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ABSTRACT

We considered a fair representation learning perspective, where optimal predic-
tors, on top of the data representation, are ensured to be invariant with respect
to different subgroups. Specifically, we formulated the problem as a bi-level op-
timization, where the representation is learned in the outer-level, and invariant
optimal group predictors are updated in the inner-level. To avoid the high com-
putational and memory cost of differentiating in the inner-level optimization, we
proposed the implicit path alignment algorithm, which only relies on the solution
of inner optimization and the implicit differentiation rather than the exact opti-
mization path. Moreover, the proposed bi-level objective is demonstrated to fulfill
the sufficiency rule, which is desirable in various practical scenarios but was not
commonly studied in fair representation learning. We further analyzed the error
gap of the implicit approach and empirically validated the proposed method in
both classification and regression settings. Experimental results show the consis-
tently better trade-off in prediction performance and fairness measurement.

1 INTRODUCTION

Machine learning has been widely adopted in the real world decision-making practice such as job
candidate screening (Raghavan et al., 2020) and credit application. However, it has been observed
that learning algorithms treated some groups of population unfavorably, for example, denying credit
on the grounds of gender, age or ethnicity (Hardt et al., 2016). To this end, algorithmic fairness that
is to mitigate the prediction bias for different subgroups has recently received tremendous attentions.

With the rapid advancement of representation learning (LeCun et al., 2015), learning a fair embed-
ding (Zemel et al., 2013) has been recently highlighted. Specifically, the learned fair representation
can easily transfer the unbiased prior knowledge to the downstream tasks, with various successful
applications in computer vision (Kim et al., 2019; Kehrenberg et al., 2020), language understanding
(Chang et al., 2019; Ethayarajh, 2020) and artificial intelligence for health (Fletcher et al., 2021).
Typically, the fair representation learning is achieved by adding various statistical fair metrics during
the training process.
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Figure 1: Unfair representation leads to differ-
ent optimization path and non-invariant opti-
mal predictors on the latent space Z .

Based on this, most existing fair representation
approaches in classification or regression princi-
pally aim to meet the independence or separation
rule, e.g., (Madras et al., 2018; Song et al., 2019;
Chzhen et al., 2020). However, in various real-
world scenarios, the sufficiency rule is preferable.
For example, health systems rely on commercial
algorithms to identify and help patients with com-
plex health needs. The algorithm outputs a health-
care need score, where a higher score indicates
the patient is sicker and requires more healthcare.
Obermeyer et al. (2019) revealed that a widely
used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits
significant racial bias. At a given predicted healthcare need score Ŷ = t, Black patients are consid-
erably sicker than White patients (Eblack[Y |Ŷ = t] > Ewhite[Y |Ŷ = t]). Obermeyer et al. (2019)
also pointed out that remedying the disparity would increase the percentage of Black patients receiv-
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(a) Explicit Path
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(b) Implicit Path

Figure 2: Explicit and Implicit path alignment. (a) The considered fair representation learning
criteria lies in ensuring the invariant optimal predictor w.r.t. different subgroups on Z (h?0 = h?1).
Since the gradient based approach is adopted to optimize h, the explicit path alignment aims to learn
a representation λ to enforce the identical optimization path w.r.t. h. (b) The proposed implicit path
alignment only requires the last iteration point and approximate the gradient w.r.t. λ from the last
update of h (the brown arrow).

ing additional healthcare from 17.7 to 46.5%. Moreover, it has been theoretically justified (Barocas
et al., 2019) that the Sufficiency rule is generally not compatible with Independence and Separation.
Thus learning the fair representation w.r.t. the sufficiency rule is promising in both the algorithmic
design and real-world applications.

In this paper, we address the sufficiency rule by considering the following intuition: given a fixed
representation function, if the optimal predictor that learned on the embedding space are invariant
from different sub-groups, then the corresponding representation function is fair. Fig. 1 provides an
illustrative example. when the representation function λ : X → Z is unfair and we adopt gradient
descent to learn the predictor h : Z → R. The optimal predictors of different subgroups (blue, red)
are not invariant, resulting in biased predictions. We will later demonstrate such an intuition ensures
the learned representation satisfying the sufficiency rule (Liu et al., 2019; Chouldechova, 2017).

The aforementioned intuition can be naturally formulated as a bi-level optimization problem, where
we aim to adjust the representation λ (in the outer-level) to satisfy the invariant optimal predictor
h (in the inner-level). Thus, when we adopt the gradient-based approach in solving the bi-level
objective, a straightforward solution is to learn the representation λ to fulfill the identical explicit
gradient-descent directions in learning predictor h? of different groups, shown in Fig. 2(a). Intu-
itively, if the inner gradient descent step of each sub-group is identical, their final predictors (as
the approximation of h?) will be invariant. However, the corresponding algorithmic realization is
challenging in deep learning: 1) It requires storing the whole gradient steps, which induces a high
memory burden. 2) the embedding function λ is optimized via backpropagation from the whole
gradient optimization path, which induces a high computational complexity.

To this end, we propose an implicit path alignment, shown in Fig. 2(b). Notably, we only consider
the final (t-th) update of the predictor h(t), then we update representation function λ by approxi-
mating its gradient at point h(t) through the implicit function (Bengio, 2000). By using the gradient
approximation, it is no more required to store the whole gradient step and conduct the backpropaga-
tion through the entire path. Overall, the highlights in this paper are as follows:

Fair-representation learning to satisfy the sufficiency rule Instead of enforcing the independence
or separation rule, the considered fair-representation criteria is proved to satisfy the sufficiency rule
in both classification and regression. We also find such a criteria is intrinsically consistent with the
recent Invariant Risk Minimization (IRM) (Arjovsky et al., 2019; Bühlmann, 2020), which aims to
eliminate suspicious correlations while keeping robust correlations that are invariant across different
environments. Intuitively, reducing the correlation w.r.t. the protected attributes enables the fair
representation.

Principled and efficient algorithm We proposed a novel implicit path alignment algorithm to learn
the fair representation, which addressed the prohibitive memory and computational cost in the orig-
inal bi-level objective. Besides, we analyzed the approximation error gap of the proposed implicit
algorithm, which induces a trade-off between the correct gradient estimation and fairness measures.

Improved fairness in classification and regression We evaluated the implicit algorithm in both
classification and regression with tabular, computer vision and NLP datasets. Compared to the
baselines, the implicit algorithm effectively improved the fairness with a smaller sufficiency gap.
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2 PRELIMINARIES

We suppose the input X ∈ X , the ground truth label Y ∈ Y , and the algorithmic output Ŷ ∈
Y . Throughout the paper, we only consider binary sensitive attribute (i.e, two sub-groups) with
distributions D0 and D1. Then based on (Liu et al., 2019), the sufficiency rule is defined as:

ED0 [Y |Ŷ = t] = ED1 [Y |Ŷ = t], ∀t ∈ Y (1)
To measure the fairness w.r.t. the sufficiency rule, we propose the sufficiency gap as the metric.
Since we aim to evaluate the fairness in both binary classification (Y ∈ {−1, 1}) and regression
(Y ∈ R), the metric is separately defined on these two scenarios.

