
RLJ | RLC 2024

Unifying Model-Based and Model-Free Reinforce-
ment Learning with Equivalent Policy Sets

Benjamin Freed
bfreed@cs.cmu.edu
Robotics Institute
Carnegie Mellon University

Thomas Wei
thomaswe@cs.cmu.edu
Robotics Institute
Carnegie Mellon University

Roberto Calandra
roberto.calandra@tu-dresden.de
Centre for Tactile Internet
with Human-in-the-Loop
TU Dresden

Jeff Schneider
jeff.schneider@cs.cmu.edu
Robotics Institute
Carnegie Mellon University

Howie Choset
choset@cs.cmu.edu
Robotics Institute
Carnegie Mellon University

Abstract

Model-based and model-free reinforcement learning (RL) each possess relative
strengths that prevent either algorithm from strictly outperforming the other.
Model-based RL often offers greater data efficiency, as it can use models to evaluate
many possible behaviors before choosing one to enact. However, because models
cannot perfectly represent complex environments, agents that rely too heavily on
models may suffer from poor asymptotic performance. Model-free RL, on the other
hand, avoids this problem at the expense of data efficiency. In this work, we seek a
unified approach to RL that combines the strengths of both approaches. To this end,
we introduce the concept of equivalent policy sets (EPS), which quantify the limi-
tations of models for the purposes of decision-making, i.e., action selection. Based
on this concept, we propose Unified RL, a novel RL algorithm that uses models
to constrain model-free RL to the set of policies that are not provably suboptimal,
according to model-based bounds on policy performance. We demonstrate across a
range of benchmarks that Unified RL effectively combines the relative strengths of
both model-based and model-free RL, in that it achieves comparable data efficiency
to model-based RL, while achieving asymptotic performance similar or superior to
that of model-free RL. Additionally, we show that Unified RL often outperforms a
number of existing state-of-the-art model-based and model-free RL algorithms, and
can learn effective policies in situations where either model-based or model-free RL
alone fail.

1 Introduction

Recent successes in model-based reinforcement learning (MBRL) have demonstrated the enormous
value that learned representations of environmental dynamics (i.e., models) can confer to au-
tonomous decision-making. For example, models allow agents to evaluate many possible future
behaviors, without requiring additional expensive and potentially dangerous environmental interac-
tions. This process is referred to as planning, and is a cornerstone of autonomous decision-making.

Models also hold the potential to facilitate cross-task knowledge transfer (Killian et al., 2017) and
intelligent exploration (Lowrey et al., 2018; Sekar et al., 2020; Mehta et al., 2021; 2022). In practice,
MBRL algorithms often achieve higher data efficiency than model-free algorithms (Deisenroth &
Rasmussen, 2011; Heess et al., 2015; Gal et al., 2016a; Chua et al., 2018; Janner et al., 2019; Hafner
et al., 2019; 2020; Lin et al., 2023). That being said, models come with their own set of limitations.



RLJ | RLC 2024

Due to their limited representational capacity, models will typically fall short of capturing the full
complexity of the real environmental dynamics, which may help explain why MBRL often fails to
match the asymptotic performance of model-free RL (MFRL) (Wang et al., 2019).

This limitation of models is exacerbated by the objective mismatch problem (Wei et al., 2023):
model-learning objectives typically used in MBRL, which are based on some generic measure of
accuracy, are often misaligned with the overall goal of increasing reward. Objective mismatch has
been shown to negatively impact MBRL performance in practice (Lambert et al., 2020). Several
recent approaches have attempted to address objective mismatch by deriving model-learning objec-
tives that are more aligned with the overall RL objective, to enable learned models to be more useful
for policy improvement (Joseph et al., 2013; Luo et al., 2018; Rajeswaran et al., 2020; Chow et al.,
2020; Grimm et al., 2020; D’Oro et al., 2020; Eysenbach et al., 2022; Ghugare et al., 2022; Wei et al.,
2023).

Since practical models will always differ from the true dynamics by some degree, we argue that over-
reliance on models will invariably result in some degree of suboptimality. For this reason, we take
an alternative approach to addressing the objective mismatch problem. We seek to develop agents
that understand the limitations of their models, allowing them to switch to an alternative (e.g., a
model-free) learning paradigm in situations where models are not useful for policy improvement. We
believe that such an agent would enjoy the benefits of both model-based and model-free learning.
To this end, we propose equivalent policy sets (EPS), a novel concept for quantifying the limitations
of a model for estimating optimal behaviors. We define the EPS as the set of policies that are
not provably suboptimal, using bounds on the performance of candidate policies, computed using a
model. Intuitively, the EPS captures the usefulness of a particular model class for discerning optimal
from suboptimal policies.

Based on the concept of the EPS, we propose Unified RL, a principled approach to combining
MBRL and MFRL that takes advantage of their relative strengths. Unified RL constrains the policy
found by MFRL (e.g., soft actor-critic) to lie within the set of non-provably suboptimal policies (the
EPS). Here, models are used as a sort of “pre-filtering” step that eliminates provably suboptimal
policies from consideration by MFRL. Unified RL leverages the ability of models to rapidly rule-out
suboptimal candidate behaviors, while avoiding limitations on asymptotic performance that they
introduce.

Unified RL takes a principled approach to dealing with modeling error, because in situations where
modeling error is large (e.g., when the environmental dynamics are too complex to be represented
accurately, or model learning fails to converge), the lower bounds used to construct the EPS will
be loose. As a result, the EPS will be large, and Unified RL will mostly resemble model-free RL.
In other words, Unified RL avoids overreliance on its model by avoiding the elimination of policies
that the model cannot accurately evaluate due to modeling error.

We show empirically that Unified RL is able to combine the benefits of both model-based and
model-free RL on a range of challenging continuous control benchmarks. Furthermore, we show that
Unified RL outperforms a wide range of state-of-the-art model-based and model-free RL algorithms.
Finally, we show that Unified RL is robust to failure of either its model-based or model-free compo-
nents. Specifically, when distractors are introduced that prevent the agent from learning well-aligned
models, Unified RL continues to make learning progress using model-free policy updates. On the
other hand, when poorly selected model-free hyperparameters are used that cause MFRL to fail,
Unified RL resorts to MBRL.

2 Background

We represent the environment with which the agent interacts as a Markov decision process (MDP)
with initial state distribution s0 ∼ p0(s0), state transition dynamics st+1 ∼ T (st+1|st, at), reward
function rt ∼ R(rt|st, at) for t ∈ {0, ..., T}, and discount factor γ ∈ [0, 1]. For simplicity, we assume
γ = 1 and hence ignore it in future exposition. We consider continuous control problems, wherein



RLJ | RLC 2024

the agent learns a policy π ∈ Π where π : S × A → [0,∞) is a state-dependent probability density
function over a real-valued action space.

