SEQUENCE OF EXPERT: BOOSTING IMITATION PLANNERS FOR AUTONOMOUS DRIVING THROUGH TEMPORAL ALTERNATION

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

034

037 038

039 040

041

042

043

044

046

047

048

051

052

ABSTRACT

Imitation learning (IL) has emerged as a central paradigm in autonomous driving. While IL excels in matching expert behavior in open-loop settings by minimizing per-step prediction errors, its performance degrades unexpectedly in closed-loop due to the gradual accumulation of small, often imperceptible errors over time. Over successive planning cycles, these errors compound, potentially resulting in severe failures. Current research efforts predominantly rely on increasingly sophisticated network architectures or high-fidelity training datasets to enhance the robustness of IL planners against error accumulation, focusing on the state-level robustness at a single time point. However, autonomous driving is inherently a continuous-time process, and leveraging the temporal scale to enhance robustness may provide a new perspective for addressing this issue. To this end, we propose a method termed Sequence of Experts (SoE)—a temporal alternation policy that enhances closed-loop performance without increasing model size or data requirements. The key idea is to retain intermediate models from training that possess inherent differences in driving errors, and then alternate the activation of different models at certain temporal intervals. This approach not only preserves the consistency capability across multiple models but also leverages their differences to enhance robustness. As a plug-and-play solution for existing IL planners, our approach requires no architectural modifications or prior knowledge of scenarios, making it highly practical for real-world deployment. Our experiments on large-scale autonomous driving benchmarks nuPlan demonstrate that SoE method consistently and significantly improves the performance of all the evaluated models, and achieves state-of-the-art performance. This module may provide a key and widely applicable support for improving the training efficiency of autonomous driving models.¹

1 Introduction

In the field of autonomous driving, imitation learning has emerged as one of the most important technical paradigms and the mainstream industrial solution (Chen et al., 2024), owing to its advantages of large-scale data availability, low annotation requirements, superior generalization, and driving smoothness compared to rule-based approaches. Representative efforts include Tesla's Full Self-Driving (FSD) system (Tesla, 2025) and academic works such as UniAD (Hu et al., 2023b).

However, a critical challenge arises when these IL-based planners are deployed in closed-loop environments: the problem of accumulated errors, which undermines their reliability and safety in real-world operations. In closed-loop deployment, the planner's output at each time step directly influences the vehicle's subsequent state, creating a state-action chain where the next observation depends on the previous action. As the planner's actions deviate from expert behavior, the subsequent observations drift from the training distribution, leading the model to make increasingly suboptimal decisions. The root causes of this problem are multifaceted, including distribution shift, causal confusion, etc., as concluded in (Le Mero et al., 2022; Zare et al., 2024)

¹Project Code: HidedforDouble-blindSubmission.

Addressing accumulated errors is paramount for advancing IL-based planners toward practical deployment. Researchers have proposed various approaches to enhance the robustness of IL planners against accumulated errors. One potential solution is to continuously scale up model size or design more sophisticated architectures, allowing the model to capture the causality of the driving maneuver better and to avoid mode collapse. Representative works include (Cheng et al., 2024b; Zheng et al., 2025). Another solution is to improve the quality of training data, such as adding noise to training data, synthesizing failure data, and enhancing data fidelity (Bansal et al., 2018; Xu et al., 2025; Guan et al., 2024). Both approaches can effectively improve algorithmic performance, but they inevitably increase training costs and data requirements.

In this work, we instead explore whether it is possible to enhance performance without increasing training costs or data demands, by leveraging the intrinsic differences among models in error accumulation from a temporal perspective. In other words, rather than relying solely on improving the performance of a single model, we aim to improve overall autonomous driving performance through model combination, so-called Sequence of Expert.

Our method takes advantage of the inherent differences in how models accumulate and eliminate errors, treating each model as an "expert" for specific cases. Concretely, for a given model architecture and dataset, although the final training loss values across different runs may not differ significantly, we find that the representational limits of neural networks often lead each model to perform relatively better in certain scenarios in closed-loop driving. By combining them, we can exploit the complementary strengths of multiple models to cover a broader range of driving cases. However, this approach poses a major challenge: identifying which model excels in which scenario is itself difficult. To address this, we exploit two intrinsic properties of autonomous driving: the temporal continuity of driving and the behavior-following tendency of driving models. We design a temporal combination strategy that integrates models over time, enabling more efficient performance gains without requiring prior knowledge. This work shows the details of this design in Section 4. Extensive experiments on the closed-loop nuPlan autonomous driving benchmark demonstrate that our approach achieves state-of-the-art performance, and we further validate the effectiveness of this framework when applied to other model architectures. The main contributions of this work are:

- This work proposes Sequence of Expert, a simple plug-and-play solution for IL-based planners.
 It significantly improves their closed-loop driving performance without additional computational
 overhead.
- Through extensive evaluation, we show that SoE brings consistent performance boost to nearly all IL planners. We achieve state-of-the-art performance on the nuPlan dataset using only SoE with a baseline planner.
- We provide the optimal hyperparameter setting of SoE and a primary conjecture on why SoE works through investigative experiments.

2 Related works

Imitation Learning-based Planners Imitation learning-based planners leverage large-scale expert driving data to mimic human driving behaviors, while they suffer from error accumulation in realworld deployment. Recent planners incorporate techniques from the aspects of model design, data quality, or post-processing to enhance robustness in closed-loop driving. Early IL models adopt the end-to-end architecture with a single neural network (Bansal et al., 2018; Bojarski et al., 2016) while mid-to-mid (Cheng et al., 2024b) and modularized end-to-end models (Hu et al., 2023b) prevail in recent works. The corresponding scenario representation also evolves from multi-channel images encoded by convolutional neural networks (Codevilla et al., 2019) to heterogeneous information like multi-sensors (Chitta et al., 2022; Jia et al., 2023), vector (Gao et al., 2020), and graph (Wu et al., 2024), merged by the attention algorithm. Early works directly regress the action or path (Bansal et al., 2018; Codevilla et al., 2019) while recent works leverage Gaussian mixture model (Salzmann et al., 2020), anchor-based attention decoder (Shi et al., 2024), mixture of expert (Sun et al., 2024), or diffusion models (Liao et al., 2025) to learn the complex multi-modal driving behaviors. To improve the quality of training data, a typical approach is synthesizing perturbed (Cheng et al., 2024b) or failed driving data (Bansal et al., 2018) not presented in the expert training set so that IL planners can learn how to recover from those states. Researchers on world models (Guan et al., 2024) are trying to generate real-level driving scenarios or rare happened corner cases and using them to train