Sufficiency gap in binary classification Based on the sufficiency rule, the sufficiency gap in binary
classification is naturally defined as:

∆SufC =
∑

y∈{−1,1}

|D0(Y = y|Ŷ = y)−D1(Y = y|Ŷ = y)| (2)

∆SufC encourages the two subgroups with identical Positive predicted value (PPV) and Nega-
tive predicted value (NPV). On the practical side, considering the healthcare evaluation system
outputs either High Risk or Low Risk, Obermeyer et al. (2019) essentially revealed Dblack(Y =

High Risk|Ŷ = Low Risk) > Dwhite(Y = High Risk|Ŷ = Low Risk): the severity of Black pa-
tients is actually underestimated. Thus if ∆SufC is small, the racial discrimination can be remedied.

Sufficiency gap in regression Based on the sufficiency rule and (Kuleshov et al., 2018), the suffi-
ciency gap in regression is defined as:

∆SufR =

∫
t∈Y
|D0(Y ≤ t|Ŷ ≤ t)−D1(Y ≤ t|Ŷ ≤ t)|dt (3)

∆SufR ∈ [0, 1] is an approximation of |D0(Y = y|Ŷ = y)−D1(Y = y|Ŷ = y)|, ∀y ∈ R, since the
latter is difficult to estimate. From the practical aspect, assuming the health system outputs a real-
value healthcare score Ŷ = t (higher indicates sicker), Obermeyer et al. (2019); Sjoding et al. (2020)
observed Dblack(Y > t|Ŷ ≤ t) > Dwhite(Y > t|Ŷ ≤ t): for the patients whose predicted healthcare
score is less than t, the actual proportion of sicker (Y > t) in Black patients is considerably higher
than White patients. Therefore a small ∆SufR suggests an improved disparity.

3 PROBLEM SETUP

We denote the representation function λ that maps the input X into the latent variable Z, the predic-
tion function h such that h : Z → R for regression and h : Z → {−1, 1} for binary classification.
We then denote the prediction loss as `, the prediction loss on subgroup D0,D1 is expressed as:

L0(h, λ) = E(x,y)∼D0
`(h ◦ λ(x), y), L1(h, λ) = E(x,y)∼D1

`(h ◦ λ(x), y)

According to the intuition, we aim to solve the following bi-level objective:
min
λ
L0(h?0, λ) + L1(h?1, λ) (Outer level)

s.t. h?0 = h?1, h
?
0 ∈ argmin

h
L0(h, λ), h?1 ∈ argmin

h
L1(h, λ). (Inner level)

Specifically, in the outer level, we aim to find a representation λ for minimizing the prediction error,
given the optimal predictor (h?0, h

?
1) on the embedding space Z . As for the inner level, given a fixed

representation λ, h?0, h?1 are the optimal predictor for each sub-group. The constraints h?0 = h?1
additionally encourage the invariant optimal predictors from D0, D1.

Relation to the explicit path alignment In deep learning we adopt the gradient-based approach
to minimize the loss, therefore h? in the inner level is approximated as h(t+1), the t-th update in the
gradient descent: h?0 ≈ h(0)−

∑
t∇hL0(h(t), λ), h?1 ≈ h(0)−

∑
t∇hL1(h(t), λ), where h(0) is the

common initialization. Thus the invariant optimal predictor is equivalent to:∑
t

∇hL0(h(t), λ) =
∑
t

∇hL1(h(t), λ).

The aforementioned equation suggests learning a representation λ that ensures the identical opti-
mization path w.r.t. h for each sub-group, which recovers the explicit path alignment.
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Relation to the Sufficiency rule We further demonstrate the relation between the bi-level objec-
tive and Sufficiency rule.
Proposition 1. If we specify the prediction loss ` as logistic regression loss in the classification
log(1 + exp(−yh(z))) with Y = {−1, 1} and the square loss in the regression (h(z) − y)2 with
Y ⊂ R. Then minimizing the inner-level loss is equivalent to:

ED0
[Y |Z = z] = ED1

[Y |Z = z], ED0
[Y |Ŷ = h?(z)] = ED1

[Y |Ŷ = h?(z)],

where h? = h?0 = h?1 and z = λ(x).

Proposition 1 reveals that the objective of inner-level loss is to encourage the sufficiency rule.

4 PRACTICAL ALGORITHMS

In this section, we propose an implicit alignment in deep learning, where λ and h are implemented
by the neural network. We also reformulate as the original objective through Lagrangian relaxation:

min
λ
L0(h?0, λ) + L1(h?1, λ) +

κ

2
‖h?0 − h?1‖22 (Outer level)

s.t. h?0 ∈ argmin
h
L0(h, λ), h?1 ∈ argmin

h
L1(h, λ), (Inner level)

where κ > 0 is the coefficient to control the fairness. Then we will drive the approximated gradient
w.r.t. λ, which contains the following key elements.

Solving the inner optimization Given a fixed representation λ, we find hε0, hε1 such that:

‖h?0 − hε0‖ ≤ ε, ‖h?1 − hε1‖ ≤ ε,

where ε is the optimization tolerance. Besides, h?1 and hε1 are essentially the function of λ, i.e., hε1
depends on the predefined representation function λ.

Computing the gradient of λ Given the approximate solution hε0, hε1, we can compute the gradi-
ent w.r.t. λ (referred as ˜grad(λ)) 1 in the outer-level:

˜grad(λ) =∇λL0(hε0, λ) + (∇λhε0)
T

(∇h0L0(hε0, λ) + κ(hε0 − hε1))

+∇λL1(hε1, λ) + (∇λhε1)
T

(∇h1
L1(hε1, λ)− κ(hε0 − hε1)) .

Where ∇h0L0(hε0, λ) is the partial derivative in the loss w.r.t. the first term (about h0), evaluated at
hε0. Also ∇λL0(hε0, λ) is the partial derivative w.r.t. the second term (about λ).

Implicit function for approximating the gradient In order to compute ˜grad(λ) in autograd,
we need to estimate ∇λhε0 and ∇λhε1. We herein adopt the implicit function (Bengio, 2000) to
approximate ∇λhε0, which has been adopted in the hyperparameter optimization (Pedregosa, 2016)
and meta-learning (Rajeswaran et al., 2019).