In this work, we formulate the RL problem in Bayesian terms, although the approach is not re-
stricted to Bayesian algorithms. We are concerned with the Bayesian posterior over state transition
and reward functions, given by p(w|D) = p(D|w)p(w)/p(D), where D is all data observed thus far
in the environment, w denotes a parameter vector that parameterizes both the state transition
and reward functions, and p(w) is our prior. The prior represents our belief about the dynam-
ics before observing data D, and can be informed by domain-specific knowledge or from previous
tasks. Here, we do not assume that we possess any prior knowledge, and therefore choose a generic
prior (a Gaussian over w, see Sec. 3.2). We denote our models of the state transition function
and reward function, conditioned on a certain parameter vector w, as p(s′|s, a, w) and p(r|s, a, w),
respectively. The distribution of trajectories τ given a particular policy π and parameters w is
given by p(τ |π, w) = p(s0)π(a0|s0)p(r0|s0, a0, w)

∏T
t=1 p(st|st−1, at−1, w)π(at|st)p(rt|st, at, w). Our

inferred posterior distribution over trajectories given the available data D and a policy π is given
by p(τ |D) = Ep(w|D)p(τ |π, w). We denote the expected return of π given a particular parameter
vector w as J(π|w) = Ep(τ |π,w)

[∑T
t=0 rt

∣∣∣π, w
]
. Finally, we define the Bayesian return of a policy

π to be the expected sum of rewards achieved by π, in expectation over our Bayesian posterior
over trajectories This is the quantity that our approach to Bayesian RL attempts to maximize. We
refer to a policy that maximizes the Bayesian return π∗ ∈ arg maxπ∈Π J(π|D) as the Bayes-optimal
policy. Note that, by this definition, the Bayes-optimal policy does not depend explicitly on history
outside the current episode, as is the case for some definitions Duff (2002). Similarly, we refer to
any policy π /∈ arg maxπ∈Π J(π|D) as Bayes-suboptimal.

For many interesting model classes, exact Bayesian posteriors are intractable, and must therefore
be approximated with some tractable distribution family. We denote approximate posteriors with
q(w; θ) ∈ Q, where θ denotes the parameters of the distribution. For example, if q is a multivariate
normal distribution, θ may contain the mean vector and variance matrix. We henceforth refer to q
as our model, because it encodes our learned representation of (our posterior over) the environmental
dynamics. In practice, we use a dropout Bayesian neural network (Gal & Ghahramani, 2016b) to
represent q, as these have been shown to work well in MBRL (Gal et al., 2016a; Depeweg et al.,
2017; Gamboa Higuera et al., 2018).

3 Unifying Model-Based and Model-Free Reinforcement Learning

Here, we introduce the concept of equivalent policy sets (EPS) as a tool for quantifying the limitations
of models for the purposes of approximating optimal policies. Subsequently, we describe Unified
Reinforcement Learning, which builds on the concept of the EPS to combine the strengths of model-
based and model-free RL.

3.1 Equivalent Policy Sets

To achieve our ultimate goal of developing agents that can flexibly switch between model-based and
model-free learning, agents must understand the limitations of models for evaluating and improving
policies. To this end, we propose equivalent policy sets (EPS) as a tool for quantifying the usefulness
of a model for discerning optimal from suboptimal policies. More precisely, we define the EPS
ΠE(θ, D) ⊆ Π to be the set of all policies that are not provably Bayes-suboptimal, using a model
with parameters θ and available data D. To prove the suboptimality of a particular policy π, we
use our model to compute a lower bound on (a function f of) the improvement in Bayesian return
of a new policy π′ over π,

L(π, π′, θ, D) ≤ f((J(π′|D)− J(π|D))) , (1)



RLJ | RLC 2024

where f is a monotonically increasing function. Although one could use any such L, in this work we
take L to be of the form

L(π, π′, θ, D) = Eq

[
f

(
p(D|w)p(w)

q(w; θ) (J(π′|w)− J(π|w))
) ]

, (2)

MBRL

MFRL

Data

Unified RL Agent Environment

Figure 1: Unified RL combines model-based
and model-free RL using the equivalent pol-
icy set (EPS). At each iteration, data from a
shared buffer are used to update a model-
based policy and a model-free policy. We
then check whether the model-free policy is
contained within the EPS, that is, the set
of policies that cannot be proven to be sub-
optimal, according to bounds on policy per-
formance computed using the model. If the
model-free policy is within the EPS, it is used
to collect another episode of data in the en-
vironment, which is added to the data buffer.
Otherwise, the model-based policy is used to
collect more data.

which we derive in the Sec. A.1 of the Appendix using
Jensen’s inequality. This particular form of L is a
variational lower bound and requires f to be concave.
It is closely related to f -divergences, a generalization
of the widely used KL and Rényi divergences (Li &
Turner, 2016; Wan et al., 2020). In the closely-related
field of variational inference, the effect of the choice
of f is an active area of research, and gives rise to
various divergence metrics (Kingma & Welling, 2013;
Burda et al., 2015; Li & Turner, 2016; Dieng et al.,
2017; Chen et al., 2018; Wan et al., 2020). In this
work, we consider f = log, as this is the most well-
studied choice of f (Blei et al., 2017). L is tight
(i.e., inequality 1 holds with equality) when q(w; θ) ∝
p(D|w)p(w)(J(π′|w)− J(π|w)). Note that, although
L depends on the parameters θ of the approximate
posterior q, inequality 1 bounds the exact difference
in Bayesian return between π′ and π.

Inequality 1 allows us to prove the suboptimality
of any policy π for which there exists a new policy
π′ ∈ Π such that L(π, π′, θ, D) > f(0), because this
condition implies that π′ achieves higher Bayesian
return than π, and therefore π is not Bayes-optimal.
We can therefore use L to construct the EPS, which
we define to be the set of policies π for which there
does not exist a provably better π′ ∈ Π, using model
parameters θ and data D,

ΠE(θ, D) = {π : max
π′∈Π

L(π, π′, θ, D) ≤ f(0)}.

Given the choice f = log, note that L(π, π′, θ, D) ≤ −∞ if and only if there exists some w ∈ supp(q)
such that J(π′|w)− J(π|w) ≤ 0. Therefore, the equivalent set definition can be simplified to

ΠE(θ, D) = {π : ∃w ∈ supp(q) s.t. J(π′|w)− J(π|w) ≤ 0},

which is convenient because it allows the data-dependent term in L to be ignored.

Equivalent Policy Sets for Understanding the Limitations of Models The EPS provides
a principled approach to dealing with modeling error, by avoiding the elimination of policies that
the model cannot accurately evaluate. In the case where model error can be driven to zero (that
is, the approximate posterior matches the ideal posterior, as would be the case with an infinitely
expressive posterior class), L is tight, i.e., inequality (1) holds with equality (see Sec. A.1 for more
details). This causes the EPS to reduce to a singleton set containing only the Bayes-optimal policy.
In this situation, the agent should fully trust its model because it can correctly identify the optimal
policy, which is reflected by the fact that the EPS contains only this policy. However, limitations
in modeling resources make this practically infeasible, and in general the model will always contain



RLJ | RLC 2024

some inaccuracies. Existing approaches to MBRL largely have not dealt with this problem, and
instead treat the model’s approximation of the optimal policy as ground-truth. This can result in
highly suboptimal policies, especially when the model is misaligned (Wei et al., 2023; Agarwal et al.,
2021). The EPS addresses this problem by quantifying how inaccuracies in our imperfect model
translate into uncertainty about the optimal policy, where this uncertainty is represented as a set
of policies that our model cannot prove are suboptimal. Limitations in model class prevent q from
matching the ideal posterior, causing L to be loose and thereby increasing the size of the EPS. The
EPS is guaranteed to contain the Bayes-optimal policy, but will also include other policies that the
model is not accurate enough to rule out as suboptimal. This leaves open the possibility of using
an alternative learning paradigm such as MFRL to choose a policy from within the EPS to deploy.
We therefore argue that the EPS helps fundamentally address problems in MBRL caused by model
inaccuracies. This intuition provides the basis for Unified RL, which we describe in the next section.

