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Abstract
Diffusion models have exhibited remarkable ad-
vancements in generating high-quality data. How-
ever, a critical drawback is their computationally
intensive inference process, which requires a large
number of timesteps to generate a single sample.
Existing methods address this challenge by decou-
pling the forward and reverse processes, and they
rely on handcrafted rules for sampling accelera-
tion, leading to the risk of discarding important
steps. In this paper, we propose an Efficient De-
noising Diffusion method via Probabilistic Mask-
ing (EDDPM) that can identify and skip the redun-
dant steps during training. To determine whether
a timestep should be skipped or not, we employ
probabilistic reparameterization to continualize
the binary determination mask. The mask distri-
bution parameters are learned jointly with model
weights. By incorporating a real-time sparse con-
straint, our method can effectively identify and
eliminate unnecessary steps during the training
iterations, thereby improving inference efficiency.
Notably, as the model becomes fully trained, the
random masks converge to a sparse and determin-
istic one, retaining only a small number of essen-
tial steps. Empirical results demonstrate the supe-
riority of our proposed EDDPM over the state-of-
the-art sampling acceleration methods across var-
ious domains. EDDPM can generate high-quality
samples with only 20% of the steps for time se-
ries imputation and achieve 4.89 FID with 5 steps
for CIFAR-10. Moreover, when starting from a
pretrained model, our method efficiently identi-
fies the most informative timesteps within a sin-
gle epoch, which demonstrates the potential of
EDDPM to be a practical tool to explore large
diffusion models with limited resources.
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1. Introduction
Diffusion models have emerged as a powerful generative
technique, achieving unprecedented success in various do-
mains, including image generation (Ho et al., 2020; Sa-
haria et al., 2022; Dhariwal & Nichol, 2021), speech syn-
thesis (Kong et al., 2020; Jeong et al., 2021), text genera-
tion (Hoogeboom et al., 2021; Li et al., 2022), 3D shape
generation (Luo & Hu, 2021) and time series forecasting
and imputation (Tashiro et al., 2021; Rasul et al., 2021).
These models employ an iterative sampling procedure to
generate each sample by progressively removing noise from
random initial vectors.

One significant drawback of diffusion models is their re-
liance on a large number of denoising steps, ranging from
hundreds to thousands, to transform Gaussian noise into
a sample. As a result, diffusion models are consider-
ably slower compared to other generative models like
GANs (Brock et al., 2018). In recent years, several acceler-
ation techniques have been proposed to address this issue,
which can be divided into learning-free and learning-based
methods according whether additional training is required.
It is worth noting that learning-free methods (Song et al.,
2020a; Bao et al., 2021; Liu et al., 2021; Bao et al., 2022)
often employ handcrafted rules, whereas learning-based
methods (Watson et al., 2021a;b; Dockhorn et al., 2022;
Salimans & Ho, 2021; Luhman & Luhman, 2021) decou-
ple the training and inference schedules. This decoupling
allows for separate learning of the training and sampling
schedules. However, both approaches have the potential to
result in suboptimal performance. Therefore, exploring the
determination of the optimal sampling step during training
is a promising direction worth investigating.

In this paper, we propose an efficient denoising diffusion
model (EDDPM) to enhance the sampling efficiency. The
fundamental concept is illustrated in Figure 2. Figure 1
highlights redundant sampling steps in the denoising pro-
cess. Removing these steps has a negligible effect on the
quality of the samples or may even improve the sample
quality. To automatically and safely skip redundant steps
in the forward and reverse diffusion processes, we propose
EDDPM, which is a diffusion model equipped with a novel
probabilistic masking module. This module gradually iden-
tifies and masks the less informative steps. To be precise, we
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assign a binary probabilistic mask mi to each diffusion step
i, indicating whether it should be skipped (mi = 0 ) or kept
(mi = 1). As searching for the globally optimal steps for
diffusion models is an intractable discrete optimization prob-
lem, we address it by continualizing it through probabilistic
reparameterization. We parameterize mi to be a Bernoulli
random variable with probability si set to 1 and probability
1− si set to 0. Consequently, we can use the sum of si to
control the model efficiency, which can finally be encoded
into a sparse constraint. Therefore, the training problem is
continualized into optimizing the denoising diffusion model
under the sparsity constraint.

By jointly training the denoising diffusion model and op-
timizing the mask distribution parameters, we are able to
automatically identify and eliminate redundant steps. Our
method possesses an appealing feature: as a result of the
sparse constraint applied to the distribution parameters, the
majority of probabilities si will converge to either 0 or 1
upon full training. Consequently, the masks tend to converge
to nearly deterministic ones after training and the redundant
steps can thus be safely removed.We conducted extensive
quantitative and qualitative evaluations on image synthesis
and time series imputation tasks to validate the effective-
ness of our method. For instance, in time series imputation,
our method achieves significant performance improvements,
generating high-quality samples using only 20% of the orig-
inal steps. Moreover, it achieves an impressive FID score of
4.89 on CIFAR-10 with just 5 steps. Another advantage of
our method is that it only requires one epoch of fine-tuning
on a pretrained model to determine the most informative
denoising steps. This makes it feasible to explore large
diffusion models even with limited resources, which is par-
ticularly valuable for the research in academia. The main
contributions of this work are summarized as follows:

• We propose an efficient denoising diffusion model via
probabilistic masking, which offers the following three
advantages:

– Our method can identify and remove redundant
denoising steps during training, eliminating the
need for handcrafted skipping rules.

– Most of our probabilistic masks converge to de-
terministic values after full training, allowing for
the safe removal of redundant steps.

– The training efficiency in the later stages is signif-
icantly improved. As the training process goes on,
most si’s would get closer to either 0 or 1. Thus,
our EDDPM would automatically select the unin-
formative steps (i.e., si is small) with low proba-
bility and always focus on the informative ones
(i.e., si is close to 1) to train the model weights.

• We verify the proposed EDDPM method on two do-
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Figure 1: This figure shows the performance changes when
we simply remove a single step. The red rectangles indicate
that the sample quality can be improved after removing
that step. The results are collected from CSDI (Tashiro
et al., 2021) model with the Air-quality dataset. It shows
that for most steps, performance drop of removing them is
negligible, i.e., lower than 0.15. It can be expected that more
promising results can be achieved when more advanced
approaches are employed.

main tasks. In the time series imputation benchmarks,
the empirical results on Healthcare and Air-quality
datasets demonstrate that EDDPM outperforms the
state-of-the-art sampling acceleration methods. It
achieves comparable or even superior performance
compared to the original baselines with only 20%
denosing steps. Moreover, EDDPM achieves a 4.89
FID with only 5 steps for CIFAR-10.