Concretely, if the prediction loss is smooth and there exist stationary points to achieve optimal,
we have: ∇h0L0(h?0(λ), λ) = 0,∇h1L0(h?1(λ), λ) = 0. Then differentiating w.r.t. λ will induce:
d (∇h0

L0(h?0(λ), λ)) /dλ = ∇2
h0
L0(h?0, λ)∇λh?0+∇λ∇h0

L0(h?0, λ) = 0.2 Thus we have∇λh?0 =

−
(
∇2
h0
L0(h∗0, λ)

)−1
(∇λ∇h0

L0(h∗0, λ)), where the Hessian matrix∇2
h0
L0(h∗0, λ) is assumed to be

invertible.

Through the implicit function, we can approximate∇λhε0 as:

∇λhε0 ≈ −
(
∇2
h0
L0(hε0, λ)

)−1
(∇λ∇h0L0(hε0, λ))

As for∇λhε1, we have the similar result: ∇λhε1 ≈ −
(
∇2
h1
L1(hε1, λ)

)−1
(∇λ∇h1L1(hε1, λ)).

1We denote the ground truth gradient as grad(λ) if we adopt optimal predictor h?
0, h

?
1 in the computation.

2d(·)/dλ denotes the total derivative.
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Algorithm 1 Implicit Path Alignment Algorithm

Ensure: Representation function λ, predictor h0, h1, datasets from two sub-groups D0. D1.
1: for mini-batch of samples from (D0,D1) do
2: Solving the inner-level optimization with tolerance ε. Obtaining hε0, h

ε
1.

3: Solving Eq. (4) with tolerance δ. Obtaining pδ0 and pδ1.

4: Computing ˜grad
δ
(λ) (gradient of representation λ)

5: Updating λ through autograd: λ← λ− ˜grad
δ
(λ)

6: end for
7: return λ, hε0, hε1

Efficient and numerical stable gradient estimation Plugging in the approximations, the gradient
w.r.t λ is approximated as:

˜grad(λ) ≈ ∇λL0(hε0, λ)− (∇λ∇h0
L0(hε0, λ))

T (∇2
h0
L0(hε0, λ)

)−1
(∇h0

L0(hε0, λ) + κ(hε0 − hε1))︸ ︷︷ ︸
p0

+∇λL1(hε1, λ)− (∇λ∇h1
L1(hε1, λ))

T (∇2
h1
L1(hε1, λ)

)−1
(∇h1

L1(hε1, λ)− κ(hε0 − hε1))︸ ︷︷ ︸
p1

However, the current form is still computationally expensive due to the computation of inverse
Hessian matrix. To this end, we denote p0 and p1 as the inverse-Hessian vector product. Then
computing p0 and p1 is equivalent to solve the following quadratic programming (QP):

argminp̂0

1

2
p̂T0
(
∇2
h0
L0(hε0, λ)

)
p̂0 − p̂T0 (∇h0

L0(hε0, λ) + κ(hε0 − hε1))

argminp̂1

1

2
p̂T1
(
∇2
h1
L1(hε1, λ)

)
p̂1 − p̂T1 (∇h1L1(hε1, λ)− κ(hε0 − hε1)) (4)

Since it is a typical QP problem and we adopt conjugate gradient method (Concus et al., 1985;
Rajeswaran et al., 2019), which can be updated efficiently through autograd via computing the
Hessian-vector product. We additionally suppose the optimization error in the QP as δ, i.e.: ‖p0 −
pδ0‖ ≤ δ, ‖p1 − pδ1‖ ≤ δ, then the gradient w.r.t representation λ can be finally expressed as:

˜grad
δ
(λ) = ∇λL0(hε0, λ)− (∇λ∇h0

L0(hε0, λ))
T
pδ0 +∇λL1(hε1, λ)− (∇λ∇h1

L1(hε1, λ))
T
pδ1

The ˜grad
δ
(λ) can be also efficiently estimated through Hessian vector product via autograd with-

out explicitly computing the Hessian matrix.

Proposed algorithm Based on the key elements, the proposed algorithm is shown in Algo. 1.

4.1 THE COST OF IMPLICIT ALGORITHM: APPROXIMATION-FAIR TRADE-OFF

Theorem 1 (Approximation Error Gap). Suppose that (1) Smooth Predictive Loss. The first-order
derivatives and second-order derivatives of L are Lipschitz continuous; (2) Non-singular Hessian
matrix. We assume ∇h0,h0L0(h0, λ),∇h1,h1L1(h1, λ), the Hessian matrix of the inner optimiza-
tion problem, are invertible. (3) Bounded representation and predictor function. We assume the λ
and h are bounded, i.e., ‖λ‖, ‖h‖ are upper bounded by the predefined positive constants. Then
the approximation error between the ground truth and algorithmic estimated gradient w.r.t. the
representation is be upper bounded by:

‖grad(λ)− ˜grad
δ
(λ)‖ = O(κε+ ε+ δ).

The proof is delegated in Appendix B. We also discuss the assumptions to guarantee the convergence
of Algorithm 1, shown in Appendix C.

Theorem 1 reveals that the gradient approximation error depends on the two-level optimization
tolerance ε, δ and the coefficient of fair constraints κ. Specifically, the error gap reveals the inherent
trade-off in accurate gradient estimation and fair-representation learning. If we fix the optimization
tolerance ε and δ, a smaller κ indicates a better approximation of the gradient, which yields weak
fair constraints. Thus the implicit alignment introduces a trade-off in the prediction performance
(i.e., correct approximation of the gradient) and fairness measurement.
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5 RELATED WORK

Fair Machine Learning Below we only list the most related work in the fairness and refer to the
survey paper (Mehrabi et al., 2021) for details in the algorithmic fairness. In the classification, var-
ious methods in learning fair representations have been proposed. Specifically, a common strategy
is to introduce the statistical constraints as the regularization during the training, e.g., demographic
parity (DP) (Zhang et al., 2018; Madras et al., 2018; Song et al., 2019; Jiang et al., 2020; Kehrenberg
et al., 2020) or equalized odds (EO) (Song et al., 2019; Gupta et al., 2021) as the proxy of the sepa-
ration and independence rule. Another direction is to disentangle the data for factorizing meaningful
representations such as (Locatello et al., 2019). Intuitively, the disentangled embedding is indepen-
dent of the sensitive attribution, thus reflecting a fair representation w.r.t. the independence rule,
which can be potentially problematic when the label distributions of subgroups vary dramatically
(Zhao et al., 2019).

Fairness has also been extended to the fields beyond classification. For instance, in the regression
problem (Komiyama et al., 2018; Agarwal et al., 2019), the bounded group loss has been proposed
as the fair measure: if prediction loss in each subgroup is smaller than ε, the regression is ε-level
fair. In fact, the fair criteria in our paper is not equivalent to ε-fair. Given a fixed λ, the ε-level fair
does not guarantee the optimal and invariant predictor for each subgroup and vice versa.

