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Abstract

Given that neural networks generalize unreasonably well in the IID setting, Out-
Of-Distribution(OOD) evaluation presents a useful failure case to study their
generalization performance. Recent studies have shown that a carefully trained
ERM gives good performance in Domain Generalization (DG) Gulrajani & Lopez-
Paz (2021), with train samples from all domains randomly shuffled in each batch
of training. Furthermore, Later studies have shown DG specific methods to boost
the test performance of neural networks under distribution shift without training
data being explicitly annotated with domain information. This observation is
counter-intuitive as the studies on the failure cases of OOD has shown that, without
being trained with domain knowledge, neural networks will fit domain specific
features for reducing train loss. We present a new setting beyond the Traditional
DG (TDG) called the Class-wise DG (CWDG), where for each class, we randomly
select one of the domains and keep it aside for testing. Despite being exposed
to all domains during training, our experiments show that the performance of the
neural network drops in this framework compared to TDG. We evaluate popular
DG methods and show that the performance of different methods under TDG and
CWDG setting are not correlated. Finally, we propose a novel method called
Iterative Domain Feature Masking (IDFM) which uses domain annotations in the
train data, achieving state-of-the-art results on the proposed benchmark.

1 Introduction

Many real-world applications require neural networks to be robust to distribution shifts in test data.
These shifts are often unavoidable in the wild, but Neural Networks have shown to substantially drop
performance in these scenarios. Domain Generalization (DG) is a setting designed to evaluate the
robustness of a model for such challenges. DG formulation follows training on data sampled from
the same set of classes from all available domains in the dataset except one domain, which is kept out
for testing. The goal here is to learn a model from the multiple related domains and classify the same
classes in an unseen domain. For instance, the model is trained with sets of photos, paintings, and
cartoons and evaluated on sketches Li et al. (2017).

Traditional DG (TDG) is formulated as an optimization problem where the parameters are tuned
to minimize the expected loss of classification over the set of all possible domains in which the
given classes can be meaningfully represented. This is a more challenging optimization problem
compared to Domain Adaptation and other formulations to evaluate distribution shifts, where there
are some assumptions on the target distribution. Moreover, TDG makes a strong assumption that data
is available in all classes for all the domains. This assumption is reflected in the statistics of datasets
in benchmarks like Domainbed Gulrajani & Lopez-Paz (2021). This assumption is often difficult to
meet in many real-world scenarios.
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Figure 1: The figure is an illustration of the difference in train test split in the Traditional DG (TDG)
setting and the proposed Class-wise DG (CWDG) setting . The color of the MNIST digits depicts the
domain and the dotted squares show the train test splits. (a) shows one of the four splits in TDG, and
(b) shows one train-test split of CWDG out of the possible samplings. The open entry in the train
set of CWDG corresponds to the entry in the test set, and (c) shows the normalized performance of
various methods on the TDG and CWDG evaluations averaged over six popular DG datasets.

In real-world applications, we often cannot have all classes annotated in all the domains. We propose a
framework for evaluating the robustness of models under such skewed domain-class joint distributions.
For each class, we randomly select one of the domains and keep it aside for testing (Figure 1(b)). We
call this setting Class-wise Domain Generalization (CWDG). For each class, the challenge is the
same as traditional DG. Despite being exposed to all domains during training, our experiments show
that the proposed method is more challenging than the TDG evaluation.

Over the years, various inventive methods have been proposed for TDG. Wang et al. Wang et al. (2021)
present a comprehensive review of over 150 methods that improve TDG perfromance on multiple
benchmarks. Recently, Gulrajani and Lopez-Paz Gulrajani & Lopez-Paz (2021) have shown that an
Empirical Risk Minimization (ERM) baseline gives a competent performance on TDG benchmarks,
and none of the tailored methods evaluated give any clear and consistent advantage over the baseline.