• EDDPM demonstrates impressive performance in dif-
fusion model compression. Starting from a pretrained
diffusion model, our method can compress it within a
single epoch of fine-tuning. This highlights the poten-
tial of EDDPM as a practical tool for exploring large
diffusion models with limited resources.

2. Related Works
In this section, we first review the development and appli-
cations of diffusion models, Then, we introduce the recent
work on improving the sampling efficiency of diffusion
models.

Development and applications of DPMs. Diffusion prob-
abilistic models (DPMs) are firstly introduced by (Sohl-
Dickstein et al., 2015) that they can convert one distribu-
tion into a target distribution, in which each diffusion step
is tractable. Bordes et al. (2016) improved DPMs by a
infusion training procedure that requires slightly shorter
generation trajectory. Ho et al. (2020) proposed a new dif-
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fusion model, called Denoising Diffusion Model (DDPM),
and a weighted variational bound objective by connecting
the DPMs and denoising score matching methods (Song
& Ermon, 2019). Song et al. (2020a) generalized the
DDPMs to non-Markovian diffusion processes which lead
to “short” generative Markov chains that can increase sam-
ple efficiency. With above the important improvements,
DPMs show great potential in various applications, in-
cluding speech synthesis (Kong et al., 2020; Jeong et al.,
2021), 3D shape generation (Luo & Hu, 2021), image super-
resolution (Saharia et al., 2022), text generation (Hooge-
boom et al., 2021; Li et al., 2022) and probabilistic time se-
ries forecasting(Rasul et al., 2021) and imputation (Tashiro
et al., 2021) Previous studies have shown deep learning
models can capture the temporal dependency of time series
and give more accurate imputation than statistical meth-
ods (Fortuin et al., 2020; Mulyadi et al., 2021; Bonilla &
Chai, 2007). Rasul et al. (2021) used DPMs for multivari-
ate probabilistic time series forecasting and achieved the
state-of-the-art performance. CSDI (Tashiro et al., 2021)
is a conditional score-based diffusion model and it is used
to generate the missing values in the time series. To the
best of our knowledge, prior works have not explore the
acceleration of DPMs on time series domain.

Acceleration of DPMs. Following the survey (Yang et al.,
2022), we divide the existing efficient sampling methods
into two categories, i.e., learning-free and learning-based on
methods based on whether they require an additional learn-
ing process after the diffusion model has been trained. The
learning-free approaches accelerate the sampling process
by discretizing either the reverse-time stochastic differen-
tial equations (SDE) (Dockhorn et al., 2021; Song et al.,
2020b; Jolicoeur-Martineau et al., 2020) or the probability
flow ordinary differential equations (ODE) (Liu et al., 2021;
Song et al., 2020a; Zhang et al., 2022; Lu et al., 2022). We
notice that these methods always use handcrafted steps to
select the denosing steps. As our proposed method belongs
to the learning based category, here we mainly review the
recent studies on learning-based efficient sampling methods
(Watson et al., 2021a;b; Dockhorn et al., 2022; Salimans &
Ho, 2021; Luhman & Luhman, 2021), which find efficient
denoising trajectories by optimizing some objective or using
knowledge distillation.For example, Watson et al. (2021b)
used the dynamic programming algorithm to search the in-
formative diffusion steps. Xiao et al. (2021) compressed the
diffusion process by combining the GANs and DPMs, the
efficiency is improved since larger step size is allowed. San-
Roman et al. (2021) estimated the level of noise by training
a separate model, and modified the denoising process dy-
namically to match the predicted noise level. Dockhorn
et al. (2022) derive a second-order solver for accelerating
synthesis by training a additional head on top of the first-
order score network. Knowledge distillation is adopted in

(Salimans & Ho, 2021; Luhman & Luhman, 2021) to distill
the full sampling process into a faster sampler.

Through promising results are reported in existing studies,
it is worth noting that learning-free methods often employ
handcrafted rules, whereas learning-based methods usually
decouple the training and inference schedules. However,
both approaches have the potential to result in suboptimal
performance. To overcome the separation of the training
and the inference processes, we propose to progressively
remove the redundant diffusion steps in the training through
a probabilistic parameterization approach.

Notations: Let ∥ · ∥1 be the ℓ1 norm of a vector. We denote
1 ∈ Rn and 0 ∈ Rn to be the vectors with all compo-
nents equal to 1 and 0. In addition, {0, 1}n is a set of n-
dimensional vectors with each coordinate valued in {0, 1}.

3. Basics
In this section, for the convenience of presenting our method
EDDPM in Section 4, we introduce the basics of denoising
diffusion probabilistic models.

Starting from a sample x0, a diffusion process or forward
process is defined as a T -step Markov chain, where Gaus-
sian noise is gradually injected into x0. That is

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

where q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI), (1)

here the scalar parameter βt (t = 1, . . . , T ) determines the
variance of the noise added at each diffusion step, subject
to 0 < βt < 1. x1, ...,xT are latent variables in the same
space as x0. It can be verified that the diffusion schedule
in Eqn.(1) can guarantee xT would be close to a standard
Gaussian noise, i.e., N (xT ;0, I), when T is sufficiently
large. Notice that at an arbitrary timestep t, xt takes the
form of:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (2)

where αt =
∏t

s=1 α̂s, α̂t = 1− βt. This property enables
us to sample xt at any timestep t in training without going
through xi, i ≤ t one by one.

The reverse process is modelled as another Markov chain
parameterized by θ. To be precise, it starts from p(xT ) =
N (xT ;0, I) and

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

where pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I). (3)

The parameters θ of the reverse process can be learned by
maximizing the following variational lower bound on the
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training set, i.e.,

Eq(x0) log pθ(x0) ≥ Eq(x0,x1,...,xT ) log
pθ(x0:T )

q(x1:T |x0)
. (4)

Minimizing the objective function in Eqn.(4) is equivalent
to minimizing the distance between pθ(xt−1|xt) against
forward process posteriors q(xt−1|xt,x0), which is actually
a Gaussian distribution, i.e.,

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (5)

where µ̃t(xt,x0) :=

√
αt−1βt

1− αt
x0 +

√
α̂t(1− αt−1)

1− αt
xt,

and β̃t :=
1− αt−1

1− αt
βt.