The sufficiency rule has also been discussed in the previous work. Notably, Chouldechova (2017);
Liu et al. (2019) proposed the sufficiency gap in classification for measuring fairness w.r.t. the
sufficiency rule. Liu et al. (2019) also discussed the inequivalence between the sufficiency gap and
probabilistic calibration (Guo et al., 2017) (referred as calibration gap). According to Pleiss et al.
(2017), the calibration rule is a stronger condition than sufficiency rule while it simultaneously hurts
the prediction performance. Throughout this paper, we only consider the sufficiency rule. The triple
trade-off between the calibration rule, sufficiency rule, and prediction performance will be left as
future work.

Invariant Risk Minimization The analyzed fair-representation criteria shares a quite similar spirit
to the IRM (Arjovsky et al., 2019; Bühlmann, 2020; Creager et al., 2021), where an algorithm
IRM v1 is proposed to enable the out-of-distribution (OOD) generalization. The key difference be-
tween our work and (Arjovsky et al., 2019) lies in the algorithmic aspect: it has been theoretically
justified that the originally proposed IRM v1 does not necessarily capture the invariance (Rosenfeld
et al., 2020). By contrast, we directly solve the bi-level objective in the context of deep-learning
and propose an efficient practical algorithm with better empirical performance than IRM v1. Be-
sides, based on Chen et al. (2021), the proposed algorithm does not provably guarantee the OOD
generalization property due to the limited subgroups (N = 2) considered within the paper.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP
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Figure 3: Sufficiency gap (∆SufR) in
regression

In the paper, we adopt the sufficiency gap as fair metrics,
where Ŷ is denoted as:

Ŷ =

{
hε0 ◦ λ(X), X ∈ D0

hε1 ◦ λ(X), X ∈ D1

Then in the binary classification, we can estimate ∆SufC =∑
y∈{−1,+1} |D0(Y = y|Ŷ = y) − D1(Y = y|Ŷ = y)|

from the data.

As for regression, the sufficiency gap ∆SufR =∫
t
|D0(Y ≤ t|Ŷ ≤ t) − D1(Y ≤ t|Ŷ ≤ t)| (shown

in Fig. 3, the orange region) is difficult to estimate due
to the integration. To address this, we sample multi-
ple values {t1, . . . , tm} and compute its average differ-
ence as the approximation of the integration. ∆SufR ≈
1
m

∑m
i=1 |D0(Y ≤ ti|Ŷ ≤ ti)−D1(Y ≤ ti|Ŷ ≤ ti)|
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Method Accuracy (↑) ∆SufC (↓)
ERM (I) 0.768 ± 0.004 0.173 ± 0.008

Adv debias (II) 0.760 ± 0.008 0.291 ± 0.006
Mixup (III) 0.758 ± 0.003 0.343 ± 0.022

IRM v1 (IV) 0.753 ± 0.004 0.057 ± 0.015
One step (V) 0.755 ± 0.007 0.048 ± 0.008

Implicit 0.760 ± 0.007 0.051 ± 0.012

Table 1: Toxic comments dataset. Accuracy and
∆SufC in different approaches.
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Figure 4: Toxic. Accuracy-Fair Trade-off

Concretely, for a given ti in each group, we compute the percentile (Ŷ0) at point t: D0(Ŷ0 ≤ ti),
then we compute the corresponding ground truth cumulative distribution (Y ) at the same point ti:
D(Y ≤ ti|Ŷ ≤ ti). Through the aforementioned approximation, we can compute |D0(Y ≤ ti|Ŷ ≤
ti)−D1(Y ≤ ti|Ŷ ≤ ti)|.

Baselines We consider the baselines that add fairness constraints during the training process.
Specifically, we compare our method with (I) empirical risk minimization (ERM) that trains the
model without considering fairness; (II) adversarial debiasing (Zhang et al., 2018); (III) fair mix-up
(Chuang & Mroueh, 2021), a recent data-augmentation and effective approach in the fair represen-
tation learning. In fact, the baselines (II) and (III) are DP-based fair approaches, which is designed
to demonstrate the general non-compatibility in addressing the sufficiency based fairness.

Besides, we include two additional baselines that have the similar objective but different algorithmic
realizations. (IV) the original IRM regularization (referred as IRM v1) (Arjovsky et al., 2019),
which adds a gradient penalty to encourage the invariance. (V) One-step explicit alignment. In the
inner-level optimization, we suppose to conduct the one-step gradient descent for each sub-group.
Then in the outer-level optimization, we add a gradient-incoherence constraint to encourage the
identical (one-step) optimization path: minλ ‖∇h0L0(h0, λ) − ∇h1L1(h1, λ)‖22. All the results
are reported by averaging five repetitions and additional experimental details are delegated in the
Appendix.

6.2 EMPIRICAL RESULTS

6.2.1 TOXIC COMMENTS

The toxic comments dataset (Jigsaw, 2018) is a binary classification task in NLP to predict whether
comment is toxic or not. The original label is actually not binary since the comments is decided
by multiple annotators, where the labelling discrepancy generally occurs. To this end, we conduct
a simple strategy to decide comment is toxic if at least one annotator marks it. In this dataset, a
portion of comments have been labeled with identity attributes, including gender and race. It has
also been revealed that the race identity (e.g., black) is correlated with the toxicity label, which can
lead to the predictive discrimination. Thus we adopted the race as the protected group by selecting
two subgroups of Black and Asian. For the sake of computational simplicity, we first applied the
pretrained BERT (Devlin et al., 2018) to extract the word embedding with 748 dimensional vector.
Then we adopt representation function λ as two fully-connected layers with hidden dimension 200
with Relu activation and classifier h as a linear predictor. We report the test-set sub-group average
accuracy and sufficiency gap (∆SufC) in Tab. 1 and Fig. 4.

The results reveal several interesting facts. (1) The Demographic Parity (DP) based fair constraints
are generally non-compatible with the sufficiency rule. Specifically, baseline (II,III) even increase
∆SufC with higher value than ERM. (2) For the baselines that track the sufficiency rule (IV,V),
the sufficiency gap ∆SufC is improved with a similar accuracy, shown in Tab.1. We also change
the regularization coefficient in (IV,V) and κ in the implicit approach. We observe that the implicit
approach demonstrates a consistent better Accuracy-Fair trade-off, shown in Fig. 4.
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Method Accuracy (↑) ∆SufC (↓)
ERM (I) 0.780 ± 0.015 0.210 ± 0.022

Adv debias (II) 0.785 ± 0.022 0.165 ± 0.028
Mixup (III) 0.792 ± 0.011 0.160 ± 0.010

IRM v1 (IV) 0.795 ± 0.012 0.086 ± 0.015
One step (V) 0.797 ± 0.006 0.086 ± 0.012

Implicit 0.794 ± 0.027 0.074 ± 0.020

Table 2: CelebA dataset. Accuracy and predictive
parity in different approaches.
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Figure 5: CelebA. Accuracy-Fair Trade-off

6.2.2 CELEBA DATASET

The CelebA dataset (Liu et al., 2015) contains around 200K images of celebrity faces, where each
image is associated with 40 human-annotated binary attributes including gender, hair color, young,
etc. In this paper, we designate gender as the sensitive attribute, and attractive as the binary clas-
sification task. We randomly select around 82K and 18K images as the training and validation set.
Then we adopt representation function λ as pre-trained ResNet-18 (He et al., 2016) and classifier
h as two-fully connected layers. We report the test-set sub-group average accuracy and sufficiency
gap (∆SufC) in Tab. 2 and Fig. 5.