IL planners. Fallback strategies are proposed and used in the downstream of IL planners, serving as an extra dimension to address the accumulated errors that IL planners fail to handle. These strategies are usually handcrafted rules, using convex optimization (Hu et al., 2023b;a) or scoring (Cheng et al., 2024a) to ensure smooth and safe trajectories. Rather than relying solely on improving the performance of a single model, this work aims to enhance IL planners from a new perspective. We design a temporal combination strategy that integrates models over time, enabling more efficient performance gains without modification to the model and data.

Ensemble model Ensemble method leverages multiple learning algorithms to obtain at least two high-bias and high-variance models to be combined into a better-performing model (Rokach, 2010). It's usually used in classification (Iqball & Wani, 2023; Pham et al., 2021) and regression (Qiu et al., 2014; Van Hasselt et al., 2016) tasks, where the results from base learners are aggregated by weighted averaging, selection algorithm, or voting. In the field of autonomous driving, researchers in (Wu et al., 2022) propose a model that has two branches for trajectory planning and direct control, which are then fused with prior knowledge of driving scenarios. Although the SoE is similar to the ensemble method in that both use multiple models, they have several distinct features. Ensemble methods run all sub-models per inference step, while SoE only runs a single model, which doesn't bring any computational overhead. In contrast to classification and regression, there is no straightforward motivation or method for aggregating paths from different models in the planning task. Based on the temporal continuity of driving, SoE realizes the aggregation of the driving skills of models in the temporal dimension.

Mixture of Expert Mixture of Expert (MoE) is a widely adopted paradigm in machine learning (Fedus et al., 2022; Dai et al., 2024; Sun et al., 2024) that leverages multiple specialized submodels (experts) alongside a gating mechanism to dynamically route inputs to the most relevant components. Originally proposed in (Jacobs et al., 1991), MoE architectures improve model capacity and computational efficiency by enabling conditional computation. SoE is also similar to MoE from the perspective that it uses multiple specialized experts to improve model performance. In Appendix A, we show supporting materials that the models in SoE specialize in different driving scenarios. Both methods also have distinct features. Sub-models are nested within the main model and trained together in MoE, while models in SoE are independent and trained separately. The "experts" in MoE work in parallel, scheduled by the router, while those in SoE are sequential and scheduled by rule.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

We formulate autonomous driving as a Markov Decision Process (MDP) $\mathcal{M}=(\mathcal{S},\mathcal{A},P,r)$, where \mathcal{S} denotes the state space (e.g., ego-vehicle and surrounding agents), \mathcal{A} the action space (e.g., planned trajectory or control commands), $P:\mathcal{S}\times\mathcal{A}\to\Delta(\mathcal{S})$ the transition dynamics, and $r:\mathcal{S}\times\mathcal{A}\to\mathbb{R}$ a reward function measuring safety, progress, and comfort.

In imitation learning (IL), the reward function is not directly accessible. Instead, a policy $\pi(a \mid s)$ is trained to mimic expert demonstrations $\mathcal{D} = \{(s_i, a_i)\}$ by minimizing the supervised imitation loss:

$$\min_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} [\ell(\pi(a \mid s), a)]. \tag{1}$$

While this ensures good open-loop (OL) accuracy, the deployment objective is the closed-loop (CL) return:

$$J(\pi) = \mathbb{E}_{\tau \sim \pi, P} \left[\sum_{t=0}^{T} r(s_t, a_t) \right], \tag{2}$$

where the trajectory $\tau = (s_0, a_0, \dots, s_T, a_T)$ is generated by interaction with the environment.

3.2 LIMITATIONS OF IL PLANNERS

A critical limitation of imitation learning (IL)-based planners is the phenomenon of *error accumulation*. In closed-loop (CL) deployment, each predicted action directly influences the next state. Even small deviations from expert trajectories can gradually shift the vehicle into states unseen during

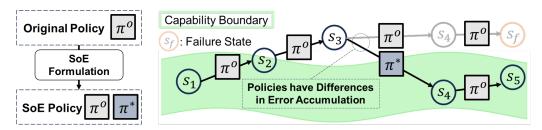


Figure 1: SoE Framework creates a SoE policy from any IL planners. The original policy π^o may drive the next state out of its capability boundary, leading the state trajectory to a failure state. We find that the component policies have natural differences in error accumulation. The insight is to use another policy π^* to help it back to its capability coverage in the state space.

training, causing the policy to operate outside its capability boundary. As a result, errors compound over time and eventually lead to cascading failures such as collisions or off-road maneuvers (Le Mero et al., 2022; Dauner et al., 2023). This explains why minimizing open-loop (OL) imitation loss does not necessarily translate to robust CL driving performance.

Motivated by this gap, we conducted an empirical study across multiple IL planners and training runs. Our analysis revealed several consistent phenomena that highlight structural weaknesses of current approaches and provide new opportunities for improvement. Supporting evidence for these findings is given in Appendix A, and they are summarized as follows:

- OL-CL mismatch. The planners achieving the best OL imitation accuracy are often not those that deliver the best CL performance, a discrepancy also reported in (Dauner et al., 2023). While OL metrics improve steadily with training, CL metrics fluctuate significantly.
- Early-stage CL superiority. The highest CL scores often arise from earlier training epochs rather than from the final converged models. This effect is more pronounced when the deployment distribution diverges strongly from the training distribution.
- Inter-run complementarity. Models trained with identical architectures and data but different random seeds achieve nearly indistinguishable OL losses, yet their CL performance differs substantially. We observed that these models exhibit complementary strengths in handling diverse failure cases. This suggests that training variance is not noise but an exploitable source of diversity.