The evaluation on CWDG shows that many of the newer methods improve performance in TDG
but fail to give a similar improvement in CWDG (Figure 1(c)). Earlier methods like Gradient
Reversal Ganin & Lempitsky (2015) work better than most of the new state-of-the-art methods on
TDG. The presence of multiple domains incentivizes learning domain agnostic features and is the
primary reason for generalization in TDG setting Gulrajani & Lopez-Paz (2021). On the contrary, in
the proposed setting, the network has an incentive to learn domain-specific features due to the skewed
class-domain distribution. Our study demonstrates how some of the prior art despite improving TDG
fails to get competitive performance in CWDG. We propose a method called Iterate Domain Feature
Masking (IDFM) and show that it achieves state-of-the-art results in the CWDG framework while
retaining the performance of ERM in TDG. Overall, our work makes the following contributions:

• We propose a new evaluation benchmark (CWDG), which is relevant to many real-world
applications. It amplifies the skewness in the distribution of classes across domains.

• We formulate the CWDG counterparts for popular DG benchmark datasets and evaluate the
different DG methods on them.

• We propose a method that improves neural network performance in the proposed CWDG
setting while retaining ERM performance in traditional DG.

2 Related Work

We give a more comprehensive review of the evaluation methods for Independent and Identically
Distributed (IID) and Out-Of-Distribution (OOD) test data performance in Appendix A. In this
section, we briefly discuss the latest related work.

TDG formulation aims at evaluating a model’s ability to learn discriminative features from multiple
domains and testing on an unseen domain. TDG on image classification is commonly evaluated on six
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datasets: Li et al. (2017); Fang et al. (2013); Venkateswara et al. (2017); Arjovsky et al. (2019); Peng
et al. (2019); Ghifary et al. (2015). The details of these datasets are given in Table 1 in Appendix B.

Learning domain agnostic features using the TDG formulation has seen significant interest in
recent years. The problem has been approached from many different directions, and the prominent
ones are data augmentation Borlino et al. (2021); Zhou et al. (2021b); Xu et al. (2020), gradient
manipulation Ganin & Lempitsky (2015); Huang et al. (2020), ensemble learning Mancini et al.
(2018), and feature disentanglement Khosla et al. (2012); Piratla et al. (2020). For a comprehensive
list, readers can refer to the recent surveys Wang et al. (2021); Zhou et al. (2021a). It is worth noting
that several of these ideas Ganin & Lempitsky (2015) have found widespread success beyond the
TDG setting.

Gulrajani and Lopez-paz Gulrajani & Lopez-Paz (2021) suggest that inconsistencies in experimental
conditions (datasets and training protocols) render fair comparisons difficult. They propose Do-
mainBed, a unifying benchmark for TDG, and empirically show that a carefully implemented ERM
outperforms all prior art in terms of average performance. However, Nagarajan et al. (2020) show the
failure modes of ERM for DG. They show the cases where the model will fail to generalize, unless
trained to incorporate the domain information of the samples. Further explorations on DomainBed
(MIRO Cha et al. (2022)) benchmark still shuffles train data from all domains and trains without
domain information. This motivates to go beyond the TDG setting to better understand the failure
modes of NN under distribution shift.

Consequently, we propose CWDG, a more challenging formulation, which leaves room for shortcut
learning Geirhos et al. (2020). Our work interestingly contrasts with Maniyar et al. (2020) which
proposes further constraints on TDG by introducing unseen classes in the test domain. We instead
relax the assumptions and expose all domains during training.

3 Method

In this section, we explain the formulation of the proposed CWDG setting. Furthermore, we describe
the proposed method IDFM which helps prevent neural networks from learning domain specific
features.

3.1 Proposed Evaluation strategy: CWDG

In the CWDG framework, samples from one domain is kept out of the training set for each of the
classes. The model is evaluated on the set of kept out samples. Figure 1(b) is an illustration of the
setting where the colors depict the domains and the digits corresponds to the classes. It is to be noted
that, this setting does not evaluate the domain generalization capability of the network on the entire
dataset, but for each class. That is, the network performance is evaluated on an unseen domain for
each class.