By parameterizing pθ(xt−1|xt) as N (xt−1,µθ(xt, t), σ
2
t I)

with

µθ(xt, t) = µ̃t

(
xt,

1
√
αt

(xt −
√
1− αtϵθ(xt, t))

)
,

and letting ϵ ∼ N (0, I), the overall training problem of
diffusion model can be written as

min
θ

Ex0,ϵ,t
β2
t

2σ2
t α̂t(1− αt)

∥∥ϵ− ϵθ
(√

αtx0 +
√
1− αtϵ, t

)∥∥2
.

(xt−1, βt−1) (xt, βt) (xt+1, βt+1)
xt = xt−1

xt+1 = 1 − βt−1xt−1 + βt+1I

mt−1 = 1 mt = 0 mt+1 = 1

mi ∼ Bern(si), si ∈ [0,1]

xt−1 ≈ xt

xt+1 = 1 − βt−1xt−1 + βt+1I

mi ∼ Bern(si), si ∈ [0,1]
xt−1 xt+1

(βt−1 |mt−1 = 1) (βt |mt = 0) (βt+1 |mt+1 = 1)

xt

Masked sampling step

Figure 2: Our parametic probabilistic masking method, in
which the masks are determined by the Bernoulli distribu-
tion. The steps with 0-valued masks will be skipped.

4. Method
In this section, we present our efficient denoising diffusion
probabilistic model EDDPM by first introducing our proba-
bilistic masking approach and then presenting the detailed
training procedure. The detailed derivation procedure for
our method is given in the appendix.

4.1. Probabilistic Masking for Diffusion Models

As shown in Figure 2, our basic idea is to assign a binary
mask mt to determine whether this time step t should be
skipped (i.e., mt = 0) or not (i.e., mt = 1) and then jointly
learn these masks with the diffusion model parameters.

In EDPPM, we multiply each variance βt with the binary
mask mt. Therefore, mt = 0 means the diffusion step t
can be skipped, since the injected noise in Eqn.(1) would
be 0. Thus, the ℓ1-norm of m, i.e., ∥m∥1, can be used
to control the number of steps the diffusion model goes
through. Notice that, in this way, given x0 and m, xt is still
a Gaussian random variable. To be precise,

xt ∼ N (
√

αt(m)x0, (1− αt(m))I),

αt(m) =

t∏
i=1

α̂i(m), and α̂t(m) = 1− βtmt. (6)

It implies that we can sample xt at any time step t without
going through the former steps 0 to t− 1. The variational
low bound for diffusion models can be written as:

Lθ(x0,m)

=− Eq

log p(xT |m) +
∑
t≥1

log
pθ(xt−1|xt,m)

q(xt|xt−1,x0,m)

 ,

where the masked reverse process corresponding to Eqn. (3)
becomes

pθ(xt−1|xt,m) = N (xt−1;µθ(xt,m, t), σ2
t (m)I),

and the masked forward process posterior takes the form of
q(xt−1|xt,x0,m) = N (xt−1; ũt, β̃t(m)I) with

ũt =

√
αt−1(m)βtmt

1− αt(m)
x0 +

√
α̂t(m)(1− αt−1(m))

1− αt(m)
xt,

β̃t(m) =
1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

The problem of training a sparse diffusion can be formulated
naturally into

min
θ

Ex0,ϵ,tCt

∥∥∥ϵ− ϵθ

(√
αt(m)x0 +

√
1− αt(m)ϵ, t

)∥∥∥2
s.t. ||m||1 ≤ K,m ∈ {0, 1}T ,

where Ct =
β2
tmt

2σ2
t α̂t(m)(1−αt(m))

with K is a positive integer
controls the process complexity, T is the total length of the
diffusion process.

Notice that the above formulation involves a discrete opti-
mization problem, which is hard to solve and thus cannot
be applied in practice. To address this issue, we contiualize
the training problem by probabilistic masking. That is, we
reparameterize m into a binary random vector with each
component mt being an independent Bernoulli random vari-
able with probability st ∈ [0, 1] to be 1 and 1− st to be 0.
Then, we can relax the above discrete optimization problem
into the following continuous one:

min
θ,s

Φ(θ, s) := Em∼p(m|s)Ex0,ϵ,t|mLt
θ(x0, ϵ,m), (7)

s.t. ||s||1 ≤ K, s ∈ [0, 1]T , (EDDPM)
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where the loss function Lt
θ(x0, ϵ,m) takes the form of

Lt
θ(x0, ϵ,m)

=Ct

∥∥∥ϵ− ϵθ

(√
αt(m)x0 +

√
1− αt(m)ϵ, t

)∥∥∥2 .
Notice that Ct = 0 when mt = 0, therefore, we do not need
to update the model in this case.

Discussion. Nice properties of our method EDDPM can be
summarized as follows:

• Given the mask m, since xt are Gaussian random vari-
ables, we can sample them at any time step t without
going through the former diffusion steps. This would
enable us to train the model efficiently.

• Due to the constraints on s, i.e., ||s||1 ≤ K and s ∈
[0, 1]T , the optimal s would be sparse and most of its
components would be either 0 or 1. See Section C in
the appendix for details. This would lead us to the
three advantages below:

– When fully trained, the mask m sampled from
Bernoulli distribution p(m|s) would become
sparse. Thus, the length of the denoising steps can
be significantly reduced and inference efficiency
can be improved.

– Since the mask m would be nearly deterministic
after training, the steps with 0 valued masks can
be safely discarded. Therefore, the undesired ran-
domness in sampling the final diffusion model is
eliminated.

– The training efficiency in the late stage can be im-
proved. The reason is that as the training process
goes on , most si’s would get closer to either 0
or 1. Therefore our EDDPM would automatically
select the uninformative steps (i.e., si is small)
with low probability and always focus on the in-
formative ones (i.e., si is close to 1) to train the
model weights. Thus, the training efficiency can
be improved, which is verified in the experimental
results (see Figure 3).

4.2. Updating Masking Scores

We adopt stochastic optimization algorithms to train our
model EDDPM. Therefore, the key technique is to estimate
the stochastic gradient. Notice that

∇θΦ(θ, s) = Em∼p(m|s)Ex0,ϵ,t|m∇θLt
θ(x0, ϵ,m). (8)

Hence, ∇θLt
θ(x0, ϵ,m) is an unbiased estimation of

∇θΦ(θ, s). Now, we introduce the estimation of ∇sΦ(θ, s).

Algorithm 1 Efficient Denoising Diffusion via Probabilistic
Masking (EDDPM)

Require: Random initilized diffusion model Fθ, N is the
training epoch, masking rate γf .