3.2 Unified Reinforcement Learning

Algorithm 1 Unified RL
1: Given: initial dataset D
2: for each iteration do
3: πMB , θ =MBRL(D)
4: πMF =SAC(D)
5: Estimate L̂(πMF , πMB , θ, D)
6: if L̂ > −∞ then
7: π = πMB

8: else
9: π = πMF

10: end if
11: for time step t=0,...,T do
12: at ∼ π(at|st)
13: st+1, rt = env.step(at)
14: D ← D ∪ {st, at, rt, st+1}
15: end for
16: end for

Unified RL builds on the concept of the EPS introduced
in the previous section, and is summarized in Alg. 1 and
Fig. 1. Unified RL can be thought of as a model-free RL
algorithm, where the policy is constrained to lie within
the EPS. Through this constraint, Unified RL is able to
eliminate many provably suboptimal policies from con-
sideration, thus retaining the data-efficiency benefits of
MBRL. However, because Unified RL uses the model only
to identify the set of policies that may be optimal rather
than to estimate a single optimal policy, it avoids over-
reliance on the model, and thus avoids the objective mis-
match problem associated with typical MBRL approaches.
Constraining the model-free policy to lie within the EPS
does not in principle prevent MFRL from discovering the
Bayes-optimal policy, as the Bayes-optimal policy will al-
ways lie within the EPS regardless of the model used to
compute the EPS.

We take a simple approach to combining model-based and
model-free RL using the EPS, and leave more complex variants to future work. Before each episode,
an MBRL and an off-policy MFRL algorithm use the available data D to compute what we refer
to as the model-based policy πMB and the model-free policy πMF , respectively. Subsequently, the
agent checks whether the model-free policy is within the EPS; that is, it checks whether a lower
bound can be constructed using the model that proves that the model-based policy achieves higher
Bayesian return than the model-free policy. If the model-free policy is within the EPS, the agent
executes it in the real environment to collect one episode of new data. If not, the agent instead
executes the model-based policy, which is guaranteed to be within the EPS. The new data are then
added to the shared data buffer, and the entire process repeats. Note that this approach does not
require the EPS to be represented explicitly. Instead, the EPS is maintained implicitly, in the sense
that the lower bound in (1) provides a condition that allows one to check whether a given policy is
within the EPS. We describe the individual components of our approach in more detail below, with
additional details in Sec. A.2 of the Appendix.

Model-Based RL The MBRL component of our algorithm proceeds in two distinct steps: model
training and policy training. During the model training step, we estimate the posterior parameters θ
by fitting a Bayesian LSTM dynamics model to our environmental data D, by maximizing an
evidence lower bound on data log likelihood (Kingma et al., 2015; Gal & Ghahramani, 2016b;a),



RLJ | RLC 2024

Lmodel(θ, D) = Ew∼q(w;θ)

 |D|∑
i=1

T∑
t=1

log p(s(i)
t+1, r

(i)
t |s

(i)
≤t, a

(i)
≤t, w)

−DKL

(
q(w; θ)||p(w)

)
.

Specifically, we use the binary dropout formulation of Bayesian LSTMs (Gal & Ghahramani, 2016a),
wherein sampling a weight from the posterior w ∼ q(w; θ) is accomplished by sampling a binary
dropout mask from a fixed Bernoulli distribution (Gal & Ghahramani, 2016b). In this formulation,
the prior p(w) is approximately a Normal distribution, while the posterior is a Bernoulli (Gal et al.,
2016b). Our dynamics model p(s(i)

t+1, r
(i)
t |s

(i)
≤t, a≤t, w) is a Gaussian distribution over the next state

s
(i)
t+1 and reward r

(i)
t with a diagonal covariance matrix, given the states s

(i)
≤t and actions a

(i)
≤t at all

previous timesteps. The choice to represent state transition dynamics as a Gaussian with a diagonal
covariance matrix is similar to past work (Gal et al., 2016a; Chua et al., 2018; Gamboa Higuera et al.,
2018; Chow et al., 2020; Eysenbach et al., 2022; Freed et al., 2023), with the primary difference being
that our dynamics model is recurrent. Specifically, we use an LSMT dynamics model, as we found
this to yield more stable gradient-based policy optimization compared to a simple feed-forward MLP.

During the policy training step, we train a Tanh-Gaussian policy (Haarnoja et al., 2018) to maximize
the expected cumulative reward predicted by our model. Depending on the environment, we found
that one of two methods yielded the best results. In both methods, we start by sampling a set of
weights from our approximate posterior (which corresponds to sampling a set of dropout masks). In
the first method, for each weight, we sample a set of initial states from the initial state distribution,
which we assume to be known. Subsequently, we sample a full T -length trajectory, starting from
each initial state, by iteratively sampling actions from the policy, followed by a reward and state
transition from the model. Given a batch of sampled trajectories, we compute the policy loss as
the negative total reward along the trajectory averaged across sampled trajectories, plus a policy
entropy bonus. Similar to Gamboa Higuera et al. (2018), we found that gradient clipping stabilized
policy optimization and improved results. We refer to this method as full-trajectory policy training,
because full-length trajectories are rolled out.

The second method of policy training that we employ is identical to that used by Hafner et al.
(2019), with the slight modification that trajectories are sampled using various dropout masks, and
trajectories are sampled in raw state space as opposed to latent space. In summary, states are
sampled uniformly from the data buffer, and trajectory segments of length H = 16 are sampled
starting from those states. Value estimates are then computed using a critic network and the
predicted trajectory rewards. The critic is then updated to produce more accurate value estimates,
and the policy is updated to produce higher value estimates. In either case, the dropout mask that
we use to sample a particular trajectory is held constant during the entire trajectory; this is to reflect
the fact that even though there is uncertainty in the dynamics model parameters w, the parameters
do not change during a single trajectory (Gal & Ghahramani, 2016a).

Model-Free RL We use Soft Actor-Critic (Haarnoja et al., 2018) as the off-policy MFRL com-
ponent of our algorithm. We found that standard SAC performed poorly when run off-policy;
therefore, we incorporate two modifications suggested by Ball et al. (2023) that we found yielded
superior off-policy performance while preserving SAC’s on-policy performance. Specifically, we used
layer normalization in our Q networks, and omit the entropy term from the Q network loss.

Lower Bound Estimation Using the posterior parameters θ obtained during the model learning
process and f = log, it is possible to compute a Monte-Carlo estimate of L as

L̂(πMF , πMB , θ, D) =
K∑

i=1

(
log p(D|wi)p(wi)

q(wi; θ) + log
(

Ĵ(πMB |wi)− Ĵ(πMF |wi)
) )

, (3)

for w1, ..., wK ∼ q(w; θ). Here, p(D|wi) is the probability of all state transitions and rewards in the
dataset given parameters wi, and Ĵ(πMB |w)i and Ĵ(πMF |wi) are themselves Monte-Carlo estimates



RLJ | RLC 2024

of the expected return for the model-based and model-free policies respectively, computed by rolling
out a batch of M trajectories from the model using parameters wi and policies πMB and πMF ,
respectively. More details on the estimation of this bound are provided in Sec. A.2 of the Appendix.

