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Abstract

Achieving effective data augmentation (DA) in
time series classification is challenging due to
the diverse nature of temporal data. While state-
of-the-art generative models for DA — based on
GANs s, diffusion models, or Variational Autoen-
coders (VAEs) — demonstrate potential, they often
fail to deliver consistent improvements across var-
ious datasets and application domains (e.g., ECG,
power consumption, vibration sensor data), as
confirmed in this study. To address this limitation,
we introduce ASCENSION (Autoencoder-based
latent space class expansion), a novel generative
approach that harnesses the probabilistic structure
of the VAE’s latent space alongside an innovative
controlled and progressive class expansion mech-
anism. It promotes compact intra-class represen-
tations while maximizing inter-class separability,
thereby reducing the likelihood of class overlap
during latent space exploration. We evaluate AS-
CENSION on 102 datasets from the UCR bench-
mark and compare it against six state-of-the-art
DA methods. Empirical results show that AS-
CENSION improves average classification accu-
racy by approximately 1%, whereas the strongest
competing method leads to an average accuracy
change of —0.3%. ASCENSION achieves a non-
negative improvement in classifier performance
for 66.2% of the 102 datasets — a 16.4% improve-
ment over the previous best method. These results
establish ASCENSION as the first DA method
that can be reliably applied in real-world scenar-
ios where prior knowledge of method suitability
is uncertain. Our study further explores the key
factors driving its superior performance.

1. Introduction

Time series classification (TSC) is challenging due to tem-
poral dependencies, non-stationarity, and limited labeled
data. Real-world constraints, such as high collection costs
and privacy regulations, further restrict training set sizes
and impact model accuracy. Data augmentation (DA) helps

mitigate these constraints by generating synthetic samples
that increase both the quantity and diversity of training
data. Formally, given a labeled dataset {z} for each class
y € {1,2,...,Y}, DA aims to create additional synthetic
samples that preserve class semantics while broadening cov-
erage of the data distribution.

DA methods generally fall into two categories: traditional
and generative (Iglesias et al., 2023b). Traditional meth-
ods such as AutoAugment (Cubuk et al., 2019) and Fast
AutoAugment (Lim et al., 2019) apply predefined transfor-
mations (e.g., jittering, window slicing, scaling). While
effective in image classification, their application to time
series is often hindered by the risk of disrupting crucial
temporal patterns, such as periodicity or phase alignment.

Generative DA methods, based on GANSs, diffusion models,
and VAEs (Cheung & Yeung, 2020), bypass such hand-
crafted transformations by learning to model the underlying
data distribution. GAN-based methods, such as TimeGAN
(Zhang et al., 2022), TTS-GAN, LatentAugment (Tronchin
et al., 2023), can produce high-quality, rapidly sampled
time-series, but may exhibit limited diversity (Xiao et al.).
Diffusion models generate rich, varied samples at the cost
of high computational overhead (Feng et al., 2024). VAE-
based methods often strike a promising balance, providing
relatively fast sampling within a structured latent space,
but offer limited means to expand beyond the distribution
already seen in the training data.

To our knowledge, no state-of-the-art DA method for time-
series classification enables progressive (iterative) and mean-
ingful class boundary expansion during synthetic data gener-
ation. This limitation, discussed further in Appendix A and
Figure 6, becomes critical when training and operational
data distributions diverge (i.e., distribution discrepancy ra-
tio), often due to factors like sensor drift, unseen conditions,
or temporal shifts. To bridge this gap, we propose ASCEN-
SION, a novel VAE-based DA framework that preserves fast
sampling and flexible latent representations while enabling
controllable class boundary extrapolation. Unlike conven-
tional generative DA methods that strictly replicate the train-
ing set’s latent distribution, ASCENSION features a tun-
able mechanism for exploring underrepresented or unseen
regions without intruding into overlapping or ambiguous
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Figure 1: Visualization of the latent space dynamics in traditional generative DA methods versus ASCENSION. Traditional
methods sample new points within the learned data distribution, limiting diversity and restricting class representation. In
contrast, ASCENSION incorporates a controllable and progressive boundary expansion mechanism, enhancing inter-class
separation to generate extrapolated yet class-consistent synthetic samples, allowing for more flexible and representative DA.

class areas. Specifically, it leverages the probabilistic struc-
ture of the VAE’s latent space through a multi-component
representation per class. By adjusting these components,
ASCENSION enables controlled and progressive expansion
of class probability densities and boundaries. Additionally,
ASCENSION enforces structural constraints that ensure
intra-class compactness while maintaining inter-class sepa-
ration, preserving class consistency and preventing harmful
overlap. This leads to richer, more representative synthetic
time-series data, enhancing diversity and ultimately improv-
ing classification performance. To highlight ASCENSION’s
originality compared to existing generative DA methods,
Figure 1 illustrates its latent space dynamics versus tradi-
tional generative DA methods.

Our key contributions are:

1. Novel VAE-based DA Method: ASCENSION pi-
oneers a controllable and progressive boundary-
expansion mechanism, unlocking richer generative
spaces and significantly enhancing applicability against
distribution discrepancies, a crucial challenge in real-
world TSC applications;

2. Unparalleled Benchmarking & Performance Gains:
We rigorously evaluate ASCENSION’s impact on clas-
sification performance across a vast and diverse set
of time-series datasets, outperforming both traditional
(FAA) and generative methods (LatentAugment, TTS-
GAN, Time-DDPM, VaDE, and MODALS);

3. Fundamental Data-driven Insights: We analyze how
different time-series properties influence DA perfor-
mance, showing that ASCENSION’s controlled ex-
trapolation can better align training and operational
distributions.

The rest of the paper is structured as follows. Section 2
discusses related DA methods, covering both traditional and
generative methods. Section 3 presents the ASCENSION
framework. Section 4 then provides an extensive empirical
evaluation and comparative analysis. Finally, we conclude
with key takeaways and future directions.

2. Related Work

DA for time series falls into traditional and generative meth-
ods. Traditional methods like window slicing, jittering, and
scaling (Iglesias et al., 2023a) apply transformations from
computer vision but often distort temporal and semantic
integrity. Automated methods such as AutoAugment (AA)
(Cubuk et al., 2019) optimize transformations via reinforce-
ment learning, while Fast AutoAugment (FAA) (Lim et al.,
2019) improves efficiency with density matching. Further
refinements, including RandAugment (Cubuk et al., 2020),
Deep AutoAugment (Zheng et al., 2022), and Trivial Aug-
ment (Miiller & Hutter, 2021), streamline augmentation
strategies. However, these methods still rely on predefined
transformations, limiting adaptability to complex time se-
ries.

Generative DA methods, leveraging models like GANS,
VAEs, and diffusion models, offer more flexible augmenta-
tion by learning probabilistic representations of time se-
ries distributions. TimeGAN (Zhang et al., 2022), TS-
GAN(Yang et al., 2023b), and TTS-GAN(Li et al., 2022)
adapt GAN architectures for time series, capturing long-
range dependencies and improving data quality. However,
GANS suffer from training instability, sensitivity to hyper-
parameters, and mode collapse. More recent advances in
diffusion models, such as ASE-DDPM (Liu et al., 2024),
DiffRUL (Wang et al., 2024), and Time-DDPM (Solis-
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Martin et al., 2023), have demonstrated improved stability
but struggle with long-range dependencies and slow infer-
ence. VAEs, by contrast, provide a more structured latent
space, facilitating better sample diversity control. MODALS
(Cheung & Yeung, 2020) was the first VAE-based approach
to explore class boundary expansion, though without a con-
trollable mechanism. VAE-LSTM (Dang et al., 2024) and
VaDE (Jiang et al., 2016) have also been proposed for time
series augmentation but do not explicitly model class expan-
sion, a gap addressed by ASCENSION.

