

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MILPNET: A MULTI-SCALE ARCHITECTURE WITH GE- OMETRIC FEATURE SEQUENCE REPRESENTATIONS FOR ADVANCING MILP PROBLEMS

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 We propose *MILPnet*, a multi-scale hybrid attention framework that models Mixed
014 Integer Linear Programming (MILP) problems as geometric sequences rather than
015 graphs. This approach directly addresses the challenge of Foldable MILP instances,
016 a class of problems that graph-based models, specifically Graph Neural Networks
017 (GNNs), fail to distinguish due to expressiveness limits imposed by the Weisfeiler-
018 Lehman test. By representing MILPs through sequences of constraint and objective
019 features, *MILPnet* captures both local and global geometric structure using a theo-
020 retically grounded multi-scale attention mechanism. We theoretically prove that
021 *MILPnet* can approximate feasibility, optimal objective value, and optimal solution
022 mappings over a measurable topological space with arbitrarily small error. Empiri-
023 cally, *MILPnet* outperforms graph-based methods by multiple orders of magnitude
024 in feasibility prediction accuracy and convergence speed on Foldable MILPs, while
025 using significantly fewer parameters. It also generalizes effectively across prob-
026 lem scales and demonstrates strong performance on real-world MILP benchmarks
027 when integrated into an end-to-end solver pipeline. Our code is available with the
028 <https://anonymous.4open.science/r/MILPnet-2BD1/>.

029 1 INTRODUCTION

031 Mixed-integer linear programming (MILP) is a foundational combinatorial optimization problem
032 characterized by a linear objective function and linear constraints, with decision variables that can
033 be either continuous or discrete. This flexibility makes MILP highly expressive and applicable in
034 diverse real-world domains, such as transportation systems (Goldman & Trevisan, 2023; Wang et al.,
035 2023a), route optimization (Mammeri, 2019; Chen et al., 2023a), and power system planning (Zhang
036 et al., 2020; Chen et al., 2024).

037 However, as a well-known NP-hard problem, solving MILP remains a significant challenge. Tra-
038 ditional methods, such as Branch-and-Bound (Land & Doig, 1960) and Cutting Planes (Gomory,
039 1958), are commonly employed but become impractical for large-scale instances due to their intensive
040 resource requirements.

041 Recently, Machine Learning methods have emerged as a promising alternative. ML models can
042 approximate solutions efficiently by leveraging the implicit structure and patterns within MILP
043 problems and integrating them with reinforcement learning or MILP Exact solvers. These approaches
044 can significantly reduce computational costs while delivering effective solutions within practical
045 timeframes (Bengio et al., 2018; tian Wu & min Yang, 2022; Wang et al., 2023a; 2024). Generative
046 models, including diffusion models, have also been explored for solving structured MILP variants,
047 such as the Traveling Salesman Problem (TSP) and the Maximum Independent Set Problem (MIS)
048 (Sun & Yang, 2023; Sanokowski et al., 2024; Ma et al., 2024), showing strong performance and
049 generalization.

050 A recent trend has been to solve MILPs using Graph Neural Networks (GNNs), treating MILP
051 instances as bipartite graphs that link variables and constraints (Han et al., 2023; Ye et al., 2023;
052 Paulus & Krause, 2023a; Geng et al., 2024). However, Bipartite graphs and GNNs can capture
053 relationships between constraints and variables, missing the interactions between the constraints
themselves, which potentially contain crucial features, such as feasible regions or optimal solutions of

054 the MILP. Thus, GNN-based solutions suffer from a fundamental limitation: **they cannot distinguish**
 055 **between non-isomorphic MILP instances that differ in feasibility**, due to the expressive bounds of
 056 the Weisfeiler-Lehman (WL) test. As shown in recent work (Chen et al., 2023b), this leads to failure
 057 cases known as **Foldable MILPs**, where multiple distinct MILP instances are indistinguishable to
 058 GNNs but differ critically in their feasible regions.

059 Although, recent research (Chen et al., 2023b) partially addresses this by injecting random features into
 060 graph structures. However, they only bypass WL-test
 061 limitations without capturing fundamental characteristics
 062 of MILP instances themselves. Current graph-based
 063 models remain inadequate for robust feasibility
 064 prediction and high-fidelity representation of general
 065 MILP problems, especially Foldable MILPs.
 066

067 To overcome these limitations, we propose a novel
 068 representation framework that departs from the graph
 069 paradigm and instead adopts a computational geometry
 070 perspective. Considering the geometric and topological
 071 uniqueness of MILP problems (Huchette &
 072 Vielma, 2019; Conforti et al., 2010), we encode each
 073 MILP instance by extracting spatial geometric fea-
 074 ture vectors, including hyperplane vectors from linear
 075 constraints, discrete integer point features, and direc-
 076 tion vector from the linear objective function, and
 077 assemble these into a sequence. To the best of our
 078 knowledge, this is the first work to represent MILPs
 079 as sequences.

080 Given the complexity of MILP problems, we propose a Multi-Scale Hybrid Attention mechanism
 081 that enables our model, MILPnet, to learn both local and global features from the MILP sequence.
 082 Furthermore, we mathematically prove that our model can effectively approximate the feature
 083 mappings of any MILP instance with arbitrarily small error.

084 We validated our approach on Foldable MILP instances, which are specifically challenging for GNN-
 085 and Graph-based models. Across feasibility, optimal solution, and optimal object value predictions,
 086 MILPnet achieves improvements of multiple orders of magnitude in accuracy and convergence speed,
 087 while using significantly fewer parameters and pre-training time. As summarized in Figure 1, MILPnet
 088 consistently outperforms baseline models across five key dimensions: generalization, accuracy, model
 089 size, inference time, and GPU memory usage. These results highlight the effectiveness of our
 090 geometric modeling and its broad potential.

2 RELATED WORK

091 MILP is a classic NP-hard problem. Traditional methods, such as branch-and-bound (Gomory, 1958)
 092 and cut-plane methods (Land & Doig, 1960), typically solve MILPs by simplifying or relaxing the
 093 problem. However, these methods can incur exponential time complexity in the worst case, limiting
 094 their scalability for large or real-time applications.

095 To address these challenges, machine learning methods have been applied to accelerate the MILP
 096 solving process. Specifically, most methods model MILP instances with GNNs, framing them as
 097 weighted bipartite graphs (Gupta et al., 2020). These graphs typically consist of two disjoint sets
 098 of nodes: variables and constraints. Message-passing mechanisms within GNNs are then used to
 099 capture their structural relationships. Notable ML-based methods include diffusion-model-based
 100 MILP solvers (Sun & Yang, 2023; Yu et al., 2024; Sanokowski et al., 2024), predict and search
 101 frameworks (Han et al., 2023; Huang et al., 2023), hybrid approaches that combine GNNs with
 102 reinforcement learning or traditional solving techniques (Wang et al., 2023a), and heuristic algorithms
 103 (He et al., 2014; Gasse et al., 2019; Chmiela et al., 2021; Paulus & Krause, 2023a).

104 Formally, a bipartite graph is denoted as $G = (V \cup W, E)$, where V and W represent the variable
 105 and constraint nodes, respectively. The set $G_{m,n}$ includes all such graphs with $|V| = m$ and

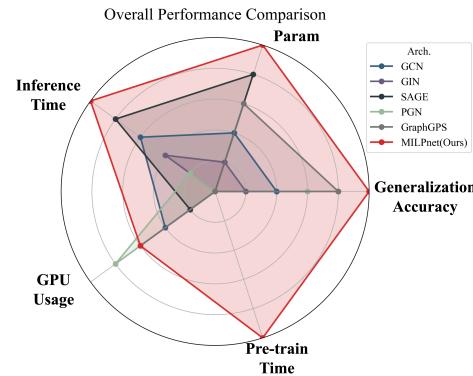


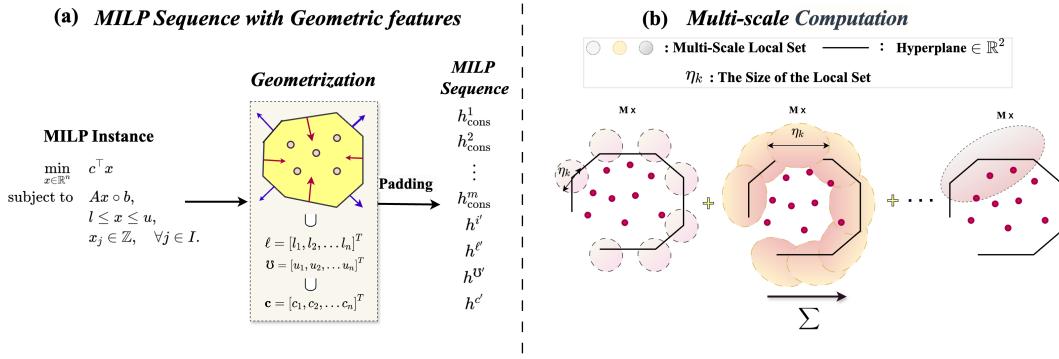
Figure 1: Overall performance comparison between MILPnet and graph-based models. **Larger area indicates better performance.**

108 $|W| = n$, while the complete graph representation with node features for an MILP is given by
 109 $(G, H) \in G_{m,n} \times H_m^V \times H_n^W$.
 110

111 While these graph-based models are effective in capturing variable-constraint relationships, they
 112 inherently miss higher-order interactions, particularly between constraints themselves, which may
 113 encode crucial information about feasibility or optimality. Therefore, for a class of MILP instances
 114 known as **Foldable MILPs** (Theorem 2.1), GNN-based models cannot represent their feasibility as
 115 the underlying WL-test cannot distinguish non-isomorphic graphs. Conversely, MILP instances that
 116 are not Foldable MILPs are Unfoldable MILPs.

117 **Theorem 1.** (Lemma 3.2. in (Chen et al., 2023b)) *There exist two MILP problems (G, H) and
 118 (G, \hat{H}) , with one being feasible and the other one being infeasible, such that $(G, H) \sim (G, \hat{H})$.*

119 This finding underscores a critical gap: graph-based models, regardless of feature augmentation,
 120 fundamentally cannot resolve the feasibility of Foldable MILP instances. It signifies the need for
 121 alternative representations beyond graph-based modeling to enhance the feasibility prediction for
 122 complex MILP problems.
 123



137 Figure 2: Overview of MILPnet. (a) An MILP instance is transformed into a sequence of geometric
 138 features tokens, including constraint hyperplanes, variable bounds, integer indicators, and the objective
 139 vector. (b) The sequence is processed by a multi-scale hybrid attention architecture, enabling accurate
 140 approximation of feasibility, optimal objective value, and solution mappings.
 141

3 PRELIMINARIES

145 **MILP formulation.** MILP is an NP-hard optimization problem characterized by a linear objective
 146 function and a set of linear constraints, with a subset of variables restricted to integer values. The
 147 standard formulation is:
 148

$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{s.t.} \quad Ax \circ b, \quad l \leq x \leq u, \quad x_j \in \mathbb{Z} \quad \forall j \in I \quad (1)$$

151 where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$ are the problem parameters, $l, u \in (\mathbb{R} \cup \{\pm\infty\})^n$ specifies
 152 the variable bounds, $\circ \in \{\leq, =, \geq\}^m$ denotes the constraint types, and $I \subseteq \{1, \dots, n\}$ indexes the
 153 variables that are required to be integer.
 154

155 **Feasibility.** From a geometric perspective, define the continuous feasible region as a polyhedron
 156 $P = \{x \in \mathbb{R}^n \mid Ax \circ b, l \leq x \leq u\}$ and the integer lattice as $\mathbb{Z}_I^n = \{x \in \mathbb{R}^n \mid x_j \in \mathbb{Z}, \forall j \in I\}$.
 157 The MILP feasible set is their intersection $S = P \cap \mathbb{Z}_I^n$, i.e. all points that satisfy the linear constraints
 158 and bounds while taking integer values in the specified dimensions. If $S = \emptyset$, the MILP is infeasible.
 159

160 **Optimal solution and optimal objective value.** A point $x^* \in S$ is called an **optimal solution** if it
 161 minimizes the objective function over all feasible points: $c^T x^* \leq c^T x, \forall x \in S$. The corresponding
 162 scalar $c^T x^*$ is the **optimal objective value**. If the objective can be decreased arbitrarily, i.e., for any
 163 $\epsilon > 0$, there exists $\hat{x} \in S$ such that $c^T \hat{x} < -\epsilon$, the MILP is unbounded and the optimal value is $-\infty$.
 164

162 **4 SEQUENCE MODELING FOR MILP: MILP-SEQUENCE**
163

164 This section introduces the first component of MILPnet (Figure 2 (a)), which encodes an MILP
165 instance into a sequence representation from a geometric perspective. The MILP instance is decom-
166 posed into multiple components, each modeled in a well-defined topological space, forming what we
167 refer to as the MILP-sequence.
168

169 **4.1 GEOMETRIC MODELING OF MILP**
170

171 We first reformulate the MILP problem from a geometric perspective. The MILP space consists of
172 high-dimensional hyperplanes or half-spaces (from linear constraints and variable bounds), discrete
173 point sets (from integrality requirements), and a direction vector (from the objective function).
174 Together, these are represented as $P_{\text{constraint}} \cup P_{\text{range}} \cup I \cup c$. Each of these components is defined
175 within a topological space as follows:
176

177 **Linear constraints.** The linear constraints are represented as the union of hyperplanes: $P_{\text{constraint}} =$
178 $\bigcup_{i=1}^m H_i$, where H_i is the i -th hyperplane or half-space defined by the vector $h_{\text{cons}}^i = (n_i, d_i, b_i)$,
179 where $n_i \in \mathbb{R}^n$ is the normal vector of H_i , $d_i \in \{-1, 0, 1\}$ denotes its directional type, and $b_i \in \mathbb{R}$ is
the bias term. h_i is chosen from the topological space $H^{\text{cons}} = (\mathbb{R}^n) \times \{-1, 0, 1\} \times \mathbb{R}$.
180

181 **Variable bounds.** The bounds on variables define upper and lower half-spaces: $P_{\text{range}} =$
 $\left(\bigcup_{j=1}^n H_{\text{upper},j}\right) \cup \left(\bigcup_{j=1}^n H_{\text{lower},j}\right)$, where $H_{\text{upper},j} = \{x \in \mathbb{R}^n \mid x_j \leq u_j\}$ and $H_{\text{lower},j} = \{x \in$
 $\mathbb{R}^n \mid x_j \geq l_j\}$. We encode the bounds as vectors $h^\ell = (l_1, l_2, \dots, l_n)$ and $h^U = (u_1, u_2, \dots, u_n)$,
182 drawn from the topological spaces $L = \prod_{j=1}^n L_i \subset \mathbb{R}^n$ and $U = \prod_{j=1}^n U_i \subset \mathbb{R}^n$, respectively, each
183 equipped with the standard Euclidean topology. \prod denotes the Cartesian product. The combined
184 vector $\ell \cup U$ belongs to the space $H^{\text{Var}} = \mathbb{R}^{2n}$.
185

186 **Integer set.** The integrality constraints are encoded using a binary vector: $h^i = (i_1, i_2, i_3, \dots, i_n) \in$
187 $\{0, 1\}^n$, where $i_k = 1$ if x_k is constrained to be an integer, and $i_k = 0$ otherwise. This vector resides
188 in the discrete topological space $I = \{0, 1\}^n$.
189

190 **Linear optimization direction.** The objective function is represented by a coefficient vector $h^c =$
191 $(c_1, c_2, \dots, c_n) \in \mathbb{R}^n$, drawn from the topological space $H^{\text{obj}} = \mathbb{R}^n$.
192

193 It is worth noting that, although the MILP feasible region is mathematically defined by intersections,
194 we use unions in our geometric reformulation to denote the collection of individual components
195 (e.g., constraint hyperplanes and bounds) treated as sequence tokens. This formulation expands
196 the representational space, enabling MILPnet to more effectively explore the solution structure and
197 approximate optimal outcomes.
198

199 **4.2 MEASURES OF THE MILP GEOMETRIC SPACES**
200

201 To unify component representations and manage dimensionality differences, we apply zero-padding,
202 yielding two related topological spaces $H^{\text{MILP}0}$ (original) and H^{MILP} (padded). The padded compo-
203 nent spaces include H^{cons} , $H^{\text{Var}'}$, $H^{\text{obj}'}$, I' . As shown in Theorem 5 in Appendix, the spaces padded
204 and non-padded are homeomorphic, ensuring no representation loss.
205

206 **Measures.** We equip each continuous space $(\mathbb{R}^n, \mathbb{R}^{2n}, \mathbb{R})$ with Borel σ -algebra and Lebesgue
207 measure, and each discrete component $(\{-1, 0, 1\}, \{0\}, \{0, 1\}^n)$ with the counting measure. By
208 product construction, the component measures are $\mu_{H^{\text{cons}}} = \lambda_{\mathbb{R}^n} \times \mu_{\{-1, 0, 1\}} \times \lambda_{\mathbb{R}}$, $\mu_{H^{\text{Var}'}} =$
 $\lambda_{\mathbb{R}^{2n}} \times \mu_{\{0\}}^4$, $\mu_{H^{\text{obj}'}} = \lambda_{\mathbb{R}^n} \times \mu_{\{0\}}^2$, $\mu_{I'} = \mu_{\{0, 1\}^n} \times \mu_{\{0\}}^2$. The overall padded topological space is
 $H^{\text{MILP}} = ((H^{\text{cons}})^m \cup H^{\text{Var}'}) \times I' \times H^{\text{obj}'}$, which is measurable by construction.
209

210 **4.3 GEOMETRIC FEATURE INTEGRATION**
211

212 We now integrate the MILP geometric feature vectors into a sequence-based representation, treating
213 each feature vector as a token.
214

215 **MILP-sequence.** Since the linear constraints h_{cons}^i , integer point sets h^i' , and variable ranges $h^{\ell'}$
and h^U' are permutation invariant (as formalized in Theorems 6 and 7 in Appendix), we can arrange
216

them in any order. To preserve this invariance and recognize the term objective function's unique role, we place the objective token $h^{c'}$ at the end of the sequence. Thus, the MILP-sequence is:

$$\mathbf{x} = [h_{\text{cons}}^1, h_{\text{cons}}^2, \dots, h_{\text{cons}}^m, h^{i'}, h^{\ell'}, h^{\psi'}, h^{c'}], \quad h \in \mathbb{R}^{n+2} \quad (2)$$

The topological space corresponding to the MILP-sequence is defined as $H^{\text{MILP}} \subset \mathbb{R}^{(m+4)(n+2)}$.