Consider the setting shown in Figure 2. Figure 2(a), depicts TDG setting on two domains and four
classes. Here the domain shift is uniform across all the classes. Neural networks would gives a
performance slightly better than random, depending on the proximity of the domains. In other words
the performance improves as the distribution shift reduces.

On the other hand, Figure 1(b) shows a scenario, where samples of a class from the earlier train data
is replaced with samples from same class in the test data. Samples of class 2 in domain red from
train data is replaced by the samples of class 2 in domain yellow (yellow is the test domain). Despite
the distribution shift between train and test data reducing in this setting, it is quite intuitive that all
samples in the test set are predicted as the class replaced class (class 2). Here the model can reduce
train loss by fitting domain-specific features as there is some information gained about the class from
domain features. CWDG is an extension of this framework which creates an incentive for the network
to fit domain-specific features.

Figure 1(c) depicts a CWDG setting of this illustrative example. Once again, it is trivial that all
test images from domain yellow is predicted as class 2 and all images from domain red is predicted
as classes other than 2. Therefore, the test accuracy of a neural network trained in such setting
reduces to zero! Despite being exposed to all domains during training, this illustration show why
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Figure 2: The figure illustrates why CWDG is a more challenging setting than TDG. Here the color
depicts the domain and digits show the classes. (a) This is an illustrative example of TDG setting,
where domain shift happens uniformly on all classes. (b) Depicts the scenario where, samples from
one of the classes (digit 2) in the train data is replaced by samples from a different domain (yellow).
(c) Is a possible CWDG seed. That is, in each class one of the domain is kept out from train data
towards test set.

the performance of neural network drop. This shows that the challenge of distribution shift can go
beyond TDG.

CWDG is a setting where a model has to explicitly learn domain agnostic features, despite the train
loss incentivising the same in case of an ERM. It is a more challenging setting for a neural network.
This claim is further validated by our experiments. Also, given such shifts can happen in real-world
(domain-class distribution sparsity), CWDG becomes an important evaluation setting for neural
networks.

3.2 Proposed Method: IDFM

We propose a method to iteratively mask the features which contribute significantly to domain
classification. We augment the network with an additional branch to predict the domain. The two
branches are trained in parallel, one predicting the domain and another predicting the class for a
given sample. In the two-branch network, the shared feature at the branched layer (the last layer)
h is given by h = f(θ, x) where x is the input image and θ are the parameters of the network in
all but the last layer. The class predictions and domain predictions are given by yclass = f1(θ1, h)
and ydomain = f2(θ2, h). θ1 and θ2 are the parameters of the class and domain prediction heads,
respectively.

We compute the gradient of the predicted domain with respect to h, as grad = ∂(f2(h; θ2) ·
ŷdomain)/∂h, given the ground truth domain label ŷdomain. Iterative Domain Feature Masking
(IDFM) computes a threshold qth such that the value of the top q percentile of elements in |grad| is
above qth. q is a hyper-parameter which we choose as 33% throughout our experiments. A mask M
is computed corresponding to the ith element in h such that,

M =

{
0 if grad[i] ≥ qth
1 otherwise

(1)

Now we compute the masked feature h′ as: h′ = h · M . After masking the dominant features
corresponding to domain information, the new class prediction is yclass = f1(θ1, h

′). This is done
iteratively in every step so that the class prediction is not reliant on domain-specific features.