For a more detailed discussion on “Related Work”, refer to
Appendix A, which also highlights the state-of-the-art meth-
ods benchmarked in this study, as summarized in Figure 6.

3. ASCENSION framework

Unlike traditional generative DA methods that apply input-
space transformations (e.g., random warping or scaling),
which can lead to sample degradation or unintended
class confusion, ASCENSION explicitly models class-
conditional densities and incorporates a risk-aware explo-
ration mechanism, regulated by a scaling factor «, to miti-
gate class overlap and ensure high-quality augmentations.
ASCENSION is designed to achieve a delicate balance
between three objectives: (1) precise VAE-based density
modeling; (2) risk-aware exploration to prevent degenerate
samples, and (3) controlled class distribution expansion,
enabling diverse and useful synthetic data for time series
classification.

Sections 3.1 and 3.2 detail how ASCENSION integrates
VAE training and clustering constraints respectively. Sec-
tion 3.3 details the proposed iterative class expansion mech-
anism expanding these latent distributions iteratively to pro-
duce synthetic data.

3.1. VAE Training & Latent Space

ASCENSION begins with a VAE that models data X in a
probabilistic latent space. We optimize the Evidence Lower
Bound (ELBO),

£(6,6) = By [0g 1o (x12)] = Dic o 06 (21%) || (=), ()

where ¢, (z|x) is the approximate posterior, py(x|z) is the
likelihood, and Dy, is the Kullback-Leibler divergence
from the prior p(z). To capture class-specific nuances, AS-
CENSION estimates each class’s distribution in the latent
space, enabling controlled sampling and mitigating ambigu-
ity among overlapping regions.

3.2. Clustering Constraints

To enhance class separability, ASCENSION incorporates a
clustering loss:

N N
['cluster = z Z 6yi7yj d(zia Zj)7 (2)
i=1j=1
where d,, , - = 1if samples ¢ and j share the same class, and

0 otherwise; d(z;,z;) is the distance metric (cosine similar-
ity). This loss function reinforces intra-class compactness
while maximizing inter-class separability, ensuring well-
structured latent clusters for generating more consistent and
reliable synthetic samples.

3.3. Latent Class Expansion

ASCENSION iteratively expands each class’s latent distri-
bution following a five-step process:

1. Train the VAE with Clustering:

Lyar = Lrecon T Lx1, + Lauster T Lelass:

optimized over the current training set;

2. Sample Latent Points: For each class y, sample new
points from a Gaussian mixture centered on class-
specific means:

K,
1 Y
E;N(ﬂy,kaazy,k)v (3)

where « scales the covariance to systematically expand
the class boundaries;

3. Label Assignment via Posterior Probability: If sam-
pled points lie in overlap regions, assign labels by max-
imizing the posterior probability to ensure risk-aware
augmentation and avoid misclassification;

4. Decode and Augment: Decode latent points into time
series, then add them (with labels) to the training
dataset, enriching its variety without jeopardizing class
integrity;

5. Retrain Iteratively: Use the augmented dataset to
retrain the model from scratch, refining its parame-
ters and further exploring latent regions over multiple
iterations.

This five-step process is formalized in Algorithm 1. Empir-
ical results (Section 4 and Appendix B) show that values
of « slightly above 1 effectively boost diversity without
sacrificing class consistency.
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Algorithm 1 Augmentation Loop with distinct classes

1: Input: Original time series data X = {x;,Xs,...,X,} with class labels

Y ={y1,y2,. .., yn}
! Output: Augmented training dataset Xy, Y qug

2
3: Initialization:

4 Xy « X

5: Yo <Y

6: while augmentation desired do

7 Train VAE:

8 LyaE = Lrecon + LkL + Letuster + Leass

9: 0", ¢7* « argming 4 Lyag using X, Y

10:  Build combination of G

11:  Letd, = Kiu ZRK:JI Nty 1, @Sy 1) to Z for each class y
12:  Sample Latent Points:

13: for each class y do

14: Zf,’cw={z;y,z;y,...,z%}~dy

15: for cach z; € Z%,, do

16: If 2. has higher probability of being in class 3/’
17: Assign label y'

18: end for

19:  end for

20: Decode Latent Points:

21:  for each class y do

22: XY = {x'ly,x’2y7 ..., %%} where x’iy = f;(z’iy), Vz'iy €ZY,
23:  end for

24:  Update Training Set:

25 X < X U (U, X5%)

260 Yo« Yo U (U, {y} x X40)

27: end while

4. Experiments
4.1. Experimental setup

Train/Test datasets: Experiments were conducted using the
UCR Time Series Archive, which comprises 120 univariate
time series datasets from various applications and domains,
including sensors, ECG, Motion, Spectro, etc. (a complete
list of the dataset types is provided in Table 4). To guarantee
an adequate amount of time series data in the datasets to train
the studied models, we excluded datasets with insufficient
data, retaining 102 datasets from the initial set of 120.

Classification models: Classifiers selected for our experi-
ments were chosen based on the findings of (Fawaz, 2020),
which reports that ResNet-50 and Fully Connected Net-
works (FCN) are the two most effective classifiers (out of
9 evaluated for the UCR datasets). We use the architec-
tures from (Koonce & Koonce, 2021) and (Scabini & Bruno,
2023) for these two classifiers.

Benchmarked DA methods: ASCENSION is compared to
six state-of-the-art DA methods, including one traditional
(FAA) and five generative methods (TTS-GAN, LA, Time-
DDPM, VaDE and MODALS). More details on these meth-
ods can be found in Appendix A. FAA was selected due
to its comparable performance with other traditional DA
methods (incl., RA and DAA), while VaDE and MODALS
were chosen because of their architectural similarity to AS-
CENSION. TTS-GAN, Time-DDPM and LA were included
as the most recent generative DA methods with publicly

available code (cf., Figure 6). Benchmarking MODALS on
the UCR datasets is not feasible, as its publicly available
code from 2020 is no longer functional, and the authors have
confirmed they do not intend to fix it. Consequently, we
evaluate ASCENSION against MODALS using the HAR
dataset originally used by (Cheung & Yeung, 2020).

4.2. Experimental Results
4.2.1. PERFORMANCE EVALUATION METRICS

Accuracy: The ratio of correct predictions to the total num-
ber of predictions is employed as the evaluation metric. Pre-
and post-augmentation classification results are gathered
for each combination of the benchmarked techniques, se-
lected classifiers, and UCR datasets. Table 1 groups the
results in three categories: (i) Augmented: reflects the
number of datasets on which the classification accuracy
post-augmentation is better than pre-augmentation; (ii) Un-
changed: refers to the datasets that do not show a signif-
icant impact (+ 10_4%) of the augmentation on classifier
performance, (iii) Worsened: aggregates the datasets where
the augmentation of the train set degrades the accuracy
of the classifier. Under each category we report the num-
ber of datasets and the mean classification accuracy post-
augmentation for the different configurations (classifiers,
DA methods). For an exhaustive list of the pre- and post-
augmentation classification results, refer to Appendix B.1.

4.2.2. PERFORMANCE COMPARISON ANALYSIS

Several findings can be drawn from Table 1. First, FAA
demonstrates moderate mean accuracy improvements of
6.5% (ResNet) and 7.5% (FCN), but lacks consistency, with
improvements observed on only 28/102 datasets (ResNet)
and 13/102 datasets (FCN). Similarly, LA shows limited
impact, improving accuracy on 23 datasets (ResNet) and
38 datasets (FCN), with mean improvements of 3.7% and
2.1%, respectively. On the other hand, ASCENSION
achieves substantial gains, improving classification accuracy
on 56/102 datasets (ResNet) and 50/102 datasets (FCN),
with mean accuracy increases of 4.0% and 3.0%, respec-
tively. Moreover, ASCENSION consistently minimizes
performance deterioration, with only 30 datasets worsened
for ResNet and 39 for FCN, compared to 67 and 85 datasets
for FAA, respectively.