Sequence-based mappings. With this representation, we define the core mappings used to analyze MILP instances: **Feasibility mapping** $\Phi_{\text{feas}} : H^{\text{MILP}} \rightarrow \{0, 1\}$, **Optimal objective value mapping** $\Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty, -\infty\}$, and **Optimal solution mapping** $\Phi_{\text{solu}} : H^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1) \rightarrow \mathbb{R}^n$. These mappings are formally defined in Definitions 8 to 10 in the Appendix. We prove their measurability in Appendix G.

5 MULTI-SCALE HYBRID ATTENTION FOR MILP-SEQUENCE

This section introduces the second core component of MILPnet (Figure 2 (b)): a novel Multi-Scale Hybrid Attention mechanism specifically designed to model MILP sequences. This architecture enables the network to capture both fine-grained local structure and global context by combining multiple levels of attention. It operates directly on the MILP-sequence defined in the previous section and is supported by a rigorous approximation theory over the measurable space H^{MILP} .

5.1 SHIFTED-WINDOW MULTI-SCALE ATTENTION

The geometric structure of MILPs suggests that relationships among constraints can reflect topological characteristics of the feasible region. To leverage this structure, we employ multi-scale local attention via sliding windows that extract features from various neighborhoods in the MILP-sequence.

Shifted-Window Local Attention. Given an embedded MILP-sequence $\mathbf{X}_{\text{embed}} \in \mathbb{R}^{(m+4) \times (n+2)}$, derived through linear projection, we define local attention windows that slide across the sequence. For each token at position $i \in \{1, \dots, m+4\}$, a window of size η_k is centered at i , covering elements from position $i_{\min} = \max(i - \lfloor \frac{\eta_k-1}{2} \rfloor, 1)$ to position $i_{\max} = \min(i + \lceil \frac{\eta_k-1}{2} \rceil - 1, m+4)$. To effectively capture the relationship between multi-level features and the MILP's overall goal, this window also needs to incorporate the embedding of the objective function feature $h^{c'}$ at position $m+4$. Therefore, the position indices $\eta_k(i)$ for the window attention at position i with the window size η_k are defined as:

$$\eta_k(i) = \{j \in [i_{\min}, i_{\max}]\} \cup \{m+4\}. \quad (3)$$

Then, the local attention at position i for scale η_k is computed as:

$$\mathbf{Q}_i^{\eta_k} = \mathbf{W}_Q \mathbf{X}_{\text{embed},i}, \mathbf{K}_j^{\eta_k} = \mathbf{W}_K \mathbf{X}_{\text{embed},j}, \mathbf{V}_j^{\eta_k} = \mathbf{W}_V \mathbf{X}_{\text{embed},j}, \quad j \in \eta_k(i) \quad (4)$$

$$\alpha_{ij}^{\eta_k} = \text{softmax} \left(\frac{\mathbf{Q}_i^{\eta_k} \cdot (\mathbf{K}_j^{\eta_k})^\top}{\sqrt{d_k}} \right), \quad j \in \eta_k(i), \quad \mathbf{Att}_i^{\eta_k} = \sum_{j \in \eta_k(i)} \alpha_{ij}^{\eta_k} \mathbf{V}_j^{\eta_k} \quad (5)$$

where \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V are the linear transformation matrices for Query, Key, and Value, and d_k is the dimension of the key vectors, which is split from the embedding size d_{dim} by the multi-heads. softmax function is used to normalize the Attention weights.

Multi-Scale MILP-sequence Attention. To aggregate information at different granularities, we apply local attention using N window sizes. The resulting outputs are averaged to produce the multi-scale representation, which is like the style in the Figure 2 (b).

$$\mathbf{Att}^{\text{multi}} = \frac{1}{N} \sum_{i=1}^{m+4} \sum_{k=1}^N \mathbf{Att}_i^{\eta_k} = \frac{1}{N} \sum_{k=1}^N \sum_{i=1}^{m+4} \left(\sum_{j \in \eta_k(i)} \alpha_{ij}^{\eta_k} \mathbf{V}_j^{\eta_k} \right) \quad (6)$$

where window sizes $\eta_k \in [2, m+4]$ allow for a comprehensive evaluation of local and global contextual influences. Let $\eta_{\max} = \max_k(\eta_k)$ denote the largest window size.

Hybrid Attention Integration. To capture both multi-scale locality and global context, we define a hybrid attention mechanism that integrates multi-scale attention with global attention using a learnable parameter α :

$$\mathbf{Att}^{\text{hybrid}} = \alpha \cdot \mathbf{Att}^{\text{multi}} + (1 - \alpha) \cdot \mathbf{Att}^{\text{global}} \quad (7)$$

As illustrated in Figure 2, each MILP instance is first geometrically encoded as a feature vector in \mathbb{R}^{n+2} , and then padded to form an MILP-sequence of length $m + 4$. This sequence undergoes linear projection and position encoding to produce the embedded input: $\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n+2}] + \mathbf{z}_{\text{position}}$. With this embedded sequence, MILPnet applies its Hybrid Attention (HYA) mechanism, followed by residual connections and layer normalization. The computation at the l -th layer proceeds as:

$$\hat{\mathbf{z}}^l = \text{HYA}(\text{LN}(\mathbf{z}^{l-1}) + \mathbf{z}^{l-1}), \mathbf{z}^l = \text{MLP}(\text{LN}(\hat{\mathbf{z}}^l) + \hat{\mathbf{z}}^l) \quad (8)$$

where LN denotes layer norm, MLP refers to a position-wise feedforward network. Detailed information is in Figure 6 from Appendix.

Time Complexity. The computational complexity of the hybrid attention is $O(h d (m + 4)^2 (N + 1))$ where h is the number of attention heads, d is the embedding size, m is the number of the constraints, and N is the number of windows. Detailed analysis is provided in Appendix I.

5.2 MILPNET REPRESENTATION ON THE MEASURABLE SPACE H^{MILP}

We now formally demonstrate that the multi-scale hybrid architecture of MILPnet is capable of approximating the feature mappings of any MILP instance, when represented as a sequence in the measurable topological space H^{MILP} . We define two function classes: $\mathcal{F}_{\text{HYA}}^{\text{MILP}} : H^{\text{MILP}} \rightarrow \mathbb{R}$ for scalar-valued network mappings, and $\mathcal{F}_{\text{HYA,V}}^{\text{MILP}} : H^{\text{MILP}} \rightarrow \mathbb{R}^n$ for vector-valued network mappings with fixed output dimension n . By leveraging these mappings and the measurability structure introduced in Section 4.2 and 4.3, we can prove that for any MILP instance viewed as a sequence:

MILPnet can uniformly approximate MILP feasibility mapping, MILP optimal-solution mapping, and MILP optimal objective value mapping.

The following theorems formally establish MILPnet’s approximation capabilities (see Appendix G for detailed proofs and corollary on infinite set):

Theorem 2. *Let $D \subset H^{\text{MILP}}$ be a finite dataset. For any $\epsilon > 0$, there exists a neural network $F_{\text{HYA}} \in \mathcal{F}_{\text{HYA}}^{\text{MILP}}$ such that:*

$$P\left(\mathbb{I}_{F_{\text{HYA}}(x) > \frac{1}{2}} \neq \Phi_{\text{feas}}(x)\right) < \epsilon, \quad \forall x \in D, \quad (9)$$

Theorem 3. *Let $D \subset H^{\text{MILP}}$ be a finite dataset. For any $\epsilon, \delta > 0$, there exist two neural networks $F_{\text{HYA},1}, F_{\text{HYA},2} \in \mathcal{F}_{\text{HYA}}^{\text{MILP}}$ such that for classifying whether the objective value is finite:*

$$P\left(\mathbb{I}_{F_{\text{HYA},1}(x) > \frac{1}{2}} \neq \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}\right) < \epsilon, \quad \forall x \in D \quad (10)$$

where $\mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}$ is an indicator function that determines whether the objective value is finite. And for the regression problem of predicting the objective value:

$$P(|F_{\text{HYA},2}(x) - \Phi_{\text{obj}}(x)| > \delta) < \epsilon, \quad \forall x \in D \cap \Phi_{\text{obj}}^{-1}(\mathbb{R}) \quad (11)$$

Theorem 4. *Let $D \subset \Phi_{\text{obj}}^{-1}(\mathbb{R}) \subset H^{\text{MILP}}$ be a finite dataset. For any $\epsilon, \delta > 0$, there exists a Hybrid attention based network $F_{\text{HYA},V} \in \mathcal{F}_{\text{HYA},V}^{\text{MILP}}$ such that:*

$$P(\|F_{\text{HYA},V}(x) - \Phi_{\text{solu}}(x)\| > \delta) < \epsilon, \quad \forall x \in D, \quad (12)$$

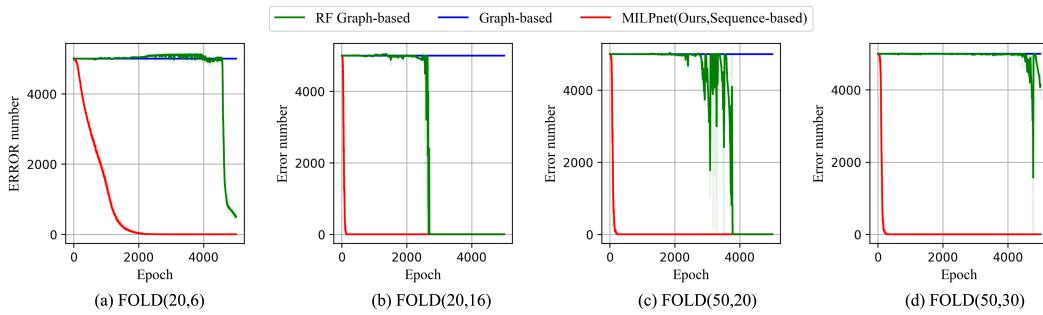
To train any MILPnet F_ϕ to approximate these mappings, we minimize the error between MILPnet and the feature mapping as the loss function $\mathcal{L}(\phi) = E[\|\mathbf{y} - F_\phi(x)\|_2]$, where \mathbf{y} is ground truth.

6 EXPERIMENT

We conducted comprehensive experiments to evaluate the effectiveness, efficiency, and generalizability of MILPnet to answer: **RQ1:** How effectively does MILPnet represent and generalize on Foldable MILP instances? **RQ2:** How does MILPnet perform on real-world MILP instances? **RQ3:** How do MILPnet’s architectural components impact performance?

324
 325 Table 1: Generalization results for feasibility mapping on FOLD(20,*) and FOLD(50,*), with 10,000
 326 foldable instances per setting and pre-training times of 3 and 10 minutes. Full results are provided in
 327 Appendix B.5.

328 Method	329 Type	330 FOLD(20,6)			331 FOLD(20,16)			332 FOLD(50,20)			333 FOLD(50,30)		
		334 MSE	335 ErrorN	336 Params	337 MSE	338 ErrorN	339 Params	340 MSE	341 ErrorN	342 Params	343 MSE	344 ErrorN	345 Params
346 SCIP	347 Exact	348 0	349 0	350 0	351 0	352 0	353 0	354 0	355 0	356 0	357 0	358 0	359 0
360 GCN	361 Graph	362 0.3073	363 5000	364 1.21M	365 0.3073	366 5000	367 1.21M	368 0.3073	369 5000	370 1.21M	371 0.3073	372 5000	373 1.21M
374 GIN	375 Graph	376 0.4200	377 5000	378 1.63M	379 0.4209	380 5000	381 1.63M	382 0.4200	383 5000	384 1.63M	385 0.4204	386 5000	387 1.63M
388 SAGE	389 Graph	390 0.4642	391 5000	392 0.66M	393 0.4999	394 5000	395 0.66M	396 0.4714	397 5000	398 0.66M	399 0.4586	400 5000	401 0.66M
402 PGN	403 Graph	404 0.2508	405 5000	406 1.64M	407 0.2523	408 5000	409 1.64M	410 0.2511	411 5000	412 1.64M	413 0.2511	414 5000	415 1.64M
417 GraphGPS	418 Graph	419 0.2500	420 5000	421 0.66M	422 0.2500	423 5000	424 0.66M	425 0.2500	426 5000	427 0.66M	428 0.2500	429 5000	430 0.66M
432 GCN^{rf}	433 Rf Graph	434 0.2498	435 5000	436 1.21M	437 0.2500	438 5000	439 1.21M	440 0.2476	441 4334	442 1.21M	443 0.5223	444 5000	445 1.21M
446 GIN^{rf}	447 Rf Graph	448 0.2500	449 5000	450 1.63M	451 0.2501	452 5000	453 1.63M	454 0.2500	455 5000	456 1.63M	457 0.4204	458 5000	459 1.63M
461 SAGE^{rf}	462 Rf Graph	463 0.2499	464 5009	465 0.66M	466 0.2499	467 4995	468 0.66M	469 0.2500	470 4997	471 0.66M	472 0.2500	473 5002	474 0.66M
476 PGN^{rf}	477 Rf Graph	478 0.2582	479 5000	480 1.64M	481 0.2560	482 5000	483 1.64M	484 0.2502	485 5000	486 1.64M	487 0.2502	488 5000	489 1.64M
492 GraphGPS^{rf}	493 Rf Graph	494 0.2510	495 5000	496 0.66M	497 0.2510	498 5000	499 0.66M	500 0.2500	501 5000	502 0.66M	503 0.2502	504 5000	505 0.66M
508 MILPnet	509 Ours (Seq)	510 0.0005	511 0	512 0.56M	513 0.0004	514 0	515 0.56M	516 0.0005	517 0	518 0.60M	519 0.0023	520 12	521 0.60M



350 Figure 3: Representation Dynamics on feasibility for FOLD20 and FOLD50. Full results are in
 351 Figure 9 in Appendix.

354 6.1 EXPERIMENT SETUP

356 **Datasets.** We evaluate MILPnet on two categories of datasets: (1) *Synthetic Foldable MILP Instances*
 357 (*FOLD*(n, m)): Following (Chen et al., 2023b), we generate Foldable MILP instances where n and m
 358 are the number of variables and constraints, respectively. (2) *Real-World MILP Benchmarks*: We se-
 359 lect four common MILP benchmarks: IP (Item Placement) from ML4CO competition dataset (Gasse
 360 et al., 2022), SC (Set Covering) (Feige, 1998; Chvátal, 1979), CA (Capacitated Assignment) (Bandy-
 361 padhyay et al., 2017), and FC (Facility Location) (Charikar et al., 1999). They are all Unfoldable
 362 MILP instances. More details on the datasets are provided in Appendix K.3 and Appendix K.5.

363 **Baselines.** We compare MILPnet against several representative graph-based learning models, in-
 364 cluding GCN (Chen et al., 2023b), GIN (Xu et al., 2019), SAGE (Wu et al., 2021), PGN (Cappart
 365 et al., 2022), GraphGPS (Wang et al., 2023b). Each baseline has an augmented variation with random
 366 features (RF), indicated by a superscript rf , specifically designed to overcome WL-test limitations in
 367 feasibility prediction. Appendix K.1 provides more details on the baselines.

368 **Metrics.** We use *MSE* (Mean Squared Error) and *ErrorN* (number of incorrect predictions) (Chen
 369 et al., 2023b), *Params* (number of model parameters) to evaluate performance. Lower is better.

371 6.2 PERFORMANCE ON FOLDABLE MILP INSTANCES

373 **Representation Effectiveness.** We evaluate *MILPnet* on Foldable MILP instances with increasing
 374 complexity: FOLD(20,6), FOLD(20,16), FOLD(50,20), and FOLD(50,30). Figure 3 shows that
 375 *MILPnet* converges rapidly to near-zero *ErrorN* while standard graph-based models fail to improve
 376 beyond their initial performance. Models with random feature augmentation show moderate im-
 377 provements on simpler instances but struggle to converge on more complex cases such as FOLD(50,30).
 378 Similar trends are observed in MSE (more details in Appendix B.4). These results confirm that *MILP-*

378

379
380
381
Table 2: Generalization experiments for *End-to-End*
382 optimal solution predict 1-hour of pre-train.

Method	Type	FOLD(20,6)		FOLD(20,16)	
		MSE	Params	MSE	Params
GCN	Graph	0.0751	1.17M	0.2000	1.17M
GIN	Graph	0.0753	1.59M	0.2000	1.59M
SAGE	Graph	0.0750	0.60M	0.2000	0.60M
PGN	Graph	70.1485	1.64M	20.5955	1.64M
GraphGPS	Graph	0.0863	0.60M	4.0395	0.60M
MILPnet(Ours)	Sequence	0.0473	0.56M	0.1964	0.56M

Method	Type	FOLD(50,20)		FOLD(50,30)	
		MSE	Params	MSE	Params
GCN	Graph	0.1000	1.17M	0.1509	1.17M
GIN	Graph	0.1000	1.59M	0.1501	1.59M
SAGE	Graph	0.1000	0.86M	0.1500	0.86M
PGN	Graph	55.8530	1.64M	36.5160	1.64M
GraphGPS	Graph	0.1020	0.67M	0.1551	0.67M
MILPnet(Ours)	Sequence	0.1158	0.62M	0.1654	0.63M

392

393

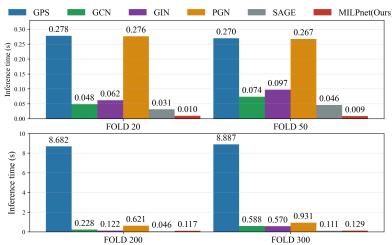
394

395
396
Table 4: Generalization results for feasibility prediction on larger Foldable instances FOLD(200,20),
397 FOLD(300,40), and FOLD(500,60), each with 10,000 instances and 1 hour of pre-training.