The proposed IDFM method is inspired by the two previous methods, namely, Gradient reversal Ganin
& Lempitsky (2015) and Representative Self Challenging (RSC) Huang et al. (2020). RSC is a single
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Algorithms PACS VLCS Office-home Domain-Net CMNIST RMNIST Average

IRM Arjovsky et al. (2019) 64.8 63.1 55.77 28.8 61.58 71.2 57.53
RSC Huang et al. (2020) 79.3 64.5 65.2 25.3 50.5 98.7 63.91
MMD Li et al. (2018b) 73.8 60.2 65.46 25.8 73.05 98.5 66.13

DANN Ganin et al. (2016) 74.4 64.2 62.95 24.6 72.05 98.8 66.16
MLDG Li et al. (2018a) 73 62.97 65.87 25.73 71.93 98.5 66.3

CORAL Sun & Saenko (2016) 77.06 60.2 65.46 25.8 73.5 98.5 66.75
C-DANN Li et al. (2018c) 77.7 63.77 64.58 24.04 72.5 98.9 66.91

ERM-Inc-Resnet 79.6 60.86 66.1 25.8 71.15 99.8 67.21
Mixup Xu et al. (2020) 77.6 64.2 66.02 25.1 73.05 98.3 67.35

DRO Sagawa et al. (2019) 79.38 64.77 66.1 25.15 73.05 98.5 67.82
MIRO Cha et al. (2022) 84.66 63.72 63.3 24.12 72.12 99.5 67.9

GRL Ganin & Lempitsky (2015) 86.2 65.2 66.9 26.1 74.15 99.3 69.64

IDFM (ours) 88.84 67.87 66.9 26.9 75.32 99.7 70.92

Table 1: Comparing the performance of different algorithms in DomainBedin CWDG setting. All
methods are trained using the same backbone (Inception-Resnet Szegedy et al. (2017)). Algorithms
are sorted by their average performance across the six datasets.

branch network that iteratively masks the features with the highest contribution towards the class
prediction. The assumption here is that the dominant features activated on training data are domain-
specific. We explicitly compute the features that contribute the most to domain prediction and mask
them, freeing the method of the aforementioned assumption.

4 Experiments and Results

We compare the performance of eleven DG algorithms on six different datasets against the proposed
IDFM method in the CWDG benchmark. This includes our implementations of ERM with Inception-
ResNet Szegedy et al. (2017) backbone. We present our results on one randomly selected split of
CWDG (randomly selecting a test domain for each class). The performance of ERM on a few
other splits is presented in Appendix C. We use the same augmentations and hyper-parameters as in
DomainBed.

Table 1 illustrates the obtained results. TDG results from the prior art are in Appendix B. A one-to-one
comparison between the results in TDG and CWDG settings is not entirely meaningful. However, it is
worth noting that despite seeing all domains during training, the obtained accuracies are lower than
their TDG counterpart. The comparison suggests that classwise priors pose a significant challenge
in OOD generalization.

Figure 1(c) shows the normalized performances of different methods on TDG and CWDG. We
observe that the idea of gradient reversal (GRL) holds merit in CWDG formulation, giving notable
improvements over the existing DG methods. It is worth noting that GRL deteriorated performance
in TDG, further motivating the need to evaluate DG from varied perspectives. IDFM achieves
state-of-the-art results, demonstrating the efficacy of the proposed approach. The results also indicate
that explicit feature masking seems to improve over gradient-based feature manipulation in the
studied setting, and the idea may be worth exploring in alternate settings like domain adaptation.

5 Conclusion

Performance drop of neural networks under distribution shift presents an interesting failure case. We
present a new evaluation strategy beyond the Traditional Domain Generalization (TDG) called Class-
wise Domain Generalization (CWDG) benchmark. In this setting, for each class, we randomly select
one of the domains and keep it aside for testing. Despite being exposed to all domains during training,
our experiments show that the performance of neural networks drops in this framework. Finally,
we propose a novel method called the Iterative Domain Feature Masking, achieving state-of-the-art
results on the proposed benchmark.
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A Related Work

We discuss the prior art in two components. We first address the common notion of generalization in
IID data. Subsequently, we discuss the previous works on TDG and motivate the need for the new
CWDG setting.