Compared to Time-DDPM and VaDE, ASCENSION
achieves a balanced trade-off between maximizing the num-
ber of datasets improved and minimizing those with wors-
ened performance. Time-DDPM, while achieving the high-
est mean accuracy improvement (17.8% for ResNet and
15.8% for FCN), suffers from significant performance dete-
rioration on 62/102 datasets (ResNet) and 58/102 datasets
(FCN), indicating overfitting to a subset of datasets. In con-
trast, ASCENSION’s consistent performance across both
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Table 1: Results of our empirical benchmark study on the 102 UCR datasets. The table summarizes the number of datasets
with improvement (Augmented), no change (Unchanged), and deterioration (Worsened) in classification accuracy for each
DA method. The mean accuracy change (Acc) is provided for each category. An upward arrow (1) indicates that higher
values are preferable, while a downward arrow () signifies that lower values are better. Bold values denote the best
performance, and underlined values indicate the _second best. ASCENSION improves the classification accuracy for the
highest number of datasets and produces the fewest cases of performance reduction, demonstrating its effectiveness in

enhancing classification accuracy across the datasets.

DA method Augmentedi UnchangeL Worsened o TTotal s
TNbgatasets TAcc  Nbgyasets Acc U Nbgatasets TAcc  Nbgyusets TAcc

FAA 28 6.5% 7 0% 67 -9.1% 102 -4.2%

LA 23 3.7% 12 0% 67 -3.3% 102 -1.3%

é TTS-GAN 41 2.2% 10 0% 51 -8.9% 102 -3.6%
&v)) Time-DDPM 38  17.8% 2 0% 62 -222% 102 -6.8%
VaDE 57 3.1% 8 0% 37 -1.7% 102 -1.1%
ASCENSION 56 4.0% 16 0% 30 -1.7% 102 1.7%

FAA 13 1.5% 4 0% 85  -158% 102 -122%

LA 38 2.1% 18 0% 46 -2.3% 102 -0.3%

z  TTS-GAN 31 2.2% 13 0% 58 -7.5% 102 -3.6%
e Time-DDPM 43 15.8% 1 0% 58 -24.0% 102 -7.0%
VaDE 35 2.8% 16 0% 51 -6.7% 102 -2.4%
ASCENSION 50 3.0% 13 0% 39 -1.4% 102 1.0%

Table 2: Acc. comparison on HAR dataset used by (Cheung
& Yeung, 2020) to assess MODALS

Method Accuracy (%)
ASCENSIONResNet-Emb 93.42
MODALS 91.87
No Augmentation 88.64

ResNet and FCN backbones demonstrates its scalability and
versatility for enhancing classification tasks.

In Table 2, we compare to MODALS on the HAR
dataset, ASCENSION further enhances performance. While
MODALS improves the baseline classification (without aug-
mentation) by 3.23%, ASCENSION increases this improve-
ment by +4.78%, further advancing accuracy beyond the
baseline.

4.2.3. EMBEDDED CLASSIFIER PERFORMANCE

The ASCENSION framework supports various classifier ar-
chitectures due to its modularity. Leveraging this flexibility,
we also assess ASCENSION’s performance with a modified
classifier setup. In Table 3, we present the evaluation results
for: (i) ASCENSION’s standard embedded classifier, de-
noted as ASCENSIONEmbCI., and (ii) a hybrid approach
combining ASCENSION’s embedded classifier with the
studied classifiers, referred to as ASCENSIONc-EmbCl.,
where ¢ € ResNet, FCN in our experiments. The augmen-
tation effect is quantified as the difference between: (i)
The highest baseline accuracy achieved by either the VAE’s

classifier or the standalone classifier c, and (ii) the highest
accuracy recorded for ASCENSIONg,,,c;. or classifier c,
computed as follows:

ACCASCENSION, gmpcr. = maX(ACCASCENSIONEmb@_ , Acc,)

C)

- maX(ACCBaseline ) ACCVAE)

Table 3 shows that ASCENSIONgeinet.Emp achieves the
highest accuracy gain (3.7% on 76 datasets) but also
has the largest accuracy drop (-5.7% on 14 datasets).
ASCENSIONEg,c1. offers a more stable performance
(1.9% improvement) with minimal degradation (-1.6%).
ASCENSIONEcN.Emp provides moderate gains (2.9%) with
a balanced trade-off. Overall, a more complex architecture
such as ResNet is likely to maximize improvement but in-
troduces variability, while FCN and the standard classifier
ensure more stable performance.

4.2.4. HYPERPARAMETERS SENSITIVITY ANALYSIS

A key feature of ASCENSION is its controllable progres-
sive expansion mechanism for exploring the latent space.
Adjusting the scaling factor parameter o — which influences
how distributions are flattened, see section 3.1 — and deter-
mining the number of iterations are essential for optimizing
the method’s effectiveness. These two parameters must be
carefully balanced to maintain sufficient separation between
distributions while allowing for adequate exploration.

Analysis methodology: We conducted a study that varies
« (from 1 to 5) and the number of iterations (from 1 to 9) to
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Table 3: The table summarizes the number of datasets with improvement (Augmented), no change (Unchanged), and
deterioration (Worsened) in classification accuracy for each inherent classifier architecture. The mean accuracy change
(Acc) is provided for each category. An upward arrow (1) indicates that higher values are preferable, while a downward
arrow () signifies that lower values are better. Bold values denote the best performance.

Embedded Classifier TNb[:ﬁ::eme(:m Nblj;f:?nge% lNbd\:ls:w;senedTm Nbdm::otal =
ASCENSIONG ., 65 1.9% 24 0% 24 -1.6% 102 0.8%
ASCENSIONResNet-Emb 76 3% 12 0% 14 -57% 102 21%
ASCENSIONg(N.Emb, 60  2.9% 28 0% 14 -17% 102 12%

ASCENSIONE b,

ASCENSIONECN-Emb.

ASCENSIONResNet-Emb.

Figure 2: Analysis of accuracy augmentation as a function of the parameter o and the number of augmentation steps for
the Ham dataset. The results suggest that clearly defining optimal values for o and the maximum number of iterations is
challenging. However, it is evident that o should remain above 1, and a minimum threshold of approximately 3 iterations
is deemed acceptable. A comprehensive grid search may be warranted to identify the optimal parameter values. More

examples can be found in appendix C.

assess their impact on accuracy improvement and determine
whether convergence occurs.

Results: Figure 2 presents the results for
ASCENS IONEmbC]. s ASCENS IONResNet—EmbCl. s and
ASCENSIONEgcNEmper, Using the Ham  dataset from
the UCR archive (additional examples can be found in
Appendix C). The augmentation process remains relatively
stable even with high « values, supporting our hypothesis
that the distribution borders reduce the sensitivity of
ASCENSION to changes in . Appendix C offers similar
analyses across various UCR datasets, showing that
increasing « can enhance boundary exploration but may
reduce performance if « is too large. Based on our
experiments, selecting « in the range [1, 3] provides a good
balance.

4.2.5. OPERATIONAL EFFICIENCY ANALYSIS

Section 4.2 has empirically evidenced that ASCENSION
generally outperforms traditional and generative state-of-
the-art DA methods for TSC across most datasets. However,
a substantial proportion of datasets (30% to 50%) do not
exhibit improved classification performance, and in some
cases, performance even deteriorates (see the Unchanged
and Worsened columns in Tablel). A comprehensive list of
these datasets can be found in Appendix B.1. To address

this, we propose an analysis to determine which types of
data — characterized by their specific features — benefit the
most from augmentation and which require minimal or no
augmentation.

