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ABSTRACT

While reinforcement learning has advanced the reasoning abilities of Large Lan-
guage Models (LLMs), these gains are largely confined to English, creating a
significant performance disparity across languages. To address this, we intro-
duce Pivot-Based Reinforcement Learning with Semantically Verifiable Rewards
(PB-RLSVR), a novel framework that enhances multilingual reasoning by cir-
cumventing the need for human-annotated data in target languages. Our approach
employs a high-performing English LLM as a ”pivot” model to generate refer-
ence responses for reasoning tasks. A multilingual model is then rewarded based
on the semantic equivalence of its responses to the English reference, effectively
transferring the pivot model’s reasoning capabilities across languages. We in-
vestigate several cross-lingual semantic reward functions, including those based
on embeddings and machine translation. Extensive experiments on a suite of
multilingual reasoning benchmarks show that our method significantly narrows
the performance gap between English and other languages, substantially outper-
forming traditional PPO baselines. Specifically, our PB-RLSVR framework im-
proves the average multilingual performance of Llama-3.1-8B-Instruct
and Qwen3-32B by 16.41% and 10.17%, respectively, demonstrating a powerful
and data-efficient approach to building truly multilingual reasoning agents.

1 INTRODUCTION

The reasoning capabilities of Large Language Models (LLMs) have advanced dramatically, driven
by sophisticated training paradigms such as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) and innovations in policy optimization algorithms like Proximal
Policy Optimization (PPO) (Schulman et al., 2017a) such as REINFORCE++ (Hu et al., 2025)
and Group Regularized Policy Optimization (GRPO) (Shao et al., 2024). While these methods
have pushed the boundaries of performance on complex tasks, their success has been predominantly
demonstrated in English. Multilingual reasoning, consequently, remains a critical and unresolved
challenge, hindering the equitable global deployment of advanced AI.

This performance chasm is starkly evident across a suite of demanding multilingual evaluation
benchmarks, including MGSM (Shi et al., 2022), MMLU-ProX (Xuan et al., 2025), INCLUDE (Ro-
manou et al., 2024), and M-LoGiQA (Zhang et al., 2025c). These studies reveal that even state-of-
the-art models exhibit a sharp decline in accuracy—often by as much as 24%—when transitioning
from English to lower-resource languages (Xuan et al., 2025; Romanou et al., 2024; Zhang et al.,
2025c). As illustrated in Figure 1, leading models like Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) and Qwen3-32B lose a significant fraction of their English reasoning proficiency when
evaluated in other languages. This gap highlights a fundamental limitation: current training method-
ologies fail to generalize complex reasoning abilities consistently across diverse linguistic contexts.
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(a) MGSM Benchmark Results (b) MMLU-prox Benchmark Results

Figure 1: Performance of Llama-3.1-8B-Instruct and Qwen3-32B models across lan-
guages. On MGSM, Llama-3.1-8B-Instruct accuracy declines from 82.3% in English to
68% in Chinese. On MMLU-ProX, Qwen3-32B scores drop from 71.8% in English to 61.5% in
Hindi. These results highlight a substantial multilingual reasoning gap.

In this work, we propose a reinforcement learning framework to close the multilingual reasoning gap
without relying on human annotation in target languages. Our core idea is that the strong reasoning
abilities of LLMs in English can provide a supervisory signal to bootstrap performance in other
languages. We implement this through an English anchor mechanism, where a high-quality English
reference answer serves as a cross-lingual ground truth. Building on the principle of Reinforcement
Learning from Verifiable Rewards (RLVR) (Lambert et al., 2025; DeepSeek-AI et al., 2025), we
adapt the notion of verifiability from logical correctness to semantic fidelity against a high-quality
reference, making the RLVR paradigm applicable to a broader class of open-ended reasoning tasks.

Our methodology is as follows: given a prompt in a target language, the model produces a response
consisting of reasoning and an answer. This response is then semantically compared to the English
anchor response. A high similarity score yields a positive reward, indicating that the target-language
reasoning is consistent with the correct English line of thought. Incorporating this verifiable reward
into policy optimization trains the model to align its reasoning across languages, enforcing cross-
lingual consistency. This self-corrective process improves multilingual reasoning in a scalable and
data-efficient way.

Our primary contributions are threefold:

• We propose a reinforcement learning framework that leverages an English anchor response
as a verifiable reward signal for multilingual reasoning, eliminating the need for human
annotation in target languages.