Generalization in IID setting: Sufficiently parameterized networks can completely fit any training
data Zhang et al. (2016). Hence, an essential way to evaluate a neural network is to train on a
randomly selected portion of the data and test on the unseen part. Popular methods like dropout Sri-
vastava et al. (2014), weight decay, early stopping, and regularization techniques Wan et al. (2013);
Gastaldi (2017) have shown to improve this notion of generalization. It is well known that spa-
tial transforms in image data help improve generalization. Constraining networks Bach (2017);
Sivaprasad et al. (2021) have also shown to improve generalization in IID setting. The optimizer also
plays a role in generalization; specifically, stochastic gradient descent is shown to achieve better
generalization than adaptive algorithms Wilson et al. (2017).

Recently Taori et al. (2020) suggest considering generalization beyond IID setting with perturbations.
They report a thorough study with 204 ImageNet models, showing that robustness from synthetic
image perturbations like noise, simulated weather artifacts, adversarial examples, etc., does not
improve the performance on distribution shift arising in real-world data. Moreover, Recht et al.
(2018, 2019) expose the problems in using a specific part of IID distribution as test data. They show
a drop in performance when tested on new test data collected from the same distribution, motivating
the evaluation beyond the IID setting.

Domain generalization: Our work focuses on the DG in deep neural networks, and for pre-deep
learning efforts, we refer the reader to the review by Moreno-Torres et al. (2012). Furthermore, we
limit our discussion to DG in image classification. TDG formulation involves learning from multiple
domains and testing on an unseen domain. TDG on image classification is commonly evaluated on
six datasets: Li et al. (2017); Fang et al. (2013); Venkateswara et al. (2017); Arjovsky et al. (2019);
Peng et al. (2019); Ghifary et al. (2015). The details of these datasets are illustrated in Table 2. We
perform experiments on all these datasets.

Learning domain agnostic features using the TDG formulation has seen significant interest in recent
years. The problem has been approached from many different directions like data augmentation Bor-
lino et al. (2021); Zhou et al. (2021b); Xu et al. (2020), gradient manipulation Ganin & Lempitsky
(2015); Huang et al. (2020), ensemble learning Mancini et al. (2018), and feature disentangle-
ment Khosla et al. (2012); Piratla et al. (2020). For a comprehensive list, readers can refer to
the recent surveys Wang et al. (2021); Zhou et al. (2021a). It is worth noting that several of these
ideas Ganin & Lempitsky (2015) have found widespread success beyond the TDG setting.

Gulrajani and Lopez-paz Gulrajani & Lopez-Paz (2021) suggest that inconsistencies in experimental
conditions (datasets and training protocols) render fair comparisons difficult. They propose Do-
mainBed, a unifying benchmark for TDG. They empirically show that a carefully implemented ERM
outperforms the state-of-the-art in terms of average performance. It is reasonable to wonder why
none of the numerous inventive ideas for TDG improves over the baseline ERM. In this work, we
claim that TDG is not an appropriate formulation to measure the efficacy of a model to learn domain
agnostic features, at least in the current form. We argue that in TDG formulation, learning domain
agnostic features is most convenient for the network, not a challenge.

Consequently, we propose CWDG, a more challenging DG formulation, which leaves room for
shortcut learning Geirhos et al. (2020). Our work interestingly contrasts with Maniyar et al. (2020)
which proposes further constraints on TDG by introducing unseen classes in the test domain. We
instead relax the assumptions and expose all domains during training.

B TDG Performance

In this section, we show that methods that help IID generalization are also key while training an
ERM in TDG. We demonstrate that exploiting these IID tricks gives a competitive performance on
a vanilla ERM. Following prior art in TDG, we keep aside one domain for testing in each fold
and train on the other three. We use an oracle for model selection. To measure the effect of each
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Dataset # D Domains # C # Images
RMNIST Ghifary et al. (2015) 6 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ 10 70000
CMNIST Arjovsky et al. (2019) 2 Red, Green 2 120000
DomainNet Peng et al. (2019) 6 Clipart, Infograph, Painting, Quickdraw, Real, Sketch 345 586575
PACS Li et al. (2017) 4 Photo, Art-Painting, Cartoon, Sketch 7 9991
VLCS Fang et al. (2013) 4 Caltech101, LabelMe, SUN09, VOC2007 5 10729
Office-Home Venkateswara et al. (2017) 4 Art, Clipart, Product, Photo 65 15558

Table 2: The table presents the statistics of datasets we use for evaluation.