Method	Type	FOLD(200,20)			FOLD(300,40)			FOLD(500,60)		
		MSE	ErrorN	Params	MSE	ErrorN	Params	MSE	ErrorN	Params
SCIP	Exact	—	0	—	—	0	—	—	0	—
GCN	Graph	0.2676	5000	0.03M	0.3073	5000	0.08M	0.2500	4999	0.14M
GIN	Graph	0.2573	5000	0.04M	0.3099	5000	0.10M	0.2500	5000	0.21M
SAGE	Graph	0.2814	5000	0.03M	0.3951	5000	0.05M	0.2500	5000	0.12M
PGN	Graph	0.2508	5000	0.08M	0.2523	5000	0.14M	0.2523	5000	0.29M
GraphGPS	Graph	0.2500	5000	0.03M	0.2500	5000	0.59M	0.2501	5000	0.92M
GCN ^{rf}	Rf Graph	0.2497	4835	0.03M	0.2500	5000	0.80M	0.2611	4999	0.14M
GIN ^{rf}	Rf Graph	0.2500	4998	0.04M	0.2500	5012	0.10M	0.2501	5003	0.21M
SAGE ^{rf}	Rf Graph	0.2500	5011	0.03M	0.2500	4998	0.05M	0.2500	4981	0.12M
PGN ^{rf}	Rf Graph	0.2544	5000	0.08M	0.2500	5000	0.14M	0.2506	5000	0.29M
GraphGPS ^{rf}	Rf Graph	0.2502	5000	0.03M	0.2510	5000	0.05M	0.2506	5000	0.92M
MILPnet	Seq (Ours)	0.0155	191	0.02M	0.0521	560	0.04M	0.1832	2453	0.11M

408

409

410
411
net effectively captures the geometric and combinatorial structure of MILPs, providing empirical
support for the theoretical guarantees in Theorems 2–4.412
413
414
415
416
417
418
419
420
Figure 4: Inference time comparisons

Generalization Abilities. We evaluate *MILPnet* on both small (FOLD(20, *), FOLD(50, *)) and large (FOLD(200,20), FOLD(300,40), and FOLD(500,60)) Foldable MILP instances under equal pre-training time, focusing on three *End-to-End* prediction tasks: feasibility, optimal solution, and optimal objective value. In feasibility prediction (Tables 1 and 4), *MILPnet* improves MSE by 1–3 orders of magnitude and reduces *ErrorN* by 90% or more in most cases. For optimal solution and value prediction (Tables 2 and 3), *MILPnet* significantly exceeds baselines while using substantially fewer parameters.

Efficiency Analysis and Sparse Variant. Figure 4 shows that *MILPnet* consistently achieves the fastest inference time across both small and large Foldable MILPs. GPU memory usage (Appendix Figure 13) remains moderate (<4GB on FOLD300), making it suitable for deployment on a wide range of hardware. We also provide a sparse (stride) *MILPnet* variant that reduces the time complexity to $\frac{1}{s}$ of the original, with FOLD200 faster inference results shown in Table 14 and details in the Appendix J, indicates its potential computational scalability.

Overall Model Comparison. We summarize performance across key metrics, including generalization, parameter count, inference time, GPU memory, and *ErrorN*, using radar charts with performance ranks (Figures 1 for FOLD50 and Appendix Figure 14 for FOLD300). In both cases, *MILPnet* consistently forms the outermost polygon, indicating superior performance in accuracy, efficiency, and resource usage compared to graph-based baselines.

Table 5: *Predict + Search* performance of MILPnet on four benchmarks. “Rand” denotes randomly generated initial solutions. “gap” is computed as $\text{gap} = (\hat{y} - y^*) / (|y^*| + 10^{-9})$, where y^* is the exact optimal value by SCIP. “PT” means the predicting optimal candidate solution. “ST” is total solving time including search. Full Comparisons with advanced methods are in Appendix C.1.

Method	Type	IP			SC			CA			FC		
		gap(\downarrow)	PT(s) (\downarrow)	ST(s) (\downarrow)	gap(\downarrow)	PT(s) (\downarrow)	ST(s) (\downarrow)	gap(\downarrow)	PT(s) (\downarrow)	ST(s) (\downarrow)	gap(\downarrow)	PT(s) (\downarrow)	ST(s) (\downarrow)
Rand	Random	36.5397	—	0.1240	1.7166	—	2.0173	2.8057	—	6.7830	1.4939	—	1.7786
GCN	Graph	0.0389	0.2443	0.3774	1.1461	0.2391	0.8386	0.9890	0.2278	3.2328	0.4257	0.2518	1.4875
MILPnet	Seq(Ours)	0.0234	0.0625	0.1864	0.3483	0.0137	0.6915	0.7651	0.0139	3.2300	0.3503	0.0177	1.3773

Table 6: Performance impact of MILPnet’s architectural components

(a) Ablation results on the impact of HYA and MSA

Method	FOLD(20,6)		FOLD(50,20)		FOLD(100,20)	
	MSE	ErrorN	MSE	ErrorN	MSE	ErrorN
MILPnet (ours)	0.0001	0	0.0001	0	0.0074	6
w/o HYA	0.2503	5036	0.2501	4999	0.2501	4987
w/o MSA	0.2500	5051	0.2500	5008	0.2500	4995

(b) Impact of η_{\max} ("/ n " means $\eta_{\max} = n$)

Method	FOLD(20,6)		FOLD(50,30)		FOLD(100,20)	
	MSE	ErrorN	MSE	ErrorN	MSE	ErrorN
MILPnet /2	0.0005	0	0.0477	235	0.0558	318
MILPnet /3	0.0006	0	0.0481	259	0.0471	272
MILPnet /4	0.0026	0	0.0841	764	0.0774	727

6.3 PERFORMANCE ON REAL-WORLD MILP INSTANCES

While our focus is on sequence-based representation, we further demonstrate the utility of *MILPnet* in solving real-world MILP problems. We adopt a *predict + search* approach, where the model is trained to predict an optimal solution, which is then refined via a lightweight local heuristic. Table 5 compares *MILPnet* with graph-based baselines and a random search baseline. *MILPnet* consistently achieves the smallest optimality gap to the exact solver, and the lowest overall solving time. These results demonstrate the model’s strong representation quality and practical solving effectiveness.

6.4 IMPACT OF ARCHITECTURAL COMPONENTS

Ablation Study on Hybrid and Multi-scale Atten-

tion. To evaluate the contribution of MILPnet’s attention design, we compare the removal of the Hybrid Attention (HYA) and Multi-Scale Attention (MSA) components. Table 6a shows that removing either component significantly degrades feasibility prediction accuracy. In particular, models without MSA struggle to capture local structure, while disabling HYA weakens global context integration. These results confirm that both components are essential to MILPnet’s representation effectiveness.

Ablation study on multi-scale attention blocks We conduct an ablation study on the depth of the multi-scale attention module by varying the number of blocks from 1 to 3. The results, which visualize and summarize its representational and generalization capabilities, are provided in Figure 8 in the Appendix B and Table 8. A key finding is that deeper multi-scale attention modules offer a significant improvement in convergence speed and representation at no cost to generalization ability.

Table 8: Ablation study on the number of multi-scale attention blocks (L).

Number of blocks	Method + Arch	FOLD(20,16)		FOLD(50,20)	
		MSE	ErrorN	MSE	ErrorN
GCN (Original)	GNN + Graph	0.3070	5000	0.4719	5000
L=1	MILPnet + Seq	0.0006	0	0.0003	0
L=2	MILPnet + Seq	0.0001	0	0.0001	0
L=3	MILPnet + Seq	0.0004	0	0.0001	0

does not follow a monotonic pattern.

Table 7: Permutation invariance Experiments. “Or *” represents randomly permuted constraint order in the MILP-sequence. “Original *” represents the original order.

Order	Method + Arch	FOLD(50,20)		FOLD(50,30)	
		MSE	ErrorN	MSE	ErrorN
GCN (Original)	GNN + Graph	0.4719	5000	0.4719	5000
Original	MILPnet + Seq	0.0005	0	0.0022	0
Or 1	MILPnet + Seq	0.0006	0	0.0021	0
Or 2	MILPnet + Seq	0.0001	0	0.0014	0
Or 3	MILPnet + Seq	0.0004	0	0.0021	9

Impact of the Maximum Window Size As shown in Tables 6b (pre-train 5mins) and Appendix Fig 7, the maximum window size η_{\max} influences the trade-off between convergence speed and representational capacity. Smaller windows accelerate convergence on simpler instances like FOLD(20,), while large windows slow training and degrade performance on complex cases such as FOLD(100,20). These results indicate that η_{\max} requires careful tuning and

486
487 **Permutation Sensitivity of MILP-sequence.** Randomly shuffling the constraint and variable
488 order in FOLD520 and FOLD50 keeps MILPnet’s MSE within the same magnitude (Table 7,11 in
489 Appendix B) and well below that of other models (typical MSE $\approx 0.x$, error ≈ 5000). These results
490 demonstrate that ours MILP-sequence construction preserves invariance under both constraint and
491 variable permutations.

492 6.5 MILPNET SOLVING EFFICIENCY ANALYSIS

493
494 We analyze the solving efficiency of MILPnet across two
495 dimensions: **(i)** Large-scale public MILP benchmarks (with
496 1000+ variables, details in the Appendix) to evaluate each
497 framework component; **(ii)** Heterogeneous generalization and
498 scalability on four very large real-world benchmarks (with
499 10000+ variables). To quantify solution quality in details,
500 we integrate both MILPNet and graph-based baselines as
501 pre-solving heuristics using Neural Diving (Paulus & Krause,
502 2023b) to obtain compact sub-problems within a branch-and-
503 bound framework for **(i)**.

504 **Impact of Window Size η_{\max} and Attention Depth L** We evaluate
505 the impact of maximum window size η_{\max} and attention
506 depth L on two large MILP benchmarks. Table 9 and Figure 5
507 show that performance is relatively insensitive to these hyper-
508 parameters, with consistent improvements (*Nodes, Time, Dual
509 Gap, Obj*) over graph-based methods and Strong Branching
510 across all configurations.

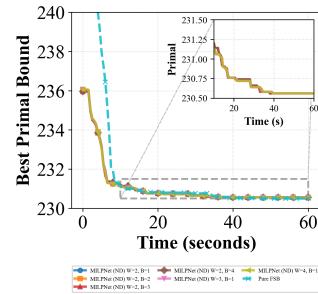
510 Table 9: *Branch and Bound* performance of MILPnet (Neural Diving based pre-solving heuristic:
511 H.Seq.) on 1000+ variable benchmarks for 50 instances within 60s solving limit.

512 Method	513 Type	514 SC(1000,500)				515 CA(1000,500)			
		516 Obj. (↓)	517 Node (↓)	518 Time (↓)	519 Dual Gap	520 Obj. (↑)	521 Node (↓)	522 Time (↓)	523 Dual Gap
524 SB	525 Exact	526 230.5 \pm 28.3	39.0 \pm 41.2	19.1 \pm 15.0	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	3.4 \pm 1.0	0.00 \pm 0.00(%)
527 Rand	528 Random	235.9 \pm 30.5	40.1 \pm 45.3	20.0 \pm 14.9	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	3.4 \pm 1.0	0.00 \pm 0.00(%)
529 GIN	530 H. Graph	230.5 \pm 28.3	38.8 \pm 40.0	18.6 \pm 15.4	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.8 \pm 0.2	0.00 \pm 0.00(%)
531 GraphGPS	532 H. Graph	230.5 \pm 28.3	38.9 \pm 44.8	17.9 \pm 15.1	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.8 \pm 0.2	0.00 \pm 0.00(%)
533 MILPnet/2	534 H. Seq. L=1	230.5 \pm 28.3	37.7 \pm 39.8	16.5 \pm 15.5	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.7 \pm 0.2	0.00 \pm 0.00(%)
535 MILPnet/2	536 H. Seq. L=2	230.5 \pm 28.3	37.7 \pm 39.8	16.5 \pm 15.6	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.5 \pm 0.2	0.00 \pm 0.00(%)
537 MILPnet/2	538 H. Seq. L=3	230.5 \pm 28.3	38.5 \pm 41.0	16.2 \pm 15.4	0.17 \pm 1.21(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.5 \pm 0.2	0.00 \pm 0.00(%)
539 MILPnet/2	540 H. Seq. L=4	230.5 \pm 28.3	38.3 \pm 42.0	16.3 \pm 15.5	0.17 \pm 1.21(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.5 \pm 0.2	0.00 \pm 0.00(%)
541 MILPnet/3	542 H. Seq. L=1	230.5 \pm 28.3	37.7 \pm 39.9	16.5 \pm 15.5	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.7 \pm 0.2	0.00 \pm 0.00(%)
543 MILPnet/4	544 H. Seq. L=1	230.5 \pm 28.3	37.7 \pm 39.8	16.5 \pm 15.5	0.21 \pm 1.23(%)	146.0 \pm 26.6	1.0 \pm 0.0	1.7 \pm 0.2	0.00 \pm 0.00(%)

545 **Heterogeneous solving generalization** To assess het-
546 erogeneous generalization capability, we integrate
547 MILPnet as a novel representation framework that
548 replaces graph-based representations in advanced
549 ML solvers such as ConPAS. Trained on the SC
550 dataset, MILPnet is directly transferred to solve
551 very large MILP instances from open-source bench-
552 marks (Gleixner et al., 2021). The results, includ-
553 ing primal bound iterations (Fig.12 in Appendix)
554 and solving efficiency (Table 10), demonstrate that
555 MILPnet generalizes stably and scalably across het-
556 erogeneous, large-scale benchmarks, achieving consistent performance improvements in all tested
557 cases. Details are in Appendix C.2.

558 7 CONCLUSION

559 We propose *MILPnet*, a novel multi-scale hybrid framework for representing MILP problems through
560 sequence modeling, rather than conventional graph methods. We prove that this architecture can
561 approximate essential MILP mappings for arbitrary instances. Empirical evaluation confirms that
562 *MILPnet* outperforms graph-based methods in terms of efficiency and performance, while addressing
563 the Foldable MILPs where graph-based approaches fail.



564 Figure 5: Neural pre solving by
565 MILPnet for SC(1000,500) for 6
566 settings.

567 Table 10: Heterogeneous generalization on
568 *very-large benchmarks* (Gleixner et al., 2021)
569 within 1500s.

570 Method	571 30n20b8		572 blp-ic98		573 blp-ar98	
	574 Time	575 Obj	576 Time	577 Obj	578 Time	579 Obj
580 SCIP	163.96	302.00	1500.15	4620.13	1500.10	6215.35
581 ConPAS(GCN)	175.86	302.00	1500.00	4817.66	1500.01	6254.08
582 ConPAS(MILPnet)	94.64	302.00	1500.00	4588.51	1500.01	6220.57

540 REPRODUCIBILITY STATEMENT

541

542 Our work is fully reproducible. Source code is available at <https://anonymous.4open.science/r/MILPnet-2BD1/>. All datasets, experiments, and architecture hyperparameters used in our experiments are documented in the Appendix K and Appendix B.

545

546 REFERENCES

547

548 Charalambos D Aliprantis and Kim C Border. *Infinite Dimensional Analysis: A Hitchhiker’s Guide*.
549 Springer, Berlin, 3rd edition, 2006.

550

551 Sayan Bandyapadhyay, Santanu Bhowmick, Tanmay Inamdar, and Kasturi Varadarajan. Capacitated
552 covering problems in geometric spaces, 2017. URL <https://arxiv.org/abs/1707.05170>.

553

554 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
555 a methodological tour d’horizon. *CoRR*, abs/1811.06128, 2018. URL <http://arxiv.org/abs/1811.06128>.

556

557 Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
558 Combinatorial optimization and reasoning with graph neural networks, 2022. URL <https://arxiv.org/abs/2102.09544>.

559

560 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approximation
561 algorithm for the k-median problem (extended abstract). In *Proceedings of the Thirty-First Annual
562 ACM Symposium on Theory of Computing*, STOC ’99, pp. 1–10, New York, NY, USA, 1999.
563 Association for Computing Machinery. ISBN 1581130678. doi: 10.1145/301250.301257. URL
564 <https://doi.org/10.1145/301250.301257>.

565

566 Hao Chen, Kai-Chieh Hsu, Walker J. Turner, Po-Hsuan Wei, Keren Zhu, David Z. Pan, and Haoxing
567 Ren. Reinforcement learning guided detailed routing for custom circuits. In *Proceedings of the 2023
568 International Symposium on Physical Design*, ISPD ’23, pp. 26–34, New York, NY, USA, 2023a.
569 Association for Computing Machinery. ISBN 9781450399784. doi: 10.1145/3569052.3571874.

570

Lin Chen, Yiran Liu, Zehan Qi, Zhaoyuan Wu, and Yang Yu. Constraint-adaptive reinforcement learning
571 for large-scale power system planning. November 2024. doi: 10.36227/techrxiv.173161402.
572 22049085/v1.

573

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
574 linear programs by graph neural networks, 2023b. URL <https://arxiv.org/abs/2210.10759>.

575

Antonia Chmiela, Elias B. Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning
577 to schedule heuristics in branch-and-bound, 2021. URL <https://arxiv.org/abs/2103.10294>.

578

V. Chvátal. A greedy heuristic for the set-covering problem. *Mathematics of Operations Research*, 4
579 (3):233–235, 1979. doi: 10.2307/3689577.