We review some useful properties of L̂. As K → ∞ and M → ∞, by the law of large numbers,
L̂ → L. However, for K →∞ and finite M , by Jensen’s inequality, L̂ ≤ L. This property does not
change our algorithm in principle, because L̂ for finite M is still a lower bound on log(J(πMB |D)−
J(πMF |D)). The only practical implication in using L̂ in place of L is that the algorithm becomes
more conservative, preferring model-free RL more often, as it becomes more difficult to prove that
the model-based policy achieves a higher Bayesian return. When K is also finite, L̂ is stochastic,
and we can no longer say it is strictly a lower bound on log(J(πMB |D) − J(πMF |D)), though on
average it is. Practically, the stochasticity of L̂ injects some randomness into policy selection. We
did not find this to be an issue as long as a large enough value of K and M were used.

To check if the model-free policy is in the EPS, we must check whether L̂(πMB , πMF , θ, D) > log(0) =
−∞. Note that in (3), all terms except log

(
Ĵ(πMB |wi)− Ĵ(πMF |wi)

) )
will be defined and finite.

However, as Ĵ(πMB |wi) − Ĵ(πMF |wi) → 0 from the right, log
(
J(πMB |wi)− J(πMF |wi)

)
→ −∞.

Therefore, this term dominates L̂ when the model-free policy is on or near the boundary of the
relevant set, allowing us to simply check whether Ĵ(πMB |wi) − Ĵ(πMF |wi) > 0, ∀i = 1, ..., K.
This property is particularly convenient because it allows us to ignore the log p(D|wi) term, which
would normally require calling the model on the entire dataset.

4 Experiments

Our experiments seek to answer two questions:

1. Can Unified RL successfully combine the strengths of model-based and model-free RL? If
so, can Unified RL perform favorably compared to state-of-the-art prior work?

2. Is Unified RL effective in situations where either MBRL or MFRL alone fail?

We address question 1 in Sec. 4.1, and question 2 in Sec. 4.2. In our experiments, we consider
a range of challenging continuous control tasks from the OpenAI gym benchmark suite (Brock-
man et al., 2016), Deepmind Control Suite (DMC) (Tassa et al., 2018), and the ROBEL robotics
benchmark suite (Ahn et al., 2020). Specifically, we consider OpenAI gym Hopper, Walker, Ant,
and Half-Cheetah, as well as DMC Cartpole Swingup and ROBEL DClawTurnFixed. We make
two modifications to the standard environments for the sake of simplicity. First, we disabled early
episode termination in the OpenAI gym tasks, as early termination has been shown to cause issues
for MBRL (Wang et al., 2019). Second, because we are not focused on long time-horizon planning in
this work, we consider short time horizon tasks; specifically, we consider episode lengths of T = 100
for all OpenAI gym and DMC tasks, except for Hopper and Cartpole, which we considered episode
lengths of T = 200. We use the default episode lengths of T = 40 for DClawTurnFixed. We found
that these episodes were sufficiently long to allow agents to learn the desired behaviors.

4.1 Data Efficiency and Asymptotic Performance

To empirically evaluate the effectiveness of Unified RL at combining the strengths of model-based and
model-free RL, we compare Unified RL to its constituent model-based and model-free components
alone. For the fairest possible comparison, our SAC baseline includes the modifications discussed
in Sec. 3.2, though we found these to make little difference in SAC’s on-policy performance. We
also compare to several prior state-of-the-art approaches: Aligned Latent Models (ALM) (Ghugare
et al., 2022), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), Twin Delayed
DDPG (TD3) (Fujimoto et al., 2018), Proximal Policy Optimization (PPO) (Schulman et al., 2017),
Stochastic Value Gradient (SVG) (Heess et al., 2015), and Hybrid Learning (HL) (Pinosky et al.,
2023). DDPG, TD3, and PPO are state-of-the-art model-free methods. ALM, SVG and HL are



RLJ | RLC 2024

high-performing algorithms that combine aspects of model-based and model-free RL. For each al-
gorithm and each environment, hyperparameters were manually tuned, using the recommended
hyperparameters for that algorithm and environment as a starting point.

0 0.2 0.4 0.6 0.8 1.0
200

Million Steps

0

200

400

600

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

Ant

SAC MBRL ALM DDPG SVG TD3 HL PPOURL

0

200

400

600

800

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

Hopper

0

0

100

200

300

400

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

Walker

0 0 0.08 0.16 0.24 0.32
1000

0.40

500

0

500

1000

M
e
a
n
 E

p
is

o
d
e
 R

e
tu

rn
DClawTurnFixed

0

0

20

40

60

M
e
a
n
 E

p
is

o
d
e
 R

e
tu

rn

Cartpole

0.2 0.4 0.6 0.8 1.0
Million Steps

0.2 0.4 0.6 0.8 1.0
Million Steps

0.2 0.4 0.6 0.8 1.0
Million Steps

0.2 0.4 0.6 0.8 1.0
Million StepsMillion Steps

0

200

400

600

M
e
a
n
 E

p
is

o
d
e
 R

e
tu

rn

Half Cheetah

Figure 2: Training curves on benchmark tasks. Solid lines indicate the average return per episode
across 5 runs, while shaded regions denote 95% confidence intervals. We find that Unified RL
successfully combines the strengths of both model-based and model-free RL. In environments where
either MBRL or SAC strictly dominates the other, Unified RL at least matches the better of these
two algorithms. In situations where MBRL learns faster initially but is eventually surpassed by
SAC, Unified RL achieves higher performance than either algorithm alone. Additionally, Unified RL
also performs favorably compared to the other baselines, and is the only algorithm we tested that
consistently performs well across all tasks.

We report our results in two ways. First, we show mean episode return vs. the number of environ-
mental steps in Fig. 2. Here, solid lines indicate average episode return averaged across 5 independent
random seeds, while shaded regions denote 95% confidence intervals. Second, we report the average
episode return across the entire training process for each algorithm, which is equivalent to area under
the learning curve divided by number of training steps, in Table 1. This statistic is relevant because
it blends both data efficiency and asymptotic performance into a single scalar performance metric.
Here again, we report the average return across 5 random seeds, with 95% confidence intervals.
We add an additional row to Table 1, labeled Max(SAC,MBRL), where we report the maximum
average episode return achieved between either SAC and MBRL. This row corresponds to a naive
strategy wherein both SAC and MBRL are run concurrently, with the best policy taken at the end
of training.

To determine the statistical significance of the results in Table 1, we performed a student t-test,
comparing each algorithm to the best-performing algorithm in each environment. Bold numbers in-
dicate algorithms that either achieved the highest average return in each environment, or algorithms
that were not significantly worse than the best-performing algorithm, according to our t-test. We
additionally performed a t-test to determine in which environments Unified RL significantly out-
performs Max(SAC,MBRL), and marked these results with asterisks. The final column in Table 1
is averaged normalized episode return, which is computed by normalizing all mean episode returns
for each environment to the interval between 0 and 1 to arrive at a value that is comparable across
environments, and averaging across all environments for each algorithm.