• We design and evaluate several semantic reward functions—including reference-free
COMET scores, multilingual embedding similarity, and translation-enhanced similar-
ity—to robustly measure cross-lingual alignment.

• Through extensive experiments on two model families, we show that our method consis-
tently improves multilingual reasoning, substantially narrowing the English–non-English
gap and surpassing fine-tuning and conventional RL baselines.

2 RELATED WORK

Our research is situated at the intersection of multilingual large language models (LLMs), cross-
lingual transfer, and reinforcement learning for model alignment. This section reviews the key
developments in these areas, focusing first on the benchmarks that reveal the multilingual reasoning
gap and then on the methods developed to address it.

2.1 BENCHMARKING MULTILINGUAL REASONING

Early work, such as the Multilingual Grade School Math (MGSM) benchmark, extended
GSM8K (Cobbe et al., 2021) to ten diverse languages, revealing clear disparities in multilingual
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mathematical reasoning (Shi et al., 2022). More recent benchmarks, including MMLU-ProX (Xuan
et al., 2025), Global-MMLU (Singh et al., 2025), INCLUDE (Romanou et al., 2024), and M-
LoGiQA (Zhang et al., 2025c), broaden evaluation across dozens of languages and complex tasks.
Across these studies, even state-of-the-art models that excel in English show marked degradation in
non-English settings.

2.2 METHODS FOR IMPROVING CROSS-LINGUAL REASONING

Approaches to enhance the multilingual reasoning capabilities of LLMs can be broadly classified
into two paradigms: inference-time adaptations and training-time interventions.

Inference-Time Techniques. Several methods aim to improve multilingual performance without
retraining the model. A prominent example is test-time scaling, where increased computational re-
sources at inference are allocated to guide the model’s reasoning process (Yong et al., 2025). This
can involve techniques like generating multiple reasoning paths and selecting the most consistent
one. Such approaches have proven effective, demonstrating that much of the reasoning capabil-
ity is already latent within English-centric models and can be elicited with the right prompting or
decoding strategy. However, these methods are transient—they do not fundamentally enhance the
model’s intrinsic multilingual abilities—and often incur substantial computational overhead at in-
ference time.

Training-Time Interventions. Training-time methods seek to permanently improve a model’s
underlying capabilities. While standard multilingual supervised fine-tuning (SFT) on translated or
native-language datasets is a common strategy, it often fails to close the reasoning gap and can still
result in an English-centric model.

More recently, reinforcement learning (RL) has emerged as a powerful paradigm for fine-tuning
model behavior. A key innovation in this space is Reinforcement Learning with Verifiable Reward
(RLVR), where rewards are derived from deterministic checks rather than a learned reward model,
proving highly effective for tasks like mathematics and code generation (DeepSeek-AI et al., 2025).
Our work extends this concept to the multilingual domain.

Several recent studies have explored using RL for cross-lingual alignment. Some have focused on
transferring reward signals across languages, for instance, by training a reward model on diverse
language data or by showing that a reward model trained in one language can effectively align a
model in another, even in a zero-shot setting (Hong et al., 2025; Wu et al., 2024). Other work
has pushed towards “ground-truth-free” alignment, developing unsupervised reward mechanisms
that improve multilingual reasoning without requiring any reference answers (Zhang et al., 2025a;
Yu et al., 2025). These methods represent an important step towards scalable, data-efficient align-
ment. Concurrently, researchers have explored hybridizing rule-based and model-based verifiers for
RLVR (Huang et al., 2025) and expanding its application beyond mathematical domains (Su et al.,
2025).

Our approach builds directly upon the principles of RLVR but introduces a novel formulation for
the reward signal. While previous work has explored cross-lingual reward transfer or unsupervised
rewards, we propose using a high-quality English response as a verifiable anchor for aligning a
model’s reasoning in any target language. To our knowledge, this is one of the first works to explic-
itly use semantic equivalence to an English-language ground truth as the primary reward mechanism
for enhancing multilingual reasoning during RL training. This allows us to leverage the strong per-
formance of models in English to bootstrap and elevate their reasoning capabilities across a wide
spectrum of other languages.