580

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. *Polyhedral Approaches to Mixed
581 Integer Linear Programming*, pp. 343–385. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
582 ISBN 978-3-540-68279-0. doi: 10.1007/978-3-540-68279-0_11. URL https://doi.org/10.1007/978-3-540-68279-0_11.

583

L. E Dubins and L. J Savage. How to gamble if you must. 2014.

584

Uriel Feige. A threshold of $\ln n$ for approximating set cover. *J. ACM*, 45(4):634–652, July 1998. ISSN
585 0004-5411. doi: 10.1145/285055.285059. URL <https://doi.org/10.1145/285055.285059>.

586

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
587 optimization with graph convolutional neural networks. *CoRR*, abs/1906.01629, 2019. URL
588 <http://arxiv.org/abs/1906.01629>.

594 Maxime Gasse, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia
 595 Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil, Paweł
 596 Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageorgiou,
 597 Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon,
 598 Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Shengcheng
 599 Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang
 600 Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and Mao Kun. The machine
 601 learning for combinatorial optimization competition (ml4co): Results and insights, 2022. URL
 602 <https://arxiv.org/abs/2203.02433>.

603 Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep instance generative
 604 framework for milp solvers under limited data availability, 2024. URL <https://arxiv.org/abs/2310.02807>.

605 Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
 606 Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke,
 607 Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shieno.
 608 MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library.
 609 *Mathematical Programming Computation*, 2021. doi: 10.1007/s12532-020-00194-3. URL
 610 <https://doi.org/10.1007/s12532-020-00194-3>.

611 Michael Goldman and Dario Trevisan. Optimal transport methods for combinatorial optimization
 612 over two random point sets, 2023.

613 Ralph E. Gomory. An algorithm for integer solutions to linear programs. 1958.

614 Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, and Yoshua Bengio.
 615 Hybrid models for learning to branch. *CoRR*, abs/2006.15212, 2020. URL <https://arxiv.org/abs/2006.15212>.

616 Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
 617 Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming,
 618 2023. URL <https://arxiv.org/abs/2302.05636>.

619 He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. In
 620 Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), *Advances in
 621 Neural Information Processing Systems*, volume 27. Curran Associates, Inc., 2014.

622 Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
 623 neighborhoods for integer linear programs with contrastive learning, 2023. URL <https://arxiv.org/abs/2302.01578>.

624 Joey Huchette and Juan Pablo Vielma. A geometric way to build strong mixed-integer programming
 625 formulations, 2019. URL <https://arxiv.org/abs/1811.10409>.

626 Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete programming problems.
 627 *Econometrica*, 28:497, 1960.

628 He Ma, Wenlian Lu, and Jianfeng Feng. Efficient combinatorial optimization via heat diffusion.
 629 *ArXiv*, abs/2403.08757, 2024. URL <https://api.semanticscholar.org/CorpusID:268379750>.

630 Zoubir Mammeri. Reinforcement learning based routing in networks: Review and classification of
 631 approaches. *IEEE Access*, 7:55916–55950, 2019. doi: 10.1109/ACCESS.2019.2913776.

632 J. V. Neumann. On a certain topology for rings of operators. *Annals of Mathematics*, 37(1):111–115,
 633 1936.

634 Max B. Paulus and Andreas Krause. Learning to dive in branch and bound, 2023a. URL <https://arxiv.org/abs/2301.09943>.

635 Max B. Paulus and Andreas Krause. Learning to dive in branch and bound, 2023b. URL <https://arxiv.org/abs/2301.09943>.

648 Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
 649 unsupervised neural combinatorial optimization, 2024. URL <https://arxiv.org/abs/2406.01661>.
 650

651 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization, 2023. URL <https://arxiv.org/abs/2302.08224>.
 652

653 Wei tian Wu and Xin min Yang. The hybridization of branch and bound with metaheuristics for
 654 nonconvex multiobjective optimization, 2022.
 655

656 Jie Wang, Zhihai Wang, Xijun Li, Yufei Kuang, Zhihao Shi, Fangzhou Zhu, Mingxuan Yuan, Jia
 657 Zeng, Yongdong Zhang, and Feng Wu. Learning to cut via hierarchical sequence/set model for
 658 efficient mixed-integer programming, 2024.
 659

660 Shaohua Wang, Junyuan Zhou, Haojian Liang, Zhenbo Wang, Cheng Su, and Xiao Li. A new
 661 approach for solving location routing problems with deep reinforcement learning of emergency
 662 medical facility. In *Proceedings of the 8th ACM SIGSPATIAL International Workshop on Security*
 663 *Response Using GIS*, EM-GIS '23, pp. 50–53, New York, NY, USA, 2023a. Association for
 664 Computing Machinery. ISBN 9798400703461. doi: 10.1145/3615884.3629429. URL <https://doi.org/10.1145/3615884.3629429>.
 665

666 Tianze Wang, Amir H. Payberah, and Vladimir Vlassov. Graph representation learning with graph
 667 transformers in neural combinatorial optimization. In *2023 International Conference on Machine*
 668 *Learning and Applications (ICMLA)*, pp. 488–495, 2023b. doi: 10.1109/ICMLA58977.2023.
 669 00074.
 670

671 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
 672 comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and*
 673 *Learning Systems*, 32(1):4–24, January 2021. ISSN 2162-2388. doi: 10.1109/tnnls.2020.2978386.
 674 URL <http://dx.doi.org/10.1109/TNNLS.2020.2978386>.
 675

676 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 677 networks?, 2019. URL <https://arxiv.org/abs/1810.00826>.
 678

679 Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn & gbdt-guided fast
 680 optimizing framework for large-scale integer programming. In Andreas Krause, Emma Brunskill,
 681 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of*
 682 *the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine*
 683 *Learning Research*, pp. 39864–39878. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/ye23e.html>.
 684

685 Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to
 686 size generalization in graph neural networks, 2021. URL <https://arxiv.org/abs/2010.08853>.
 687

688 Kexiong Yu, Hang Zhao, Yuhang Huang, Renjiao Yi, Kai Xu, and Chenyang Zhu. Disco: Efficient
 689 diffusion solver for large-scale combinatorial optimization problems, 2024. URL <https://arxiv.org/abs/2406.19705>.
 690

691 Zidong Zhang, Dongxia Zhang, and Robert C. Qiu. Deep reinforcement learning for power system
 692 applications: An overview. *CSEE Journal of Power and Energy Systems*, 6(1):213–225, 2020. doi:
 693 10.17775/CSEEJPES.2019.00920.
 694

695

696

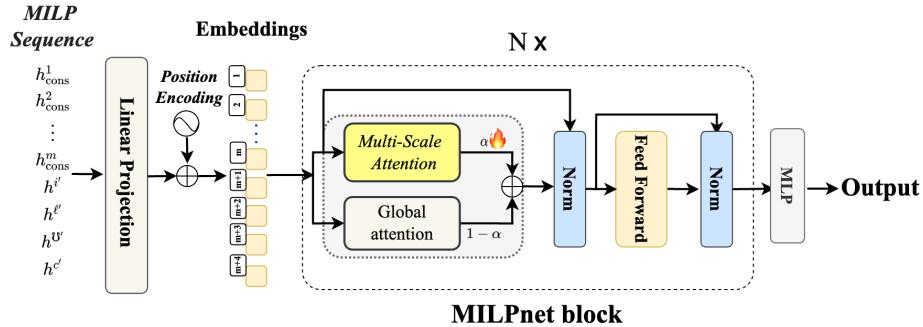
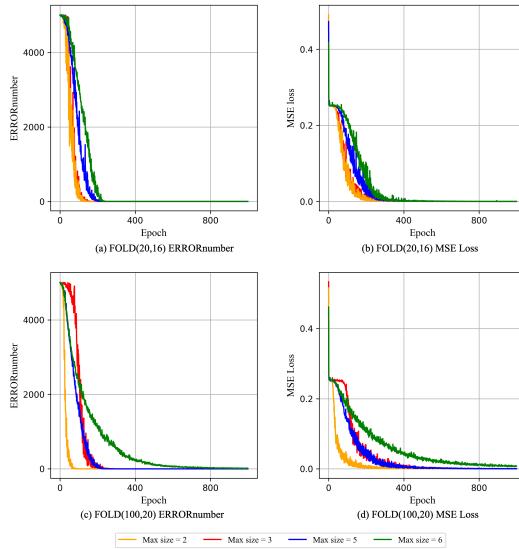
697

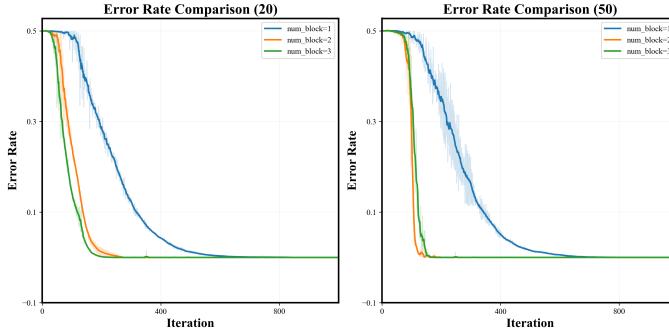
698

699

700

701

702 A DETAILED ARCHITECTURE FOR MILPNET
703704 Figure 6 illustrates the detailed architecture of MILPnet, which connects a feed-forward network
705 with the core Multi-scale based Hybrid Attention.
706720 Figure 6: Detailed Architecture of *MILPnet*.
721
722723 B FULL RESULTS ON MAXIMUM WINDOW SIZE, ATTENTION BLOCKS,
724 REPRESENTATION, AND GENERALIZATION
725726 B.1 ABLATION STUDIES ON THE η_{max} 727 We conducted a study on the maximum sliding-window size and visualized the resulting representation
728 curves in Figure 7.
729
730731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755 Figure 7: Performance of varied max window size of MILPnet on FOLD(20,16) and FOLD(100,20) for feasibility. We can observe that the maximum sliding window size affects the convergence speed of the feasibility mapping approximation. The window size does not follow a simple pattern, but rather requires balancing.

756 B.2 ABLATION STUDY ON THE NUMBER OF ATTENTION BLOCKS L
757758 We conduct the ablation study on the number of attention blocks on FOLD(20) and FOLD(50).
759773 Figure 8: Performance of varied numbers of multi-scale attention blocks in MILPnet on FOLD(20,16)
774 and FOLD(50,20) for feasibility with the same embedding size and same window size for blocks
775 =1,2,3.776 B.3 PERMUTATION SENSITIVITY ON VARIABLE ORDERS
777778 Table 11: Experiments on variable permutation invariance. “V-Or *” represents randomly permuted
779 variable order in the MILP-sequence. “Original *” represents the original order.
780

Order	Method + Arch	FOLD(20,16)		FOLD(50,20)	
		MSE	ErrorN	MSE	ErrorN
GCN (Original)	GNN + Graph	0.3070	5000	0.4719	5000
Original	MILPnet + Seq	0.0003	0	0.0003	0
V-Or 1	MILPnet + Seq	0.0006	0	0.0001	5
V-Or 2	MILPnet + Seq	0.0003	0	0.0003	0
V-Or 3	MILPnet + Seq	0.0004	0	0.0005	3

789 B.4 REPRESENTATION EXPERIMENTS
790791 We conducted representation experiments on the representation of feasible mapping, the optimal
792 solution mapping, and the objective optimal value, for MILP instances. The embedding sizes used
793 in our experiments were chosen from $\{32, 128, 216, 256, 512\}$. Figure 9 shows the representation
794 results of feasible mapping, Figure 10 shows the results of optimal solution mapping, and Figure 15
795 shows the results of the objective optimal value mapping.
796797 B.5 GENERALIZATION EXPERIMENTS RESULTS
798799 We provide the full results on FOLD(20,) to FOLD(50,) in Table 9 following.
800801 B.6 CROSS-SIZE ADAPTION
802803 Our approach also enables *End to End Cross-Size* generalization from FOLD(n, m_1) to FOLD(n, m_2),
804 which is quite difficult for Bipartite Graph-based MILP *End-to-End* representation methods(Yehudai
805 et al., 2021). We directly transfer the network pre-trained on FOLD (50,20) on the feasibility mapping
806 to FOLD (50,30). As shown by the heatmap, the pre-trained network also easily achieves good
807 performance on FOLD (50,30), which demonstrates that our model can still perform inference directly
808 when faced with changes in length, effectively transferring its prior knowledge. This verifies that our
809 network can effectively extract features.

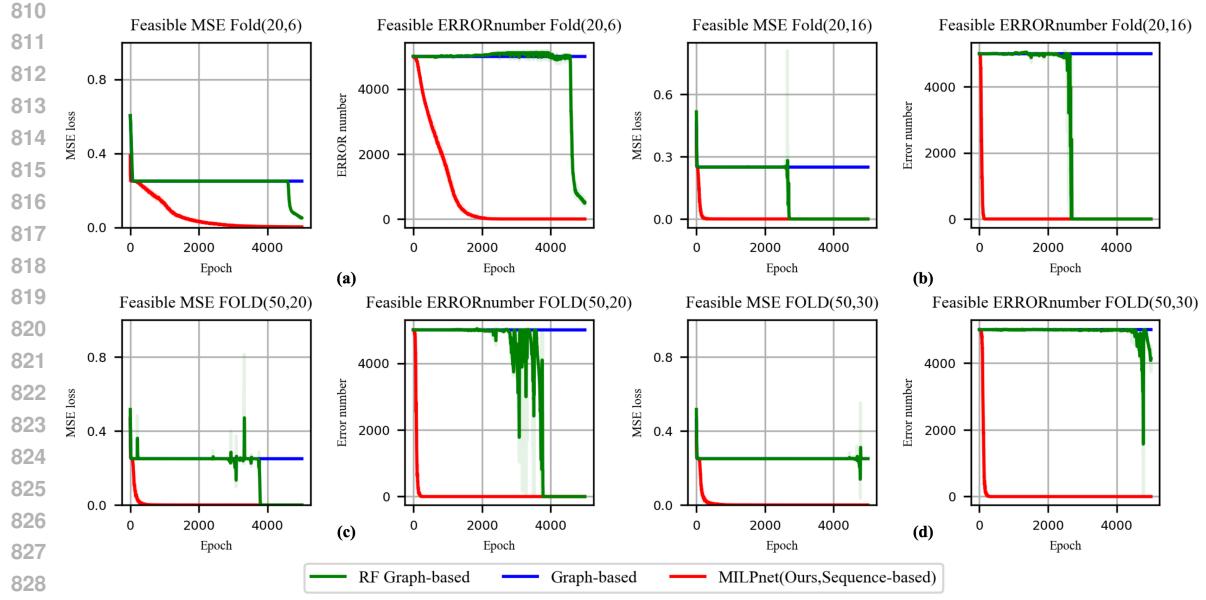


Figure 9: Representation experiments on feasibility for FOLD20 ((a) for FOLD(20,6), (b) for FOLD(20,16)) and FOLD50 ((c) for FOLD(50,20), (d) for FOLD(50,30)). **MILPnet** approximates the feasible mapping of Foldable MILP instances more efficiently.

Table 12: Generalization experiments for feasibility mapping on FOLD(20,*) to FOLD(50,*), with 10,000 foldable MILP instances from each. 3M(20)/10M(50) means pre-train time for FOLD20 is 3mins, FOLD50 is 10mins; 5M(20)/30M(50) means pre-train time for FOLD20 is 5mins, FOLD50 is 30mins.