RLJ | RLC 2024

Table 1: Mean episode return and 95% confidence intervals on benchmark tasks. Episodes return
was averaged across the entire training process to provide a quantitative performance metric that
balances data efficiency and asymptotic performance. Bold numbers indicate the highest-performing
algorithm for each environment, or any result that was not significantly worse than the best algo-
rithm. Asterisks (∗) denote environments in which Unified RL significantly outperformed both SAC
and MBRL. The final column denotes average normalized return across all environments. We find
that in 4 of the 6 environments tested (Ant, Hopper, Walker, and Half Cheetah), Unified RL achieves
significantly higher mean episode return compared to either MBRL or SAC, indicating that Unified
RL enables a synergy between both algorithms. Additionally, Unified RL is the only algorithm we
tested that performed consistently well across all tasks, and achieves the highest average normalized
return.

Ant Hopper Walker Half-
Cheetah Cartpole

DClaw-
Turn-
Fixed

Avg.
norm.
return

Unified RL (ours) 493.1 ± 9.9∗ 750.3 ± 2.4∗ 267.2 ± 5.9∗ 571.4 ± 3.5∗ 66.7 ± 0.3 940.5 ± 9.7 0.9211
SAC 457.3 ± 7.9 632.8 ± 13.6 229.4 ± 2.1 540.3 ± 11.5 67.5 ± 0.9 949.2 ± 10.7 0.7786
MBRL 310.8 ± 10.4 704.9 ± 16.0 253.2 ± 0.8 263.3 ± 48.3 64.6 ± 0.2 944.0 ± 22.6 0.6868
max(MBRL,SAC) 457.3 ± 7.9 704.9 ± 16.0 253.2 ± 0.8 540.3 ± 11.5 67.5 ± 0.9 949.2 ± 10.7 0.8535
ALM 187.7 ± 76.6 562.8 ± 6.2 127.2 ± 7.6 520.4 ± 26.6 31.5 ± 2.9 −252.1 ± 97.5 0.2760
DDPG 76.2 ± 6.4 541.6 ± 42.2 293.0 ± 21.2 421.9 ± 34.0 25.3 ± 3.7 855.9 ± 18.9 0.3888
SVG 443.8 ± 15.3 683.7 ± 13.8 163.4 ± 6.6 581.8 ± 21.4 65.0 ± 0.3 −704.5 ± 15.9 0.6041
TD3 203.8 ± 3.8 631.8 ± 27.4 249.8 ± 4.2 411.9 ± 22.5 32.6 ± 7.8 882.4 ± 26.5 0.5073
HL 318.6 ± 11.7 616.4 ± 4.5 280.1 ± 18.5 568.9 ± 8.2 66.6 ± 1.8 914.3 ± 40.4 0.7500
PPO 84.5 ± 1.6 582.2 ± 17.9 356.4 ± 11.9 103.7 ± 16.2 69.2 ± 0.1 −403.6 ± 56.2 0.3936

Our first observation is that Unified RL succeeds at combining the strengths of its two constituent
algorithms. Unified RL significantly outperforms both SAC and MBRL in 4 of the 6 environments
we tested, and achieves a higher average normalized return than SAC and MBRL. Furthermore,
Unified RL achieves a higher average normalized return than Max(SAC,MBRL), indicating that
Unified RL is a better strategy than simply running both SAC and MBRL concurrently, even
ignoring the fact that running both algorithms requires twice as many environmental interactions.
We find that in environments such as Ant and Half-Cheetah, where MBRL learns rapidly initially
but is eventually surpassed by SAC, Unified RL is able to learn as rapidly as MBRL and achieve
an asymptotic performance that is at least equivalent to SAC, indicating that Unified RL enables a
synergy between MBRL and MFRL. Finally, observe that of all the algorithms we tested, Unified RL
was unique in that it performed well across all tasks, and achieves the highest average normalized
return. Interestingly, in our experiments, ALM suffered from instability, which we found to be
caused by the shorter episode lengths (see Sec. A.2.7).

To gain a deeper insight into the policy-switching behavior of Unified RL, we visualize the fraction
of episodes that the agent chooses its model-free policy as training progresses in Fig. 3. We find
that in environments where MBRL offers high data efficiency, but MFRL offers higher asymptotic
performance, such as Ant, Half Cheetah, and Cartpole, Unified RL uses MBRL for a significant
fraction of episodes early in training, but switches almost exclusively to MFRL in later episodes.
In Walker, where MBRL outperforms MFRL, Unified RL very briefly uses MFRL, switching to
predominantly MBRL for the majority of training. Interestingly, in the Hopper environment, the
Unified RL uses a mixture of MFRL and MBRL throughout training. This may explain how Unified
RL is capable of outperforming both MFRL and MBRL alone.

4.2 Robustness to Failures of Model-Based and Model-Free RL

One of our central claims is that Unified RL helps avoid the objective mismatch problem by allowing
the agent to switch to MFRL when the model is misaligned (that is, ill-suited to helping the agent
improve its policy). To test this claim, we evaluate Unified RL on a task that we designed to induce
model misalignment in MBRL. Recall that distractors are components of the observation that are
predictable but task-irrelevant. Distractors exacerbate model misalignment, because typical model-
learning objectives do not prioritize the modeling of task-relevant observation components over



RLJ | RLC 2024

0.0

0.2

0.4

0.6

0.8

1.0
Fr

a
ct

io
n
 M

o
d

e
l-

Fr
e
e
 E

p
is

o
d

e
s

Ant

0 0.2 0.4 0.6 0.8 1.0

Million Steps

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 M

o
d

e
l-

Fr
e
e
 E

p
is

o
d

e
s

Hopper

0 0.2 0.4 0.6 0.8 1.0
Million Steps

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 M

o
d

e
l-

Fr
e
e
 E

p
is

o
d

e
s

Walker

0 0.2 0.4 0.6 0.8 1.0
Million Steps

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 M

o
d

e
l-

Fr
e
e
 E

p
is

o
d

e
s

Half-Cheetah

0 0.2 0.4 0.6 0.8 1.0

Million Steps

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 M

o
d

e
l-

Fr
e
e
 E

p
is

o
d

e
s

Cartpole

0 0.2 0.4 0.6 0.8 1.0

Million Steps

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 M

o
d

e
l-

Fr
e
e
 E

p
is

o
d

e
s

DClawTurnFixed

0 0.08 0.16 0.24 0.32 0.40

Million Steps

Figure 3: Fraction of model-free episodes vs. training steps.

the task-irrelevant distractors. This results in models that do not accurately represent the task-
relevant components. In our experiments, we appended time-dependent sinusoids of fixed frequency
to the observations. Sinusoids were grouped together into groups of 10, where all 10 sinusoids in
a group had the same phase. Each group was assigned a random phase, preventing the model
from simply memorizing the distractors. Five such groups were appended to the observations. The
hyperparameters used for SAC, MBRL, and Unified RL for this experiment were identical to those
used in the original Ant environment.

The reward curves for this experiment are shown in Fig. 4. We observe that MBRL utterly fails
to make learning progress in the presence of distractors, while MFRL is much less affected. In
this experiment, Unified RL performed slightly better than MFRL (although not significantly so),
indicating that it is able to effectively fall back on MFRL when its model is misaligned.

We do not expect MFRL to always achieve higher asymptotic performance than MBRL in all en-
vironments; for example, MFRL may fail to escape a poor local minimum or have poorly tuned
hyperparameters. Unified RL has the advantage over other approaches such as MBRL with Model-
Free Fine Tuning (Nagabandi et al., 2018), which runs MBRL for a manually specified number of
episodes before switching to MFRL, in that Unified RL only switches to MFRL when the model-
based policy isn’t provably superior. Therefore, in situations where MFRL fails to learn effectively,
we expect Unified RL to utilize model-based learning exclusively. To test this claim, we compare the
performance of Unified RL to MBRL and SAC in the Ant environment, where the entropy penalty
for both SAC and the SAC component of Unified RL was set far higher than its ideal value. As
expected, this prevented SAC from learning effectively, both alone and within Unified RL. Indeed,
we found that Unified RL recognized that SAC was ineffective at solving the task, instead relied
exclusively on MBRL.