3 METHODOLOGY

Our approach, which we term Pivot-Based Reinforcement Learning with Semantically Verifiable
Rewards (PB-RLSVR), is designed to enhance the multilingual reasoning capabilities of LLMs.
The central idea is to use high-quality, English-language reasoning as a “pivot” to generate verifi-
able reward signals for training a model across multiple target languages. This method circumvents
the need for ground-truth reasoning data in every language, instead leveraging the robust perfor-
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Figure 2: An overview of our Pivot-Based Reinforcement Learning with Verifiable Rewards (PB-
RLSVR) framework. The policy model generates a response in a target language, which is evaluated
against a trusted English-language reference to compute a reward signal for policy optimization.

mance of LLMs in English as a supervisory signal. Our framework’s effectiveness is contingent
on the availability of a powerful expert model capable of generating high-quality English reference
responses. The performance of PB-RLSVR is therefore upper-bounded by the capabilities of this
expert.

3.1 THE PB-RLSVR FRAMEWORK

The PB-RLSVR framework adapts the concept of Reinforcement Learning from Verifiable Rewards
(RLVR) (Lambert et al., 2025) from tasks with binary correctness (e.g., mathematical solutions) to
the nuanced domain of multilingual reasoning. As illustrated in Figure 2, our training loop consists
of the following steps:

1. The policy πθ, represented by the LLM we are training, receives a prompt x in a target
language (e.g., Spanish, Japanese).

2. The policy generates a response ypred, which includes both the reasoning steps (chain-of-
thought) and the final answer in that same target language.

3. A verifier module computes a continuous reward score by comparing the generated re-
sponse ypred against a canonical, high-quality reference response yref in English. This En-
glish reference is sourced either from a powerful expert model or a ground-truth dataset.

4. The computed reward is used to update the policy’s parameters θ using a policy gradient al-
gorithm, encouraging the model to generate responses in any language that are semantically
and logically equivalent to the high-quality English reference.

3.2 A HYBRID SEMANTIC REWARD FUNCTION

A single, monolithic metric is insufficient for evaluating multilingual reasoning, which requires both
semantic coherence in the reasoning process and precision in the final answer. We therefore design
a hybrid reward function that decomposes the evaluation based on these distinct requirements. For
any given response y, we separate it into its reasoning component yr and its final answer component
ya.

Precision for the Answer via COMET. The correctness of the final answer is paramount. To
evaluate this, we need a metric that is sensitive to precise semantic equivalence across languages.
We employ COMET (Rei et al., 2023), a state-of-the-art metric for machine translation evaluation.
COMET is trained on human judgments of translation quality and excels at capturing semantic
fidelity. We treat the English reference answer yaref as the source and the model’s predicted answer
yapred as the translation, yielding a robust reward signal for answer correctness:

RAnswer = COMET(yapred, y
a
ref)

4
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Semantic Coherence for the Reasoning via Embeddings. For the reasoning part, the exact word-
ing is less critical than the logical flow and semantic gist. We leverage a multilingual text embedding
model, E(·), to capture this. However, this approach is susceptible to two primary failure modes:
embedding space gaps, where semantic spaces may not align perfectly for some language pairs, and
translation errors from auxiliary models. To create a more robust reward signal that mitigates these
issues, we compute and combine two distinct similarity scores.

First, we compute the direct multilingual embedding similarity between the predicted reasoning yrpred
and the English reference reasoning yrref:

REmbed = cosine similarity
(
E(yrpred), E(yrref)

)
This score, while direct, can be affected by the aforementioned embedding space gaps.

Second, to counteract this, we compute a translation-enhanced similarity. We first translate the
model’s non-English reasoning yrpred into English to get ytrpred, then compute the cosine similarity
within a monolingual (English) space:

RTrans-Emb = cosine similarity
(
E(ytrpred), E(yrref)

)
While this avoids cross-lingual comparison issues, it introduces a dependency on a translation
model, making it vulnerable to potential translation errors.

The final reasoning reward combines these two signals, creating a more reliable and fault-tolerant
measure of semantic coherence:

RReasoning = REmbed +RTrans-Emb

This hybrid design ensures the system is not overly reliant on a single, potentially flawed signal. For
instance, the inclusion of REmbed makes the reward more robust to occasional translation failures in
the RTrans-Emb pipeline, and vice versa.