Initilization: Sampling probabilities for each time step:
s = 1 ∈ RT

1: for epoch e = 1, 2, .., N do
2: Calculate γe according to Eqn.(10).
3: for each training iteration do
4: Sample mini batch of data XB .
5: Bernoulli sampling based on scores s for masking

diffusion steps.
6: Update variance schedule based on the sampled

masks with Eqn.(6).
7: Random sample the unmasked diffusion step for

training.
8: Compute diffusion model loss Lt

θ.
9: Back-propagation for Fθ to estimate ∇θΦ(θ, s).

10: Estimate ∇sΦ(θ, s) according to Eqn. (9).
11: Update θ and s according to Eqn.(11).
12: end for
13: end for

[Gradient Computation ∇sΦ(θ, s)] We adopt the policy
gradient method to estimate the gradient. To be precise,

∇sΦ(θ, s)

= ∇s

∑
m

[
Ex0,ϵ,t|mLt

θ(x0, ϵ,m)
]
p(m|s)

=
∑
m

[
Ex0,ϵ,t|mLt

θ(x0, ϵ,m)
]
∇sp(m|s)

=
∑
m

[
Ex0,ϵ,t|mLt

θ(x0, ϵ,m)∇s ln p(m|s)
]
p(m|s)

= Em∼p(m|s)Ex0,ϵ,t|mLt
θ(x0, ϵ,m)∇s ln p(m|s). (9)

Therefore, Lt
θ(x0, ϵ,m)∇s ln p(m|s) is a stochastic gradi-

ent of Φ(θ, s).

Based on Eqn.(8) and (9), we know that during training,
we can estimate the gradients ∇θΦ(θ, s) and ∇sΦ(θ, s) by
sampling a random mask m and a Gaussian noise ϵ.

[Gradually Increasing Masking Rate] To control the
model complexity, we denote the final masking rate as γf ,
that is

K = γfT.

Then, to stabilize the training process, we increase the mask-
ing rate gradually to make a smooth transformation from
a full diffusion process to a sparse process. We utilize the
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Table 1: CIFAR-10 image generation measured in FID. “-” means this result is not provided in the corresponding paper. The
underlined result is the second best method. NCSN++ w/ TDAS achieves lower FID than our method as it adopts different
base model.

Method Denoising steps
5 10 25 50 100 200 1000

Learning-free methods
DDPM (Ho et al., 2020) - 233.41 125.05 66.28 31.36 12.96 3.04
DDIM (Song et al., 2020a) 41.6 21.31 10.70 7.74 6.08 5.07 4.13
SN-DDPM (Bao et al., 2022) - 24.06 6.91 4.63 3.67 3.31 3.65
SN-DDIM (Bao et al., 2022) - 12.19 4.28 3.39 3.23 3.22 3.65
NPR-DDPM (Bao et al., 2022) - 32.35 10.55 6.18 4.52 3.57 4.10
NPR-DDIM (Bao et al., 2022) - 13.34 5.38 3.95 3.53 3.42 3.72
Analytic-DDPM (Bao et al., 2021) - 34.26 11.60 7.25 5.40 4.01 4.03
Analytic-DDIM (Bao et al., 2021) - 14.00 5.81 4.04 3.55 3.39 3.74
S-PNDM (Liu et al., 2021) 35.9 11.6 - 5.18 4.34 - 3.80
F-PNDM (Liu et al., 2021) - 7.03 - 3.95 3.72 - 3.70
Learning-based methods
GGDM (Watson et al., 2021a) 13.77 8.23 4.25 - - - -
DPM-solver (Lu et al., 2022) - 4.70 - - - - -
GENIE (Dockhorn et al., 2022) 11.2 5.28 3.64 - - - -
NCSN w/ TDAS (Ma et al., 2022) - - - - - 72.92 23.56
NCSN++ w/ TDAS (Ma et al., 2022) - - - - 7.78 2.97 -
CT w/ TDAS (Song et al., 2023) 7.12 6.58 5.87 4.72 4.13 3.46 2.57
EDDPM 4.89 4.34 3.59 3.34 3.21 3.19 3.03

increase function of (Zhu & Gupta, 2017):

γe =

1, if e < e1,

γf + (1− γf )
(
1− e−e1

N−e1

)3
, otherwise,

(10)

where N is the training epoch, γe is the ratio of the remain-
ing steps in the current epoch e. e1 is a positive integer
indicating that we train the entire denosing steps in the first
e1 epochs.

After obtaining the gradients, θ and s are updated by pro-
jected gradient descent as follows:

θ = θ − η∇θΦ(θ, s) and s = projS (s− η∇sΦ(θ, s)) ,
(11)

where S = {s ∈ RT : ||s||1 ≤ Ke, s ∈ [0, 1]T } with
Ke = γeT . The projection can be efficiently computed with
the details given in Theorem B.1 of the appendix.

Our training method can be integrated with general stochas-
tic optimization algorithms flexibly. The detailed steps of
our EDDPM are given in the Algorithm 1.
Remark 4.1. We find that due to the long diffusion sequence
in original diffusion models, the final variable xT learned
by our proposed EDDPM is close to Gaussian although lots
of diffusion steps are masked. We give the results (i.e., the
values of αt(m) over different steps on Healthcare dataset )
in Figure 4. We also tried to add regularization to induce a
Gaussian random variable xT , which shows that the quality
of the generated samples cannot be improved.

Remark 4.2. we would like to discuss our understandings
on Consistent Models and our EDDPM. Consistent Models
(Song et al., 2023) learn massive hyperlinks from the real
data xϵ and xt during training, which lead to significant
speedup in the data generation process. However, they
do not investigate, evaluate or exploit the importance of
different denoising steps, which is the main motivation of
our EDDPM. Therefore, it seems that Consistency Models
and EDDPM are proposed with almost orthogonal ideas and
we will try to combine these two different ideas to achieve
better performance in the future work.

5. Experiment
In this section, we evaluate the the effectiveness of EDDPM
on two applications of DDPM, i.e., image synthesis and mul-
tivariate time series imputation. We follow the experimental
settings in the existing studies (Ho et al., 2020; Song et al.,
2020a; Watson et al., 2021a) to ensure a fair comparison.

Datasets. We use the CIFAR-10 dataset (Krizhevsky et al.,
2009) (50k images of resolution 32×32) for image synthesis,
and Healthcare (Silva et al., 2012) and Air-quality (Tashiro
et al., 2021) for the time series imputation experiments.