The results in the CelebA show similar behaviors with the Toxic comments. Specifically, the DP
based fair approaches (II, III) did not effectively improve ∆SufC , shown in Tab. 2. In contrast, the
sufficiency can be significantly improved in baselines (IV, V) and implicit approach without largely
losing the accuracy. Specifically, Fig. 5 visualizes the accuracy-fair trade-off curve, where the later
three approaches show quite similar behaviors.

6.2.3 LAW DATASET

The Law Dataset is a regression task to predict a students GPA (real value, ranging from [0, 4]),
where the data is utilized from the School Admissions Councils National Longitudinal Bar Passage
Study (Wightman, 1998) with 20K examples. In the regression task, we adopt the square loss and
race as the protected attribute (white versus non-white). We adopt λ as the one fully connected
layer with hidden dimension 100 and Relu activation and predictor h as a linear predictor. We report
the test-set subgroup average MSE (Mean Square Error) and sufficiency gap (∆SufR) in Tab. 1 and
Fig. 4.

Compared to the classification task, the results show similar behaviors in the regression. Specifically,
the DP based fair approaches (II, III) still increase ∆SufR in the regression. In contrast, the gap is
significantly improved in our proposed approach and baseline (IV,V). Specifically, Fig. 7 visualizes
the sufficiency-gap of different approaches, where the implicit approach significantly mitigate the
sufficiency gap. Besides, Fig. 6 shows the MSE-sufficiency gap curve, which still reveals the implicit
approach benefits a better trade-off between the performance and fairness.

Method MSE (↓) ∆SufR (↓)
ERM (I) 0.190 ± 0.005 0.160 ± 0.007

Adv debias (II) 0.223 ± 0.008 0.188 ± 0.012
Mixup (III) 0.216 ± 0.012 0.172 ± 0.007

IRM v1 (IV) 0.208 ± 0.006 0.096 ± 0.006
One step (V) 0.204 ± 0.007 0.125 ± 0.010

Implicit 0.198 ± 0.005 0.091 ± 0.011

Table 3: Law dataset. MSE and sufficiency gap in
different approaches.
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Figure 6: Law. MSE-Fair Trade-off
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(a) ERM
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(b) Fair Mix-up
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(c) Implicit

Figure 7: Illustration of the sufficiency gap (∆SufR) in Law dataset (regression). The ERM and Fair
mix-up suffer a high ∆SufR, while the proposed implicit alignment can significantly mitigate the
sufficiency gap.

Method MSE (↓) ∆SufR (↓)
ERM (I) 1.939 ± 0.021 0.246 ± 0.019

Adv debias (II) 1.982 ± 0.016 0.252 ± 0.020
Mixup (III) 1.979 ± 0.025 0.246 ± 0.023

IRM v1 (IV) 1.927 ± 0.031 0.077 ± 0.009
One step (V) 1.904 ± 0.027 0.090 ± 0.019

Implicit 1.906 ± 0.019 0.051 ± 0.005

Table 4: NLSY dataset. MSE and sufficiency gap
in different approaches.
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Figure 8: NLSY. MSE-Fair Trade-off

6.2.4 NLSY DATASET

The National Longitudinal Survey of Youth (NLSY, 2021) dataset is a regression task with around
7K dataset, which involves the survey results of the U.S. Bureau of Labor Statistics. It is intended to
gather information on the labor market activities and other life events of several groups for predicting
the income y of each person. We treat the gender as the sensitive attribute. We also normalize the
output y by diving the 10, 000, then the final output y ranges around [0, 8]. The prediction loss
is also the square loss. We adopt representation λ as the two fully connected layers with hidden
dimension 200 and Relu activation and predictor h as a linear predictor. We report the test-set
sub-group average MSE (Mean Square Error) and Sufficiency Gap (∆SufR) in Tab. 4 and Fig. 8.

Tab. 4 provides similar trends with other datasets. Baselines (IV,V) and implicit approach effective
control the sufficiency gap, while the DP based approach generally fails to improve the gap. Fig. 8
reveals a slightly better approximation-fair trade off for the implicit approach. Finally, Fig. 11 (in
Appendix) visualizes the sufficiency gap of different algorithms. The gap is actually significantly
improved while the calibration gap still exists, which is consistent with (Liu et al., 2019). Therefore
it can be quite interesting and promising to analyze the triple trade-off between the sufficiency gap,
calibration gap and prediction performance in the regression.

7 CONCLUSION

We considered the fair representation learning from a novel perspective through encouraging the
invariant optimal predictors on the top of data representation. Then we formulated this problem as a
bi-level optimization and proposed an implicit alignment algorithm. We further demonstrated the bi-
level objective is to fulfil the sufficiency rule. Besides, we also analyzed the error gap of the implicit
algorithm. The empirical results in both classification and regression settings suggest the improved
fairness measurement. Finally, we think the future work can include developing computationally
efficient explicit algorithms for avoiding the biased gradient computation.
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ETHICS STATEMENT

This paper proposed a novel fair representation algorithm, which aims to address the potential pre-
diction discrimination towards several subgroups. The proposed approach may also introduce the
potential negative impact: we merely address the fairness with respect to the sufficiency rule in the
paper, which is not always the preferable criteria in several specific scenarios.

REPRODUCIBILITY STATEMENT

We provided a demo source code in the supplementary material for a better understanding the pro-
posed algorithm. Besides, the detailed experimental descriptions and theoretical proofs are also
provided in the appendix.
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A PROPOSITION 1

We consider the regression and classification separately.

Regression According to the definition, given a fixed and deterministic representation λ, we have

L0(h, λ) = ED0(h(z)− y)2

It is noted as a typical regression problem with square error. We set the derivative as zero:
∇hL0(h, λ) = 0, we have h?0(z) = ED0 [Y |Z = z]. As for D1, we apply the same strategy
with h?1(z) = ED1 [Y |Z = z]. Based on the invariant optimal predictor, we have ED0 [Y |Z = z] =
ED1

[Y |Z = z] with z = λ(x).