Together, these observations reveal that IL planners are inherently limited when relying on a single model. They directly motivate our proposed *Sequence of Experts (SoE)* framework, which leverages inter-model complementarity to alleviate error accumulation in a plug-and-play manner.

4 METHODOLOGY

4.1 Overview

The closed-loop deployment of imitation learning (IL) planners inevitably faces the problem of *error accumulation*: small inaccuracies at early steps compound over time, eventually driving the system into states beyond a single model's capability. Our key insight is that such failures need not be handled by the same policy throughout execution. Instead, another expert policy π^* can temporarily take over when the original policy π^o drifts toward failure states, as illustrated in Fig. 1.

This perspective raises two essential questions: (i) when should an expert engage, and (ii) which expert should be selected. The former concerns identifying moments where π^o is prone to failure, while the latter requires an expert π^* that is both similar enough to π^o to avoid introducing new weaknesses yet complementary enough to cover the gaps in π^o 's capability. Our framework addresses these challenges by systematically designing a temporal sequencing mechanism for expert engagement.

Unlike ensemble learning, which aggregates multiple models in parallel, or mixture-of-experts, which introduces additional routing complexity, our approach explores a new axis of model composition: *temporal expert sequencing*. This design requires no architectural modifications, no extra inference

cost, and can be seamlessly integrated with existing IL planners, making it both practical and widely applicable.

4.2 SEQUENCE OF EXPERTS (SOE) FRAMEWORK

SOE Task Definition Let $\mathcal{M} = \{\pi_1, \pi_2, \dots, \pi_m\}$ denote a set of IL policies obtained by training the same architecture with different random seeds on the same dataset. At each timestep t, a scheduling function $\sigma: \mathbb{N} \to \{1, \dots, m\}$ determines which expert policy to invoke. The resulting SoE policy is defined as

$$\pi_{\text{SoE}}(a_t \mid s_t, t) = \pi_{\sigma(t)}(a_t \mid s_t). \tag{3}$$

In this formulation, SoE transforms model variance into a systematic source of robustness. By alternating across experts in the temporal domain, SoE reduces the likelihood of persistent error accumulation from a single model. This perspective complements existing approaches: whereas ensemble learning aggregates predictions in parallel and mixture-of-experts dynamically routes inputs, SoE composes policies sequentially in time, thereby opening a new axis for exploiting expert diversity in IL planning.

Temporal Scheduling During the inference of policy, finding the states that could lead to policy's failure requires a comprehensive prediction of future states. Although there are methods like Monte Carlo Tree Search (Silver et al., 2017) navigating decision space, the state space of traffic scenarios is still too large to be completely considered. This work proposes that the expert policy can engage the planning process periodically. This helps to form a new policy as follows:

$$\pi^{n} = f(\pi^{o}, \pi^{*}, n) = \begin{cases} \pi^{o}, & t\%n > 0\\ \pi^{*}, & t\%n = 0, \end{cases}$$
(4)

where π^n denotes the composed SoE policy, n is an integer hyperparameter representing the period, and t denotes the timestamps.

This combination strategy doesn't require any prior knowledge of driving scenarios, making it highly practical for real-world deployment. It's worth noting that bypassing this problem with periodical engagement brings additional challenges to the selection of expert policy. Now that the expert policy engages more frequently, it has a greater chance of introducing errors that the original policy can't handle, resulting in severe failure.

Expert Selection This work proposes to use the same model trained with the same data but a different seed as the expert policy. The idea arises from the key phenomena observed during the training of IL planners. We noticed that the models across training exhibit great variance in the closed-loop performance, and this observation exists for nearly all planners. The models trained with different seeds have the same architecture and training data, which implies their natural similarity, making them the perfect expert policy for themselves.

4.3 ALGORITHMIC IMPLEMENTATION

Pipeline With both problems solved, the complete steps to formulate the SoE policy are concluded in Algorithm.1 and as follows:

- 1. Training model m times with different seeds and saving a checkpoint for each epoch.
- 2. For each training, select the top performance checkpoint among the epochs with the validation set \mathcal{V} . \mathcal{V} should stand for the target set where the model is expected to work, such as the real-world driving scenario. This step will produce a model set \mathcal{M} containing m models.
- 3. For all the possible binary combinations in set S, combining both as the SoE policy and testing them with V. Selecting the best SoE policy as the final policy.

Hyperparameter SoE introduces only two parameters: the scheduling period n and the number of trainings m, making it highly user-friendly. Furthermore, as will be demonstrated in the next section, n has a practically optimal value of 2.

```
Algorithm 1: Sequence of Experts (SoE) Construction

Input: training dataset \mathcal{D}, base architecture A, number of runs m, scheduling period n

Output: SoE policy \pi_{\text{SoE}}

for i=1 to m do

Train policy \pi_i on (A,\mathcal{D}) with random seed i;

Select best checkpoint \pi_i^* on validation set;

\mathcal{M} \leftarrow \{\pi_1^*, \pi_2^*, \dots, \pi_m^*\};

Construct SoE policy \pi_{\text{SoE}} using temporal scheduling function \sigma;

Evaluate \pi_{\text{SoE}} on validation set;
```

5 EVALUATION

5.1 EVALUATION SETTING

return best-performing π_{SoE} ;

nuPlan nuPlan is a large-scale real-world planning benchmark for autonomous driving. Through its simulation framework, it introduces three simulation modes: open-loop (OL), closed-loop non-reactive (CL-NR), and closed-loop reactive (CL-R). In open-loop mode, the ego vehicle is controlled via log-replay, whereas in closed-loop modes, control is managed by a planning model. Similarly, traffic agents are controlled by log-replay in non-reactive mode and by the traffic model in reactive mode, where the traffic model is the Intelligent Driver Model (Treiber et al., 2000). For evaluation, we utilize the Val14 and Test14-random splits introduced in (Dauner et al., 2023). Val14 contains 1,118 scenarios from 14 scenario types, which is claimed to be an excellent proxy for nuPlan's online benchmark. Test14-random contains 261 randomly selected scenarios from 14 scenario types.