Baselines. The following two different sets of baselines
are used for time series imputation and image synthesis.
For the time series task, we compared EDDPM to a va-
riety of scheduling and acceleration techniques applica-
ble to DDPMs: DDPM (Ho et al., 2020), DDIM (Song
et al., 2020a), Analytic-DPM (Bao et al., 2021) and
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Table 2: Comparising sampling acceleration methods in terms of RMSE results on variable denoising steps. † indicate that
the sampling is accelerated by quadratic skipping during inference, the others utilize uniform skipping. We highlight the
best results that surpass the baseline (DDPM is trained with 100% sampling steps) in red color, which means our method
generates high-quality time series with fewer denoising steps. The bold results show that our proposed EDDPM achieves
better performance than other sampling acceleration methods.

Dataset Missing rate Method Denoising steps Baseline10% 25% 40% 50%

H
ealthcare

10%

DDPM† 0.934 0.774 0.682 0.646
DDPM 0.900 0.707 0.634 0.592
DDIM 0.899 0.709 0.611 0.727
AnalyticDPM 0.856 0.842 0.831 0.825 0.549
SN-DDPM 1.094 1.112 1.128 1.146
NPR-DDIM 0.818 0.804 0.820 0.844
Ours (EDDPM) 0.582 0.545 0.529 0.505

50%

DDPM† 0.971 0.876 0.802 0.765
DDPM 0.961 0.815 0.747 0.706
DDIM 0.962 0.821 0.746 0.755
AnalyticDPM 0.976 0.902 0.896 0.865 0.679
SN-DDPM 1.029 1.038 1.047 1.061
NPR-DDIM 0.872 0.850 0.960 0.877
Ours (EDDPM) 0.721 0.672 0.669 0.670

90%

DDPM† 0.990 0.963 0.931 0.911
DDPM 0.101 0.931 0.883 0.850
DDIM 0.101 0.961 0.900 0.875
AnalyticDPM 0.982 0.919 0.916 0.901 0.823
SN-DDPM 1.179 1.115 1.105 1.095
NPR-DDIM 0.953 0.913 0.914 0.917
Ours (EDDPM) 0.851 0.811 0.809 0.815

A
ir-quality

13%

4% 10% 20% 40%
DDPM† 67.602 58.851 48.131 35.005
DDPM 64.302 55.300 44.199 31.338
DDIM† 67.767 60.848 52.296 40.761
DDIM 64.252 56.684 47.234 36.125
AnalyticDPM 62.458 51.223 48.936 46.379 19.212
SN-DDPM 78.885 73.111 69.656 69.430
SN-DDIM 85.099 69.359 69.241 73.545
NPR-DDPM 55.142 58.524 63.164 66.557
NPR-DDIM 55.656 46.654 45.496 44.458
Ours (EDDPM) 30.967 23.024 18.371 18.242

Extended-Analytic-DPM (Bao et al., 2022). Based on
CSDI model (Tashiro et al., 2021), these methods are all
re-implemented in our codebase. In addition to the above
acceleration methods, we also compare PNDM (Liu et al.,
2021), GGDM (Watson et al., 2021a), DPM-solver (Lu et al.,
2022), GENIE (Dockhorn et al., 2022) and TDAS (Ma et al.,
2022) on CIFAR-10 benchmark.

Evaluation Metric. In the time series task, we evaluate
the performance on normalized data (zero mean and unit
variance) by three commonly used metrics (Mean Abso-
lute Error (MAE), Root Mean Squared Error (RMSE)) and
Continuous Ranked Probability Score (CRPS) for proba-
bilistic time series imputation. Following previous stud-
ies (Tashiro et al., 2021), we generate 100 samples to ap-
proximate the probability distribution over missing values.
The detailed formulations of these three metrics are pro-
vided in the appendix. In the image generation task, we use

the Fréchet Inception Distance (FID) (Heusel et al., 2017)
to evaluate generated 50K samples. The transformed feature
is the 2048-dimensional vector output of the last layer of
Inception-V3 (Szegedy et al., 2016).

5.1. Main Results

In this section, we demonstrate the superior performance
of our method EDDPM in compressing diffusion steps for
probabilistic time series imputation and image generation
tasks, as compared to sampling acceleration methods. Addi-
tional visualization results can be found in the appendix.

Table 1 verifies that our proposed EDDPM method outper-
forms previous state-of-the-art sampling acceleration meth-
ods in terms of CIFAR-10 image generation, particularly
at sampling steps of 5 and 10. These results verify that
decoupled forward and reverse processes fail to identify the
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Figure 3: a) MAE results, in which our EDDPM method performs better than other DPMs when facing different masking
rates. The “Baseline” indicates the imputated samples are generated by 100% sampling steps. b) The histogram of the
probability s learned by our proposed EDDPM, and the results are obtained from Air-quality dataset. Almost all of the
si(i ∈ {1, . . . , T}) are either 0 or 1, making m becomes deterministic. c) The curves of training losses of DDPM and
EDDPM. EDDPM converges much more fast than DDPM in the late stage since it identify the informative steps and focus
on them to train the weights.

Table 3: Comparing the MAE results of DDPM and our proposed EDDPM. “Scratch” presents that the denoising steps
are searched from scratch by our EDDPM, “Finetune” uses the pretrained DDPM models to search the most informative
steps by finetuning one epoch. Here, DDPM and Ours(Stratch) have the same training time cost since they run for the same
number of epoches and the training cost of updating s is negligible due to the efficient policy gradient estimator.

Method Denoising steps Training time2% 4% 10% 20% 40%
DDPM 55.075 50.566 41.585 30.243 18.399 4 h
Ours (Scratch) 15.125 14.128 11.135 9.5660 9.495 4 h
Ours (Finetune) 24.747 13.876 12.885 11.142 9.892 1 min

optimal sampling steps, while our EDDPM method can au-
tomatically identify more informative steps during training.

In Table 2, we evaluated the proposed EDDPM and alterna-
tive accelerated sampling methods. These methods utilize
the same CSDI (Tashiro et al., 2021) backbone network
for a pair-to-pair comparison. We have the following 3
observations. 1) The results demonstrate that, on Health-
care and Air-quality datasets, our proposed EDDPM can
achieve better RMSE results than the baselines with 100%
steps (blue text) even if 50% ∼ 80% denoising steps are
masked. 2) We also found that the denoising process with
uniform skipping approach can obtain better performance
than the quadratic skipping. 3) Furthermore, we observed
that the methods DDIM, SN-DDPM and NPR-DDIM ex-
hibit instability, particularly when a higher percentage of
sampling steps is masked. The results deteriorate when 50%
of the sampling steps are masked. Additionally, we present
the MAE results on Figure 3(a). Our method achieves bet-
ter MAE results than the baseline with denoising steps by
only using 20% denoising steps. Moreover, our method
demonstrates greater effectiveness at higher masking rates

compared to DDIM (Song et al., 2020a).