5 Related Work

Similar to Duff (2002); Deisenroth & Rasmussen (2011); Gal et al. (2016a); Chua et al. (2018);
Gamboa Higuera et al. (2018); Mehta et al. (2021; 2022), we consider a Bayesian formulation of
MBRL. The characteristic feature of these approaches is an explicit representation of uncertainty
in their estimate of the environmental dynamics. (Gal et al., 2016a), (Depeweg et al., 2017), and



RLJ | RLC 2024

(Gamboa Higuera et al., 2018) are most similar to our approach, in that they use Bayesian neural
networks (BNNs) to represent beliefs over dynamics, and learn policies by backpropagating gradients
through model rollouts.

0 2000 4000 6000 8000 10000
# Episodes

0

100

200

300

400

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

Ant with Detuned SAC

0 2000 4000 6000 8000 10000
# Episodes

300

200

100

0

100

200

300

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

Ant with Distractors

URL SAC MBRL

Figure 4: Unified RL is robust to both failures in model-based
and model-free RL. (Left) We induce model misalignment by in-
troducing distractors into the observations of the Ant environ-
ment, which prevents model-based RL from learning effectively.
We find that, in this situation, Unified RL matches the perfor-
mance of model-free RL, indicating that Unified RL is robust to
failure of model-based RL. (Right) We induce failure of model-free
RL (SAC) by increasing the entropy bonus to a suboptimal value.
In this situation, we find that Unified RL matches the performance
of model-based RL, indicating that Unified RL is robust to failure
of model-free RL.

Several recent approaches have
been proposed for combin-
ing model-based and model-
free RL. For example, Hy-
brid Learning (Pinosky et al.,
2023) used a learned dynam-
ics model to determine an
optimal time to switch be-
tween a planned action se-
quence and a policy learned
using MFRL. Stochastic Value
Gradients (Heess et al., 2015)
proposed a spectrum of policy
gradient algorithms that range
from model-free methods with
value functions to model-based
methods without value func-
tions. Finally, Model-Based RL
with Model-Free Fine-Tuning
initialized MFRL with a pol-
icy trained for a fixed number
of episodes using MBRL. The
primary drawback to these ap-
proaches that is addressed in
our work is that they use hard-coded or heuristic methods for selecting which learning modality
to use in a given situation, rather than switching based on a measure of the model’s ability to
contribute to policy improvement.

Recent approaches for improving model alignment in MBRL optimized policies with respect to lower
bounds similar to L. For example, Luo et al. (2018) considered iteratively constructing lower bounds
that hold locally in policy space, which are then optimized jointly with respect to both the model
and policy. Eysenbach et al. (2022) and Ghugare et al. (2022) considered jointly optimizing a global
lower bound on policy performance with respect to both the model and policy parameters. Chow
et al. (2020) proposed an EM algorithm to jointly improve the model and the policy with respect to a
variational lower bound. One fundamental limitation of these approaches is that they do not address
the suboptimalities introduced by the fact that models have limited representational capacity. In
environments with complex dynamics that the model class is ill-suited to represent, a lower bound
on policy performance may differ significantly from the true objective we wish to optimize (i.e., L
will be a loose bound for the true objective J), resulting in a poorly aligned policy-learning objective
and suboptimal policies. Our approach builds on these ideas, but takes a fundamentally different
approach: rather than using the model to approximate a single optimal policy, we maintain a set of
policies that may be optimal, which is then refined by model-free RL, thereby avoiding over-reliance
on potentially inaccurate models.

6 Discussion and Limitations

Our approach has a few limitations that are worth noting. First, Unified RL introduces additional
computational overhead over either MBRL or MFRL alone, as it must perform both model-based
and model-free learning updates in each iteration. However, we argue that the data efficiency
improvements from Unified RL more than outweigh the additional computational cost, particularly
in real-world environments where most of the learning time is spent gathering data. For instance,



RLJ | RLC 2024

in the Ant environment, Unified RL requires only 57% of the data of SAC to achieve 80% of its
maximum reward. SAC learning updates require only 0.008 s for every 10s of real-world data
(assuming an interaction rate of 10 Hz). Therefore, Unified RL will still require less wall-clock time
even if it increases the computational overhead by a factor of 945, ignoring the fact that model-based
and model-free updates can be parallelized. The details of this calculation are included in Sec. A.2.6
of the appendix.

Second, our approach does not incorporate intelligent exploration, and simply assume that the
best policy at any given iteration is the ideal policy to collect new data, be it model-based or
model-free. This assumption is potentially disadvantageous in environments that require extensive
exploration, where short-term reward should be sacrificed for the purposes of information gain. This
limitation could potentially be circumvented with a slight modification to the bound in (2) to include
an exploration bonus corresponding to an approximation of the amount of information gained by
executing a particular policy, similar to that used by Houthooft et al. (2016).

Finally, because Unified RL maintains separate model-based and model-free policies, but only collects
data from one in a given episode, at least one of the two policies will be performing some amount
of off-policy learning. This restricts our choice of model-free RL algorithm to off-policy algorithms,
such as SAC or Q-learning. Even though SAC is in principle an off-policy algorithm, we found
standard SAC to perform poorly when learning off-policy, requiring modifications to the Q learning
process (Sec. 3.2) (Ball et al., 2023). This limitation could potentially be avoided by modifying the
Unified RL algorithm to maintain one policy, that is updated with model-free RL, but constrained
to lie within the equivalent policy set. This could be accomplished by incorporating a constraint
into the model-free policy updates, similar to trust regions used in TRPO (Schulman et al., 2015)
and PPO (Schulman et al., 2017).

7 Conclusions and Future Work

In this work, we propose equivalent policy sets (EPS), which we define as the set of policies that
are not provably Bayes-suboptimal, according to bounds on policy performance constructed using
a model. The EPS provides a valuable tool for quantifying how inaccuracies in the model translate
into uncertainty in their estimate of the optimal policy. Using this tool, agents can better understand
in what situations models are useful, and when models should be abandoned in favor of model-free
learning updates. Based on this concept, we proposed Unified RL, a novel RL algorithm that com-
bines the relative strengths of model-based and model-free RL. Unified RL can be thought of as
a model-free RL algorithm, where the enacted policy is constrained to lie within the EPS. Unified
RL retains the data-efficiency benefits of model-based approaches by leveraging models to rule out
provably suboptimal policies. However, Unified RL avoids over-reliance on models and leverages the
asymptotic performance benefits of MFRL by using the MFRL whenever it is not provably subop-
timal. We show empirically on a wide range of challenging continuous control RL benchmarks that
Unified RL successfully combines the strengths of both MBRL and MFRL, significantly exceeding
the performance of either algorithm alone in 4 out of the 6 environments that we tested. We also
find that Unified RL outperforms a number of state-of-the-art model-based and model-free prior
approaches. Finally, we show that Unified RL learns effective policies in situations where either
model-based or model-free RL alone fail.