Final Reward. Our complete reward function, RPB-RLSVR, integrates the answer and reasoning
components. We also include a binary format reward, Rfmt ∈ {0, 1}, which is 1 if the response ad-
heres to the required structure (e.g., <think>...</think><answer>...</answer>) and
0 otherwise. This ensures that ill-formatted responses receive no reward, enforcing structural disci-
pline. The final reward is computed as:

RPB-RLSVR =
(
RAnswer +RReasoning

)
×Rfmt

3.3 POLICY OPTIMIZATION

With the reward function defined, we optimize the policy πθ using Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024), a stable and efficient on-policy algorithm well-suited for fine-tuning
LLMs. For each prompt, we sample a group of G responses from the current policy. The reward for
each response is calculated using RPB-RLSVR. The advantage for each response yi is then computed
by centering its reward against the mean reward of the group:

Âi = RPB-RLSVR(yi)−
1

G

G∑
j=1

RPB-RLSVR(yj)

This group-mean baseline reduces variance and stabilizes the learning process. The policy parame-
ters θ are then updated using the PPO-clip objective with this advantage estimate, driving the model
to produce higher-reward multilingual responses.

4 EXPERIMENTAL DESIGN

4.1 TRAINING DATASET

Our multilingual training dataset is constructed from NATURALREASONING corpus (Yuan et al.,
2025), which provides a diverse collection of question-answering pairs spanning arithmetic, logic,
and commonsense reasoning. To adapt this for our needs, we partitioned the English corpus into
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8 subsets and translated approximately 100k examples from each subset into a different target lan-
guage using the Tower v+ 9B model (Rei et al., 2025). For translation prompt and performance
details, please refer to the Appendix A.2. We exclusively retained the prompts from this dataset,
and generated responses using the Qwen3-235B-A22B model (Yang et al., 2025). The responses
contain both reasoning and answer parts. The ill-formed responses are removed from the train-
ing set. We selected eight languages for experiments: Spanish, French, Portuguese,
Russian, Polish, Hindi, Chinese, Korean. The languages were selected to ensure
a balanced representation in the main linguistic families and the geographical regions, reflecting the
global linguistic diversity.

4.2 TRAINING SETUP

Policy Models. For our experiments, we utilize two prominent open-source Large Language Mod-
els (LLMs): Llama-3.1-8B-Instruct1 (Grattafiori et al., 2024) and Qwen3-32B2 (Yang
et al., 2025). While primarily trained on English data, both models possess foundational multilin-
gual capabilities derived from their extensive pre-training and subsequent instruction tuning. We
fine-tune these models using Group Reward Policy Optimization (GRPO), guided by the reward
signal described in Section 3.2.

Baselines. We compare our method against two baselines: one trained with Supervised Fine-
Tuning (SFT) and another with Proximal Policy Optimization (PPO) (Schulman et al., 2017b). The
SFT model is fine-tuned using translated English responses using the Tower v+ 9B model (Rei
et al., 2025). The PPO model is trained in a typical RLHF scenario, using only the prompts and a
pre-trained multilingual reward model from NVIDIA3 (Wang et al., 2025). Unlike these standard
approaches that depend on supervised training data (either direct examples for SFT or preference la-
bels for a reward model), our anchor-based reward mechanism is entirely reference-driven, obviating
the need for reward-specific supervision.

Implementation Details. Our reinforcement learning experiments are built on the Open-RLHF
framework (Hu et al., 2024)4, extended with the methodology described in Section 3.2. For
embedding-based similarity, we instantiate E(·) with the Qwen3-Embedding-8B model (Zhang
et al., 2025b)5, though our approach is model-agnostic and compatible with any robust multilingual
embedding model. For translation-enhanced similarity, we employ the Tower v+ 9B model (Rei
et al., 2025) to translate non-English reasoning into English before computing RTrans-Emb, but in
principle any high-quality translation model can be used. All policy models are finetuned follow-
ing the training recipe provided in the Open-RLHF framework6. Additional implementation details,
including hyperparameters, are provided in Appendix B.

Evaluation Benchmarks. To comprehensively assess the multilingual reasoning capabilities of
our models, we perform a rigorous evaluation on a diverse suite of established benchmarks. Our
selection is designed to probe different facets of reasoning across a wide range of typologically
diverse languages. Specifically, we utilize: (1) MGSM: 8-shot, COT (Shi et al., 2022), which eval-
uates math reasoning in grade school in 10 languages. (2) MMLU-ProX: 5-shot (Xuan et al.,
2025), a challenging benchmark that tests broad knowledge and complex reasoning in 29 languages.
(3) INCLUDE: 5-shot (Romanou et al., 2024), a broad-coverage multilingual question-answer
dataset that spans 44 languages. (4) M-LoGiQA: 5-shot (Zhang et al., 2025c), which specifi-
cally targets logical reasoning skills in a multilingual context.