5.2. Ablation Study

In this section, we aim to provide a comprehensive under-
standing of EDDPM by showcasing the distribution of prob-
ability values si’s throughout the complete training process
and visually representing the training progress. Additionally,
we demonstrate the effectiveness of EDDPM in model com-
pression, i.e., identifying the optimal denoising trajectory
within pre-trained diffusion models.

Convergence to Deterministic Mask. Figure 3(b) illus-
trates the convergence of the probabilities learned by our
method after training. It is evident that the probabilities
si tend to converge towards either 0 or 1, resulting in a
deterministic mask. This characteristic allows us to safely
discard the insignificant steps once training is complete. The
effectiveness of this convergence can be attributed to the
global sparsity constraint imposed on s as we discussed.

Fast Convergence. In Figure 3(c), we present a visual-
ization of the impact of EDDPM on improving training
efficiency. We can observe that the training loss of EDDPM
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decreases much faster than DDPM, especially in the late
stage. The reason is that as the training goes on most of
the si(i ∈ {1, . . . , T}) would get closer to either 0 or 1
(see Figure 3(b)), which enables EDDPM focus on the most
informative steps to train the model weights.

Finetuning Pretrained Diffusion Models. We assess the
effectiveness of EDDPM in compressing diffusion models.
Specifically, we employ EDDPM on a pre-trained diffusion
model to determine the optimal denoising trajectory. The
outcomes presented in Table 3 indicate that EDDPM can
achieve comparable performance in only 1 epoch, in con-
trast to the model trained from scratch. This highlights the
potential of EDDPM as a practical tool for exploring large
diffusion models with resource constraints.

0 10 20 30 40 50
# of Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

DDPM
EDDPM - 50%
EDDPM - 25%

Figure 4: αt(m) over different steps on Healthcare dataset.

6. Conclusion
In this paper, we propose an efficient denoising diffusion
model via probabilistic masking to accelerate sample gen-
eration process. The main contribution is that the proposed
approach can identity and remove the redundant steps grad-
ually during training. We re-implement several latest sam-
pling acceleration methods on two time series imputation
benchmarks and construct experiments on image generation
task to verify the effectiveness of our EDDPM. We also find
that our method can find the optimal denoising steps by only
using one epoch. This makes it possible to explore large
diffusion models in academia with limited resources.

Impact Statement
This paper presents work whose goal is to advance the field
of diffusion models. To be precise, we propose an efficient
denoising diffusion training algorithm. There are many
potential societal consequences of our work, none which we
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Supplementary Materials: Efficient Denoising Diffusion via Probabilistic
Masking

This appendix can be divided into the following parts:

• Section A gives the derivation procedure of formula of EDDPM.

• Section B presents how to implement the projection operator in EDDPM.

• Section C provides some theoretical understandings on the properties of EDDPM in inducing sparsity.

• Section D presents some basics on handcrafted sampling step skipping rules and multivariate time series imputation.

• Section E gives the configuration details and results on experiments.

A. Diffusion Model with Probabilistic Masks
The masked forward process is

q(xt|xt−1,mt) = N (xt;
√

1− βtmtxt−1, βtmtI);

q(x1:T ,m|x0) = q(x1:T |x0,m)ps(m)

= ps(m)ΠT
t=1q(xt|xt−1,mt)

= ΠT
t=1q(xt|xt−1,mt)ps(mt)

The masked reverse process is

pθ(xt−1|xt,mt) = N (xt−1;µθ(xt,mt, t),mtΣθ(xt, t))

pθ(x0:T ,m) = ps(m)pθ(x0:T |m)

= ps(m)p(xT )Π
T
t=1pθ(xt−1|xt,mt)

= p(xT )Π
T
t=1pθ(xt−1|xt,mt)ps(mt)

The variational low bound for diffusion models can be written as:

− log pθ(x0) = − log

∫
pθ(x0:T ,m)dx1:T dm

= − log

∫
pθ(x0:T ,m)

q(x1:T ,m|x0)
q(x1:T ,m|x0)dx1:T dm

= − logEq
pθ(x0:T ,m)

q(x1:T ,m|x0)

≤ −Eq log
pθ(x0:T ,m)

q(x1:T ,m|x0)

= −Eq log
p(xT |m)ΠT

t=1pθ(xt−1|xt,m)ps(mt)

ΠT
t=1q(xt|xt−1,m)ps(mt)

= −Eq

[
log p(xT |m) +

T∑
t=1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

]
=: L
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q(xt|xt−1,m) =q(xt|x0,xt−1,m)

=
q(xt,x0,xt−1,m)

q(x0,xt−1,m)

=
q(xt−1|xt,x0,m)q(xt,x0,m)

q(x0,xt−1,m)

=
q(xt−1|xt,x0,m)q(xt|x0,m)q(x0,m)

q(xt−1|x0,m)q(x0,m)

=q(xt−1|xt,x0,m)
q(xt|x0,m)

q(xt−1|x0,m)

L = −Eq

[
log p(xT |m) +

T∑
t=1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

]

= −Eq

[
log p(xT |m) +

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)
+ log

pθ(x0|x1,m)

q(x1|x0,m)

]

= −Eq

[
log p(xT |m) +

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt−1|xt,x0,m)
· q(xt−1|x0,m)

q(xt|x0,m)
+ log

pθ(x0|x1,m)

q(x1|x0,m)

]

= −Eq

[
log

p(xT |m)

q(xT |x0,m)
+

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt−1|xt,x0,m)
+ log pθ(x0|x1,m)

]

= Eq

DKL (q(xT |x0,m)∥p(xT |m))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL (q(xt−1|xt,x0,m)∥pθ(xt−1|xt,m))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1,m)



Note that

q(xt−1|xt,x0,m) = N (xt−1; µ̃(xt,x0), β̃tI)

µ̃t(xt,x0) =

√
ᾱt−1(m)βtmt

1− αt(m)
x0 +

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt,

β̃t =
1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

where

αt(m) = 1−mtβt and ᾱt(m) = Πt
i=1αi(m).

For the reverse process, we have

pθ(xt−1|xt,m) = N (xt−1;µθ(xt,m, t), σ̃2
t (m)I).