Adam with augmentation SGD without augmentation SGD with augmentation
Backbones Photo Sketch Art Cartoon Photo Sketch Art Cartoon Photo Sketch Art Cartoon

Alexnet 78.05 58.72 60.56 64.13 88.26 60.42 65.645 70.065 87.69 69.17 66.91 69.28
Vgg-19_BN 80.63 69.62 69.08 70.5 88.41 77.63 76.31 70.47 84.27 82.12 70.65 79.6
Resnet-18 83.21 67.83 69.47 76.07 87.96 74.38 75.7 77.38 87.34 80.29 73.64 76.91
Resnet-50 83.08 70.85 65.31 76.97 88.53 78.21 72.99 79.28 87.57 81.02 74.91 77.72

DenseNet-121 86.21 68.72 71.64 74.81 87.5 79.1 73.4 76.44 88.9 80.42 74.31 78.15
Inc-Resnet 89.27 71.28 73.4 76.81 96.12 81.36 84.96 83.69 95.06 87.35 88.8 84.8

Table 3: The table shows DG results on PACS and the effect of various modeling choices. The
compiled results compare accuracies across the two optimizing algorithms, the different backbone
models, and with and without augmentation.

intervention in the ablation, we keep all the other modeling choices the same and run the experiment
five times and report the mean value. Unless specifically mentioned otherwise, the training protocol
and hyper-parameters are the same as in DomainBed Gulrajani & Lopez-Paz (2021). The data
augmentation is also the same as in DomainBed.

The ablation experiments are limited to PACS Li et al. (2017) dataset. We train the ERM with six
different backbones: AlexNet Krizhevsky et al. (2012), VGG-19 Simonyan & Zisserman (2014),
ResNet-18 He et al. (2016a), ResNet-50 He et al. (2016b), DenseNet-121 Huang et al. (2017) and
Inception-Resnet Szegedy et al. (2017). We run all four folds of PACS on these backbones with SGD
and ADAM optimizer. As the next intervention, we run all the aforementioned backbones with and
without augmentations with an SGD optimizer.

We compare the optimized ERM baseline against the top-performing methods on DomainBed, on six
different datasets (Table 2). Outside of DomainBed, we also use the multi-branch reverse-gradient
(GRL) Ganin & Lempitsky (2015) model on the Inception-ResNet backbone.

B.1 Exploring effects of different modeling choices

Effect of optimizer: Table 3 compiles the accuracy of different backbones under SGD and ADAM
over all domains in PACS. SGD outperforms ADAM across all the backbones. Also, the performance
of ADAM is highly susceptible to the learning rate. For instance, averaged over the four domains,
SGD gives 89.00% accuracy compared to 77.69% accuracy given by ADAM, using the Inception-
Resnet backbone. With a higher learning rate (same as SGD), ADAM gives only 48.44%. The results
show that SGD has a clear advantage over ADAM in the studied scenario. The observation may
stem from the fact that fine-tuning a large ImageNet model on a relatively small dataset like PACS is
an ‘overparameterized problem’. Wilson et al. (2017) suggests that for simple overparameterized
problems, adaptive methods can find drastically different solutions than SGD.

Effect of augmentation: Table 3 compares the accuracy of different backbones trained using
SGD, with and without augmentation. We observe that augmentations almost always improve the
performance of networks. For instance, with the Inception-Resnet model, the average performance of
the model across all four domains with augmentation is 89.00%, which is higher than the average
accuracy without augmentation 86.53%.