For standardized and reproducible results, all evaluations are performed using the lm-evaluation-
harness framework7 (Gao et al., 2024). Performance is measured using the standard metrics for

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
2https://huggingface.co/Qwen/Qwen3-32B
3https://huggingface.co/nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual
4https://github.com/OpenRLHF/OpenRLHF
5https://huggingface.co/Qwen/Qwen3-Embedding-8B
6https://github.com/OpenRLHF/OpenRLHF/blob/main/examples/scripts/train_

ppo_llama_ray_70b.sh
7https://github.com/EleutherAI/lm-evaluation-harness
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S.No. Model name Avg. Include MLogiQA MGSM MMLU-ProX

Open Source Models
1 Llama-3.1-8B-Instruct 51.2 52.2 41.9 68.9 41.8
2 Qwen3-32B 72.8 73.7 76.3 81.23 59.9

Baselines

3 (1) + SFT 53 53.9 43.4 70.6 44.1
4 (1) + PPO 52 51.5 44.8 71.3 40.4
5 (2) + SFT 76 75.4 78.5 88.7 61.4
6 (2) + PPO 74.9 72.4 78.7 89.7 58.8

Our models

7 (1) + PB-RLSVR 59.6 61.1 52.4 77.1 47.9
8 (2) + PB-RLSVR 80.2 78.1 84.9 90.4 67.3

Table 1: Performance of models on multilingual benchmarks. Our PB-RLSVR method con-
sistently outperforms both SFT and PPO across model sizes, yielding substantial gains for
Llama-3.1-8B-Instruct (+8.4 avg. points over base, +6.6 over SFT) and notable improve-
ments for Qwen3-32B (+7.4 over base, +4.2 over SFT).

each task, typically multiple-choice accuracy or exact match, and follows evaluation guidelines in
Yang et al. (2025) to reproduce the results.

5 RESULTS

5.1 OVERALL PERFORMANCE

We evaluate the performance of our proposed pivot-based approach, PB-RLSVR, on the
Llama-3.1-8B-Instruct and Qwen3-32B models. The results, summarized in Table 1,
demonstrate that our method significantly enhances the model’s multilingual reasoning capabili-
ties. PB-RLSVR consistently outperforms both the base model and standard fine-tuning baselines
across a suite of four challenging benchmarks. We also provide a few examples of model outputs
generated by HARMO vs baseline, showing reasoning ability improvement in Appendix C.

Performance on Llama-3.1-8B-Instruct. When applied to the Llama-3.1-8B-Instruct
model, our PB-RLSVR method achieves an average score of 59.6. This represents a substantial
improvement of 8.4 points over the base model’s score of 51.2. More importantly, it significantly
exceeds the performance of conventional baseline methods. Supervised Fine-Tuning (SFT) im-
proves the average score to 53.0, while Proximal Policy Optimization (PPO) results in a score of
52.0. Our method outperforms the strongest baseline (SFT) by 6.6 average points. This gain is con-
sistent across all individual tasks, with notable improvements on MLogiQA (+9.0 points over SFT)
and MMLU-ProX (+3.8 points over SFT), highlighting our model’s enhanced reasoning ability.

Performance on Qwen3-32B. To validate the scalability and robustness of our approach, we ap-
plied it to the more powerful Qwen3-32B model. The results reinforce our findings. The base
Qwen3-32B model starts with a strong average score of 74.3. Although SFT achieves a modest
gain of 76.0, our PB-RLSVR method significantly improves performance to an impressive 80.2.
This marks a 4.2-point improvement over the SFT baseline and a 7.4-point improvement over the
original model.

The results clearly indicate that the PB-RLSVR framework is a superior alternative to standard SFT
and PPO for improving multilingual reasoning. The consistent and significant performance lifts on
two different model architectures and sizes underscore the general applicability and effectiveness of
leveraging verifiable, cross-lingual reward signals for reinforcement learning. The fact that baseline
PPO shows minimal or even negative impact compared to SFT suggests that a naive RL application
is insufficient, and the carefully designed reward mechanism in PB-RLSVR is crucial for its success.