We define

δ(µ̃t, µθ) =
1

σ̃2
t (m)

∥µ̃t(xt,x0)− µθ(xt,m, t)∥2,
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we can get,

Lt−1 =

{
0, if mt = 0
1
2

[
n 1−ᾱt−1(m)

1−ᾱt(m)
mtβt

σ̃2
t (m)

− n+ δ(µ̃t, µθ) + n log
(

1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

)]
, otherwise

=

{
0, if mt = 0
1
2δ(µ̃t, µθ) +

n
2

[
1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

− 1 + log
(

1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

)]
, otherwise

=

{
0, if mt = 0
1
2δ(µ̃t, µθ) + C(m) otherwise

where

C(m) =
n

2

[
1− ᾱt−1(m)

1− ᾱt(m)

mtβt

σ̃2
t (m)

− 1 + log

(
1− ᾱt−1(m)

1− ᾱt(m)

mtβt

σ̃2
t (m)

)]
.

In this paper, following DDPM, we choose

σ̃2
t (m) =

1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

In this case,
C(m) = 0.

For µ̃t(xt,x0), since

xt(x0, ϵ) =
√

ᾱt(m)x0 +
√

1− ᾱt(m)ϵ with ϵ ∼ N (0, I),

we have

µ̃t(xt,x0) =

√
ᾱt−1(m)mtβt

1− ᾱt(m)
x0 +

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt(x0, ϵ)

=

√
ᾱt−1(m)mtβt

1− ᾱt(m)

1√
ᾱt(m)

(
xt(x0, ϵ)−

√
1− ᾱt(m)ϵ

)
+

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt(x0, ϵ)

=
1√

αt(m)

(
xt(x0, ϵ)−

mtβt√
1− ᾱt(m)

ϵ

)
.

Hence, we define

µ(xt,m, t) =
1√

αt(m)

(
xt −

mtβt√
1− ᾱt(m)

ϵθ(xt, t)

)
.

Then, we have

1

2σ̃2
t (m)

∥µ̃t(xt,x0)− µθ(xt,m, t)∥2

=
mtβ

2
t

2σ̃2
t (m)αt(m)(1− ᾱt(m))

∥ϵ− ϵθ (xt, t)∥2

=
mtβ

2
t

2σ̃2
t (m)αt(m)(1− ᾱt(m))

∥∥∥ϵ− ϵθ

(√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ, t

)∥∥∥2 .
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Finally, we get the loss as follows:

Lt−1 =

0, if mt = 0

mtβ
2
t

2σ̃2
t (m)αt(m)(1−ᾱt(m))

∥∥∥ϵ− ϵθ

(√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ, t

)∥∥∥2 , otherwise

Thus, we get the objective function in the main paper.

B. Projection Operator Implementation
Theorem B.1. (Wang & Carreira-Perpinán, 2013) Given a vector z, its projection s onto our constraint region {s ∈ RT :
∥s∥1 ≤ Ke, s ∈ [0, 1]T } can be computed as follows:

s = min(1,max(0, z− v∗21)).

where v∗2 = max(0, v∗1) and v∗1 is the solution to the following equation:

1⊤[min(1,max(0, z− v∗11))]−Ke = 0. (12)

The equation (12) can be efficiently solved using the bisection method.

We would like to point out that the theorem above as well as its proof is standard and similar cases can be found in (Wang
& Carreira-Perpinán, 2013). To make this paper self-contained, we present them in the appendix, although this is not our
contribution.

C. Analysis on The Sparsity of The Optimal Score
As we claimed in the main text, most the elements of score vector s would converge to either 0 or 1 as the training goes on.
It is equivalent to say that most of the elements in the optimal solution s∗ are either 0 or 1. To explain this, let us start from
understanding the sparsity of lasso.

Prof. Robert Tibshirani, the author of the well-known sparse learning method lasso, provides an explanation on the sparsity
in lasso from a geometric perspective in pages 10-12 of his book titled Statistical Learning with Sparsity: The Lasso and
Generalizations (Hastie et al., 2015). To be precise, the optimization problem of lasso is equivalent to the following one
with some t:

min
β

∥y −Xβ∥2, s.t.
p∑

i=1

|βi| ≤ t,

where X ∈ Rn×p is the feature matrix of n samples and y ∈ Rn is the response vector. Note that the constraint region
above is a diamond (p = 2) or a rhomboid (p > 2). As shown in Figure 5, which is copied from page 11 of the above
textbook, the optimal solution is the point, where the elliptical contours of the loss hit this constraint region. When the
dimension p = 2, the diamond has corners; if the solution occurs at a corner, then it has one parameter βj equal to 0. When
p > 2, the diamond becomes a rhomboid, and has many corners, flat edges, and faces; there are many more opportunities for
the estimated parameters to be zero. Please refer to page 12 of the above book for more details.

The situation in our problem is essentially the same with lasso, the only difference is that our constraint region {
∑T

t=1 |st| ≤
K, s ∈ [0, 1]T } has more corners (i.e., the coordinates are 0 or 1) than that of lasso, therefore, the optimal st has a high
probability to be either 0 or 1.

D. Basics
D.1. Handcrafted Sampling Step Skipping Rules

To improve the efficiency of sample generation process, previous methods (Song et al., 2020a; Bao et al., 2022; 2021)
always manually select the denoising steps through uniform skipping and quadratic skipping. The mathematical expression
of the above skipping approaches can be written as:

15



Efficient Denoising Diffusion via Probabilistic Masking

T = {1, 1 + S, ..., 1 + iS, ..., L}, with S =

{
T
L , uniform skipping,(
0.8T
L

)2
, quadratic skipping.

(13)

where i = 1, . . . , L. T and L are the number of diffusion steps and number of denoising steps in the training and testing
state respectively. S is the skipping step. The difference of T and L results in decoupled forward and reverse processes,
which makes a suboptimal performance. Instead, our proposed probabilistic masking method can identify and keep the most
informative steps during training.

Figure 5: Estimation picture for the lasso (Hastie et al., 2015).

D.2. Multivariate time series imputation

Let us denote each time series as X ∈ RK×P , where K is the number of features and P is the length of time series.
Probabilistic time series imputation is to estimate the missing values of X by exploiting the observed values of X . The
diffusion model is used to estimate the true conditional data distribution q(xt

0|xc
0), where xt

0 and xc
0 are the imputation

targets and conditional observations respectively.

E. More on Experiments
E.1. Time Series Datasets

Healthcare dataset (Silva et al., 2012) consists of 4000 clinical time series with 35 variables for 48 hours from intensive care
unit (ICU), and it contains around 80% missing values. Following previous study (Tashiro et al., 2021), we randomly choose
10/50/90% of observed values as ground-truth on the test data for imputation.