Feature extraction: We use the CATCH22 time series
feature set introduced by (Lubba et al., 2019) to characterize
the datasets (comprising 22 features in total), adding the
ratio of train/test split and the distribution discrepancy ratio
between train and test (cf., Appendix E.1). A description of
these 24 features (F1-F24) is provided in Appendix F.

Analysis methodology: By averaging the features of the
time series in each dataset, we identify the datasets that
are most and least amenable to benefit from augmentation.
Subsequently, we analyze the impact of augmentation on the
classification performance of these datasets to determine the
most influential features. To measure feature importance,
we employ a random forest model with a high number of
estimators with low depth to the mean of F1-F24 to predict
augmentation for the benchmarked DA methods.

Results: Figure 3 shows that each method is strongly tied to
specific features such as FAA to F10 (degree of periodic pat-
terns within the dataset), TTS-GAN to F7 which is related
to rapid fluctuation in the time series. Moreover, features
F23 and F24 (respectively representing the train/test ratio
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Figure 3: Feature importance derived from a random forest model applied to the 24 features (F1-F24, cf. Appendix F.) F7
indicates rapid fluctuations in the time series, F10 indicates the repetition of pattern in the time series, F11 estimates the
differences in distances between successive points in a 2-dimensional embedding space, F23 is the ratio of train and test data
in the dataset and, F24 is the discrepancy in distance between the train and test set distributions, see Appendix E.1.

of data and discrepancy in distance between the Train and
Test set distributions, ¢f. Appendix E.1) are tied to methods
such as LA and ASCENSION.

To analyze the impact of increasing train-test discrepancy
ratios on classification performance, Figure 4 presents the
cumulative performance improvement (%) as a function
of F24 (see Appendix E.1). The 102 UCR datasets are ar-
ranged in ascending order of discrepancy. While other DA
methods experience performance degradation as discrep-
ancy increases, ASCENSION sustains positive performance
and even exhibits a slight improvement.

4.2.6. QUALITATIVE STUDY ON THE RISK OF
EXTRAPOLATION

To qualitatively assess our extrapolation process, we in-
troduce a class assignment confidence measure for each
generated latent sample set Z. Specifically, we sample a
class y from {1,2,...,Y} and define its confidence as:

P,(Lui2) = max | (C®Z)).

where L(y | Z) denotes the likelihood that Z belongs to
the distribution associated with class y. We empirically
compute this probability by sampling n = 1000 points and
measuring the proportion of samples most likely to originate
from the intended class.

It is worth noting that ASCENSION applies the same
likelihood-based filtering criterion before incorporating gen-
erated samples into the final training set. Therefore, this
confidence metric indicates how often a sample aligns with
its target class before any filtering removes unreliable points.
As a result, our measure serves as a valuable yet inherently
qualitative indicator of the model’s initial ability to generate
class-consistent samples.

As shown in Figure 5, contrary to initial expectations,
class assignment confidence does not significantly decline
throughout the expansion process. This indicates that confi-
dence retention is more influenced by the intrinsic charac-
teristics of each dataset rather than the expansion itself. For
a more detailed analysis, readers can refer to Appendix D.

5. Conclusion & Future Works

This paper introduced ASCENSION, a novel VAE-based
DA method for TSC that integrates a controllable and pro-
gressive class boundary expansion mechanism. Unlike exist-
ing generative DA methods, which primarily rely on interpo-
lating within the existing training distribution, ASCENSION
enables controlled extrapolation, preserving intra-class co-
herence and enabling the user to monitor inter-class sepa-
ration. By leveraging a probabilistic latent space structure,
ASCENSION effectively generates synthetic samples that
enhance classification performance across a broad range of
time series datasets.

Our benchmarking analysis on 102 UCR datasets high-
lights ASCENSION’s ability to deliver consistent perfor-
mance improvements. Compared to six state-of-the-art DA
methods—FAA, LA, TTS-GAN, Time-DDPM, VaDE, and
MODALS—ASCENSION achieved the highest overall clas-
sification gains, improving accuracy in 55% of datasets with
ResNet and 49% with FCN, while limiting performance
degradation to only 29% and 38%, respectively. Addition-
ally, our analysis of DA effectiveness factors reveals that
ASCENSION performs particularly well in scenarios where
the discrepancy between training and test data is relatively
high, whereas other methods experience a sharp decline in
effectiveness under such conditions. This finding is partic-
ularly significant, as real-world applications often involve
variations in train-test distribution discrepancies (see e.g.
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Figure 4: Cumulative performance improvement (%) as a function of F24, which represents the train-test discrepancy ratio
(see Appendix E.1). The 102 UCR datasets are ordered in increasing discrepancy. While other data augmentation (DA)
methods show performance degradation as discrepancy rises, ASCENSION maintains a positive performance trend and

even demonstrates a slight improvement.

1

Augmentation Step

Figure 5: Class confidence distribution over the different
augmentation steps.Class assignment confidence does not
significantly decline throughout the expansion process.

(Koh et al., 2021)), making ASCENSION a valuable asset
for practical deployment.

Limitations & Future work: While ASCENSION ad-
vances generative DA for time series, certain limitations
remain. The latent space expansion mechanism requires
careful tuning of parameters such as the scaling factor, the
number of augmentation steps, and the step size. Automat-
ing these hyperparameter selections based solely on train-
ing data could be a promising direction for future work.
Although ASCENSION ensures class-consistent sampling,
incorporating domain-specific priors could further refine
boundary expansions. Additionally, ASCENSION’s frame-
work could be extended to other types of sequential data
(e.g., natural language, spatio-temporal data) as well as
non-sequential domains (e.g., images). Exploring alterna-
tive clustering methods, sampling strategies, and expansion
mechanisms beyond a single « factor — could further im-
prove its adaptability and effectiveness across diverse appli-
cations.

6. Software and Data

The UCR time series archive can be found at
https://www.cs.ucr.edu/~7Eeamonn/
time_series_data_2018/. We detailed exact
implementation details and provide code to pro-
duce our results on an anonymous github page at
https://github.com/ASCENSION-PAPER
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A. Related work

(Iglesias et al., 2023b) and (Iwana & Uchida, 2021) divide
DA for time series into two categories: Traditional vs. Gen-
erative DA methods. Figure 6 offers an overview of the
evolution of these methods.

Traditional DA methods, such as window slicing, jittering,
and scaling (Iglesias et al., 2023a), are primarily adapted
from computer vision and rely on transformation strate-
gies like cropping, rotation, scaling, drifting, and so forth.
However, the complex nature of time series data often ren-
ders these methods sub-optimal, as they can disrupt the
semantic integrity of the original data. For instance, while a
slightly flipped image of a cat remains recognizable, revers-
ing the time axis of an electrocardiogram sequence can
render it meaningless. In response to these challenges,
more advanced DA techniques were developed to auto-
mate the sequence of transformations to be performed. A
first method, named AutoAugment (AA) (Cubuk et al.,
2019), uses reinforcement learning to explore transforma-
tion pipelines/policies. A second method named Fast Au-
toAugment (FAA) (Lim et al., 2019) uses density matching
for a faster search strategy, eliminating the need for back-
propagation. Subsequent methods such as RandAugment
(Cubuk et al., 2020), Deep AutoAugment (Zheng et al.,
2022), and Trivial Augment (Miiller & Hutter, 2021) were
introduced to further simplify and refine the augmentation
search strategy. RandAugment streamlines the augmen-
tation process by removing the exhaustive search phase,
instead applying a fixed number of random transformations
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with adjustable magnitudes. Deep AutoAugment incorpo-
rates a deep reinforcement learning model that dynamically
combines transformation policies based on the specific char-
acteristics of the dataset. Trivial Augment introduces an
even simpler approach by applying a minimal set of random
transformations, emphasizing ease of use and computational
efficiency. Despite all these advancements, all these meth-
ods rely on predefined transformations, which is suboptimal
for preserving intra-class consistency and the semantic char-
acteristics of the original time series data, thereby limiting
the effectiveness of data augmentation.