Method	Type	FOLD(20,6)			FOLD(20,16)			FOLD(50,20)			FOLD(50,30)		
		MSE	ErrorN	Params	MSE	ErrorN	Params	MSE	ErrorN	Params	MSE	ErrorN	Params
SCIP	Exact	—	0	—	—	0	—	—	0	—	—	0	—
GCN3M(20)/10M(50)	Graph	0.3073	5000	1.21M	0.3073	5000	1.21M	0.3073	5000	1.21M	0.3073	5000	1.21M
GCN5M(20)/30M(50)	Graph	0.3073	5000	1.21M	0.3070	5000	1.21M	0.4719	5000	1.21M	0.4719	5000	1.21M
GIN _{3M(20)/10M(50)}	Graph	0.4200	5000	1.63M	0.4209	5000	1.63M	0.4200	5000	1.63M	0.4204	5000	1.63M
GIN _{5M(20)/30M(50)}	Graph	0.4199	5000	1.63M	0.2999	5000	1.63M	0.2939	5000	1.63M	0.4204	5000	1.63M
SAGE _{3M(20)/10M(50)}	Graph	0.4642	5000	0.66M	0.4999	5000	0.66M	0.4714	5000	0.66M	0.4586	5000	0.66M
SAGE _{5M(20)/30M(50)}	Graph	0.4642	5000	0.66M	0.4999	5000	0.66M	0.4714	5000	0.66M	0.4856	5000	0.66M
PGN _{3M(20)/10M(50)}	Graph	0.2508	5000	1.64M	0.2523	5000	1.64M	0.2511	5000	1.64M	0.2511	5000	1.64M
PGN _{5M(20)/30M(50)}	Graph	0.2511	5000	1.64M	0.2511	5000	1.64M	0.2512	5000	1.64M	0.2512	5000	1.64M
GraphGPS _{3M(20)/10M(50)}	Graph	0.2500	5000	0.66M	0.2500	5000	0.66M	0.2500	5000	0.66M	0.2500	5000	0.66M
GraphGPS _{5M(20)/30M(50)}	Graph	0.2500	5000	0.66M	0.2500	5000	0.66M	0.2500	5000	0.66M	0.2500	5000	0.66M
GCN ^{rf} _{5M(20)/30M(50)}	Rf Graph	0.2498	5000	1.21M	0.2500	5000	1.21M	0.2476	4334	1.21M	0.5223	5000	1.21M
GCN ^{rf} _{5M(20)/30M(50)}	Rf Graph	0.2126	2853	1.21M	0.2499	4921	1.21M	0.1177	0	1.21M	0.2402	0	1.21M
GIN ^{rf} _{3M(20)/10M(50)}	Rf Graph	0.2500	5000	1.63M	0.2501	5000	1.63M	0.2500	5000	1.63M	0.4204	5000	1.63M
GIN ^{rf} _{5M(20)/30M(50)}	Rf Graph	0.2499	4757	1.63M	0.2500	5000	1.63M	0.2500	5000	1.63M	0.2458	2603	1.63M
SAGE ^{rf} _{3M(20)/10M(50)}	Rf Graph	0.2499	5009	0.66M	0.2499	4995	0.66M	0.2500	4997	0.66M	0.2500	5002	0.66M
SAGE ^{rf} _{5M(20)/30M(50)}	Rf Graph	0.2499	5009	0.66M	0.2499	4995	0.66M	0.2500	4998	0.66M	0.2500	4999	0.66M
PGN ^{rf} _{3M(20)/10M(50)}	Rf Graph	0.2582	5000	1.64M	0.2560	5000	1.64M	0.2502	5000	1.64M	0.2502	5000	1.64M
PGN ^{rf} _{5M(20)/30M(50)}	Rf Graph	0.2507	5000	1.64M	0.2514	5000	1.64M	0.2512	5000	1.64M	0.2502	5000	1.64M
GraphGPS ^{rf} _{3M(20)/10M(50)}	Rf Graph	0.2510	5000	0.66M	0.2510	5000	0.66M	0.2500	5000	0.66M	0.2502	5000	0.66M
GraphGPS ^{rf} _{5M(20)/30M(50)}	Rf Graph	0.2510	5000	0.66M	0.2510	5000	0.66M	0.2500	5000	0.66M	0.2520	5000	0.66M
MILPnet _{3M(20)/10M(50)}	Ours (Seq)	0.0005	0	0.56M	0.0004	0	0.56M	0.0005	0	0.60M	0.0023	12	0.60M
MILPnet _{5M(20)/30M(50)}	Ours (Seq)	0.0003	0	0.56M	8.53e-5	0	0.56M	0.0005	0	0.60M	0.0082	0	0.60M

C MILPNET SOLVING EFFICIENCY RESULTS

C.1 ADDITIONAL EXPERIMENTS ON REAL-WORLD BENCHMARKS

This part, we use MILPnet and advanced graph-based network for predicting the near-optimal solution and refine by a local heuristic algorithm, the results are summarized in following Table 13. This result demonstrate that MILPnet consistently outperforms these advanced graph-based models in terms of solving efficiency and inference speed. This further validates the effectiveness of the sequence-based architecture and the representation advantage of MILP-sequence. For SC and CA with 1000

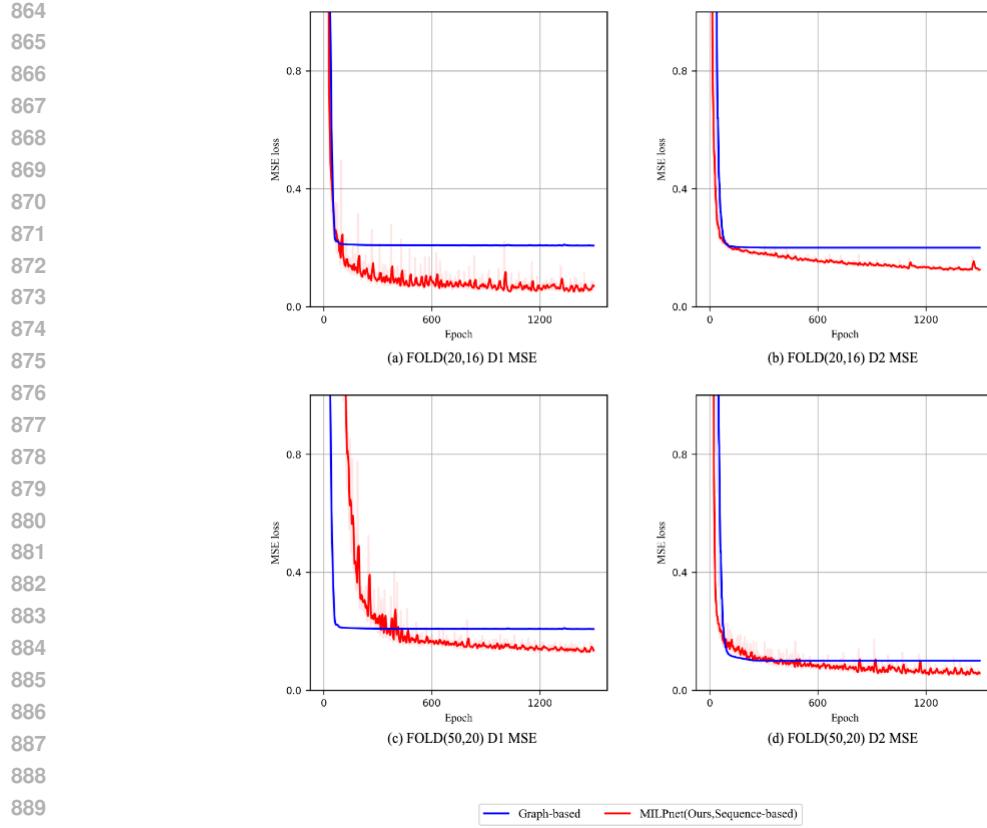


Figure 10: Representation experiments on optimal solution for FOLD20 and FOLD50 on D1 and D2 (details is shown in Appendix F). MILPnet approximates the solution mapping of Foldable MILP instances with smaller errors than graph-based method.

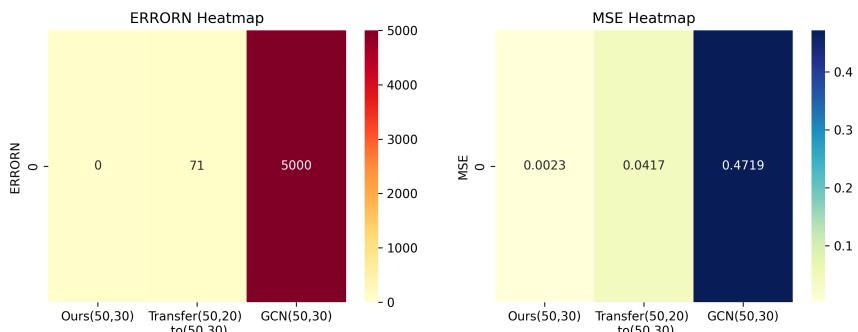


Figure 11: Cross-size adaptation

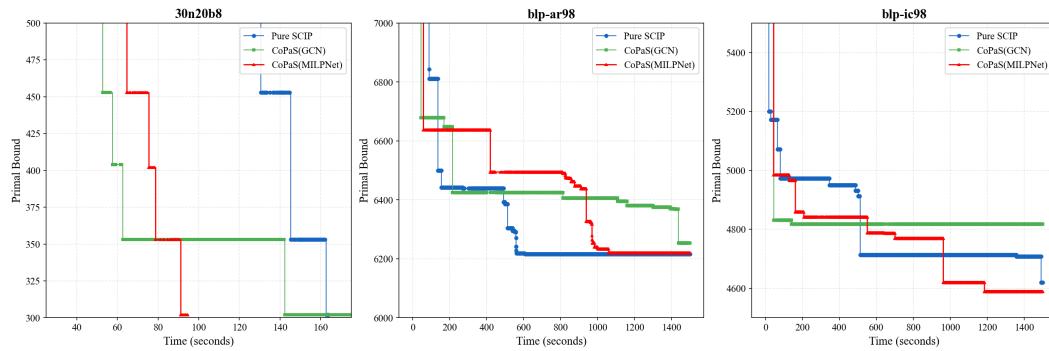
variables and 500 constraints, the number of the dataset are: training on 10000 instances, solving on 50 instances.

918
919 Table 13: Additional evaluations with more powerful GNN baselines, including GIN, PGN, and
920 GraphGPS, on the Real world practical problems

	IP		SC		CA		FA	
	Time	Gap	Time	Gap	Time	Gap	Time	Gap
GIN	0.6254	0.0320	0.8223	0.6616	3.3065	0.7655	8.8688	0.7504
PGN	0.6023	0.1020	1.0492	0.4207	4.8369	1.0759	12.4009	0.7438
GraphGps	0.7324	0.0595	1.9202	0.4292	4.5980	1.0472	8.1973	0.8328
MILPnet(Ours)	0.1864	0.0234	0.6915	0.3483	3.2300	0.7651	1.3773	0.3503

C.2 CONPAS STYLE HETEROGENEOUS VARIANT ON REAL-WORLD INSTANCES SOLVING

To address complex heterogeneous optimization problems in the real world, we train the heterogeneous *MILPnet* as the solution representation predictors on SC problems and construct the trust region solving into three very large benchmarks from (Gleixner et al., 2021). The visualization of the solving results in terms of primal bound trajectories is shown in Figure 12.



946
947 Figure 12: Primal bound iterations on very-large benchmarks solving with ConPAS(MILPnet)+SCIP
948 and ConPAS(GCN)+SCIP

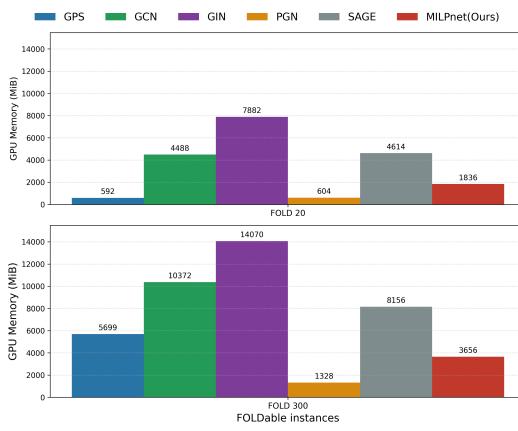
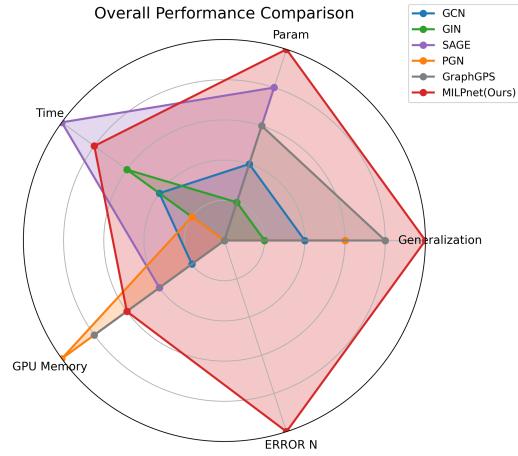
D GPU ANALYSIS AND OVERALL PERFORMANCE COMPARISON

D.1 GPU MEMORY ANALYSIS

955 Figure 13 visualizes the GPU usage during the training process.

D.2 OVERALL PERFORMANCE COMPARISON

959 We conducted a comprehensive evaluation of various performance dimensions on the instances of
960 FOLD300, and the results are shown in Figure 14.

Figure 13: GPU memory usage on FOLD(20,*) to FOLD(300, *). **(The lower the better)**Figure 14: Overall performance comparisons on FOLD(300, *). **(The Broader the better)**

E PROOF OF THE SECTION 4.2 AND SECTION 4.3

We establish the results stated in Remark 4.2 and Section 4.3, where the former follows from Theorem 5 and the latter from Theorem 6 as follows.

Theorem 5 (Padding Equivalence). Define the topological space before padding as: $H^{MILP0} = ((H^{cons})^m \cup H^{Var}) \times I \times H^{obj}$ and the padded topological space as H^{MILP} . H^{MILP} and H^{MILP0} are homeomorphic (topologically equivalent):

$$H^{MILP} \cong H^{MILP0} \quad (13)$$

Proof. Define f as follows:

$$f((h_c, h_v, i, h_o)) = \left(h_c, \left(h_v, \underbrace{0, \dots, 0}_{k \text{ times}} \right), \left(i, \underbrace{0, \dots, 0}_{k \text{ times}} \right), \left(h_o, \underbrace{0, \dots, 0}_{k \text{ times}} \right) \right),$$

1026

where:

1027

1028

- $h_c \in (H^{\text{cons}})^m$,
- $h_v \in H^{\text{Var}}$,
- $i \in I$,
- $h_o \in H^{\text{obj}}$,
- $0, \dots, 0 \in \{0\}^k$ are the padded zero dimensions.

1034

1035

Define f^{-1} as:

1036

1037

1038

1039

$$f^{-1} \left(\left(h_c, \left(h_v, \underbrace{0, \dots, 0}_{k \text{ times}} \right), \left(i, \underbrace{0, \dots, 0}_{k \text{ times}} \right), \left(h_o, \underbrace{0, \dots, 0}_{k \text{ times}} \right) \right) \right) = (h_c, h_v, i, h_o).$$

1040

Subsequently, we introduce **(i)** and **(ii)**, which are instrumental in establishing the main theorem.

1041

1042

(i) f is Bijective

1043

Proof. **f is Injectivity:** Suppose $f(h_1) = f(h_2)$ for $h_1, h_2 \in H^{\text{MILP}0}$. Then,

1044

$$f(h_1) = f(h_2) \implies (h_{c1}, (h_{v1}, 0, \dots, 0), (i_1, 0, \dots, 0), (h_{o1}, 0, \dots, 0)) \quad (14)$$

1045

$$= (h_{c2}, (h_{v2}, 0, \dots, 0), (i_2, 0, \dots, 0), (h_{o2}, 0, \dots, 0)). \quad (15)$$

1046

1047

This equality implies:

1048

$$h_{c1} = h_{c2}, \quad h_{v1} = h_{v2}, \quad i_1 = i_2, \quad h_{o1} = h_{o2}.$$

1049

Therefore, $h_1 = h_2$, establishing injectivity.

1050

1051

 f is Surjectivity: For any $h' \in H^{\text{MILP}}$, suppose $h' = (h_c, (h'_v, p_v), (i', p_i), (h'_o, p_o))$, where $p_v, p_i, p_o \in \{0\}^k$. Then, there exists $h \in H^{\text{MILP}0}$ such that:

1052

1053

$$h = (h_c, h'_v, i', h'_o).$$

1054

1055

Applying f to h , we obtain:

1056

1057

$$f(h) = (h_c, (h'_v, 0, \dots, 0), (i', 0, \dots, 0), (h'_o, 0, \dots, 0)) = h'.$$

1058

1059

Thus, f is surjective.

1060

1061

(ii) f and f^{-1} are both continuous *Proof.* Both $H^{\text{MILP}0}$ and H^{MILP} are equipped with the product topology. In the product topology, a function is continuous if and only if each of its component functions is continuous.

1062

1063

Continuity of f : The mapping f involves embedding each component of $H^{\text{MILP}0}$ into a higher-dimensional space by appending zero vectors. Each such embedding is continuous because it is defined by coordinate-wise inclusion and fixed assignments (adding zeros). Specifically:

1064

1065

1066

$$f_i : H_i \rightarrow H_i \times \{0\}^k$$

1067

1068

is continuous for each component $H_i \in \{H^{\text{cons}}, H^{\text{Var}}, I, H^{\text{obj}}\}$.

1069

1070

Continuity of f^{-1} : The inverse mapping f^{-1} involves projecting each padded component back to its original space by removing the appended zero vectors. Projection maps in the product topology are continuous. Specifically:

1071

1072

$$f_i^{-1} : H_i \times \{0\}^k \rightarrow H_i$$

1073

1074

is continuous for each component H_i .

1075

1076

1077

Drawing upon the results presented in **(i)** and **(ii)**, the f is bijective and both f and f^{-1} are continuous, f is a homeomorphism. Therefore, the topological spaces H^{MILP} and $H^{\text{MILP}0}$ are homeomorphic:

1078

1079

$$H^{\text{MILP}} \cong H^{\text{MILP}0}.$$

□

1080
1081 **Theorem 6** (Constraint Permutation Invariance). *Let $(H_1^{\text{cons}}, H_2^{\text{cons}}, \dots, H_m^{\text{cons}}, I, H^{\text{Var}}, H^{\text{obj}})$ be*
1082 *topological spaces corresponding respectively to the m constraint feature spaces H_i^{cons} , the integer-*
1083 *index space I' , the variable-bounds space $H^{\text{Var}'}$, and the objective-coefficient space $H^{\text{obj}'}$. For any*
1084 *permutation σ on the index set $\{1, 2, \dots, m, 'I', 'Var', 'obj'\}$, their product spaces are homeomor-*
1085 *phic.*

1086
$$H_1^{\text{cons}} \times \dots \times H_m^{\text{cons}} \times I' \times H^{\text{Var}'} \times H^{\text{obj}'} \cong \prod_{k \in \sigma(\{1, \dots, m, I', \text{Var}', \text{obj}'\})} H^{(\text{factor})_k}.$$

1087

1088 *In other words, the topological structure of the full MILP-sequence feature space is invariant under*
1089 *permutation of its component spaces.*

1090 *Proof* The ordered product is

1092
$$X = H_1^{\text{cons}} \times \dots \times H_m^{\text{cons}} \times I' \times H^{\text{Var}'} \times H^{\text{obj}'},$$

1093

1094 Let

1095
$$X_\sigma = \prod_{k \in \sigma(\{1, \dots, m, I', \text{Var}', \text{obj}'\})} H^{(\text{factor})_k}$$

1096

1097 be an arbitrary permutation of the factors, where σ is a permutation of the index set.

1099 We explicitly construct a *coordinate-exchange (or coordinate-reordering) map*

1100
$$\Phi: X \longrightarrow X_\sigma.$$

1102 Given a point

1103
$$x = (h_1^{\text{cons}}, \dots, h_m^{\text{cons}}, i', h^{\text{Var}'}, h^{\text{obj}'}) \in X,$$

1104

1105 where

1106
$$h_i^{\text{cons}} \in H_i^{\text{cons}}, i' \in I, h^{\text{Var}'} \in H^{\text{Var}'}, h^{\text{obj}'} \in H^{\text{obj}'},$$

1107 define $\Phi(x)$ by rearranging these coordinate components according to σ . Concretely, if σ sends the
1108 index 1 to position $\sigma(1)$, the index 2 to position $\sigma(2)$, etc., then

1109
$$\Phi(x) = \underbrace{(h_{\text{the factor with index } \sigma^{-1}(1)}^{\text{factor}}, \dots)}_{\text{ordered according to } \sigma}.$$

1110

1112 In simpler terms, Φ reorders the factors $(h_1^{\text{cons}}, \dots, h_m^{\text{cons}}, i, h^{\text{Var}'}, h^{\text{obj}'})$ into the sequence (\dots) deter-
1113 mined by σ .