Metrics The metrics differ in open-loop mode and closed-loop mode. In the open-loop test, the metrics consist of imitation scores, measuring the similarity between the planner's output trajectory and the expert trajectory. The metrics of closed-loop testing try to quantify the real driving performance, including multiplied scores that measure severe failure and additive scores that measure efficiency and comfort. The concrete explanations of each metric can be found in Appendix B. All metrics are percentages, where higher is better.

Based on nuPlan's metrics, we define two indicators to quantify the improvements from the SoE. The average improvement λ is the difference between the average performance of all possible SoE policies and the average of the original policy, calculated as $\lambda = \overline{f(\pi^n)} - \overline{f(\pi^o)}$, where f() denotes nuPlan's validation score of a policy. The policy improvement θ is expressed as $\theta = f(\pi^n) - \max(f(\pi^o), f(\pi^*))$, quantifying the improvement from a SoE policy over its components.

Baselines The baseline planners can be classified into three groups: rule-based planners, learning-based planners, and hybrid planners. The rule-based planners consist solely of engineered rules, serving as references for performance. The main body of learning-based planners and hybrid planners consists of neural networks trained to imitate experts' driving, while hybrid planners incorporate additional human-defined rules to enhance performance. We construct the SoE policy for all planners except the rule-based ones. The detailed description of planners is as follows:

- IDM(Treiber et al., 2000): A rule-based planner integrated in nuPlan.
- PDM series(Dauner et al., 2023): PDM-Closed is a rule-based planner that selects a centerline, forecasts the environment, and creates varying trajectory proposals. PDM-Open is a multi-layer perceptron whose inputs are only the centerline extracted by IDM and the ego history.
- Raster model(Caesar et al., 2021): A planner takes multi-channel images of ego-centered driving scenarios as input and regresses a single trajectory as output.
- PlanTF(Cheng et al., 2024b): A planner built on a transformer architecture. It encodes vectorized scenarios and regresses multiple trajectories in one forward pass.
- Pluto(Cheng et al., 2024a): An improved version of PlanTF, incorporating contrastive learning and trajectory queries to enhance the model performance.

325

326

327

34 348 349

350

351

352

353 354

355

356

357

358

359 360

361 362

363

364

366

367

368

369

370 371

372

373

374

375 376

377

Table 1: Closed-loop performance of baselines and their SoE version. w/o are planners without fallback strategies. SoE1 and SoE2 denote two different instances of SoE combinations. More implementation details about these results are described in Appendix B

Type	e Planner	Val1	4 (%)	Test14 (%)		Time
1 J P		CL-NR	CL-R	CL-NR	CL-R	(ms)
	Log-Replay	93.53	80.32	94.03	75.86	-
R	IDM .	75.60	77.33	70.39	72.42	41
	PDM-Closed	92.84	92.13	90.05	91.64	122
	PDM-Open	53.64	56.89	52.91	58.10	65
	PDM-Open-SoE	54.09 (+0.45)	56.73 (-0.16)	52.75(- <mark>0.16</mark>)	59.85(+1.75)	65
	Raster	70.77	69.07	65.87	69.93	37
	Raster-SoE	72.05 (+1.28)	71.47 (+2.40)	69.89(+4.02)	72.86(+2.93)	37
L	planTF	84.69	76.15	85.60	78.86	78
	planTF-SoE	86.90 (+2.07)	79.70 (+2.92)	88.06(+2.46)	78.88(+0.02)	78
	Pluto w/o	88.78	78.01	90.67	78.06	107
	Pluto w/o-SoE1	90.94 (+2.16)	81.81 (+3.80)	91.39 (+0.72)	82.29(+4.23)	107
	Pluto w/o-SoE2	90.04 (+1.26)	82.36 (+4.35)	90.85(+0.18)	83.07 (+5.01)	107
	Diffusion w/o	89.85	82.88	89.40	82.67	159
	Pluto	92.79	89.77	92.55	90.29	259
Η	Pluto-SoE	94.56 (+1.77)	91.17 (+1.40)	94.82 (+2.27)	90.47 (+0.18)	259
	Diffusion	94.26	92.90	94.80	91.75	-

 DiffusionPlanner(Zheng et al., 2025): A state-of-the-art planning model based on diffusion transformer (Peebles & Xie, 2023) which can effectively model multi-modal driving behavior. In particular, we omit the SoE construction of it due to limited computing resources and leave it for future work.

SoE Setting Unless otherwise stated, the setting of SoE remains the same for all the experiments. The number of trainings m is 4 and the period n is 2. All the results are one-shot without additional training and selection. The validation set V is Val14 split in CL-NR mode, and the target set is nuPlan's online benchmark. As claimed in (Dauner et al., 2023), Val14 produces nearly the same result as nuPlan's online benchmark; we use Val14 as an approximation for the target set.

5.2 RESULTS

Quantitative Results Table 1 shows the closed-loop performance of baselines and their SoE version. The open-loop performance is omitted because SoE does not influence it. First of all, SoE brings a significant and computationally free performance boost to all IL planners, regardless of their model architectures, except for PDM-Open. It's normal because PDM-Open's inputs only contain the center line and ego history, which are tailored for OL testing and not strictly a planner. SoE also applies to IL planners with post-processing, i.e., Pluto, achieving a remarkable performance improvement without any modification to its rules. In particular, the SoE version of both Pluto without rule and Pluto achieves state-of-the-art performance in their respective categories, requiring less inference cost and training cost compared to the strong baseline, DiffusionPlanner.

Table 2a enumerates the Val14 CL-NR scores of all SoE combinations of Pluto w/o. The diagonal elements whose π^o and π^* are the same are the scores of the four original policies, and the rest are the scores of SoE policies. The average improvement λ is then 0.85%, which is a significant improvement considering that there is only around 10% left to reach 100%. These results support the universal effectiveness of SoE as a plug-and-play solution for IL planners.