Generative DA models such as Generative Adversarial
Networks (GANSs) (Goodfellow et al., 2020), diffusion mod-
els (Yang et al., 2023a), and VAEs (Kingma & Welling,
2013) represent powerful techniques capable of learning
a probabilistic representation of data distributions. These
models can generate time series data that retain the tempo-
ral dependencies, semantic consistency, and class-specific
characteristics of the original datasets (Fu et al., 2020). For
example, using a representation layer, as introduced by (Liu
et al., 2022), provides an abstraction that is crucial when
dealing with time series data. TimeGAN (Zhang et al.,
2022) has been specifically designed for time series, which
has shown significant improvements in generating high-
quality synthetic sequences and augmenting low-quality
datasets. Likewise, TS-GAN (Yang et al., 2023b) develop a
LSTM-based GAN architecture with an sequential-squeeze-
and-excitation to better capture time-dependence between
the current and past moments in each dimensions. TS-GAN
is particulary proposed to generate augmented sensor-based
health data to improve Deep Learning (DL) classification
models and evaluated on 3 health time series datasets. TTS-
GAN (Li et al., 2022) adapt the traditional GAN architec-
ture using a transfomer-encoder architecture that can deal
with long range dependencies in time sequences. It shows
strong performance in generating realistic data across three
datasets: a simulated dataset, a human acuity recognition
dataset, and an ECG dataset. However, GANSs training pro-
cess is very unstable and is very senstive to hyperparameters.
It also suffers from issue as mode collapse that can limit the
variety of generated samples and can possibly generate un-
realistic data (Lei et al., 2019). LatentAugment (Tronchin
et al., 2023) learns a low-level representation of initial data,
noising around learned points and then decoding them to
produce newly generated and semantically close data. More
recently, (Seon et al., 2024) proposed LISGAN, a GAN-
based architecture to augment time series data in the context
of class imbalance by adjusting the loss with mutual infor-
mation term and using a spectral normalization. LISGAN
generates high quality synthetic data and significantly in-
creases classification performance with industrial internet
of things datasets. Diffusion models, a more recent class of
generative models, have garnered significant attention for
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Figure 6: Overview of the evolution of state-of-the-art data augmentation methods for time series (traditional vs. generative). **MODALS:
Although code was made available (4 years ago), it is currently non-functional; we have contacted the authors of MODALS (Cheung
& Yeung, 2020) for the source code, but they informed us that it is no longer operational and cannot be repaired without substantial

re-coding.

their capability to model complex data distributions. Unlike
GANSs, which rely on adversarial training, diffusion models
generate data by progressively refining noise toward the tar-
get data distribution. This denoising approach has yielded
remarkable results in high-fidelity image generation, as seen
with models like DALL-E 2, Imagen, and Flux. Recently,
starting in 2023, several diffusion model-based DA methods
for time series have emerged, including ASE-DDPM (Liu
et al., 2024) for addressing imbalanced time series classifica-
tion, DiffRUL (Wang et al., 2024) for enhancing remaining
useful life predictions, D3A-TS (Solis-Martin et al., 2023)
aimed at improving synthetic sample quality through meta-
attribute conditioning, and Time-DDPM, which integrates
a diffusion denoising probabilistic model with CNN-LSTM
networks to enhance sample quality. While diffusion models
provide stable outputs, they face challenges with long-range
predictions, error accumulation, and slow inference (Feng
et al., 2024), which can limit their practical applications.
VAEs offer several advantages over GANs and diffusion
models. Their probabilistic nature allows for explicit con-
trol over the diversity and quality of generated samples
through manipulation of the latent space, as evidenced in
(Cheung & Yeung, 2020). This helps preserve the intra-class
consistency and semantic characteristics of the original data.
Additionally, VAEs are less prone to collapse compared to
GANSs and are less computationally expensive than both
GANSs and diffusion models (Thanh-Tung & Tran, 2020).
To our knowledge, the first VAE-based generative DA model
relying of clustering, named VaDE, was introduced in (Jiang
et al., 2016). The authors integrate a prior GMM fitting to
the VAE training, enabling realistic samples generation for
any specified cluster, without using supervised information
during training. MODALS, was introduced by (Cheung
& Yeung, 2020) and represents the closest architectural ap-
proach to ASCENSION. It was the first study to investigate
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the expansion of class boundaries during synthetic data gen-
eration, although it does not offer a method for controlling
this expansion. Recently, (Dang et al., 2024) introduced
VAE-LSTM, which is used to augment an inertial sensor
dataset due to limited data availability, with the goal of en-
hancing classification performance. However, this approach
does not explore the expansion of class representations in
the latent space, as proposed in ASCENSION.

B. Enlarged experimental result analysis
B.1. Enlarged classification performance

This section offers a more comprehensive analysis of the
results. The 102 datasets from the UCR time series classi-
fication repository are grouped into 11 distinct categories
(domains/applications), as summarized in Table 4.

A detailed breakdown of our experimental results is pre-
sented in Table 5 and Table 6.

C. Enlarged hyperparameters sensitivity
analysis

Figures 7 to 16 show 3D plots of classifier performance
as a function of a and the number of iterations for
ASCENSIONEpc1, FCN, and ResNet, across representa-
tive datasets from each category of the UCR archive. The
name of each category and their representative datasets are
detailed in Table 4.

o parameter: As discussed in section 4.2.4, performance
improvement relation to o seems difficult to generalize
while remaining relatively stable. Increasing « can lead
to better boundary exploration, as shown in Figures 11 and
10 but can also make the performance drop for too high
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Table 4: UCR dataset types along with the selected representative datasets

Type Representative dataset Description

Device ACSF1 Measurements of alternating current signals for predictive maintenance

ECG ECG200 Electrocardiogram (ECG) readings used to detect heart abnormalities

EOG EOG VerticalSignal Electrooculography (EOG) signals capturing eye movement patterns

EPG InsectEPGRegularTrain Electrical penetration graph (EPG) signals capturing insect feeding behavior

Image BeetleFly Shape-based image classification of beetle and fly outlines

Motion Worms Motion sensor data capturing worm movements for classification

Power PowerCons Power consumption measurements for energy usage

Sensor Car Sensor readings collected from a car, used for detecting driving conditions

Simulated UMD Simulated control processes data

Spectro Ham Spectroscopy data to identify types of ham based on chemical properties

Spectrum SemgHandMovementCh2  Electromyography (EMG) data of hand movements, recorded across channels