1114 **Bijection.** Φ is a *bijection* because:

1116

- *Injective:* If $\Phi(x_1) = \Phi(x_2)$, then their coordinates in each position of the reordered product
1117 are identical. Since a product space comparison equates each factor, it follows that $x_1 = x_2$.
- *Surjective:* Given an arbitrary point $y \in X_\sigma$, we can “reverse reorder” its factors to form
1119 $x \in X$. By construction, $\Phi(x) = y$.

1121 Because Φ is bijective and both Φ and Φ^{-1} are continuous, Φ is a *homeomorphism*. Hence

1123
$$H_1^{\text{cons}} \times \dots \times H_m^{\text{cons}} \times I' \times H^{\text{Var}'} \times H^{\text{obj}'} \cong \prod_{k \in \sigma(\{1, \dots, m, I', \text{Var}', \text{obj}'\})} H^{(\text{factor})_k},$$

1124

1125 \square
1126 **Theorem 7** (Variable Permutation Invariance). *Let H^{MILP} be the topological space of MILP-*
1127 *sequences defined in Section 4.3. For any permutation π on the variable indices $\{1, 2, \dots, n\}$,*
1128 *the MILP-sequence space is homeomorphic under variable permutations:*

1130
$$H^{\text{MILP}} \cong H_\pi^{\text{MILP}},$$

1131 *where H_π^{MILP} denotes the space after permuting variable coordinates according to π . Consequently,*
1132 *the feasibility mapping Φ_{feas} , optimal objective value mapping Φ_{obj} , and optimal solution mapping*
1133 *Φ_{solu} are all invariant under variable permutation.*

1134 *Proof.* We explicitly construct a *variable-coordinate reordering map*
 1135

$$1136 \quad \Psi: H^{\text{MILP}} \longrightarrow H_{\pi}^{\text{MILP}}.$$

1138 Given an MILP-sequence

$$1139 \quad \mathbf{x} = [h_{\text{cons}}^1, \dots, h_{\text{cons}}^m, h^{i'}, h^{\ell'}, h^{\mathcal{V}'}, h^{c'}] \in H^{\text{MILP}},$$

1141 where each component is a vector in \mathbb{R}^{n+2} , we define $\Psi(\mathbf{x})$ by applying the coordinate permutation
 1142 to each token:

1143 For each token $h = (h_1, \dots, h_n, h_{n+1}, h_{n+2}) \in \mathbb{R}^{n+2}$ in the MILP-sequence, we define the coordi-
 1144 nate permutation operator $P_{\pi}: \mathbb{R}^{n+2} \rightarrow \mathbb{R}^{n+2}$ by

$$1146 \quad P_{\pi}(h) = (h_{\pi(1)}, \dots, h_{\pi(n)}, h_{n+1}, h_{n+2}),$$

1147 where π permutes only the first n variable-related coordinates, leaving the last two padding coordinates
 1148 unchanged. This operator applies uniformly to all tokens: constraint tokens h_i^{cons} , integer set token
 1149 $h^{i'}$, variable bounds tokens $h^{\ell'}$ and $h^{\mathcal{V}'}$, and objective token $h^{c'}$.

1150 Then

$$1153 \quad \Psi(\mathbf{x}) = [P_{\pi}(h_{\text{cons}}^1), \dots, P_{\pi}(h_{\text{cons}}^m), P_{\pi}(h^{i'}), P_{\pi}(h^{\ell'}), P_{\pi}(h^{\mathcal{V}'}), P_{\pi}(h^{c'})] \in H_{\pi}^{\text{MILP}}.$$

1154 Then we prove that Ψ is *bijective* and continuous:

1156 1. **Bijection.** Ψ is a *bijection* because:

- 1158 • *Injective:* If $\Psi(\mathbf{x}_1) = \Psi(\mathbf{x}_2)$, then for each token, the permuted coordinates are
 1159 identical. Since π is a bijection, the original coordinates must also be identical, hence
 1160 $\mathbf{x}_1 = \mathbf{x}_2$.
- 1161 • *Surjective:* Given an arbitrary point $\mathbf{y} \in H_{\pi}^{\text{MILP}}$, we can apply the inverse permutation
 1162 π^{-1} to each coordinate of each token to obtain $\mathbf{x} \in H^{\text{MILP}}$ such that $\Psi(\mathbf{x}) = \mathbf{y}$.

1163 2. **Continuity.** Both Ψ and Ψ^{-1} are continuous because coordinate permutation is a continuous
 1164 operation in the product topology of \mathbb{R}^{n+2} . Specifically, for each token space \mathbb{R}^{n+2} , the
 1165 permutation map is a linear isomorphism, and the composition over all tokens preserves
 1166 continuity in the product space $H^{\text{MILP}} \subset \mathbb{R}^{(m+4)(n+2)}$.

1168 Therefore, Ψ is a *homeomorphism*, and

$$1170 \quad H^{\text{MILP}} \cong H_{\pi}^{\text{MILP}}.$$

1171 \square

1172 **Remark E.1 (Permutation Invariance).** Theorems 6 and 7 establish that H^{MILP} is invariant under
 1173 both *constraint permutation* (reordering tokens) and *variable permutation* (reordering coordinates
 1174 within tokens). These homeomorphisms ensure that different representations of the same MILP
 1175 instance are topologically equivalent and define identical optimization problems. Consequently, the
 1176 mappings Φ_{feas} , Φ_{obj} , and Φ_{solu} are invariant under both types of permutations, which is crucial for
 1177 designing permutation-equivariant neural architectures.

1182 F PROOF OF THE MAPPINGS.

1183 We introduced the details of the MILP-sequence mapping definitions: with the defined topological
 1184 space H^{MILP} , which encapsulates the MILP-sequence, we can define key mappings essential for
 1185 analyzing MILP instances. These mappings assess feasibility, compute optimal objective values, and
 1186 identify optimal solutions, providing a comprehensive toolkit for MILP analysis.

1188
 1189 **Definition 8.** (Feasibility mapping by sequence) The feasibility mapping is a classification function
 1190 that determines whether a sequence within H^{MILP} represents a feasible solution:

$$\Phi_{\text{feas}} : H^{\text{MILP}} \rightarrow \{0, 1\} \quad (16)$$

1191 where $\Phi_{\text{feas}} = 1$ indicates that the MILP instance is feasible.

1193 **Definition 9.** (Optimal objective value mapping by sequence) The optimal objective value mapping
 1194 for each MILP instance is defined as:

$$\Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty, -\infty\} \quad (17)$$

1196 which projects feasible sequences to their respective optimal values.

1197 **Definition 10.** (Optimal solution mapping by sequence) To simplify the discussion, we focus on
 1198 settings where all components of the vectors ℓ and u are finite. This assumption ensures the existence
 1199 of an optimal solution when the MILP problem is feasible. Consequently, we define a restricted
 1200 subset of the MILP topological space, $\tilde{H}^{\text{MILP}} \subset H^{\text{MILP}}$, which only has finite variable bounds. The
 1201 optimal solution mapping for the MILP-sequence is defined as: For any $F \in \Phi_{\text{obj}}^{-1}(\mathbb{R})$, the MILP
 1202 problem has a unique optimal solution with the smallest ℓ_2 -norm. Let

$$\Phi_{\text{solu}} : \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1) \rightarrow \mathbb{R}^n \quad (18)$$

1205 Then we prove the feature mappings of the MILP-sequence are measurable [in the following theorems](#).

1206 **Theorem 11. The feasibility mapping for MILP-sequence is measurable.**

1209 *Proof* The target space $\{0, 1\}$ is equipped with the discrete σ -algebra, where every subset is Borel.
 1210 Specifically, the Borel sets in $\{0, 1\}$ are:

$$\mathcal{B}_{\{0,1\}} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$$

1213 We consider each possible Borel set $B \subseteq \{0, 1\}$ and examine $\Phi_{\text{feas}}^{-1}(B)$:

1215 1. $B = \emptyset$:

$$\Phi_{\text{feas}}^{-1}(\emptyset) = \emptyset,$$

1217 which is trivially a Borel set.

1218 2. $B = \{1\}$:

$$\Phi_{\text{feas}}^{-1}(\{1\}) = \left\{ (x, h) \in H^{\text{MILP}} \mid \text{the MILP instance is feasible} \right\}.$$

1222 The feasibility of a MILP instance is determined by the existence of solutions that satisfy all
 1223 linear constraints and integrality conditions. Specifically, it requires that there exists $x \in \mathbb{R}^n$
 1224 such that:

$$Ax \leq b, \quad \ell \leq x \leq u, \quad x_j \in \mathbb{Z} \quad \forall j \in \mathcal{I},$$

1225 where \mathcal{I} is the set of indices corresponding to integer variables.

1226 The set of feasible MILP instances can be expressed as the intersection of:

- 1228 • A finite union of closed half-spaces defined by the linear constraints $Ax \leq b$.
- 1229 • Closed intervals defined by the variable bounds $\ell \leq x \leq u$.
- 1230 • Discrete conditions $x_j \in \mathbb{Z}$ for integer variables.

1231 Since finite unions and intersections of closed sets are closed (hence Borel), and the discrete
 1232 conditions correspond to countable intersections, $\Phi_{\text{feas}}^{-1}(\{1\})$ is a Borel set in the product
 1233 topology of $\mathbb{R}^{(m+4)(n+2)} \times H^{\text{MILP}}$.

1234 3. $B = \{0\}$:

$$\Phi_{\text{feas}}^{-1}(\{0\}) = \left\{ (x, h) \in H^{\text{MILP}} \mid \text{the MILP instance is infeasible} \right\}.$$

1238 The infeasibility set is the complement of the feasibility set:

$$\Phi_{\text{feas}}^{-1}(\{0\}) = (\Phi_{\text{feas}}^{-1}(\{1\}))^c.$$

1239 Since $\Phi_{\text{feas}}^{-1}(\{1\})$ is a Borel set and the complement of a Borel set is also a Borel set,
 1240 $\Phi_{\text{feas}}^{-1}(\{0\})$ is Borel.

1242 4. $B = \{0, 1\}$:

$$\Phi_{\text{feas}}^{-1}(\{0, 1\}) = H^{\text{MILP}},$$

1243 which is the entire space and hence a Borel set.

1244 Since for every Borel set $B \subseteq \{0, 1\}$, the preimage $\Phi_{\text{feas}}^{-1}(B)$ is a Borel set in $\mathbb{R}^{(m+4)(n+2)} \times H^{\text{MILP}}$,
 1245 the feasibility mapping Φ_{feas} is measurable. \square

1246 **Remark F.1.** *The measurability of Φ_{feas} is crucial for ensuring that probabilistic and statistical*
 1247 *analyses involving MILP instances are well-defined. Since Φ_{feas} maps measurable spaces to a*
 1248 *discrete space with a simple σ -algebra, its measurability guarantees that feasibility can be reliably*
 1249 *incorporated into broader measure-theoretic frameworks.*

1250 **Remark F.2.** *Both the domain H^{MILP} and the codomain $\{0, 1\}$ are equipped with their respective*
 1251 *σ -algebras. The domain utilizes the product topology, and H^{MILP} itself is a product of measurable*
 1252 *spaces as defined earlier. The codomain $\{0, 1\}$ employs the discrete σ -algebra, where all subsets are*
 1253 *measurable.*

1254 **Theorem 12. The optimal objective value mapping for MILP-sequence is measurable.**

1255 *Proof* To prove that the optimal objective value mapping $\Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty, -\infty\}$ is
 1256 measurable, we need to demonstrate that for every Borel set $B \subseteq \mathbb{R} \cup \{\infty, -\infty\}$, the preimage
 1257 $\Phi_{\text{obj}}^{-1}(B)$ is a Borel set in $\mathbb{R}^{(m+4)(n+2)} \times H^{\text{MILP}}$.

1258 The codomain $\mathbb{R} \cup \{\infty, -\infty\}$ can be equipped with the extended real line topology, where the Borel
 1259 σ -algebra is generated by the open intervals in \mathbb{R} along with the points $\{\infty\}$ and $\{-\infty\}$. The Borel
 1260 sets in $\mathbb{R} \cup \{\infty, -\infty\}$ include:

- 1261 1. $B \subseteq \mathbb{R}$
- 1262 2. B contains ∞ and/or $-\infty$

1263 We consider each category of Borel sets in $\mathbb{R} \cup \{\infty, -\infty\}$ and examine $\Phi_{\text{obj}}^{-1}(B)$.

- 1264 1. $B \subseteq \mathbb{R}$:

$$\Phi_{\text{obj}}^{-1}(B) = \left\{ (x, h) \in H^{\text{MILP}} \mid \text{the optimal objective value of the MILP instance is in } B \right\}.$$

1265 Assuming that the MILP's optimal objective value is determined by a continuous optimiza-
 1266 tion process (which holds under certain regularity conditions, such as linearity of the
 1267 objective function and constraints), Φ_{obj} can be considered a continuous function on the
 1268 feasible set. Therefore, the preimage of any Borel set $B \subseteq \mathbb{R}$ under Φ_{obj} is a Borel set in the
 1269 domain.

- 1270 2. B contains ∞ and/or $-\infty$:

$$\Phi_{\text{obj}}^{-1}(B) = \left\{ (x, h) \in H^{\text{MILP}} \mid \Phi_{\text{obj}}(x, h) \in B \right\}.$$

1271 The inclusion of ∞ or $-\infty$ typically corresponds to the infeasibility or unboundedness of
 1272 the MILP instance:

- 1273 • If $\Phi_{\text{obj}}(x, h) = \infty$, the MILP instance is unbounded above.
- 1274 • If $\Phi_{\text{obj}}(x, h) = -\infty$, the MILP instance is unbounded below.

1275 These conditions define specific subsets of the domain:

$$\Phi_{\text{obj}}^{-1}(\{\infty\}) = \left\{ (x, h) \in H^{\text{MILP}} \mid \text{MILP is unbounded above} \right\},$$

1276 and

$$\Phi_{\text{obj}}^{-1}(\{-\infty\}) = \left\{ (x, h) \in H^{\text{MILP}} \mid \text{MILP is unbounded below} \right\}.$$

1277 Assuming that the conditions for unboundedness are also defined by Borel sets (similar to
 1278 feasibility), these preimages are Borel sets in the domain.

1296 Since for every Borel set $B \subseteq \mathbb{R} \cup \{\infty, -\infty\}$, the preimage $\Phi_{\text{obj}}^{-1}(B)$ is a Borel set in $\mathbb{R}^{(m+4)(n+2)} \times$
 1297 H^{MILP} , the mapping Φ_{obj} is measurable. \square
 1298

1299 Before we give the proof of the measurability of the optimal solution mapping for the MILP-
 1300 sequence, we first introduce the Jankov-von Neumann Measurable Selection Theorem.

1301 **Theorem 13 (Jankov-von Neumann Measurable Selection Theorem)**, (Dubins & Savage, 2014;
 1302 Neumann, 1936). *Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces, and let $S : X \rightarrow 2^Y$ be a
 1303 measurable set-valued map such that for all $x \in X$, $S(x)$ is non-empty and closed in Y . Then, there
 1304 exists a measurable function $f : X \rightarrow Y$ such that $f(x) \in S(x)$ for all $x \in X$.*

1305 **Remark F.3.** *The Jankov-von Neumann Measurable Selection Theorem provides a crucial guarantee
 1306 in measure theory and its applications. Given a measurable space X and a set-valued mapping
 1307 $A : X \rightarrow 2^Y$ where each $A(x)$ is a non-empty set, the theorem ensures the existence of a measurable
 1308 function f that selects an element from each $A(x)$ in a measurable manner. Specifically, for almost
 1309 every $x \in X$, the function f assigns a value $f(x)$ that belongs to the set $A(x)$. This result is
 1310 particularly useful in areas such as optimization, probability theory, and economics, where selecting
 1311 measurable choices from a set of feasible options is essential.*

1312 Then we prove the measurability of the optimal solution mapping for the MILP-sequence.

1313 **Theorem 14. The optimal solution mapping for the MILP-sequence is measurable.**

1315 *Proof.* This part proves the optimal solution mapping for the MILP-sequence is measurable. To
 1316 prove that the optimal solution mapping
 1317

$$\Phi_{\text{solu}} : \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1) \rightarrow \mathbb{R}^n$$

1319 is measurable, we need to demonstrate that for every Borel set $B \subseteq \mathbb{R}^n$, the preimage
 1320

$$\Phi_{\text{solu}}^{-1}(B)$$

1323 is a Borel set in H^{MILP} .

1324 Consider the mapping Φ_{solu} as a selection function that assigns to each feasible MILP instance its
 1325 unique optimal solution with the smallest ℓ_2 -norm. Formally, for each

$$(x, h) \in \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1),$$

1328 there exists at least one $x^* \in \mathbb{R}^n$ such that x^* is an optimal solution. We aim to select a unique x^*
 1329 for each instance in a measurable manner. *With Theorem 13, for each*

$$(x, h) \in \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1),$$

1332 the set of optimal solutions

$$S(x, h) = \{x^* \in \mathbb{R}^n \mid x^* \text{ is an optimal solution for } (x, h)\}$$

1335 is non-empty and closed, then there exists a measurable selection function

$$\Phi_{\text{solu}} : \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1) \rightarrow \mathbb{R}^n$$

1338 such that

$$\Phi_{\text{solu}}(x, h) \in S(x, h)$$

1341 for all

$$(x, h) \in \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1).$$

1343 Then, we prove the Non-emptiness and Cloasedness of $\tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1)$, detailed as:

1345 1. **Non-emptiness:** By definition,

$$\tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1)$$

1347 consists of MILP instances that are feasible and have finite bounds, ensuring that an optimal
 1348 solution exists. Therefore, $S(x, h)$ is non-empty for all

$$(x, h) \in \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1).$$

1350
 1351 2. **Closedness:** The set of optimal solutions $S(x, h)$ is closed in \mathbb{R}^n . This is because optimal
 1352 solutions to MILP problems, defined by linear constraints and objective functions, form
 1353 closed sets under standard topologies.