Classification According to the definition, we have:

L0(h, λ) = ED0
log(1 + exp(−yh(z)))

Since the optimal predictor on the logistic loss is the log-conditional density ratio: h?0(z) =

log
(
D0(Y=1|Z=z)
D0(Y=−1|Z=z)

)
. Observe that in the binary classification with Y = {−1, 1}, we have

D0(Y = 1|Z = z) = 1
2 (1 + ED0

[Y |Z = z]) and D0(Y = −1|Z = z) = 1
2 (1 − ED0

[Y |Z = z]),
then we have:

h?0(z) = log

(
1 + ED0

[Y |Z = z]

1− ED0 [Y |Z = z]

)
As for D1, we adopt the same strategy and we have log

(
1+ED0

[Y |Z=z]

1−ED0
[Y |Z=z]

)
= log

(
1+ED1

[Y |Z=z]

1−ED1
[Y |Z=z]

)
,

then we have ED0 [Y |Z = z] = ED1 [Y |Z = z].

As for the predictive parity, since we have ED0
[Y |Z = z] = ED1

[Y |Z = z] and h? = h?1 = h?2,
then we have ED0

[Y |h?(z)] = ED1
[Y |h?(z)].

B APPROXIMATION ERROR

Theorem 2 (Approximation Error Gap). Suppose that (1) Smooth Predictive Loss. The first-order
derivatives and second-order derivatives of L are Lipschitz continuous; (2) Non-singular Hessian
matrix. We assume∇h0,h0

L0(h0, λ),∇h1,h1
L1(h1, λ), the Hessian matrix of the inner optimization

problem, are invertible. (3) Bounded representation and predictor function. We assume the λ
and h are bounded, i.e., ‖λ‖, ‖h‖ are upper bounded by the predefined positive constants. Then
the approximation error between the ground truth and algorithmic estimated gradient w.r.t. the
representation is be upper bounded by:

‖grad(λ)− ˜grad
δ
(λ)‖ = O(κε+ ε+ δ).

Proof. We denote grad(λ) as the ground truth gradient w.r.t. λ in outer-level loss (given the optimal
predictor h?0, h?1). Then we aim to bound

‖grad(λ)− ˜grad
δ
(λ)‖

We first introduce the following terms for facilitating the proof:

Aε0 = ∇h0
∇λL0(hε0, λ), Aε1 = ∇λ∇h1

L1(hε1, λ), A?0 = ∇λ∇h0
L0(h?0, λ), A?1 = ∇λ∇h1

L1(h?1, λ),

Bε0 = ∇λL0(hε0, λ), Bε1 = ∇λL1(hε1, λ), B?0 = ∇λL0(h?0, λ), B?1 = ∇λL1(h?1, λ),

p?0 =
(
∇2
h0
L0(h?0, λ)

)−1
(∇h0

L0(h?0, λ) + κ(h?0 − h?1)) ,

p?1 =
(
∇2
h1
L1(h?1, λ)

)−1
(∇h1

L1(h?1, λ)− κ(h?0 − h?1)) .

Then the approximation error gap can be expressed as:

‖grad(λ)− ˜grad
δ
(λ)‖ = ‖ (B?0 −A?0p?0 +B?1 −A?1p?1)−

(
Bε0 −Aε0pδ0 +Bε1 −Aε1pδ1

)
‖

≤
1∑
i=0

‖B?i −Bεi ‖+

1∑
i=0

‖A?ip?i −Aδipδi ‖
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Due to the symmetric of D0 and D1, we only focus on the term on i = 0, the the upper bound in
i = 1 can be derived analogously.

As for bounding ‖B?0 −Bε0‖, since we assume first order derivative of the loss is Lipschitz functions
(with constant L1), then we have :

‖B?0 −Bε0‖ ≤ L1‖h?0 − hε0‖ ≤ εL1

Then the second term can be upper bounded by three terms:

‖A?0p?0 −Aδ0pδ0‖ ≤ ‖A?0p?0 −A?0p0‖︸ ︷︷ ︸
(1)

+ ‖A?0p0 −Aε0p0‖︸ ︷︷ ︸
(2)

+ ‖Aε0p0 −Aε0pδ0‖︸ ︷︷ ︸
(3)

Before estimating the upper bound, we first demonstrate ‖Aε0‖ and ‖A?0‖ are also bounded.

Since we assume λ and h are bounded (assuming the bounded constant as η and φ), the second order
derivative are Lipschitz (with constant L2). Then we consider another fixed point (λ′, h?0(λ′)) with
bounded second order derivative: A0 = ∇2

h0,λ
L0(h?0(λ′), λ′) and ‖A0‖ ≤ A. We have:

‖A?0 −A0‖2 ≤ L2‖[h?0(λ), λ]− [h?0(λ′), λ′]‖2 ≤ L2

√
η2 + φ2

Thus we have ‖A?0‖ ≤ A + L2

√
η2 + φ2 = A?sup. As for the second derivative at point hε0, it can

be upper bounded analogously with a similar constant Aεsup.

The upper bound of term (1) We have:

‖A?0p?0 −A?0p0‖ ≤ ‖A?0‖‖p?0 − p0‖

We have proved ‖A?0‖ is upper bounded by A?sup. We additionally introduce the following auxiliary
terms:

P ?0 =
(
∇2
h0
L0(h?0, λ)

)−1
, P ε0 =

(
∇2
h1
L1(h?1, λ)

)−1
.

b?0 = ∇h0
L0(h?0, λ) + κ(h?0 − h?1), bε0 = ∇h0

L0(hε0, λ) + κ(hε0 − hε1)

Then we have:

‖p?0 − p0‖ = ‖P ?0 b?0 − P ε0bε0‖
≤ ‖P ?0 b?0 − P ?0 bε0‖+ ‖P ?0 bε0 − P ε0bε0‖
≤ ‖P ?0 ‖‖b?0 − bε0‖+ ‖bε0‖‖P ?0 − P ε0‖

As for the ‖P ?0 ‖, since we assume the Hessian matrix is invertible thus its norm is upper bounded
by some constant (denoted as A−1). As for ‖b?0 − bε0‖, we have:

‖b?0 − bε0‖ ≤ ‖∇h0
L0(h?0, λ)−∇h0

L0(hε0, λ)‖+ 2κε

≤ εL1 + 2κε

Thus we have ‖P ?0 ‖‖b?0 − bε0‖ ≤ A−1(εL1 + 2κε).

As for ‖bε0‖, we can easily verify that it is indeed bounded by some constant b. For the first term,
we can adopt the same strategy in proving bounded ‖A?0‖. As for the second term in bε0, it is upper
bounded by 2κφ, due to the bounded predictor.

We now demonstrate ‖P ?0 − P ε0‖. Denoting ∆ = (P ?0 )−1 − (P ε0 )−1, then according to the second
order Lipschitz assumption, we have: ‖∆‖ ≤ εL2. Plugging in the result, we have:

‖P ?0 − P ε0‖ = ‖(P ?0 )∆(P ε0 )‖ ≤ ‖P ?0 ‖‖∆‖‖P ε0‖ ≤ (A−1)2L2ε

We still adopt the assumption that the bounded Hessian-inverse matrix by A−1.