Table 5: Mean Improvement per Dataset Type
Type FAA LA Time-DDPM TTS-GAN VaDE ASCENSION
TNbpyasets TAcc TNbpaasers ~ TAcC  TNbpyuasets TAcc TNbpyasers ~ TAce  TNbpyases  TAce  TNbpyases — TAcc
Device 1/8 7.7% 2/8 3.1% 4/8 20.3% 3/8 1.1% 3/8 0.7% 7/8 2.2%
ECG 1/6 14.2% 3/6 0.2% 2/6 3.8% 3/6 1.6% 2/6 0.3% 2/6 0.1%
EOG 0/2 0.0% 1/2 2.8% 1/2 35.8% 0/2 0.0% 0/2 0.0% 0/2 0.0%
EPG 0/2 0.0% 0/2 0.0% 0/2 0.0% 0/2 0.0% 0/2 0.0% 0/2 0.0%
Image 2/30 13.2% 10/30 2.2% 13/30 16.4% 10/30 3.2% 11/30 4.3% 14/30 1.8%
Motion 2/14 2.8% 10/20 1.3% 9/20 13.2% 1/20 0.8% 9/20 1.5% 8/20 1.0%
Power 0/1 0.0% 1/1 3.9% 0/1 0.0% 1/1 2.8% 1/1 1.7% 1/1 2.2%
Sensor 2/19 5.4% 7/19 2.0% 5/19 17.2% 6/19 2.4% 6/19 3.2% 7/19 1.2%
Simulated 3/8 3.5% 2/8 5.3% 1/8 12.6% 5/8 1.0% 0/8 0.0% 2/8 5.7%
Spectro 2/8 11.3% 1/8 0.4% 4/8 6.1% 2/8 2.9% 1/8 1.7% 7/8 9.9%
Spectrum 0/4 0.0% 1/4 6.0% 4/4 24.7% 0/4 0.0% 2/4 7.1% 2/4 5.3%
Table 6: Mean Negative Impact per Dataset Type
Type FAA LA Time-DDPM TTS-GAN VaDE ASCENSION
INbpgiasets TAcc INbpgiasets TAcc I Nbpgiasets TAcc INbpgiasets TAcc 1 Nbpgiasets TAcc 1 Nbpgiasets TAcc

Device 7/8 -8.8% 5/8 -2.5% 4/8 -23.6% 5/8 -9.1% 5/8 -3.0% 1/8 —4.0%
ECG 5/6 —-27.9% 3/6 —-3.7% 4/6 ~16.9% 3/6 -1.9% 3/6 18.3% 2/6 -4.3%
EOG 2/2 -21.1% 1/2 -6.6% 1/2 -17.9% 2/2 -32.2% 2/2 -11.3% 2/2 -1.2%
EPG 0/2 0.0% 0/2 0.0% 2/2 -11.1% 0/2 0.0% 0/2 0.0% 0/2 0.0%
Image 27/30 -17.6% 15/30 -1.9% 17/30 -20.7% 17/30 -5.9% 13/30  -11.1% 14/30 -1.3%
Motion 11/14 -13.6% 2/14 -1.4% 5/14 -27.8% 11/14 -11.1% 4/14 -2.5% 5/14 -2.0%
Power 1/1 -2.8% 0/1 0.0% 1/1 —88.5% 0/1 0.0% 0/1 0.0% 0/1 0.0%
Sensor 17/19 -11.1% 10/19 -1.4% 14/19 —28.7% 11/19 -3.1% 11/19 -2.5% 6/19 -0.4%
Simulated 5/8 ~15.9% 3/8 ~1.6% 6/8 -18.3% 1/8 -1.4% 6/8 ~8.5% 5/8 -0.8%
Spectro 6/8 -32.4% 4/8 -5.1% 4/8 -25.2% 4/8 -3.2% 5/8 -2.0% 1/8 -0.5%
Spectrum 4/4 -3.4% 3/4 -2.0% 0/4 0.0% 4/4 -12.2% 2/4 -3.9% 2/4 -0.6%

values of a. While pinpointing the exact « values and itera-
tions for optimal results across all datasets is not trivial, the
general trend suggests selecting o € [1, 3] to expand class
boundaries without venturing into areas that risk class over-
lap, which could negatively impact classification accuracy.

Number of iterations: In Figures 10-12, and 14, we ob-
serve that a higher number of iterations can have either a
positive or negative impact on performance, whereas in Fig-
ure 7, the number of iterations does not play a significant
role in performance improvement. This ambivalent behavior
is closely related to the class distribution within the dataset.
As the number of iterations increases, classes in the latent
space may become closer due to the increase in the o pa-
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rameter at each iteration, which leads to the expansion of
covariances aX, (cf., Figure 1). Therefore, we recommend
carefully adjusting the number of iterations in relation to
the chosen « parameter.

ASCENSIONEp,

ASCENSIONECN-Emb. ASCENSIONResNet-Emb.

Figure 7: ECG: Classifier performance against « and itera-
tion number for ECG200 dataset.
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Figure 8: EOG: Classifier performance against « and itera-  Figure 14: Spectro: Classifier performance against « and
tion number for EOG VerticalSignal. iteration number for Ham dataset.

ASCENSIONE, ASCENSIONECN-Emb. ASCENSIONResNet-Emb.

Figure 9: Hemodynamics: Classifier performance against
« and iterations for PigArtPressure. Figure 15: Spectrum: Classifier performance against o and
iteration number for SemgHandMovementCh2 dataset.

Figure 10: Image: Classifier performance against o and
iteration number for BeetleFly dataset. Figure 16: Device: Classifier performance against o and

iteration number for ACSF1 dataset.

I D. Enlarged analysis of the class assignment
confidence

All following figures of this section have been computed
after removing outlier data samples.
Figure 11: Motion: Classifier performance against o and

iteration number for Worms dataset. Both Figures 17 and 18 show a complex relationship be-

tween confidence and performance. A slight positive cor-
relation appears to be present, however it is clear that no
linear or polynomial relationship exists between the two.

] From the previous analysis, we perform a clustering using
£ DBSCAN to extract patterns. Figures 19 and 20 reveal two
main clusters. As mentioned previously, we infer that these
clusters may depend on the initial conditions of the augmen-
tation, that is to say, the dataset and its characteristics.

Figure 12: Sensor: Classifier performance against o and
iteration number for Car dataset. We validate this hypothesis by computing the feature
importances of the dataset’s features defined in Ap-
pendix F in regards to predicting confidence through a
Random Forest Regressor built with a high num-
£l ber of shallow trees. The negative or positive characteristic
8 of the importance is then computed using a correlation
matrix.

Figure 13: Simulated: Classifier performance against «

. ) The results in Figure 21 show five features with predominant
and iteration number for UMD dataset.

importance. The contrast in these importance allows us to

13
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000
Delta FCN

Figure 17: Trust in regards to performance for FCN :
Overview of the relationship between mean trust over the
augmentation steps and final performance.

validate the hypothesis that some datasets features seem to
have a relationship with the confidence of the expansion
mechanism.

(The full tables of results are available in the supplementary
materials in csv and json format.)

E. Performance metric formalization

E.1. Discrepancy in distance between training and test
sets

E.1.1. FORMALIZATION

To estimate the discrepancy in distance between the training
and test sets, we compute the mean intra-class distance
across all classes using DTW as the distance metric. Let
Xi = Tp1,%k2, ..., Tp pn, represent the set of generated
samples belonging to class k, and d, be the mean intra-class
distance for class k, defined as:

1 ¢
dy, = ;DTW(xk,i,uk) ©)

where p, is the mean of the samples in class & (computed
using DTW barycenter averaging, where applicable). The
overall dispersion D of the dataset is then defined as the
mean intra-class variance across all K classes:

1 K
Dz?];dk (7)

To estimate the discrepancy between the training and test
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Figure 18: Confidence in regards to performance for
ResNet : Overview of the relationship between mean confi-
dence over the augmentation steps and final performance.

datasets, we compute the ratio between the dispersion of the
test set Dy and the diversity of the train set Dy.,;,. This
ratio V' is defined as:

®

The discrepancies ratio V' = 1 indicates similar diversity
between the train and test sets, while deviations from 1
suggest more diversity in the training set (V' < 1) or in the
test set (V' > 1).

A dataset where the ratio V' > 1 is considered to be more
challenging for usual generative techniques, as the train set
does not accurately represent the test set in these cases.