1354 Given that both the closedness and non-emptiness conditions are satisfied, Theorem 13 ensures the
 1355 existence of a measurable selection function Φ_{solu} . Since Φ_{solu} is a measurable selection function by
 1356 the theorem, for any Borel set $B \subseteq \mathbb{R}^n$,

$$\Phi_{\text{solu}}^{-1}(B) = \{(x, h) \in H^{\text{MILP}} \mid \Phi_{\text{solu}}(x, h) \in B\}$$

1357 is a Borel set in H^{MILP} . Therefore, the mapping Φ_{solu} is measurable. \square
 1358

1361 After establishing the measurability of the feasibility, optimal objective value, and optimal solution
 1362 mappings, we define the corresponding measurable mapping sets for each of these mappings as
 1363 follows:

1364 **Definition 15.** (Measurable Mapping Set for Feasibility Mapping) The **Feasibility Mapping Set**
 1365 consists of all measurable functions

$$\Phi_{\text{feas}} : H^{\text{MILP}} \rightarrow \{0, 1\},$$

1368 where $\Phi_{\text{feas}}(x, h) = 1$ indicates that the MILP instance defined by (x, h) is feasible, and $\Phi_{\text{feas}}(x, h) =$
 1369 0 indicates infeasibility. Formally, the set is defined as:

$$\mathcal{F}_{\text{feas}}^{\text{MILP}} = \left\{ \Phi_{\text{feas}} : H^{\text{MILP}} \rightarrow \{0, 1\} \mid \Phi_{\text{feas}} \text{ is measurable} \right\}.$$

1374 **Definition 16** (Measurable Mapping Set for Optimal Objective Value Mapping). The **Optimal
 1375 Objective Value Mapping Set** comprises all measurable functions

$$\Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty, -\infty\},$$

1378 which assign to each MILP instance (x, h) its optimal objective value. Specifically,

$$\Phi_{\text{obj}}(x, h) = \begin{cases} c^T x^* & \text{if the MILP instance is feasible and bounded,} \\ \infty & \text{if the MILP instance is unbounded above,} \\ -\infty & \text{if the MILP instance is unbounded below.} \end{cases}$$

1383 Formally, the set is defined as:

$$\mathcal{F}_{\text{obj}}^{\text{MILP}} = \left\{ \Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty, -\infty\} \mid \Phi_{\text{obj}} \text{ is measurable} \right\}.$$

1388 **Definition 17** (Measurable Mapping Set for Optimal Solution Mapping). The **Optimal Solution
 1389 Mapping Set** consists of all measurable functions

$$\Phi_{\text{solu}} : \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1) \rightarrow \mathbb{R}^n,$$

1392 which assign to each feasible and bounded MILP instance (x, h) its unique optimal solution x^* with
 1393 the smallest ℓ_2 -norm. Formally, the set is defined as:

$$\mathcal{F}_{\text{solu}}^{\text{MILP}} = \left\{ \Phi_{\text{solu}} : \tilde{H}^{\text{MILP}} \cap \Phi_{\text{feas}}^{-1}(1) \rightarrow \mathbb{R}^n \mid \Phi_{\text{solu}} \text{ is measurable} \right\}.$$

1398 G THE PROOF OF THE SECTION 5.2.

1400 Firstly, theorem Lusin is presented before the proof in this section.

1402 **Theorem 18** (Lusin's Theorem, (Mammeri, 2019)). *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function on a
 1403 measurable set $E \subset \mathbb{R}$ with finite measure. For every $\epsilon > 0$, there exists a closed set $C \subset E$ such
 1404 that the measure of $E \setminus C$ is less than ϵ , and f restricted to C is continuous.*

1404 Secondly, for the probability measure used in Theorems 2–4 we would like give the Remark G.1 to
 1405 clarify the probability using:

1406 **Remark G.1 (On the Probability Measure).** The probability $P(\cdot)$ in Theorems 2–4 accounts for the
 1407 randomness in neural network training, including random initialization and stochastic optimization
 1408 (SGD). Specifically, P is the probability measure over the space of trained networks induced by the
 1409 random training process. This formulation aligns with the Probably Approximately Correct learning.
 1410 For a fixed trained network F_{HYA} , the probability can be interpreted as the empirical error rate on the
 1411 finite dataset D .

1412 Then we give the proof of the theorems in the Section 5.2.

1413 **G.1 PROOF AND COROLLARY ON THEOREM 2**

1414 **Proof of Theorem 2** We leverage the measurability of the feasibility mapping Φ_{feas} , the Jankov-von
 1415 Neumann Measurable Selection Theorem, and Lusin’s Theorem to construct a neural network F_{HYA}
 1416 that approximates Φ_{feas} with high accuracy on the finite dataset D .

1417 From our earlier definitions in Definition 15, $\Phi_{\text{feas}} : H^{\text{MILP}} \rightarrow \{0, 1\}$ is measurable. This ensures
 1418 that Φ_{feas} is compatible with measure-theoretic frameworks. Lusin’s Theorem states that for any
 1419 measurable function and any $\delta > 0$, there exists a compact subset where the function is continuous
 1420 and the measure of the complement is less than δ . However, since D is a finite dataset, we can
 1421 consider the discrete measure where each point in D has an equal probability mass.

1422 Given the finiteness of D , Lusin’s Theorem trivially holds as we can define $\delta = \epsilon$ and select the
 1423 entire dataset D as the compact subset where Φ_{feas} is continuous (since all functions on finite sets are
 1424 continuous).

1425 By the Universal Approximation Theorem, Since our MILPnet is an architecture that combines
 1426 **at least** one-layer feedforward network structure with activation functions, it can approximate any
 1427 continuous function on a compact subset to arbitrary accuracy. Since D is finite, and Φ_{feas} is
 1428 effectively continuous on D , there exists a neural network $F_{\text{HYA}} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ that satisfies:

$$1429 |F_{\text{HYA}}(x) - \Phi_{\text{feas}}(x)| < \frac{1}{2}, \quad \forall x \in D.$$

1430 This ensures that:

$$1431 \mathbb{I}_{F_{\text{HYA}}}(x) = \begin{cases} 1 & \text{if } F_{\text{HYA}}(x) > \frac{1}{2}, \\ 0 & \text{otherwise,} \end{cases}$$

1432 matches $\Phi_{\text{feas}}(x)$ exactly for all $x \in D$. Since D is finite, the probability P can be interpreted as a
 1433 uniform distribution over D . Given that F_{HYA} correctly classifies all $x \in D$, we have:

$$1434 P\left(\mathbb{I}_{F_{\text{HYA}}(x) > \frac{1}{2}} \neq \Phi_{\text{feas}}(x)\right) = 0 < \epsilon.$$

1435 Thus, the constructed neural network F_{HYA} satisfies the required condition for the theorem. \square

1436 **Remark G.2.** While the above steps suffice for a finite dataset, the framework can be extended
 1437 using the Jankov-von Neumann Measurable Selection Theorem for more general settings. This
 1438 theorem ensures the existence of a measurable selection function that can be approximated by neural
 1439 networks even in infinite-dimensional spaces, provided the feasibility mapping satisfies the necessary
 1440 measurability and closedness conditions. However, for the scope of this theorem with a finite dataset
 1441 D , the construction above is sufficient to guarantee the existence of the desired neural network F_{HYA} .

1442 **Then we have corollary on the infinite dataset for feasibility mapping:**

1443 **Corollary 1** (Extension to infinite dataset). Let $D \subset H^{\text{MILP}}$ be an infinite or continuous dataset with
 1444 a finite measure $\mu(D) < \infty$. For any $\epsilon > 0$, there exists a neural network $F_{\text{HYA}} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ such that:

$$1445 P\left(\mathbb{I}_{F_{\text{HYA}}(x) > \frac{1}{2}} \neq \Phi_{\text{feas}}(x)\right) < \epsilon, \quad \forall x \in D, \tag{19}$$

1446 where x is the MILP-sequence, and $\Phi_{\text{feas}}(x)$ is the feasibility mapping of the MILP instance.

1458 *Proof.* We have proven that the feasibility mapping $\Phi_{\text{feas}} : H^{\text{MILP}} \rightarrow \{0, 1\}$ is assumed to be
 1459 measurable on D in Theorem B.1.

1460 By **Lusin's Theorem**, for the measurable function Φ_{feas} and for any $\epsilon > 0$, there exists a compact
 1461 (closed and bounded) subset $C \subset D$ such that:

$$1463 \mu(D \setminus C) < \epsilon$$

1464 and Φ_{feas} restricted to C is continuous:
 1465

$$1466 \Phi_{\text{feas}}|_C : C \rightarrow \{0, 1\} \text{ is continuous.}$$

1467 Since Φ_{feas} is a simple indicator function, its continuity on C implies that C avoids the boundary
 1468 cases where the feasibility of the MILP instances changes.

1469 Given that Φ_{feas} is continuous on C , by the Universal Approximation Theorem, there exists a neural
 1470 network $F_{\text{HYA}} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ that approximates the indicator function $\mathbb{I}_{\Phi_{\text{feas}}(x)}$ to within an error less
 1471 than $\frac{1}{2}$ on C . Specifically:

$$1473 \quad |F_{\text{HYA}}(x) - \mathbb{I}_{\Phi_{\text{feas}}(x)}| < \frac{1}{2}, \quad \forall x \in C$$

1475 This implies that:

$$1476 \quad \mathbb{I}_{F_{\text{HYA}}(x) > \frac{1}{2}} \iff \mathbb{I}_{\Phi_{\text{feas}}(x)} = 1, \quad \forall x \in C$$

1478 Thus, the neural network F_{HYA} correctly classifies the feasibility of MILP instances in C . Consider
 1479 the probability that the classification error occurs:

$$1480 \quad P\left(\mathbb{I}_{F_{\text{HYA}}(x) > \frac{1}{2}} \neq \Phi_{\text{feas}}(x)\right)$$

1482 This event can only occur if $x \in D \setminus C$, since for $x \in C$, the classification is guaranteed to be correct.
 1483 Therefore:

$$1484 \quad P\left(\mathbb{I}_{F_{\text{HYA}}(x) > \frac{1}{2}} \neq \Phi_{\text{feas}}(x)\right) \leq \mu(D \setminus C) < \epsilon$$

1486 Thus, the probability that F_{HYA} misclassifies any $x \in D$ is bounded by ϵ . By constructing F_{HYA}
 1487 using Lusin's Theorem to ensure continuity on a large compact subset C of D , and then applying the
 1488 Universal Approximation Theorem to approximate the feasibility indicator function on C , we have
 1489 established the existence of a neural network within $\mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ that satisfies the desired probabilistic
 1490 bound for the classification task on infinite or continuous datasets D . \square

1491 G.2 PROOF AND COROLLARY OF THEOREM 3

1493 **Proof of Theorem 3** To prove the theorem, we leverage the **Lusin's Theorem** alongside the Universal
 1494 Approximation Theorem for neural networks. The proof is divided into two parts corresponding to
 1495 the classification and regression problems.

1496 1. Classification Problem:

1498 We aim to construct a neural network $F_{\text{HYA},1}$ that accurately classifies whether the objective value
 1499 $\Phi_{\text{obj}}(x)$ is finite for all $x \in D$.

1501 First, we have proven that the feature mapping $\Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty\}$ is measurable. By **Lusin's**
 1502 **Theorem**, for any measurable function f defined on a measurable set with finite measure, and for
 1503 any $\epsilon > 0$, there exists a closed set $C \subset D$ such that:

$$1504 \mu(D \setminus C) < \epsilon$$

1505 and f restricted to C is continuous. Since D is finite, the measure $\mu(D)$ is finite, and thus Lusin's
 1506 Theorem is applicable. Therefore, there exists a subset $C \subset D$ where Φ_{obj} is continuous.

1508 Given that Φ_{obj} is continuous on C , by the Universal Approximation Theorem, there exists a neural
 1509 network $F_{\text{HYA},1} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ that approximates the indicator function $\mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}$ to within an error less
 1510 than ϵ on C . Specifically:

$$1511 \quad |F_{\text{HYA},1}(x) - \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}| < \frac{1}{2}, \quad \forall x \in C$$

1512 Since $\mu(D \setminus C) < \epsilon$, the probability that $F_{\text{HYA},1}$ misclassifies any $x \in D$ is less than ϵ :

$$1514 \quad P\left(\mathbb{I}_{F_{\text{HYA},1}(x) > \frac{1}{2}} \neq \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}\right) < \epsilon, \quad \forall x \in D$$

1516 **2. Regression problems:**

1518 Next, we construct a neural network $F_{\text{HYA},2}$ to predict the objective value $\Phi_{\text{obj}}(x)$ with an error less
1519 than δ for all $x \in D$ where $\Phi_{\text{obj}}(x)$ is finite.

1520 We have proven that the Φ_{obj} is measurable in Theorem B.2. By **Lusin's Theorem**, for the regression
1521 task, there exists a closed subset $C' \subset D \cap \Phi_{\text{obj}}^{-1}(\mathbb{R})$ such that:

$$1523 \quad \mu\left((D \cap \Phi_{\text{obj}}^{-1}(\mathbb{R})) \setminus C'\right) < \epsilon$$

1525 and Φ_{obj} is continuous on C' .

1526 By the Universal Approximation Theorem, there exists a neural network $F_{\text{HYA},2} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ that
1527 approximates Φ_{obj} to within an error δ on C' :

$$1529 \quad |F_{\text{HYA},2}(x) - \Phi_{\text{obj}}(x)| < \delta, \quad \forall x \in C'$$

1530 Since the measure of the complement set is less than ϵ , the probability that the prediction error
1531 exceeds δ is bounded by ϵ :

$$1533 \quad P(|F_{\text{HYA},2}(x) - \Phi_{\text{obj}}(x)| > \delta) < \epsilon, \quad \forall x \in D \cap \Phi_{\text{obj}}^{-1}(\mathbb{R})$$

1534 By constructing $F_{\text{HYA},1}$ and $F_{\text{HYA},2}$ using Lusin's Theorem to ensure measurability and continuity on
1535 large subsets, and then applying the Universal Approximation Theorem to approximate the respective
1536 functions, we have established the existence of neural networks within $\mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ that satisfy the
1537 desired probabilistic bounds for both classification and regression tasks on the finite dataset D . \square

1539 *Then we give the corollary on the infinite dataset for optimal objective mapping as follows:*

1540 **Corollary 2 (Extension to Compact Infinite Sets).** Let $K \subset H^{\text{MILP}}$ be a compact subset equipped with
1541 the measure $\mu_{H^{\text{MILP}}}$ defined in Section 4.2. Define the probability measure P on K by normalizing:
1542 $P(A) = \frac{\mu_{H^{\text{MILP}}}(A)}{\mu_{H^{\text{MILP}}}(K)}$ for any measurable set $A \subset K$.

1544 For any $\epsilon, \delta > 0$, there exist two neural networks $F_{\text{HYA},1}, F_{\text{HYA},2} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$ such that:

1546 **1. Classification of finite objective values:**

$$1547 \quad P\left(\mathbb{I}_{F_{\text{HYA},1}(x) > \frac{1}{2}} \neq \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}\right) < \epsilon, \quad \forall x \in K \quad (20)$$

1549 **2. Regression of objective values:**

$$1551 \quad P(|F_{\text{HYA},2}(x) - \Phi_{\text{obj}}(x)| > \delta) < \epsilon, \quad \forall x \in K \cap \Phi_{\text{obj}}^{-1}(\mathbb{R}) \quad (21)$$

1553 *Proof.* The proof parallels Theorem 3, replacing the counting measure on finite D with the probability
1554 measure P on compact K .

1555 **1. Classification Problem.**

1557 Since $\Phi_{\text{obj}} : H^{\text{MILP}} \rightarrow \mathbb{R} \cup \{\infty\}$ is measurable and K is compact with $\mu_{H^{\text{MILP}}}(K) < \infty$, we apply
1558 Lusin's Theorem.