Plugging in all the results, we have:

(1) ≤ A1(εL1 + 2κε) + b(A1)2L2ε := O(κε+ ε)
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The upper bound of term (2) We have:

‖A?0p0 −Aε0p0‖ ≤ ‖p0‖2‖A?0 −Aε0‖

Since we assume the loss is second-order Lipschitz, thus we have

‖A?0 −Aε0‖ = ‖∇λ∇h0L0(h?0, λ)−∇λ∇h0L0(hε0, λ)‖ ≤ L2‖h?0 − hε0‖ ≤ εL2

We can also demonstrate ‖p0‖ is bounded. According to the definition we have:

‖p0‖ ≤ ‖
(
∇2
h0
L0(hε0, λ)

)−1 ‖‖ (∇h0
L0(hε0, λ) + κ(hε0 − hε1)) ‖

(i)

≤ A−1(L1‖h?0 − hε0‖2 + 2κφ)

(ii)

≤ A−1(εL1 + 2κφ)

For (i), we assume: 1) the Hessian matrix is invertible thus its norm is surely upper bounded by
some constant (denoted as A−1), 2) the first-order derivative is Lipschitz (bounded by L1), 3) the
predictor h is bounded. For (ii), we adopt the definition of hε0.

Therefore, the upper bound for Term (2) is formulated as:

(2) ≤ εL2A−1(εL1 + 2κφ) := O(κε)

The upper bound of term (3) We have:

‖Aε0p0 −Aε0pδ0‖ ≤ ‖Aε0‖‖p0 − pδ0‖ ≤ δAεsup = O(δ)

Through the upper bound in (1)-(3), we finally have the error between the estimated and ground-truth
gradient:

‖grad(λ)− ˜grad
δ
(λ)‖ = O(κε+ ε+ δ)

C THE CONVERGENCE BEHAVIOR

For the sake of completeness, we provide the convergence analysis of the proposed algorithm.
Proposition 2. We execute the implicit alignment algorithm (Algo. 1), obtaining a sequence of
λ1, . . . , λk, . . . . Supposing the fair constraint κ is fixed. The optimization tolerances are summable:∑
k ε

2
k ≤ +∞ and

∑
k δ

2
k ≤ +∞, then λk is proved to be converged with

lim
k→∞

λk = λ?.

If the stationary point λ? is also within the bounded norm, then we have:

grad(λ?) = 0.

Proof. We denote the entire outer-level loss w.r.t. λ as L(λ), by the assumption the β-smooth loss
L. Then at iteration k + 1 and k, we have:

L(λk+1) ≤ L(λk)− grad(λk)T (λk − λk+1) +
β

2
‖λk+1 − λk‖2

= L(λk)−
(

grad(λk)− ˜grad
δ
(λk) + ˜grad

δ
(λk)

)T
(λk − λk+1) +

β

2
‖λk+1 − λk‖2

= L(λk)−
(

grad(λk)− ˜grad
δ
(λk)

)T
(λk − λk+1)− ˜grad

δ
(λk)(λk − λk+1) +

β

2
‖λk+1 − λk‖2

Since we assume the representation is within the bounded norm, the projection onto the convex
set are non-expansive operators (Boyd et al., 2004). Then for any point p, q, we have ‖proj(p) −
proj(q)‖2 ≤ (p− q)T (proj(p)− proj(q)). Then we set λk and λk+1 = λk − 1

β
˜grad

δ
(λk), we have:

‖λk − λk+1‖2 ≤
1

β
( ˜grad

δ
(λk))T (λk − λk+1)
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Plugging into the results, we have:

L(λk+1) ≤ L(λk)−
(

grad(λk)− ˜grad
δ
(λk)

)T
(λk − λk+1)− β

2
‖λk+1 − λk‖2

≤ L(λk) + ‖grad(λk)− ˜grad
δ
(λk)‖‖λk − λk+1‖ −

β

2
‖λk+1 − λk‖2

Rearranging the inequality, we have:
β

2
‖λk+1 − λk‖2 − ‖grad(λk)− ˜grad

δ
(λk)‖‖λk − λk+1‖+ (L(λk+1)− L(λk)) ≤ 0

Then we have:

‖λk+1 − λk‖ ≤
1

β

(
‖grad(λk)− ˜grad

δ
(λk)‖+

√
‖grad(λk)− ˜grad

δ
(λk)‖2 − 2β (L(λk+1)− L(λk))

)
By denoting Bk = ‖grad(λk)− ˜grad

δ
(λk)‖ and Ck = L(λk+1)− L(λk). Then we have:

‖λk+1 − λk‖2 ≤
1

β2

(
B2
k +B2

k − 2βCk + 2Bk

√
B2
k − 2βCk

)
≤ 1

β2

(
B2
k +B2

k − 2βCk +B2
k +B2

k − 2βCk
)

=
4

β2
[‖grad(λk)− ˜grad

δ
(λk)‖22 − 2β (L(λk+1)− L(λk))]

Taking sum over k, we have:
+∞∑
k=1

‖λk+1 − λk‖2 ≤
4

β2

+∞∑
k=1

‖grad(λk)− ˜grad
δ
(λk)‖22 −

8

β
( lim
k→∞

L(λk+1)− L(λ1))

≤ 4

β2

∑
k

[(C + κ)2ε2k + δ2k]− 8

β

(
lim
k→∞

L(λk+1)− L(λ1)

)
< +∞

Since 1) the first term on the right side is finite, because the optimization tolerance is summable; 2)
the second term is also finite, because the loss is assumed to be bounded. Then the upper bound is
finite. In order to satisfy this condition, on the left side we should have:

lim
k→∞

λk+1 − λk = 0

By adopting the definition λk+1 = Proj(λk − ˜grad
δ
(λk)) and limk→∞ ˜grad

δ
(λk) = grad(λk)

(Based on theorem 1, the limit of the optimization tolerance is zero), then we have:
λ? = proj(λ? − grad(λ?))

Where λ? = limk→+∞ λk+1 = limk→+∞ λk. Since the projection is on the bounded norm Lnorm
and λ? is within the bounded norm space, thus if λ? − grad(λ?) is within the bounded norm space,
we have:

grad(λ?) = 0

Else if λ? − grad(λ?) is outside the bounded norm space, then according to the definition, the pro-
jection of λ?−grad(λ?) is surely on the boundary of the Lnorm space, with ‖proj(λ?−grad(λ?))‖ =
Lnorm. However, we have assumed the λ? is within the bounded norm space with ‖λ?‖ < Lnorm,
which leads to the contradiction. Based on these discussions, we finally have:

grad(λ?) = 0

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 ADDITIONAL DETAILS

Toxic Comments We split the training, validation and testing set as 70%, 10% and 20%. We
adopt Adam optimizer with learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each
subgroup and we use sampling with replacement to run the explicit algorithm with maximum epoch
100. The fair coefficient is generally set as κ = 0.1 ∼ 0.001. As for the inner-optimization step, the
iteration number is 20 and the iteration in running conjugate gradient approach is 10.
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CelebA The training/validation/test set are around 82K, 18K and 18K. We also adopt the Adam
optimizer with learning rate on λ : 10−5 ∼ 10−4 and h : 10−3. The batch-size is set as 64 for each
subgroup and we iterate the whole dataset as one epoch. The maximum running epoch is set as 20
and the iteration in running conjugate gradient approach is 10.