As such the datasets at the far right in

E.1.2. EXPERIMENTAL RESULTS

The discrepancy ratio of the 102 UCR datasets have been
plotted in an ascending order in Figure 22. Le us consider
three datasets with extreme ratios: (i) Discrepancy toward
test: Dataset Car (1.51); (ii) No discrepancy: Dataset
ECGFiveDays (1.01); (iii) Discrepancy toward train:
Dataset EOGVerticalSignal (0.77).

Detailed results of the discrepancies across datasets are
available in Table 7
F. Time series features

In this section, we describe the 22 time series features
(Catch22) presented in (Lubba et al., 2019), and the two
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Table 7: Discrepancy Metrics Across Datasets

Dataset Ratio  Dispersionrggr  Dispersionrrarn
HandOutlines 0.46 1.50 x 10° 1.39 x 10°
GesturePebbleZ2 0.66 3.09 x 10" 3.02 x 10"
ShakeGestureWiimoteZ 0.71 5.36 X 107 6.04 x 10°
GestureMidAirD1 0.75 4.18 x 10° 4.30 x 102
MiddlePhalanxOutlineCorrect 0.77 1.01 x 10° 1.02 x 10°
EOG VerticalSignal 0.77 6.38 x 10° 5.62 x 10°
Chinatown 0.84 1.71 x 10® 2.05 x 10°
PLAID 0.85 3.50 x 102 3.38 x 102
ProximalPhalanxOutlineCorrect 0.87 1.34 x 10" 1.48 x 10"
EthanolLevel 0.87 3.18 x 10" 2.10 x 10
Wine 0.87 3.34 x 10" 3.33 x 10*
Trace 0.88 4.46 x 10° 4.41 x 10°
ScreenType 0.88 2.18 x 10° 2.46 x 10°
Worms 0.89 1.13 x 10 1.00 x 10°
BeetleFly 0.89 5.79 x 10" 5.30 x 10"
GesturePebbleZ 1 0.90 4.34 x 10° 3.98 x 10°
OliveOil 091 5.64 x 10° 5.94 x 10°
Strawberry 0.91 1.59 x 10° 1.56 x 10°
WormsTwoClass 0.93 4.09 x 10* 4.26 x 10"
Lightning7 0.94 3.32x 10" 3.80 x 10"
Meat 0.94 2.80 x 10° 1.35 x 10°
Plane 0.94 9.58 x 10" 1.01 x 10?
Beef 0.94 6.40 x 10" 6.78 x 10"
ProximalPhalanxOutlineAgeGroup  0.94 4.70 x 10 7.09 x 10°
ShapesAll 0.94 4.40 x 10" 3.95 x 10"
ProximalPhalanxTW 0.94 1.39 x 10* 1.36 x 10*
MiddlePhalanxTW 0.94 4.74 x 10° 5.02 x 10°
SemgHandSubjectCh2 0.95 5.14 x 10" 5.28 x 10"
ItalyPowerDemand 0.95 2.75 x 10° 2.92 x 10°
PhalangesOutlinesCorrect 0.95 2.02 x 10" 2.00 x 10"
DistalPhalanxOutlineCorrect 0.96 5.31 x 10° 6.94 x 10°
MoteStrain 0.96 3.27 x 10" 2.60 x 10*
CricketY 0.96 3.90 x 102 3.94 x 102
AllGestureWiimote Y 0.96 1.57 x 10" 1.63 x 10*
SwedishLeaf 0.96 4.69 x 10° 4.37 x 102
ACSF1 0.96 1.01 x 10° 1.04 x 10°
FaceAll 0.97 3.58 x 10" 3.67 x 10"
SemgHandGenderCh2 0.97 1.47 x 10 1.53 x 10
DodgerLoopDay 0.97 6.13 x 10° 6.62 x 10°
NonlInvasiveFetalECGThorax2 0.97 2.52 % 10° 2.42 x 10°
Computers 0.97 1.94 x 10° 1.98 x 10°
MelbournePedestrian 0.97 7.90 x 10" 7.41 x 10!
AllGestureWiimoteX 0.97 1.63 x 10° 1.64 x 10°
UMD 0.97 1.89 x 10" 1.89 x 10*
ToeSegmentation2 0.97 2.03 x 10° 1.72 x 10>
MixedShapesRegularTrain 0.98 4.20 x 10° 4.76 x 10°
OSULeaf 0.98 8.85 x 10° 6.43 x 10°
NonlnvasiveFetalECGThorax 1 0.98 1.31 x 102 1.33 x 102
FordB 0.98 2.81 % 10° 2.80 x 10°
SmallKitchenAppliances 0.99 2.49 x 10" 2.61 x 10"
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Dataset Ratio  Dispersionrgsr  Dispersionrtrarn
FordA 0.99 3.73 x 10° 3.83 x 10°
CricketZ 0.99 2.55 x 10" 2.52 x 10"
HouseTwenty 0.99 2.44 x 10° 2.79 x 10°
SemgHandMovementCh2 1.00 1.23x 10" 1.24 x 10*
CricketX 1.00 6.78 x 10" 6.10 x 10"
Earthquakes 1.00 1.31 x 10° 1.24 x 10°
TwoLeadECG 1.00 2.28 x 10" 2.32x 10"
SonyAIBORobotSurfacel 1.00 8.36 x 10° 8.36 x 10°
Medicallmages 1.00 7.57%x 10" 8.10 x 10"
TwoPatterns 1.00 5.83 x 10° 3.90 x 10°
Crop 1.00 1.28 x 10* 1.35 x 10*
Fish 1.00 1.13 x 10° 9.94 x 10°
GunPointAgeSpan 1.00 5.50 x 10° 4.90 x 10°
FreezerRegularTrain 1.01 2.47 x 10° 3.27 x 10°
Herring 1.01 1.02 x 10" 1.07 x 10"
GestureMidAirD2 1.01 6.39 x 10° 6.13 x 10°
ECGFiveDays 1.01 5.42 x 10" 4.85 % 10"
LargeKitchenAppliances 1.01 3.68 x 10" 3.08 x 10"
GunPointMale VersusFemale 1.02 3.69 x 10" 5.17 x 10"
GunPointOldVersus Young 1.02 5.70 x 10° 6.35 x 10°
Lightning?2 1.02 5.96 x 10" 1.31 x 10°
Yoga 1.02 3.02 x 10* 2.97 x 10*
AllGestureWiimoteZ 1.02 1.06 x 10" 9.93 x 10°
PowerCons 1.02 2.07 x 10* 1.63 x 10"
SyntheticControl 1.02 2.29 x 10° 1.92 x 10°
UWaveGestureLibraryX 1.02 6.81 x 10" 6.67 x 10"
GunPoint 1.04 3.83 x 10° 3.91 x 10°
UWaveGestureLibraryAll 1.04 5.73 x 10" 5.46 x 10"
FaceFour 1.04 5.44 x 10" 5.14 x 10"
DistalPhalanxTW 1.04 2.07 x 10" 2.07 x 10"
SmoothSubspace 1.04 4.86 x 10" 3.19 x 10"
UWaveGestureLibrary Y 1.05 2.00 x 10" 1.73 x 10"
FiftyWords 1.05 3.80 x 10° 4.03 x 10°
StarLightCurves 1.05 5.40 x 10* 4.59 x 10*
ChlorineConcentration 1.05 9.02x 10" 9.00 x 10"
RefrigerationDevices 1.05 4.23x 10" 4.01 x 10"
UWaveGestureLibraryZ 1.06 8.64 x 10° 9.18 x 10°
InsectWingbeatSound 1.06 7.54 x 10° 7.85 % 10°
Coffee 1.07 8.05 x 10° 8.45 x 10°
Ham 1.07 4.23 x 10° 3.75 x 10°
InlineSkate 1.07 8.25 x 10° 6.80 x 10°
Haptics 1.08 3.27 x 10" 2.98 x 10"
Adiac 1.09 2.81 x 10" 2.25 x 10"
CBF 1.09 6.69 x 10" 8.63 x 10"
InsectEPGSmallTrain 1.10 1.63 x 10 1.64 x 10°
ElectricDevices 1.10 1.02 x 10° 9.84 x 10
DodgerLoopGame 1.10 6.43 x 10° 6.10 x 10°
WordSynonyms 1.11 4.32 x 10° 5.08 x 10°
FreezerSmallTrain 1.11 2.29 x 10° 2.35 x 10°
Mallat 1.11 2.40 x 10" 2.32x 10"
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Dataset Ratio  Dispersionrgsr  Dispersionrrarn
FacesUCR 1.12 1.20 x 10° 1.08 x 10°
MiddlePhalanxOutlineAgeGroup ~ 1.12 2.70 x 10" 2.24 x 10"
Wafer 1.12 2.24 x 10° 2.30 x 10°
ShapeletSim 1.14 1.41 x 10" 1.46 x 10"
ArrowHead 1.16 1.71 x 10° 1.88 x 10°
EOGHorizontalSignal 1.18 3.01x 10" 2.65 x 10"
ToeSegmentation1 1.18 2.19 x 10° 2.16 x 10°
SonyAIBORobotSurface2 1.18 2.80 x 10" 2.36 x 10"
MixedShapesSmallTrain 1.19 1.59 x 10> 1.55 x 10
ECG5000 1.19 4.17 x 10" 477 x 10"
ECG200 121 1.28 x 10° 1.25 x 10°
DistalPhalanxOutlineAgeGroup ~ 1.21 6.78 x 10" 6.71 x 10"
CinCECGTorso 1.24 1.41 x 10" 1.40 x 10"
PickupGestureWiimoteZ 1.25 5.23 x 10° 5.98 x 10°
InsectEPGRegularTrain 1.26 1.88 x 10" 1.94 x 10"
Rock 1.27 1.16 x 10° 1.11 x 10
BirdChicken 1.30 5.28 x 10" 5.47 x 10"
PigArtPressure 1.38 1.03 x 10° 9.85 x 10"
Phoneme 1.50 5.18 x 10" 4.70 x 10"
Car 1.51 3.94 x 10° 3.95 x 10°
PigCVP 1.52 6.68 x 10" 6.54 x 10"
Symbols 1.53 1.23 x 10" 3.72 x 10°
PigAirwayPressure 2.07 7.11 x 10° 5.72 x 10°
DiatomSizeReduction 3.30 1.52x 10° 1.00 x 10°