7
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Reward Avg. Include MLogiQA MGSM MMLU-ProX
on Answer Part on Reasoning Part

COMET COMET 53.1 53.5 42.7 72.5 43.8
COMET Emb. Score 57.7 59.3 50.5 74.3 46.7
COMET Trans-Emb. Score 58.0 60.3 51.9 73.5 46.1
Emb. Score Emb Score 57.4 59.8 51.2 73.2 45.5
Trans-Emb. Score Trans-Emb Score 57.3 60.9 50.1 72.9 45.1

PB-RLSVR 59.6 61.1 52.4 77.1 47.9

Table 2: Our combined PB-RLSVR reward design significantly outperforms individual COMET or
embedding-based rewards, achieving the top score (59.6 avg.) with consistent gains.

5.2 IMPACT OF EACH SEMANTIC REWARD

The results in Table 2 confirm the superiority of our PB-RLSVR reward, which achieves a leading
average score of 59.6. This performance stems from its sophisticated hybrid design. Ablations reveal
that single-metric rewards are suboptimal: a COMET-only approach is overly rigid (53.1 avg.),
whereas embedding-only methods capture semantic meaning but are less precise ( 57.4 avg.). PB-
RLSVR excels by combining the strengths of both, using the COMET score for the answer’s factual
fidelity while leveraging direct and translation-based embedding similarities to robustly assess the
reasoning’s semantic coherence. This multifaceted signal proves more effective than any simpler
combination, leading to consistent gains across all tasks.

5.3 IN-DOMAIN LANGUAGE PERFORMANCE

We analyzed per-language performance to assess how PB-RLSVR mitigates the capability gap be-
tween English and other languages in our training set. As illustrated in Figure 3, our approach fosters
more equitable performance across languages.

(a) MGSM (b) MMLU-ProX

Figure 3: Per-language performance on languages present in the training set. Our PB-RLSVR
method (solid red line) significantly closes the performance gap between English and non-English
languages compared to the baseline models (dashed blue line).

On the MGSM benchmark (Figure 3a), the baseline Llama-3.1-8B-Instruct model’s perfor-
mance drops significantly by nearly 12 points, from 82.3 in English to an average of 70.6 in other
languages. In contrast, our PB-RLSVR-tuned model virtually eliminates this disparity, achieving
83.8 in English and an average of 82.0 elsewhere. The most substantial gains appear in French
(+12.3) and Chinese (+12.2), where the baseline was weakest.

A similar trend is observed on the MMLU-ProX benchmark with the Qwen3-32B model (Fig-
ure 3b). PB-RLSVR reduces the baseline’s performance gap between English (71.8) and Hindi
(61.5) from over 10 points to just 2.4. These findings confirm that our verifiable, cross-lingual

8
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reward signal effectively transfers reasoning abilities from the English pivot to target languages,
creating a more robust multilingual model.

Interestingly, PB-RLSVR also surpasses the baseline in English. This suggests that the process of
aligning reasoning across multiple languages may act as a powerful regularizer, strengthening the
model’s fundamental capabilities.

5.4 OUT-OF-DISTRIBUTION LANGUAGE PERFORMANCE

A critical measure of a multilingual model’s reasoning capability is its ability to generalize to lan-
guages not encountered during the alignment phase. To assess this zero-shot cross-lingual transfer,
we evaluated our models on six languages from the MMLU-ProX benchmark that were explicitly
excluded from our training data: Arabic (ara), Bengali (ben), German (deu), Japanese (jpn), Swahili
(swa), and Thai (tha). The results, presented in Figure 4, demonstrate that our PB-RLSVR frame-
work consistently enhances performance across this diverse set of unseen languages, indicating that
it learns a more fundamental and language-agnostic reasoning process rather than overfitting to the
linguistic patterns of the training data.

(a) Llama-3.1-8B-Instruct
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Arabic Bengali German Japanese Swahili Thai

Qwen3-32B  +PB-RLSVR

(b) Qwen3-32B

Figure 4: Five-shot performance on six out-of-distribution languages from MMLU-ProX. Our PB-
RLSVR method (red) consistently improves reasoning performance over the respective baseline
models (blue) for both the 8B and 32B scales, highlighting strong cross-lingual generalization.