In future work, we plan to explore using latent dynamics models, similar to those used in Dreamer,
for Unified RL, as they have been shown to scale well to high-dimensional observation spaces and
complex dynamics (Hafner et al., 2019; 2020; Lin et al., 2023). Additionally, we plan to explore vari-
ants of Unified RL that combine more than two RL algorithms. For example, we may simultaneously
consider multiple MFRL algorithms, and select the best one for the situation, thereby combining
the strengths of a wider array of algorithms. This may allow Unified RL to more thoroughly explore
the entire set of policies contained within the EPS, rather than choosing between only two policies.



RLJ | RLC 2024

Acknowledgments

Partially funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as
part of Germany’s Excellence Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of Excellence
“Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden,
and by the Bundesministerium für Bildung und Forschung (BMBF), German Academic Exchange
Service (DAAD) in project 57616814 (SECAI, School of Embedded and Composite AI).

References
Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive

behavioral similarity embeddings for generalization in reinforcement learning. arXiv preprint
arXiv:2101.05265, 2021.

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. ROBEL: Robotics benchmarks for learning with low-cost robots. In Conference
on robot learning, pp. 1300–1313. PMLR, 2020.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. arXiv preprint arXiv:2302.02948, 2023.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Liqun Chen, Chenyang Tao, Ruiyi Zhang, Ricardo Henao, and Lawrence Carin Duke. Variational
inference and model selection with generalized evidence bounds. In International conference on
machine learning, pp. 893–902. PMLR, 2018.

Yinlam Chow, Brandon Cui, MoonKyung Ryu, and Mohammad Ghavamzadeh. Variational model-
based policy optimization. arXiv preprint arXiv:2006.05443, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pp. 465–472, 2011.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with Bayesian neural networks. In Interna-
tional Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=H1fl8S9ee.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Variational
inference via χ upper bound minimization. Advances in Neural Information Processing Systems,
30, 2017.

Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni, Matteo Papini, and Marcello Restelli.
Gradient-aware model-based policy search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 3801–3808, 2020.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

https://secai.org/
https://secai.org/
https://openreview.net/forum?id=H1fl8S9ee
https://openreview.net/forum?id=H1fl8S9ee


RLJ | RLC 2024

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230–23243, 2022.

Benjamin Freed, Siddarth Venkatraman, Guillaume Adrien Sartoretti, Jeff Schneider, and Howie
Choset. Learning temporally abstractworld models without online experimentation. 2023.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. Advances in neural information processing systems, 29, 2016a.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016b.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving PILCO with Bayesian neural
network dynamics models. In Data-efficient machine learning workshop, ICML, volume 4, pp. 25,
2016a.

Yarin Gal et al. Uncertainty in deep learning, 2016b.

Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek. Synthesizing neural network
controllers with probabilistic model-based reinforcement learning. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 2538–2544, 2018. doi:
10.1109/IROS.2018.8594018.

Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Russ Salakhutdinov.
Simplifying model-based rl: Learning representations, latent-space models, and policies with one
objective. In The Eleventh International Conference on Learning Representations, 2022.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence princi-
ple for model-based reinforcement learning. Advances in Neural Information Processing Systems,
33:5541–5552, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2020.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in neural information
processing systems, 28, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing sys-
tems, 29, 2016.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.



RLJ | RLC 2024

Joshua Joseph, Alborz Geramifard, John W. Roberts, Jonathan P. How, and Nicholas Roy. Rein-
forcement learning with misspecified model classes. In 2013 IEEE International Conference on
Robotics and Automation, pp. 939–946, 2013. doi: 10.1109/ICRA.2013.6630686.

Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and efficient
transfer learning with hidden parameter markov decision processes. Advances in neural informa-
tion processing systems, 30, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. Advances in neural information processing systems, 28, 2015.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

Yingzhen Li and Richard E Turner. Rényi divergence variational inference. Advances in neural
information processing systems, 29, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. arXiv preprint arXiv:2308.01399, 2023.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. In Interna-
tional Conference on Learning Representations, 2018.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experi-
mental design perspective on model-based reinforcement learning. In International Conference on
Learning Representations, 2021.

Viraj Mehta, Ian Char, Joseph Abbate, Rory Conlin, Mark Boyer, Stefano Ermon, Jeff Schneider,
and Willie Neiswanger. Exploration via planning for information about the optimal trajectory.
Advances in Neural Information Processing Systems, 35:28761–28775, 2022.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7559–7566, 2018. doi:
10.1109/ICRA.2018.8463189.

Allison Pinosky, Ian Abraham, Alexander Broad, Brenna Argall, and Todd D Murphey. Hybrid
control for combining model-based and model-free reinforcement learning. The International
Journal of Robotics Research, 42(6):337–355, 2023.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. In International conference on machine learning, pp. 7953–7963.
PMLR, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.



RLJ | RLC 2024

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Neng Wan, Dapeng Li, and Naira Hovakimyan. f-divergence variational inference. Advances in
neural information processing systems, 33:17370–17379, 2020.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

Ran Wei, Nathan Lambert, Anthony D McDonald, Alfredo Garcia, and Roberto Calandra. A
unified view on solving objective mismatch in model-based reinforcement learning. Transactions
on Machine Learning Research, 2023.

A Appendix

A.1 Derivation of Lower Bound in eq. (2)

The difference in Bayesian return between policies π′ and π is given by

J(π′|D)− J(π|D) =
∫

W

p(D|w)p(w)
p(D) (J(π′|w)− J(π|w)) dw.

By introducing an approximate posterior q(w; θ), we can write the above expression as an expectation
over q,

J(π′|D)− J(π|D) = Eq

[
p(D|w)p(w)
q(w; θ)p(D) (J(π′|w)− J(π|w))

]
.

Let f̃ be a concave, monotonically increasing function. Taking f̃ of both sides and applying Jensen’s
inequality, we arrive at a lower bound on f̃(J(π′|D)− J(π|D)),

f̃(J(π′|D)− J(π|D)) = f̃

(
Eq

[
p(D|w)p(w)
q(w; θ)p(D) (J(π′|w)− J(π|w))

])
≥ Eq

[
f̃

(
p(D|w)p(w)
q(w; θ)p(D) (J(π′|w)− J(π|w))

)]
.

Finally, to arrive at L, we define a new concave monotonically increasing function f(x) = f̃(p(D)x)
and substitute this into the above expression to eliminate the constant p(D) term,



RLJ | RLC 2024

f̃(J(π′|D)− J(π|D)) ≥ Eq

[
f

(
p(D|w)p(w)

q(w; θ) (J(π′|w)− J(π|w))
)]

= L(π, π′, θ, D).

To prove that π′ achieves higher Bayesian return than π, it is sufficient to show that L(π, π′, θ, D) >
f̃(0) = f(0), thus the data likelihood term p(D) is irrelevant in constructing the EPS.

A.2 Implementation Details

A.2.1 Model Architecture and Training

The dynamics model we used for all tasks consisted of a single linear input layer, followed by a
single-directional, single-layer LSTM cell (Hochreiter & Schmidhuber, 1997), followed by two linear
layers, and an output layer. The output layer consisted of four separate output heads, one each for
state mean, reward mean, state standard deviation, and reward standard deviation. The standard
deviation output heads used softplus activations to ensure their output was positive, while the mean
layers did not an activation function. ReLU activations were used for all other layers other than
the LSTM cell. State means were represented as learned deltas from previous states. That is, the
state mean output predicts the mean in the difference between the current and last state. All inputs
(states and actions) and outputs (state deltas and rewards) of the dynamics model were normalized
before each period of model training to be of mean zero and unit variance.