additional features (denoted by F23 and F24 below) consid-
ered in this study.

F1: DN_HistogramMode_5 Top z-score range based on
the highest count from a 5-bin histogram, representing
the most frequent distribution range in the dataset.

F2: DN HistogramMode 10 Similar to DNS5, but this

considers the top z-score range based on a 10-bin his-
togram, providing a finer resolution.

F3: cO_flecac Represents the first 1/e crossing of the

autocorrelation function, indicating how quickly the
autocorrelation of a time series decays.

F4: CO_FirstMin_ac Identifies the first minimum of the

autocorrelation function, which helps analyze the peri-
odicity of the time series.

F5: CO_HistogramAMI even 2 5 Automutual infor-

mation for m = 2 and 7 = 5, capturing the dependency
between data points across time.

F6: CO_trev_1 num This statistic measures time-

reversibility, focusing on the differences between

successive points in the time series raised to the third
power.
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F7: MD_hrv_classic_pnn40 Proportion of successive
differences in time series values that exceed 0.04 of the
standard deviation, indicating rapid fluctuations.

F8: SB BinaryStats mean longstretchl The
longest period where values stay consecutively above
the mean, representing persistent trends in the data.

F9: SB_ TransitionMatrix 3ac_sumdiagcov
Trace of the covariance of the transition matrix
between symbols in a 3-letter alphabet, used to assess
transitions in symbolized data.

F10: PD_PeriodicityWang th0.01 A periodicity
measure, indicating how regularly patterns repeat
within the time series.

F11: CO_Embed2 Dist tau. d expfit meandiff
Exponential fit to the differences in distances between
successive points in a 2-dimensional embedding space,
revealing structural relationships.

F12: IN AutoMutualInfoStats_40_gaussian fmmi

First minimum of the automutual information function,
which gives insight into the periodicity and structure
of the time series.

F13: FC_LocalSimple meanl tauresrat
Measures the change in correlation length after
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Figure 19: Clustering of the confidence in regards to per-
formance for FCN: Overview of the relationship between
mean confidence over the augmentation steps and final per-
formance through a DBSCAN clustering.

iteratively differencing the time series, providing
insights into the stationarity of the data.

F14: DN OutlierInclude p 001 mdrmd Measures
the time intervals between successive extreme events
occurring above the mean, indicating patterns of high
values.

F15: DN_OutlierInclude n 001 _mdrmd Similar to
DNOp but for extreme events occurring below the
mean, highlighting the time intervals between low-
value outliers.

F16: SP_Summaries welch rect_area_ 5.1 This
computes the total power in the lowest fifth of the
frequencies from a Fourier power spectrum, reflecting
long-term trends.

F17: SB BinaryStats diff longstretchO The
longest period of successive decreases in the time
series, capturing prolonged declining trends.

F18: SB MotifThree quantile hh Shannon en-
tropy of successive symbol pairs in a 3-letter
quantile symbolization, quantifying the complexity of
transitions between motifs.

0 002 004 006 008
Delta Reshet

Figure 20: Clustering of the confidence in regards to
performance for ResNet: Overview of the relationship
between mean confidence over the augmentation steps and
final performance through a DBSCAN clustering.

F20: SC_FluctAnal 2 dfa 50.1 2 logi prop.rl
Proportion of slower timescale fluctuations that scale
with detrended fluctuation analysis (DFA) under 50

F21: SP_Summaries_ welch rect_centroid The
centroid of the Fourier power spectrum, which offers
a measure of the central frequency or the dominant
pattern in the time series.

F22: FC_LocalSimple mean3_stderr Calculates
the mean error from a rolling 3-sample mean forecast,
capturing the volatility of short-term predictions.

F23: Train Test Ratio The ratio of training data to
test data in the dataset.

F24: Discrepancy_in Distance To estimate the dis-
crepancy in distance between the training and testing
set distributions, as defined in Appendix E.1

F19: SC_FluctAnal 2 rsrangefit 50_1_logi prop. rl

Proportion of slower timescale fluctuations that scale
with rescaled range fits, indicating long-term memory
in the data.
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correlation_sign
EEE Negative

Importance

Feature

Figure 21: Feature importance in regards to confidence: Overview of the impact of every dataset feature on the mean
confidence over the augmentation steps. The red color denotes the negative correlation these features hold with confidence.

G. Evolution of latent space through learning
phase

A progressive visualization of the latent space offers valu-
able insights into the evolving distribution modeling and ex-
ploration process. Initially, the latent space representations
exhibit fine clustering, but as we iterate in the augmentation
loop, the latent space distributions become denser, enhanc-
ing the exploration part of these distributions. However, in
the later stages of augmentation, the exploration process be-
comes increasingly challenging as the inter-class distances
appear to shrink due to prior augmentation steps. It is impor-
tant to note that these visualizations provide only a limited
view of the actual distributions, as they are restricted to three
dimensions (from an original 50-dimensional space).
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Table 8: Latent Space Evolution. Visualization of the latent space for the 3 first dimensions (out of 50)
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