Qualitative Results Fig.2 lists the frames from one driving log of planTF and its SoE version. The period n is 2, so the even-numbered frames are from the original policy π^o and the odd-numbered

Figure 2: One driving log of planTF(upper row) and its SoE version(lower row). The number indicates the timestamps of bird-view images. The cyan trajectory is from the original policy π^o and the gold one is from the expert policy π^* .

Table 2: The complete Val14 CL-NR scores of Pluto w/o's SoE combinations (a) and ablation combinations (b).

π^*	m_1	m_2	m_3	m_4
m_1	89.43	90.90	89.84	89.36
m_2	90.70	90.26	90.94	91.14
m_3	89.87	90.78	89.80	90.63
m_4	90.23	90.96	90.59	89.33

(a) \overline{m} denotes the best models, and its subscript de-
notes the index of training they are from. The average
improvement from SoE is 0.85.

π^*	m_1	m_2	m_3	m_4
m_1	89.24	90.00	89.23	89.04
m_2	89.82	89.80	89.89	89.47
m_3	89.31	89.50	89.21	89.70
m_4	89.25	89.38	89.75	89.07

(b) \overline{m} denotes the top 4 models from the same training, and its subscript denotes the index. The average improvement from combinations is 0.20.

frames are from the expert policy π^* . As we can see in the upper row, planTF drives the ego crashing into a parked vehicle, as if not seeing it in this scenario. In frame 46, the states are nearly identical in both frames, which shows that the expert policy didn't cause a significant deviation from the original policy. In frames 51 and 52, a clear divergence is evident between the two policies. π^* generates a stopping trajectory while π^o keep neglecting the parking vehicle. In frames 61 and 62, both policies reach a consensus and generate parking trajectories. The SoE policy finally stops the vehicle in frame 90, thereby avoiding the collision that the original policy would have caused. This example shows how SoE improves the performance of IL planners. It combines the capabilities of both models, effectively taking the best of each.

5.3 EMPIRICAL STUDIES AND KEY FINDINGS

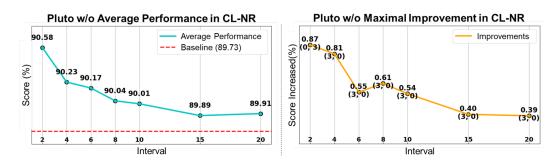


Figure 3: The parameter sweep of n in Val14 test. We use the average improvement λ and the maximal policy improvement θ to quantify the improvement of SoE. The annotation in maximal improvement marks the value and the models' indices achieving maximal improvement. We omit the result for the CL-R test because of the similarity of the curve, it can be found in Appendix.C.

Table 3: Detailed metric scores of planTF and its SoE version tested in Test14-random CL-NR. m_* denotes the index of model. The model on the left of + is π^o and on the right is π^* . Col:Collision, Dri: Drivable area compliance, MP: Making progress, Dir: Direction compliance, P: Progress, TTC: Time To Collision, S: Speed compliance, Com: Comfort. The (*) signifies the metric is multiplicative, and (number) indicates the weight of additive metric. Green emphasizes the best performance.

Model	CLN	Col(*)	Dri(*)	MP(*)	Dir(*)	P(5)	TTC(5)	S(4)	Com(2)
m_1	86.33	94.06	97.32	98.85	100	91.04	88.89	96.21	97.70
m_2	84.87	94.64	95.02	99.23	99.81	88.35	91.57	97.93	93.49
m_3	86.74	95.40	95.40	100	99.81	91.50	92.34	97.25	94.64
m_4	85.73	91.95	96.93	100	99.23	92.54	90.04	96.77	92.72
$m_1 + m_2$	85.71	93.68	96.17	99.23	100	90.54	89.27	97.30	97.70
m_1+m_3	88.16	95.21	96.93	99.62	100	91.69	92.72	96.69	97.32
m_1 + m_4	87.18	94.83	96.55	100	99.43	91.70	90.80	96.57	98.08
m_2+m_4	88.03	95.59	97.32	99.62	99.81	91.14	91.95	97.53	94.64

Why does SoE work? Table 3 shows the detailed metric scores of planTF and its SoE version. For the original policy, the best performance of certain metrics scatters across models m from different training. The bolded SoE version, $m_1 + m_3$ and $m_2 + m_4$, achieving significant performance improvements. Regarding their sub-term scores, we found that the SoE typically combines the performance of components in a manner like linear interpolation. Sometimes, the combination surpasses the maximum score of components, but is still capped by the best possible score that planTF can achieve. We think this data helps us understand why SoE works. The trained IL planners are naturally imperfect, unable to handle the accumulated errors of all types. It's very hard, or even impossible, to obtain a perfect model that excels in all aspects from a single training. SoE works by combining imperfect models in the time domain, forming a perfect model that is difficult to obtain through training. Additional experiment results for understanding SoE are added in Appendix.C.

Best Hyperparameter Setting SoE introduces only two hyperparameters, the period n and the number of training m. We use the average improvement λ and the maximal policy improvement θ to quantify the improvement of SoE; the higher, the better. The parameter sweep of n is visualized in Fig.3. We can find that 2 is the best value for the period n in both the CL-NR and CL-R tests. A higher value lowers the improvement of SoE. In other words, the alternative inference is the best way to combine knowledge from both models. The number of training m increases the training cost linearly and the validation cost quadratically. The study recommends selecting the highest feasible value of m within computational resource constraints, as a higher m yields a higher probability of obtaining a better model.

Ablation Study of The Selection of Expert Policy The key design in formulating SoE policy is to gather the best model from different trainings. In this ablation study, we modify this design to use m best models from the same training to construct the model set M. The result is shown in Table 2b. The average improvement λ drops significantly in the new setting, from 0.85% to 0.20%.