For both the Llama-3.1-8B-Instruct and Qwen3-32B models, PB-RLSVR yields performance gains
across all six languages. This consistent uplift across languages with varying typological features
and data availability underscores the robustness of our reward mechanism. By rewarding a verifiable
reasoning process, PB-RLSVR encourages the model to develop a universal, language-independent
problem-solving strategy. This leads to substantial and reliable performance gains in zero-shot sce-
narios, proving its effectiveness for building truly multilingual and robust reasoning agents.

6 CONCLUSION

We introduce PB-RLSVR, a novel reinforcement learning framework designed to close the reason-
ing performance gap in LLMs between English and other languages. Our approach uses a powerful
English anchor to generate a verifiable, cross-lingual reward signal, providing supervision without
requiring costly human annotation. Experiments confirm that our method substantially enhances
multilingual reasoning across model families and outperforms standard fine-tuning.

Our scalable framework opens several avenues for future work. The pivot-based alignment concept
could be extended to other modalities, such as visual reasoning. Further research should also investi-
gate and mitigate potential biases introduced by the English anchor to ensure global equity. Finally,
a curriculum learning approach could gradually reduce the model’s reliance on the pivot, fostering
self-sufficiency through self-generated rewards. These explorations are a key step toward building
truly global, multi-modal, and unbiased language models.
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A.1 TRANSLATION PROMPT

We utilized the prompt in Listing 1 to programmatically translate our datasets, including both ex-
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1 {
2 "role": "user",
3 "content": "Translate the following English source text to Portuguese

(Portugal):\nEnglish: {TEXT} \nPortuguese (Portugal): "
4 }

Listing 1: The prompt format used for translation task.

A.2 TRANSLATION PERFORMANCE

To assess the reliability of the translations generated by the Tower model, we conducted a small-scale
study using 100 randomly selected QA examples from the dataset. We evaluated translation quality
using the reference-free COMET metric (Rei et al., 2020), and compared Tower’s performance
with translations from GPT-4.1 and GPT-4.1-mini. As shown in Table 3, Tower-Plus-9B produces
competitive translations across all languages, often outperforming GPT-4.1 on lower-resource and
morphologically complex languages.

Table 3: COMET Translation Quality Scores across Languages and Models

Language Tower-Plus-9B GPT-4.1 GPT-4.1-mini

Portuguese 0.7328 0.7523 0.7567
Chinese 0.6997 0.6372 0.7012
Spanish 0.7307 0.6949 0.7207
Russian 0.7412 0.7054 0.7289
French 0.7210 0.6540 0.7103
Hindi 0.5671 0.5071 0.5273
Korean 0.7188 0.7016 0.7129
Polish 0.7160 0.7096 0.7174
Icelandic 0.7207 0.7153 0.7194
Norwegian 0.7437 0.7374 0.7510

Average 0.7092 0.6815 0.7046

B IMPLEMENTATION DETAILS

The hyperparameters for our PB-RLSVR framework are detailed in Table 4. To ensure a fair com-
parison, these settings were consistently applied across all model variants. Our experiments were
conducted on a cluster of four nodes, each equipped with eight H100 GPUs.

Table 4: PB-RLSVR Training Hyperparameters

Hyperparameter Value
Training batch size 256
Rollout batch size 256
Samples per prompt 8
Temperature 1
Max output sequence length 8192
Max epochs 1
Number of episodes 2
Initial KL coefficient 1e−2

Discount factor (γ) 1
GAE parameter (λ) 1
Actor learning rate 5e−7
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C CASE STUDY EXAMPLES

C.1 EXAMPLE 1: MATHEMATICAL REASONING (MGSM)

The example in Figure 6 shows the baseline model failing on a multi-step arithmetic problem in
Spanish, while the PB-RLSVR model correctly follows the reasoning path.

Figure 5: Qualitative comparison on a mathematical reasoning task in Spanish. The baseline model
makes a calculation error, while the PB-RLSVR model correctly follows the logical steps outlined
in the English reference.

C.2 EXAMPLE 2: LOGICAL REASONING (MMLU-PROX)

This example in Japanese shows the baseline model getting confused by distractors, while the PB-
RLSVR model successfully uses the process of elimination, mirroring the logic of the English ref-
erence.
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Figure 6: Qualitative comparison on a logical reasoning task in Japanese. The baseline model makes
a flawed deduction, while the PB-RLSVR model successfully mirrors the process of elimination
from the English reference to arrive at the correct answer.
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