip 10 NN architecture RLlib default
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Table 3: Hyperparameter Configuration Table - MAgent: Adversarial Pursuit
Environment Parameters
HyperParameters Value HyperParameters Value
Number predators 4 Number preys 8
minimap mode False tag penalty -0.2
max cycles 500 extra features False
map size 18

Policy Network
CNN layers [32,64,64] Kernel size [2,2]
Strides 1

suPER / DQN / DDQN
learning rate 1e-4 batch size 32
framework torch prioritized replay alpha 0.6
prioritized replay eps 1e-06 horizon 500
dueling True target network update_freq 1200
buffer size 90000 rollout fragment length 5
initial exploration epsilon 0.1 final exploration epsilon 0.001

MADDPG
Actor lr 0.00025 Critic lr 0.00025
NN(FC) [64,64] tau 0.015
framework tensorflow actor feature reg 0.001

SEAC
learning rate 3e-4 adam eps 0.001
batch size 5 use gae False
framework torch gae lambda 0.95
entropy coef 0.01 value loss coef 0.5
max grad norm 0.5 use proper time limits True
recurrent policy False use linear lr decay False
seac coef 1.0 num processes 4
num steps 5

QMIX
learning rate 0.00016 mixing embed dim 32
optim alpha 0.99 optim eps 0.00001
grad clip 10 NN architecture RLlib default
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