6 CONCLUSION AND FUTURE WORK

This work proposes Sequence of Expert, a plug-and-play method to improve the performance of IL planners. It requires no additional data, model modifications, or computational overhead, making it a new dimension for scaling IL planners. Through extensive evaluation, we show that SoE is universally effective for all IL planners. In particular, the SoE version of a baseline planner achieves state-of-the-art performance in the nuPlan benchmark, showing its practical potential. We believe that SoE will become a valuable tool for researchers and engineers seeking to achieve the ultimate performance of IL planners. This framework may also work in other domains where IL planners are deployed in a closed-loop environment, such as robot manipulation. We leave the exploration to future works. Due to page limits, limitations are discussed in Appendix.D.

REFERENCES

- Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst. *arXiv preprint arXiv:1812.03079*, 2018.
- Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving cars. *arXiv* preprint arXiv:1604.07316, 2016.
 - Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex Lang, Luke Fletcher, Oscar Beijbom, and Sammy Omari. nuplan: A closed-loop ml-based planning benchmark for autonomous vehicles. *arXiv preprint arXiv:2106.11810*, 2021.
 - Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-to-end autonomous driving: Challenges and frontiers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Jie Cheng, Yingbing Chen, and Qifeng Chen. Pluto: Pushing the limit of imitation learning-based planning for autonomous driving. *arXiv preprint arXiv:2404.14327*, 2024a.
 - Jie Cheng, Yingbing Chen, Xiaodong Mei, Bowen Yang, Bo Li, and Ming Liu. Rethinking imitation-based planners for autonomous driving. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14123–14130. IEEE, 2024b.
 - Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger. Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. *IEEE transactions on pattern analysis and machine intelligence*, 45(11):12878–12895, 2022.
 - Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations of behavior cloning for autonomous driving. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9329–9338, 2019.
 - Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.
 - Daniel Dauner, Marcel Hallgarten, Andreas Geiger, and Kashyap Chitta. Parting with misconceptions about learning-based vehicle motion planning. In *Conference on Robot Learning*, pp. 1268–1281. PMLR, 2023.
 - William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39, 2022.
 - Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia Schmid. Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11525–11533, 2020.
 - Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Guohui Zhang, and Chengzhong Xu. World models for autonomous driving: An initial survey. *IEEE Transactions on Intelligent Vehicles*, 2024.
 - Yihan Hu, Kun Li, Pingyuan Liang, Jingyu Qian, Zhening Yang, Haichao Zhang, Wenxin Shao, Zhuangzhuang Ding, Wei Xu, and Qiang Liu. Imitation with spatial-temporal heatmap: 2nd place solution for nuplan challenge. *arXiv preprint arXiv:2306.15700*, 2023a.
- Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 17853–17862, 2023b.
- Talib Iqball and M Arif Wani. Weighted ensemble model for image classification. *International Journal of Information Technology*, 15(2):557–564, 2023.

- Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local experts. *Neural computation*, 3(1):79–87, 1991.
 - Xiaosong Jia, Penghao Wu, Li Chen, Jiangwei Xie, Conghui He, Junchi Yan, and Hongyang Li. Think twice before driving: Towards scalable decoders for end-to-end autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21983–21994, 2023.
 - Luc Le Mero, Dewei Yi, Mehrdad Dianati, and Alexandros Mouzakitis. A survey on imitation learning techniques for end-to-end autonomous vehicles. *IEEE Transactions on Intelligent Transportation Systems*, 23(9):14128–14147, 2022. doi: 10.1109/TITS.2022.3144867.
 - Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang, Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for end-to-end autonomous driving. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12037–12047, 2025.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 - Khanh Pham, Dongku Kim, Sangyeong Park, and Hangseok Choi. Ensemble learning-based classification models for slope stability analysis. *Catena*, 196:104886, 2021.
 - Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Amaratunga. Ensemble deep learning for regression and time series forecasting. In 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL), pp. 1–6. IEEE, 2014.
 - Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33(1):1–39, 2010.
 - Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In *European Conference on Computer Vision*, pp. 683–700. Springer, 2020.
 - Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mtr++: Multi-agent motion prediction with symmetric scene modeling and guided intention querying. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(5):3955–3971, 2024.
 - David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. *nature*, 550(7676):354–359, 2017.
 - Qiao Sun, Huimin Wang, Jiahao Zhan, Fan Nie, Xin Wen, Leimeng Xu, Kun Zhan, Peng Jia, Xianpeng Lang, and Hang Zhao. Generalizing motion planners with mixture of experts for autonomous driving. *arXiv* preprint arXiv:2410.15774, 2024.
 - Inc. Tesla. Tesla full self-driving (supervised), 2025. URL https://www.tesla.com/fsd.
 - Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical observations and microscopic simulations. *Physical review E*, 62(2):1805, 2000.
 - Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
 - Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided control prediction for end-to-end autonomous driving: a simple yet strong baseline. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
 - Wei Wu, Xiaoxin Feng, Ziyan Gao, and Yuheng Kan. Smart: Scalable multi-agent real-time motion generation via next-token prediction. *Advances in Neural Information Processing Systems*, 37: 114048–114071, 2024.
 - Zhiyuan Xu, Bohan Li, Huan ang Gao, Mingju Gao, Yong Chen, Ming Liu, Chenxu Yan, Hang Zhao, Shuo Feng, and Hao Zhao. Challenger: Affordable adversarial driving video generation. *ArXiv*, abs/2505.15880, 2025.

Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation learning: Algorithms, recent developments, and challenges. *IEEE Transactions on Cybernetics*, 54 (12):7173–7186, 2024. doi: 10.1109/TCYB.2024.3395626.

Yinan Zheng, Ruiming Liang, Kexin Zheng, Jinliang Zheng, Liyuan Mao, Jianxiong Li, Weihao Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, et al. Diffusion-based planning for autonomous driving with flexible guidance. *arXiv preprint arXiv:2501.15564*, 2025.

A SUPPORTING EVIDENCE FOR LIMITATIONS OF IL PLANNERS

This section introduces the supporting evidence for limitations of IL planners. We introduce the limitations in the order in the main text.