Effect of choice of backbone: Table 3 shows the significance of backbone in DG. Across all
domains and irrespective of augmentation and other choices, the Inception-Resnet backbone outper-
forms all other backbones. Zhou et al. (2021a) questions the common perception that models that
perform on ImageNet will learn domain-generalizable features and hence argues for DG tailored
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Algorithms PACS VLCS Office-home Domain-Net CMNIST RMNIST Average
IRM Arjovsky et al. (2019) 82.9 77.2 66.7 32.6 59.16 97.7 69.37

GRL Ganin & Lempitsky (2015) 83.69 77.38 70.2 37.4 50.5 98.49 69.61
MMD Li et al. (2018b) 82.8 76.7 67.1 28.4 73.35 98.1 71.07

DANN Ganin et al. (2016) 84 77.7 65.5 38.1 73.03 89.1 71.23
C-DANN Li et al. (2018c) 81.7 74 64.7 37.9 73.03 96.3 71.27
DRO Sagawa et al. (2019) 83.1 77.5 67.1 33.4 73.35 97.9 72.05
RSC Huang et al. (2020) 84.77 78.8 70.8 39.2 61.2 98.23 72.16
MLDG Li et al. (2018a) 82.4 77.1 67.6 41.6 71.64 98 73.05
Mixup Xu et al. (2020) 83.7 78.6 68.2 38.7 73.34 98.1 73.44

CORAL Sun & Saenko (2016) 83.6 77 68.6 40.2 73.35 98.1 73.47
ERM-Inc-Resnet 89.11 78.84 71.95 43.2 74.35 99.2 76.10

Table 4: Comparing ERM-Inc-Resnet with other algorithms in DomainBed. The algorithms are
sorted by their average performance across the six datasets.

Classes Domain Domain Domain Domain Domain
Guitar Photo Art Cartoon Sketch Art
Person Photo Cartoon Art Photo Cartoon
Horse Cartoon Sketch Cartoon Art Photo

Elephant Sketch Photo Art Sketch Art
Dog Photo Art Sketch Cartoon Cartoon

Giraffe Art Photo Cartoon Art Photo
House Cartoon Cartoon Photo Sketch Sketch

Accuracy 79.6 79.38 78.81 79.12 79.18

Table 5: Performance of NN on different train test splits in CWDG setting. The last row of each
column shows the results of one run, and each row of the column corresponds to the domain kept out
for the corresponding class.

methods. In contrast, we observe that the better performing backbone for DG is the better performing
model on the ImageNet IID benchmark and not necessarily the backbone with more parameters.

B.2 Comparing with baselines in TDG

In Table 4, we compare the ERM baseline against other algorithms in DomainBed Gulrajani &
Lopez-Paz (2021). The proposed ERM baseline with Inception-Resnet backbone (ERM-Inc-Resnet)
not only outperforms other methods on average but also outperforms the best performing model in
every dataset. On the PACS dataset, we get a margin of above 5% from the next best performing
model. This comparison shows that neural networks trained with a robust backbone, augmentation,
and optimizer under TDG setting do not need any additional method to learn domain agnostic
features. We find that all the studied methods fail to give any improvements over the ERM baseline.
In fact, some of the methods simply inhibit learning, reducing test performance. This motivates us to
think if, by solving deficits of neural networks in TDG setting, are we attempting to fix a system that
is not broken?

C Different seeds for CWDG

In this section, we present our results for the different train test splits in CWDG setting of the PACS
dataset. We observe comparable performance across the different seeds of CWDG (Table 5). Each
column in the table correspond to one run, and the last row in each column shows the accuracy of
ERM Inc-ResNet on that run. That is, each row corresponds to a class, and each element shows the
domain kept out for the particular class. The first column shows the split used in the main text. The
accuracies show that as long as the domains are evenly spread such that there is a clear prior in the
train split, the performance of the neural network stays significantly below the TDG setting.
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