Before each layer other than the initial input layer, including each internal layer within the LSTM
cell, a binary dropout mask (Srivastava et al., 2014) was applied, which was used by Gal & Ghahra-
mani (2016a) and Gal & Ghahramani (2016b) to represent uncertainty in neural network parameters.
Crucially, both in training and when sampling rollouts, the dropout mask is held fixed across all
timesteps in a trajectory (Gal & Ghahramani, 2016b), while different dropout masks are sampled
across trajectories. The dynamics model was trained with the following loss computed on a batch
of trajectories sampled from the data buffer:

Lmodel = 1
B

B∑
i=1

T∑
t=0

(log p(st+1|st, at, wi) + log p(rt|st, at, wi)) + η

N
||W ||22

where B = 100 is the batch size, T is the episode length, wi is the dropout mask corresponding to
the ith trajectory, η is a factor that determines the length-scale of the prior (Gal & Ghahramani,
2016b), N is the number of trajectories in the training dataset, and W is the set of all learnable
parameters in the network.

A.2.2 Policy Architecture

Both model-based RL and SAC use a Tanh-Gaussian MLP policy with three layers, with Tanh
activations between layers. Policies used in MBRL have 1024 units in their hidden layers, while
policies used for SAC have 256. The policies have two output heads, one for mean and one for
standard deviation. The mean output head uses no activation function, while the standard deviation
head uses either a softplus activation to ensure that the standard deviation is positive, or a sigmoid
activation to force the standard deviation to be bounded. To force samples from the policy to fall
within the specified action range of the environment, samples are passed through a tanh function.

A.2.3 Critic Architecture

The critic network used for SAC was a state-action value function, while the critic used for MBRL
was a state value function. In either case, critics consisted of 3 layers with ReLU activations between
layers, with 256 units in each hidden layer.



RLJ | RLC 2024

A.2.4 Lower Bound Estimation

As discussed in Sec. A.2.4, to check whether the model-free policy πMF is within the EPS, we need
only check whether Ĵ(πMB |wi) − Ĵ(πMF |wi) > 0, ∀i = 1, ..., K, where Ĵ(π|wi) is a Monte-Carlo
estimate of J(π|wi), the expected return for policy π given dynamics model parameters wi. In the
dropout formulation of BNNs, sampling wi corresponds to sampling a dropout mask, so we use wi

to denote a particular dropout mask. Therefore, to compute Ĵ(π|wi), we sample one dropout mask,
and sample M state-action-reward trajectories from our dynamics model and policy, from timesteps
t = 0 to T using that dropout mask, and average the return across those trajectories:

Ĵ(π|wi) = 1
M

T∑
t=0

rt,

for at ∼ π(at|st), rt ∼ p(rt|st, at, wi), and st+1 ∼ p(st+1|st, at, wi). Note that the dropout mask wi

is held constant across timesteps.

A.2.5 Hyperparameters

Table 2 contains the hyperparameters used for Unified RL for each task.

• K=Number of dropout masks sampled when computing L̂ ((3))

• M=Number of trajectories sampled when computing L̂ ((3))

• Policy training: whether the model-based policy is trained using full-trajectory policy train-
ing or Dreamer-style policy training, as described in Sec. 3.

• σmax: In some cases, we found it useful to bound the maximum value that the policy
standard deviation could take, by placing a sigmoid activation on the standard deviation
output of the policy and multiplying by a constant. We refer to this upper bound as σmax

• αMB : entropy bonus used for the model-based policy training

• αMF : entropy bonus used for SAC

• Automatic Entropy Tuning (MB policy): whether automatic entropy tuning is used for the
model-based policy (makes αMB irrelevant)

• Automatic Entropy Tuning (MF policy): whether automatic entropy tuning is used for the
SAC policy (makes αMF irrelevant)

• T: episode length

We additionally found it necessary to provide SAC with enough on-policy data by enforcing that at
least one out of every 10 episodes was run using the MFRL policy.

Table 2: Hyperparameters used in Unified RL

Environment K M Policy Training σmax αMB αMF Auto
Ent
Tuning
(πMB)

Auto
Ent
Tuning
(πMF )

T η

Ant 50 5 Dreamer None 0.2 - False True 100 200
Hopper 50 100 Full trajectory None 0.2 0.2 False False 200 100
Walker 50 100 Full trajectory 0.1 0.2 0.2 False False 100 100

Half Cheetah 50 5 Dreamer None 0.1 - False True 100 100
Cartpole 50 default Dreamer None 0.2 - False True 200 100

DClaw-TurnFixed 50 10 Full Trajectory None 0.2 0.2 False False 40 200



RLJ | RLC 2024

A.2.6 Overhead Calculation

Here, we calculate the maximum permissible computational overhead increase of Unified RL over
SAC that would result in both algorithms reaching a particular threshold of performance in the same
amount of wall-clock time. We consider a threshold of 80% of the maximum performance of SAC,
and that Unified RL and SAC follow the same respective learning curves as the Ant environment.
Finally, we assume a realistic “real-world” interaction speed of 10 Hz, and an episode length of 100
timesteps, meaning that episodes last 10 seconds. We assume no parallelization, i.e., SAC updates,
model-based updates, and data collection all occur sequentially.

Tx = wall-clock time to reach performance threshold for algorithm x,

ex = number of learning episodes required to reach performance threshold for algorithm x
(eURL = 0.57eSAC because Unified RL requires 57% of the data of SAC),

c = factor of computational overhead increase from SAC to Unified RL,

ux = update time for algorithm x (uSAC = 0.008, uURL = cuSAC).

Setting the wall-clock times for each algorithm equal:
TSAC = TURL,

(10 + uSAC)eSAC = (10 + uURL)eURL.

Substituting in expressions from above and solving for c,

(10 + 0.008)eSAC = (10 + c(0.008))(0.57)eSAC .

c = 944.7.

This indicates that Unified RL updates can be up to 944.7x slower than SAC updates and still
require less wall-clock time to achieve the performance threshold.

A.2.7 ALM Results on Full-Length Trajectories

To determine the cause of the differences in results on Half-Cheetah and Ant reported by Ghugare
et al. (2022) and our ALM results, reported in Sec. 4, we ran ALM experiments in Half-Cheetah
and Ant with full, 1000-length episodes. We found that in Half-Cheetah, ALM performed better
than the results reported by Ghugare et al. (2022) (Fig. 5, left). In Ant, we found the results to
be comparable, although less stable, than those reported by Ghugare et al. (2022) (Fig. 5, left).
Because the only difference between these experiments and the ones we report in 4 is episode length,
we can conclude that this is the cause of the discrepancy in the results.

0 1 2 3 4 5
Environment Steps 1e5

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n 
Ep

iso
de

 R
et

ur
n

1e4
ALM HalfCheetah, Full-Length Episodes

0 1 2 3 4 5
Environment Steps 1e5

0.00

0.25

0.50

0.75

1.00

1.25

M
ea

n 
Ep

iso
de

 R
et

ur
n

1e4
    ALM Ant, Full-Length Episodes    

Figure 5: Reward Curves for ALM in Half-Cheetah (left) and Ant (Right), with Full-Length
Episodes.