OL–CL mismatch. Fig.4 shows the validation score of all the intermediate checkpoints of Pluto w/o, tested in all three modes. We can observe that the planners achieving the best OL imitation accuracy are often not those that deliver the best CL performance. In OL mode, the model from epoch 24 achieves the best performance, but it doesn't achieve the best CL performance. While OL metrics improve steadily with training, CL metrics fluctuate significantly; for example, the CL-R performance changes substantially during training.

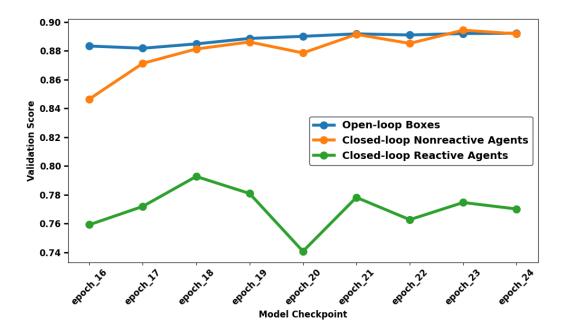


Figure 4: The validation score of all the intermediate checkpoints of Pluto w/o, testing respectively in the open-loop, closed-loop nonreactive, closed-loop reactive modes.

Early-stage CL superiority. As Fig.4 shows, the Pluto w/o achieves best CL-NR performance with the model from epoch 23 and best CL-R performance with the model from epoch 18. This means that the highest CL scores often arise from earlier training epochs rather than from the final converged models. This effect is more pronounced when the deployment distribution diverges strongly from the training distribution, e.g., CL-NR compared to CL-R.

Inter-run complementarity. Models trained with identical architectures and data but different random seeds achieve nearly indistinguishable OL losses, yet their CL performance differs substantially. This limitation is supported by the results in Fig.5, which show the closed-loop reactive validation score for three different training sets. From the figure, we can observe that there is no similarity between their CL-R performance. The best model emerges at different training stages, and its performance changes unpredictably as the training progresses.

However, we find that these models exhibit complementary strengths in handling diverse failure cases. This phenomenon can be observed in Fig.6, which exhibits the validation score of the four best models in \mathcal{M} , grouped by the type of scenarios. The key indicator in this figure is the performance difference in the same scenario type. The maximal performance difference is around 2% in the OL test, and it only appears in several scenario types. However, the maximum performance difference can exceed 10% in the CL test and is observed in nearly all scenario types. We hypothesize that the differences in the error accumulation contribute to this phenomenon. This suggests that training variance is not noise but an exploitable source of diversity.

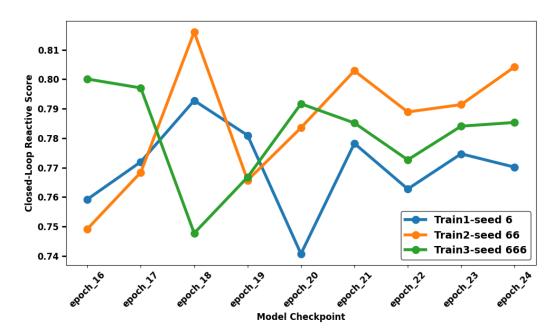


Figure 5: The closed-loop reactive validation score of all the intermediate checkpoints of Pluto w/o. The results are from three different training sessions, in which all training settings remain unchanged except for the random seed.

B EVALUATION DETAILS

B.1 THE MEANING OF INDIVIDUAL METRICS

We detail the meaning of all the metrics in the nuPlan Benchmark. It can be found in https://github.com/motional/nuplan-devkit. The (*) sign signifies the metric is multiplicative, and (number) indicates the weight of the additive metric.

- No at-fault Collisions(*): A collision is defined as the event of the ego's bounding box intersecting
 another agent's bounding box. This metric contributes to the scenario score as a multiplier based
 on the number of at-fault collisions that happen in a scenario for each group and the acceptable
 thresholds.
- Drivable area compliance(*): The ego should drive in the mapped drivable area at all times. The drivable area compliance metric identifies the frames when the ego drives outside the drivable area. This boolean metric contributes to the scenario score as a multiplier.
- Driving direction compliance(*): This is a metric defined to penalize ego when "it drives into oncoming traffic". The score is set to 1 if it does not drive/move against the flow and 0 if it drives against the flow more than 6m.
- Making progress(*): This metric is defined as a Boolean metric based on the "Ego progress along
 the expert's route ratio". Its score is set to 1 if the ratio exceeds the selected threshold and is set to
 0 otherwise.
- Time to Collision (TTC) within bound(5): TTC is defined as the time required for the ego and another track to collide if they continue at their present speed and heading. The Boolean metric contributes to the scenario score in the weighted average function.
- Ego progress along the expert's route ratio(5): It evaluates the progress of the driven ego trajectory in a scenario by comparing its progress along the route that the expert takes in that scenario. The expert's route is extracted as a sequence of lanes and lane connectors that it moves along during the scenario. The ratio contributes to the scenario score in the weighted average function.

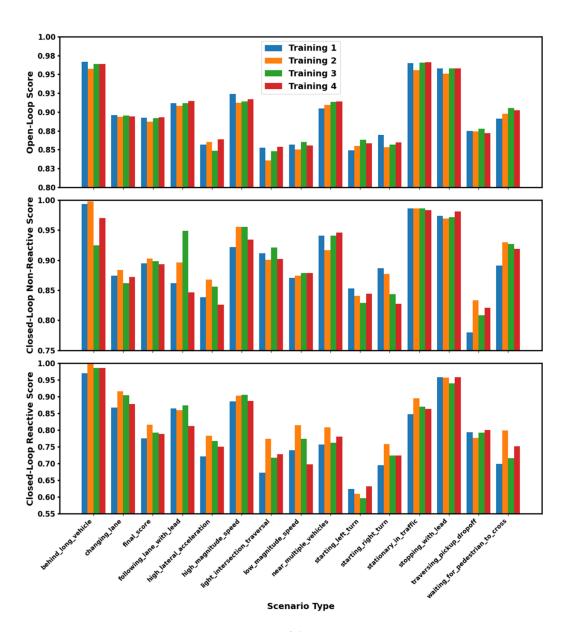


Figure 6: The validation score of 4 best models in \mathcal{M} , grouped by the type of scenarios. The models in \mathcal{M} are selected from four different training sessions with various random seeds. The type of scenarios is defined by the nuPlan benchmark. Note that the scale of the y-axis differs a lot.