Law We split the training, validation and testing set as 70%, 10% and 20%. Then we adopt Adam
optimizer with learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each subgroup and
we use sampling with replacement to run the implicit algorithm, with the maximum epoch 100. We
adopt the MSE loss in the regression. The fair coefficient is generally set as κ = 0.1 ∼ 10−4. As
for the inner-optimization, the iteration number is 20 and the iteration in running conjugate gradient
is 10. In computing the sufficiency gap in the regression, we sample 33 points to compute the gap.

NLSY We split the training, validation and testing set as 70%, 10% and 20%. Then we adopt
Adam optimizer with learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each
subgroup and we use sampling with replacement to run the implicit algorithm, with maximum
epoch 100. We adopt the MSE loss in the regression. The fair coefficient is generally set as
κ = 0.1 ∼ 10−4. As for the inner-optimization, the iteration number is 20 and the iteration in
running conjugate gradient is 10. In computing the sufficiency gap, we sample 33 points to compute
the sufficiency gap.

D.2 ADDITIONAL EMPIRICAL RESULTS
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Figure 9: Computational time between T -step explicit and implicit approach in CelebA. Specifically,
solver = 2 indicates the the conjugate gradient is executed 2 iterations. The results reveals the
benefits of implicit approach: avoiding the back-propagation through the inner-optimization path.
In contrast, the time complexity in explicit approach linearly increases with the inner-optimization
step, which is consistent with our analysis.

Computational complexity To show the efficiency of the implicit approach, we empirically com-
pare the computational complexity of the T -step explicit alignment and implicit approach (for dif-
ferent iterations of conjugate gradient solver.) The experimental results verified the efficiency of the
implicit approach, where a significant large inner-optimization step does not considerably increase
the computational time.

Gradient evolution We also visualize the gradient norm of the representation λ in the Toxic
dataset, shown in Fig. 10. The results verify the convergence behavior and the gradient norm fi-
nally tends to zero.

D.3 DISCUSSION WITH NON-DEEP LEARNING BASELINES

In order to show the effectiveness of the proposed approach, we additionally compare the FAHT
(Zhang & Ntoutsi, 2019), a decision tree based fair classification approach. We evaluated the empir-
ical performance on Toxic comments dataset.
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Figure 10: Gradient Norm evolution w.r.t. representation λ in Toxic comments dataset. We visualize
the norm of ˜grad

δ
(λ) at each training epoch, which suggests a convergence behavior and the gradient

finally tends to zero.

Table 5: Comparison with Fairness Aware Decision Tree

Method Accuracy (↑) ∆SufC (↓)
FAHT 0.596 0.397
Implicit 0.760 0.051

The implicit approach demonstrates the considerable better results, which may come from two as-
pects: (1) the Toxic task is a high-dimensional classification problem (x ∈ R748), where the deep
learning based approach is more effective in handling the high-dim dataset. (2) The FAHT aims to
realize the statistical parity (the independence rule), which is not compatible with the sufficiency.
According to the analysis of (Barocas et al., 2019), when the sensitive attribute (A) and label (Y)
are not independent (This has been justified by computing their Pearson Correlation coefficient), the
sufficiency and independence cannot both hold.

D.4 SUFFICIENCY GAP IN REGRESSION

We visualize the sufficiency gap of NLSY dataset.

E COMPLEMENTARY TECHNICAL DETAILS

We present complementary details that are related to the paper.

E.1 CONJUGATE GRADIENT METHOD

We present the Conjugate Gradient (CG) algorithm in Algo. 2 through autograd. In the conven-
tional CG algorithm with objective 1

2x
TAX−bX , we need to estimateAX and compute its residual

and update X . Since in our problem setting, the A = ∇2
h0
L0(hε0, λ), then computing AX can be

realized through Hessian-vector product through autograd, denoted as function F in the paper.
i.e.,∇2

h0
L0(hε0, λ)X = F (x).

Below we provided a simple PyTorch code for realizing the Hessian Vector product.

1 import torch
2 def hessain_vector_product(loss,model,vector):
3 # loss: the defined loss
4 # model: the model in computing the Hessian
5 # vector: the required vector in computing Hessian-vector product
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(a) ERM
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(b) Fair Mix-up
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(c) Implicit

Figure 11: Illustration of the sufficiency gap in NLSY dataset. The ERM and mix-up suffer the
high predictive sufficiency-gap, while the proposed implicit alignment can significantly mitigate the
sufficiency gap. In contrast, the probability calibration is not improved. This results also verifies the
inequivalence between the sufficiency gap and calibration gap (Liu et al., 2019).

Algorithm 2 Conjugate Gradient Method

Ensure: Function F that computes Hessian-vector product through autograd, initial value X0,
bias vector B.

1: Computing Residual: r0 = B − F (X0)
2: Set p0 = r0
3: for inner iterations k do
4: Computing αk ← rTk rk

pTk F (pk)

5: Xk+1 ← Xk + αkpk
6: rk+1 ← rk − αkF (pk)
7: If rk+1 is sufficiency small, then stop.

8: βk ←
rTk+1rk+1

rTk rk

9: pk+1 ← rk+1 + βkpk
10: end for
11: return Xk+1

6 partial_grad = torch.autograd.grad(loss, model_parameters(),
create_graph=True)

7 flat_grad = torch.cat([g.contiguous().view(-1) for g in partial_grad
])

8 h = torch.sum(flat_grad * vector_to_optimize)
9 hvp = torch.autograd.grad(h, model.parameters())

10 return hvp

Listing 1: Simple demo in computing Hessian vector product

E.2 CALIBRATION GAP IN THE REGRESSION

Based on Kuleshov et al. (2018), we first compute the predicted cumulative distribution (Ŷ0) of at
point t: D0(Ŷ0 ≤ t) = α, then we compute the corresponding ground truth cumulative distribution
(Y0) at point t. By changing t, we obtain several points on function D0(Y ≤ t|Ŷ0 ≤ t) = β. Then
the regression is probabilistic calibrated when α ≡ β. From this perspective, the zero calibration
gap can guarantee a zero sufficiency gap. But the inverse is not necessarily true, as our experimental
results suggest, a small sufficiency gap can lead to either small or large calibration gap. Thus it can
be quite promising to explore their inherent relations and trade-off in the fair regression.
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