Air-quality dataset is composed of air quality data from 36 stations in Beijing from 2014/05/01 to 2015/04/30, and it has
around 13% missing values. We set 36 consecutive time steps as one time series. To build missing values in the time series,
we follow the empirical settings of the baseline (Tashiro et al., 2021), we adopt the random strategy for the healthcare dataset
and the mix of the random and historical strategy for the air quality dataset.

E.2. Implement Details

All the experiments are implemented by Pytorch 1.7.0 on a virtual workstation with 8 11G memory Nvidia GeForce RTX
2080Ti GPUs.

Time series. As for model hyper-parameters, we set the batch size as 16 and the number of epochs as 200. We used
Adam (Kingma & Ba, 2014) optimizer with learning rate 0.001 that is decayed to 0.0001 and 0.00001 at 75% and 90% of the
total epochs, respectively. For the diffusion model, we follow the CSDI (Tashiro et al., 2021) architecture to set the number
of residual layers as 4, residual channels as 64, and attention heads as 8. The denoising step T is set to 50 as our baseline.
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Figure 6: The histogram of the probability s learned by our proposed EDDPM, and the results are obtained from CIFAR-10
dataset.

Image data. Following (Nichol & Dhariwal, 2021), we use the U-Net model architecture, train 500K iterations with a batch
size of 128, use a learning rate of 0.0001 with the Adam (Kingma & Ba, 2014) optimizer and use an exponential moving
average (EMA) with a rate of 0.9999. The denoising step T is set to 1000 and the linear forward noise schedule is used as
our baseline.

E.3. Evaluation Metric

The detailed formulations of three metrics for time series task are:

MAE(x, x̂) =
1

N

N∑
i=1

∥xi − x̂i∥, (14)

RMSE(x, x̂) =

√√√√ 1

N

N∑
i=1

∥xi − x̂i∥2, (15)

CRPS(F, F̂ ) =

∫ ∞

−∞

[
F (z)− F̂ (z)

]2
dz, (16)

where x denotes the ground truth of the missed time series, x̂ represents the predicted values. F is the cumulative distribution
function of observations.

E.4. Main Results

As shown in Table 4, our proposed EDDPM can achieve better results than the baselines with 100% steps (blue text) even if
60% ∼ 75% denoising steps are masked. These results are consistent with the conclusion of the main paper.

E.5. Visualization Results

From the results illustrated in Figure 7, we can conclude that our proposed EDDPM can generate more accurate probabilistic
imputation results by only using the original 20% ∼ 50% steps.

For CIFAR-10 image generation, Figure 8 and 10 show that our proposed EDDPM can generate more high-quality image
samples than DDIM (Song et al., 2020a) when using 10 denoising steps. Figure 9 and 11 show the sample pairs generated by
our EDDPM with 5, 10 and 100 denoising steps, from these results we can conclude that our method generate high-quality
CIFAR-10 images using 5 steps.
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Table 4: Comparising sampling acceleration methods in terms of CRPS results on variable denoising steps. † indicate
that the sampling is accelerated by quadratic skipping during inference, the others utilize uniform skipping. We highlight
the best results that surpass the baselines in red color, which means our method generates high-quality time series with
fewer denoising steps. The bold results show that our proposed EDDPM achieves better performance than other sampling
acceleration methods.

Dataset Missing Method Denoising steps Baselines10% 25% 40% 50%

H
ealthcare

10%

DDPM† 0.688 0.501 0.382 0.326
DDPM 0.640 0.431 0.344 0.276
DDIM 0.641 0.495 0.564 0.840
AnalyticDPM 0.615 0.536 0.516 0.501 0.238
SN-DDPM 0.769 0.757 0.762 0.769
NPR-DDIM 0.573 0.502 0.504 0.516
Ours 0.267 0.237 0.235 0.231

50%

DDPM† 0.699 0.582 0.490 0.439
DDPM 0.675 0.516 0.437 0.372
DDIM 0.675 0.562 0.601 0.810
AnalyticDPM 0.698 0.586 0.572 0.579 0.331
SN-DDPM 0.761 0.752 0.759 0.772
NPR-DDIM 0.612 0.546 0.547 0.561
Ours 0.357 0.337 0.321 0.330

90%

DDPM † 0.731 0.690 0.648 0.622
DDPM 0.737 0.654 0.594 0.557
DDIM 0.737 0.695 0.715 0.856
AnalyticDPM 0.715 0.685 0.672 0.668 0.522
SN-DDPM 0.840 0.810 0.808 0.810
NPR-DDIM 0.704 0.647 0.643 0.644
Ours 0.572 0.517 0.516 0.513

A
ir-quality

13%

4% 10% 20% 40%
DDPM† 0.568 0.482 0.374 0.217
DDPM 0.536 0.453 0.344 0.209
DDIM† 0.569 0.507 0.464 0.605
DDIM 0.537 0.485 0.619 1.553
AnalyticDPM 0.489 0.453 0.429 0.382 0.109
SN-DDPM 0.557 0.507 0.482 0.481
SN-DDIM 0.653 0.568 0.558 0.582
NPR-DDPM 0.359 0.355 0.377 0.395
NPR-DDIM 0.362 0.344 0.305 0.271
Ours 0.170 0.133 0.112 0.104
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Figure 7: The comparison of our EDDPM method and DDPM (Ho et al., 2020) for probabilistic time series imputation on
Air-quality dataset. CSDI model is trained by DDPM. The black crosses show observed values and the blue circles show
ground-truth imputation targets. red and green colors correspond to our EDDPM and CSDI, respectively. For each method,
median values of imputations are shown as the line and 5% and 95% quantiles are shown as the shade.
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DDIM EDDPM

Figure 8: Random samples generated by DDIM (Song et al., 2020a) and EDDPM (ours) with 10 denoising steps on
CIFAR-10 dataset. We only present the result in this extreme sparse case since the results for more denoising steps are
difficult to differentiate for human beings.
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Figure 9: Random samples generated by our EDDPM with 5, 10 and 100 denoising steps on CIFAR-10 dataset.

T = 10
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Figure 10: Sample pair comparison based on DDIM (Song et al., 2020a) and EDDPM (ours) with 10 denoising steps on
CIFAR-10 dataset. We can see that our method can generate images with more details.
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Figure 11: Random samples generated by our EDDPM with 5, 10 and 100 denoising steps on CIFAR-10 dataset.
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