- Speed limit compliance(4): This metric evaluates if the ego's speed exceeds the associated speed limit in the map. The speed limit is queried from the lane ego is associated with. This metric contributes to the scenario score in the weighted average function.
- Comfort(2): It measures the comfort of the ego's driven trajectory by evaluating minimum and maximum longitudinal accelerations, maximum absolute value of lateral acceleration, maximum absolute value of yaw rate, maximum absolute value of yaw acceleration, maximum absolute value of longitudinal component of jerk, and maximum magnitude of jerk vector.

B.2 Details of Table 1

We have the following general rules to derive the result:

- If the baseline provides an open-source model, we use the model it offers to verify the performance. If no open-source model is provided, we select the best result from multiple training runs in SoE framework as its performance.
- During SoE Formulation, we do not make any modifications to the open-source implementation of the baseline if possible.
- For the IL planners generating multiple trajectories, we select the trajectory with the highest probability/confidence.
- The SoE Formulations are all one-shot, which means that all models are trained exactly m times.
- The models and codes for reproducing results in Table 1 are open-sourced.

Following these rules, we enumerate the source of results in Table 1 as follows:

- IDM(Treiber et al., 2000): This planner is rule-based and can be found in https://github.com/motional/nuplan-devkit.
- PDM series(Dauner et al., 2023): The open-source link is: https://github.com/autonomousvision/tuplan_garage. PDM series doesn't provide open checkpoints, so its performance is reported from the best in \mathcal{M} of SoE.
- Raster model(Caesar et al., 2021): We use the integrated implementation of Raster Model in nuPlan https://github.com/motional/nuplan-devkit. It doesn't have open checkpoints, and its performance is reported as the best in \mathcal{M} of SoE.
- PlanTF(Cheng et al., 2024b): It's open-source link https://github.com/jchengai/planTF. It provides an open-sourced checkpoint, so we use it to represent its performance. We then formulate SoE with its training code.
- Pluto(Cheng et al., 2024a): It's open-source link https://github.com/jchengai/pluto. It provides an open-sourced checkpoint, so we use it to represent its performance. We then formulate SoE with its training code. SoE1 and SoE2 are two different SoE policies. The difference is that SoE1 adopts CL-NR as its validation set in SoE formulation, while SoE2 uses CL-R. It provides a rule-based fallback strategy, which we use without modification.
- DiffusionPlanner(Zheng et al., 2025): It's open-source link https://github.com/ ZhengYinan-AIR/Diffusion-Planner. It provides an open-sourced checkpoint, so we use it to represent its performance. However, it didn't provide the rules to reproduce the result of their hybrid version. We use the result from their paper directly and cannot measure its inference time. Due to resource limitations, we leave the formulation of its SoE for future work.

C ADDITIONAL RESULT ON WHY SOE WORKS

Complete version of Fig.3. Here we list the complete version of Fig.3 as Fig.7, including results in both CL-NR and CL-R tests.

SoE reduces the scenarios where only one policy fails. Table 4 provides additional context for understanding SoE, listing how the number of scenarios containing critical failures changes between SoE and its components. It shows that SoE mainly reduces the scenarios where only one policy fails, e.g., from (19, 20) to 9 in collisions of Pluto, meaning that it requires one capable policy to lead another policy. This supports the hypothesis that SoE works by leveraging the difference in ability in erasing accumulated errors.

D LIMITATIONS

SoE also exhibits several limitations. Although SoE doesn't require additional computation in deployment, it introduces more overhead to training and evaluation. There may be other approaches to derive complementary models in addition to complete training. We leave this for future work. SoE leverages model variance to significantly improve model performance. However, the possible top performance is still determined by other dimensions, such as model and data. SoE works as an additional dimension to improve IL planners, not the solution for full autonomous driving.

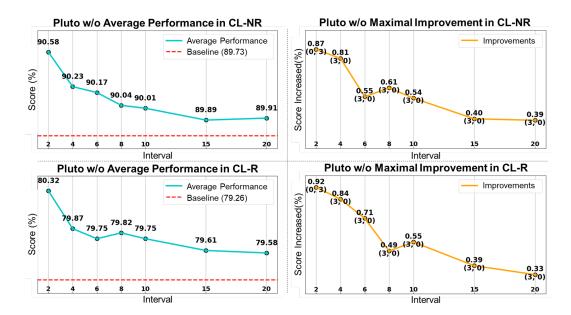


Figure 7: The parameter sweep of n in Val14 test. We use the average improvement λ and the maximal policy improvement θ to quantify the improvement of SoE. The annotation in maximal improvement marks the value and the models' indices achieving maximal improvement.

Table 4: The number of scenarios containing critical failure between baselines and their SoE version, tested in Val14 CL-NR.In its first row, π denotes the scenario fails with this policy, while ! π denotes not. & is the logical AND, e.g. π^o & π^* means the number of scenarios where both policy fail.

Planner	Error Type	$\pi^o \ \& \ \pi^* \to \pi^n$	$(\pi^o \& !\pi^*, !\pi^o \& \pi^*) \to \pi^n$	$!\pi^o \;\&\; !\pi^* \to \pi^n$
planTF	Collision	$38 \rightarrow 36$	$(46,35) \rightarrow 26$	$0 \rightarrow 3$
P	Drivable	$18 \rightarrow 17$	$(18,24) \to 9$	$0 \rightarrow 1$
Pluto	Collision	$23 \rightarrow 23$	$(19,20) \to 9$	$0 \rightarrow 4$
1100	Drivable	$6 \rightarrow 6$	$(5,3) \to 0$	$0 \rightarrow 0$

E THE USE OF LARGE LANGUAGE MODELS

This paper utilizes an LLM solely for language polishing, enhancing the quality of writing expression.