1559 For any $\epsilon > 0$, there exists a closed set $C \subset K$ such that:

$$1561 \quad P(K \setminus C) = \frac{\mu_{H^{\text{MILP}}}(K \setminus C)}{\mu_{H^{\text{MILP}}}(K)} < \frac{\epsilon}{2}$$

1563 and $\Phi_{\text{obj}}|_C$ is continuous. By the Universal Approximation Theorem, there exists $F_{\text{HYA},1} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$
1564 such that:

$$1565 \quad \sup_{x \in C} |F_{\text{HYA},1}(x) - \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}| < \frac{1}{4}$$

1566 This ensures that for all $x \in C$:

$$\mathbb{I}_{F_{\text{HYA},1}(x) > \frac{1}{2}} = \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}$$

1568 The set of misclassified points is contained in $K \setminus C$, therefore:

$$P\left(\mathbb{I}_{F_{\text{HYA},1}(x) > \frac{1}{2}} \neq \mathbb{I}_{\Phi_{\text{obj}}(x) \in \mathbb{R}}\right) \leq P(K \setminus C) < \epsilon$$

1570 **2. Regression Problem.** Let $K_{\text{finite}} = K \cap \Phi_{\text{obj}}^{-1}(\mathbb{R})$. Define the conditional probability measure on
1571 K_{finite} by:

$$P_{\text{finite}}(A) = \frac{\mu_{H^{\text{MIL}}}(A)}{\mu_{H^{\text{MIL}}}(K_{\text{finite}})}, \quad A \subset K_{\text{finite}}$$

1572 By Lusin's Theorem applied to Φ_{obj} on K_{finite} , for any $\epsilon > 0$, there exists a closed set $C' \subset K_{\text{finite}}$
1573 such that:

$$P_{\text{finite}}(K_{\text{finite}} \setminus C') < \frac{\epsilon}{2}$$

1574 and $\Phi_{\text{obj}}|_{C'}$ is continuous. By the Universal Approximation Theorem, there exists $F_{\text{HYA},2} \in \mathcal{F}_{\text{HYA}}^{\text{MILPnet}}$
1575 such that:

$$\sup_{x \in C'} |F_{\text{HYA},2}(x) - \Phi_{\text{obj}}(x)| < \delta$$

1576 Therefore:

$$P_{\text{finite}}(|F_{\text{HYA},2}(x) - \Phi_{\text{obj}}(x)| > \delta) \leq P_{\text{finite}}(K_{\text{finite}} \setminus C') < \epsilon$$

□

1589 G.3 PROOF AND THE COROLLARY OF THEOREM 4

1590 **Proof of Theorem 4** Since D is finite, let us denote it as:

$$D = \{x_1, x_2, \dots, x_n\}$$

1591 for some integer $n \geq 1$. For each $x_i \in D$, $\Phi_{\text{solu}}(x_i)$ is a well-defined finite solution in \mathbb{R}^n .

1592 The Universal Approximation Theorem states that a feedforward neural network with at least one
1593 hidden layer and a sufficient number of neurons can approximate any continuous function on compact
1594 subsets of \mathbb{R}^n to any desired degree of accuracy, provided the activation function is non-linear (e.g.,
1595 Sigmoid, ReLU).

1596 Given that D is finite, it is trivially compact. Therefore, there exists a neural network $F_{\text{HYA},W}$ that
1597 can approximate the mapping Φ_{solu} on D with arbitrary precision. Specifically, for each $x_i \in D$, we
1598 can ensure:

$$\|F_{\text{HYA},W}(x_i) - \Phi_{\text{solu}}(x_i)\| < \delta$$

1599 by appropriately choosing the network architecture and weights W .

1600 Since D is finite, the probability P can be interpreted over a uniform distribution or any probability
1601 measure defined on D . However, because we have constructed $F_{\text{HYA},W}$ such that the approximation
1602 error is less than δ for every $x \in D$, the event

$$\|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| > \delta$$

1603 does not occur for any $x \in D$. Therefore:

$$P(\|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| > \delta) = 0 < \epsilon$$

1604 for any $\epsilon > 0$.

1605 By the Universal Approximation Theorem, we can construct a neural network $F_{\text{HYA},W}$ that approx-
1606 imates the solution mapping Φ_{solu} on the finite dataset D with an error less than δ for all $x \in D$.
1607 Consequently, the probability that the approximation error exceeds δ is zero, which is trivially less
1608 than any $\epsilon > 0$. This establishes the existence of such a neural network within $\mathcal{F}_{\text{HYA},V}^{\text{MILPnet}}$. □

1609

1610 *Then we have the corollary on the infinite dataset:*

1620 **Corollary 3** (Extension to infinite dataset). Let $D \subset \Phi_{\text{obj}}^{-1}(\mathbb{R}) \subset H^{\text{MILP}}$ be an infinite dataset with a
 1621 finite measure $\mu(D) < \infty$. For any $\epsilon, \delta > 0$, there exists a neural network $F_{\text{HYA},W} \in \mathcal{F}_{\text{HYA},W}^{\text{MILPnet}}$ such
 1622 that:

$$1623 \quad P(\|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| > \delta) < \epsilon, \quad \forall x \in D, \quad (22)$$

1624 where P denotes the probability measure on D .

1625 *Proof.* To extend the theorem to infinite datasets, we employ **Lusin's Theorem** in conjunction with
 1626 the Universal Approximation Theorem.

1627 Assume D is equipped with a probability measure μ such that $\mu(D) = 1$ (without loss of generality, as
 1628 we can normalize the measure). Also, we have proven that the solution mapping $\Phi_{\text{solu}} : H^{\text{MILP}} \rightarrow \mathbb{R}^n$
 1629 is measurable on D before.

1630 By Lusin's Theorem, for the measurable function Φ_{solu} and for any $\epsilon > 0$, there exists a compact
 1631 (closed and bounded) subset $C \subset D$ such that:

$$1632 \quad \mu(D \setminus C) < \epsilon$$

1633 and Φ_{solu} restricted to C is continuous:

$$1634 \quad \Phi_{\text{solu}}|_C : C \rightarrow \mathbb{R}^m \text{ is continuous.}$$

1635 Since C is compact and $\Phi_{\text{solu}}|_C$ is continuous, the Universal Approximation Theorem ensures that
 1636 there exists a neural network $F_{\text{HYA},W} \in \mathcal{F}_{\text{HYA},W}^{\text{MILPnet}}$ such that:

$$1637 \quad \sup_{x \in C} \|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| < \delta.$$

1638 This implies that for all $x \in C$:

$$1639 \quad \|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| < \delta.$$

1640 Consider the probability that the approximation error exceeds δ :

$$1641 \quad P(\|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| > \delta).$$

1642 This event can only occur if $x \in D \setminus C$, since for $x \in C$, the error is guaranteed to be less than δ .
 1643 Therefore:

$$1644 \quad P(\|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| > \delta) \leq \mu(D \setminus C) < \epsilon.$$

1645 Thus, we have:

$$1646 \quad P(\|F_{\text{HYA},W}(x) - \Phi_{\text{solu}}(x)\| > \delta) < \epsilon.$$

1647 By Lusin's Theorem, we ensure that Φ_{solu} is continuous on a large subset C of D . The Universal
 1648 Approximation Theorem then guarantees the existence of a neural network $F_{\text{HYA},W}$ that approximates
 1649 Φ_{solu} within δ on C . Consequently, the probability that the approximation error exceeds δ on the
 1650 entire dataset D is bounded by ϵ .

1651 This establishes that for infinite or continuous datasets with finite measure, there exists a neural
 1652 network within $\mathcal{F}_{\text{HYA},W}^{\text{MILPnet}}$ that satisfies the desired probabilistic bound on the approximation error. \square

1653 H PROOF OF THE STABILITY

1654 In this section, we establish the stability properties of the MILP mappings Φ_{feas} , Φ_{obj} , and Φ_{solu} under
 1655 small perturbations of problem coefficients. Our analysis builds upon Berge's Maximum Theorem
 1656 (Aliprantis & Border, 2006).

1657 **Theorem 19** (Berge's Maximum Theorem Aliprantis & Border (2006)). *Let X and T be topological
 1658 spaces, and let $f : X \times T \rightarrow \mathbb{R}$ be continuous. Let $C : T \Rightarrow X$ be a correspondence (set-valued
 1659 map) such that:*

- 1660 1. $C(t)$ is non-empty and compact for all $t \in T$,
- 1661 2. C is continuous, i.e., its graph $\text{Gr}(C) = \{(t, x) : x \in C(t)\}$ is closed and C is lower
 1662 hemicontinuous.

1674 Define the value function and argmax correspondence by:
 1675

1676 $V(t) = \max_{x \in C(t)} f(x, t), \quad X^*(t) = \arg \max_{x \in C(t)} f(x, t) = \{x \in C(t) : f(x, t) = V(t)\}.$
 1677

1678 Then:

1679

1680 1. $V(t)$ is continuous in t .
 1681 2. $X^*(t)$ is non-empty, compact-valued, and upper hemicontinuous in t .
 1682

1683 We first analyze the stability of Φ_{obj} , which exhibits the strongest stability properties among the three
 1684 mappings.
 1685

1686 **Definition 20** (Continuous Relaxation for MILP sequence). For a MILP sequence $\mathbf{x} =$
 1687 $[h_{\text{cons}}^1, \dots, h_{\text{cons}}^m, h^{i'}, h^{\ell'}, h^{i'}, h^{c'}] \in H^{\text{MILP}}$, its *continuous relaxation* is the linear program obtained
 1688 by dropping the integrality constraints:
 1689

1690
$$\text{CR}(\mathbf{x}) : \min_{x \in \mathbb{R}^n} \{\langle c, x \rangle : Ax \leq b, \ell \leq x \leq u\},$$

1691 where A, b, c, ℓ, u are extracted from the tokens in \mathbf{x} .
 1692

1693 **Proposition 21 (Stability of Continuous Relaxation).** Let $\mathbf{x} \in H^{\text{MILP}}$ be a feasible MILP instance
 1694 whose continuous relaxation has a bounded feasible region. Then the optimal value function of
 1695 the continuous relaxation, denoted $\Phi_{\text{obj}}^{\text{CR}}$, is continuous at \mathbf{x} . Furthermore, if the optimal solution is
 1696 non-degenerate, then $\Phi_{\text{obj}}^{\text{CR}}$ is locally Lipschitz continuous with constant:
 1697

1698
$$L = \|c\|_2 \cdot \text{diam}(\text{Feas}(\mathbf{x})),$$

1699 where $\text{Feas}(\mathbf{x})$ denotes the feasible region and $\text{diam}(\cdot)$ its diameter.
 1700

1701 *Proof.* The continuous relaxation defines a parametric linear program where the parameter $t =$
 1702 (A, b, c, ℓ, u) lives in H^{MILP} . Let $X = \mathbb{R}^n$ and $T = H^{\text{MILP}}$. The objective function $f(x, t) = \langle c, x \rangle$
 1703 is continuous in (x, t) . Then the feasible region correspondence $C(t) = \{x \in \mathbb{R}^n : Ax \leq b, \ell \leq$
 1704 $x \leq u\}$ satisfies:
 1705

- 1706 • **Compactness:** By assumption, $C(\mathbf{x})$ is bounded. Combined with the closed constraints,
 1707 $C(\mathbf{x})$ is compact.
 1708
- 1709 • **Continuity:** The graph $\text{Gr}(C)$ is closed because the constraints define a closed set in
 1710 $\mathbb{R}^n \times H^{\text{MILP}}$. Moreover, C is lower hemicontinuous: for any $x \in C(t)$ and $t_n \rightarrow t$, since
 1711 the constraints are linear and continuous in t , small perturbations preserve feasibility in a
 1712 neighborhood.
 1713

1714 By Berge's Theorem 19, $\Phi_{\text{obj}}^{\text{CR}}(\mathbf{x})$ is continuous at \mathbf{x} . Under non-degeneracy, the optimal basis remains
 1715 unchanged in a neighborhood of \mathbf{x} . The optimal value is given by the basis solution $x^* = B^{-1}b_B$,
 1716 where B is the optimal basis matrix. The objective value is:
 1717

1718
$$\Phi_{\text{obj}}^{\text{CR}}(\mathbf{x}) = \langle c_B, B^{-1}b_B \rangle,$$

1719 which is a linear function of (c_B, b_B) within the neighborhood where the basis is constant.
 1720

1721 For a perturbation $\mathbf{x}' = \mathbf{x} + \boldsymbol{\epsilon}$ with $\|\boldsymbol{\epsilon}\|_2 \leq \delta$:

1722
$$\begin{aligned} |\Phi_{\text{obj}}^{\text{CR}}(\mathbf{x}') - \Phi_{\text{obj}}^{\text{CR}}(\mathbf{x})| &= |\langle c', x'^* \rangle - \langle c, x^* \rangle| \\ 1723 &\leq |\langle c' - c, x'^* \rangle| + |\langle c, x'^* - x^* \rangle| \\ 1724 &\leq \|c' - c\|_2 \cdot \|x'^*\|_2 + \|c\|_2 \cdot \|x'^* - x^*\|_2 \\ 1725 &\leq L \cdot \delta, \\ 1726 \end{aligned}$$

1727 where $L = \|c\|_2 \cdot \text{diam}(\text{Feas}(\mathbf{x}))$ bounds both terms. □
 1728

1728 H.1 STABILITY OF THE OPTIMAL OBJECTIVE MAPPING
17291730 **Theorem 22 (Conditional Stability of MILP Objective Value).** Let $\mathbf{x} \in H^{\text{MILP}}$ be a feasible MILP
1731 sequence with bounded feasible region. Consider a perturbation $\mathbf{x}' = \mathbf{x} + \boldsymbol{\epsilon}$ where $\|\boldsymbol{\epsilon}\|_2 \leq \delta$. If the
1732 following assumptions hold:1733 1. **Feasibility preservation:** $\Phi_{\text{feas}}(\mathbf{x}') = 1$,
1734 2. **Optimal solution stability:** The optimal integer solution $x^* \in \mathbb{Z}^n$ of \mathbf{x} remains feasible for
1735 \mathbf{x}' ,
1736 3. **Bounded diameter:** $\text{diam}(\text{Feas}(\mathbf{x}) \cap \mathbb{Z}^n) \leq D$,1737 then:
1738

1739
$$|\Phi_{\text{obj}}(\mathbf{x}') - \Phi_{\text{obj}}(\mathbf{x})| \leq (\|c\|_2 + \delta) \cdot D.$$

1740

1741 *Proof.* Let $x^* \in \mathbb{Z}^n$ be an optimal solution to \mathbf{x} , and $x'^* \in \mathbb{Z}^n$ be an optimal solution to \mathbf{x}' .
17421743 By condition (2), x^* is feasible for \mathbf{x}' , so:
1744

1745
$$\Phi_{\text{obj}}(\mathbf{x}') = \langle c', x'^* \rangle \leq \langle c', x^* \rangle.$$

1746

1747 Similarly, x'^* is feasible for its problem, and by condition (1), both x^* and x'^* lie in the bounded
1748 integer feasible region. Thus:
1749

1750
$$\Phi_{\text{obj}}(\mathbf{x}) = \langle c, x^* \rangle.$$

1751

Now:
1752

1753
$$\begin{aligned} |\Phi_{\text{obj}}(\mathbf{x}') - \Phi_{\text{obj}}(\mathbf{x})| &= |\langle c', x'^* \rangle - \langle c, x^* \rangle| \\ 1754 &\leq |\langle c', x'^* \rangle - \langle c, x'^* \rangle| + |\langle c, x'^* \rangle - \langle c, x^* \rangle| \\ 1755 &= |\langle c' - c, x'^* \rangle| + |\langle c, x'^* - x^* \rangle| \\ 1756 &\leq \|c' - c\|_2 \cdot \|x'^*\|_2 + \|c\|_2 \cdot \|x'^* - x^*\|_2 \\ 1757 &\leq \delta \cdot D + \|c\|_2 \cdot D \\ 1758 &= (\|c\|_2 + \delta) \cdot D, \end{aligned}$$

1759

1760 where we used $\|c' - c\|_2 \leq \delta$ (from the perturbation bound) and $\|x'^* - x^*\|_2, \|x'^*\|_2 \leq D$ (from
1761 condition 3). \square
1762H.2 STABILITY OF THE FEASIBILITY MAPPING
17631764 We now analyze the stability of Φ_{feas} .
17651766 **Theorem 23 (Conditional Stability of Feasibility).** Let $\mathbf{x} \in H^{\text{MILP}}$ with $\Phi_{\text{feas}}(\mathbf{x}) = 1$. Suppose
1767 the feasible integer points satisfy a strict feasibility condition: there exists $\rho > 0$ such that for all
1768 $x^* \in \text{Feas}(\mathbf{x}) \cap \mathbb{Z}^n$,

1769
$$Ax^* \leq b - \rho \mathbf{1}, \quad \ell + \rho \mathbf{1} \leq x^* \leq u - \rho \mathbf{1},$$

1770 where $\mathbf{1}$ is the all-ones vector. Then for any perturbation $\mathbf{x}' = \mathbf{x} + \boldsymbol{\epsilon}$ with $\|\boldsymbol{\epsilon}\|_\infty \leq \delta < \rho$, we have:
1771

1772
$$\Phi_{\text{feas}}(\mathbf{x}') = 1.$$

1773

1774 *Proof.* Let $x^* \in \text{Feas}(\mathbf{x}) \cap \mathbb{Z}^n$ be any feasible integer point for \mathbf{x} .
17751776 For the perturbed instance \mathbf{x}' with parameters (A', b', ℓ', u') , we have:
1777

1778
$$\|A' - A\|_\infty \leq \delta, \quad |b'_i - b_i| \leq \delta, \quad |\ell'_j - \ell_j| \leq \delta, \quad |u'_j - u_j| \leq \delta.$$

1779

1780 Check constraint satisfaction:
1781

1782
$$\begin{aligned} A'x^* &= (A + \Delta A)x^* = Ax^* + \Delta Ax^* \\ 1783 &\leq (b - \rho \mathbf{1}) + \|\Delta A\|_\infty \|x^*\|_1 \mathbf{1} \\ 1784 &\leq b - \rho \mathbf{1} + \delta \|x^*\|_1 \mathbf{1}. \end{aligned}$$

1782 If $\delta < \frac{\rho}{\|x^*\|_1}$, then $A'x^* < b - (\rho - \delta\|x^*\|_1)\mathbf{1} < b'$.
 1783

1784 For sufficiently small $\delta < \rho$, we can ensure all integer points remain strictly feasible. Therefore,
 1785 $\Phi_{\text{feas}}(\mathbf{x}') = 1$. \square
 1786

1787 H.3 STABILITY OF THE OPTIMAL SOLUTION MAPPING

1788 Finally, we analyze Φ_{solu} .
 1789

1790 **Theorem 24 (Conditional Stability of Solution Mapping).** *Let $\mathbf{x} \in H^{\text{MILP}}$ with optimal solution
 1791 $x^* \in \mathbb{Z}^n$. Suppose x^* is the unique optimal solution and satisfies a strong optimality gap condition:
 1792 for all $x \in \text{Feas}(\mathbf{x}) \cap \mathbb{Z}^n$ with $x \neq x^*$,*

$$1793 \quad 1794 \quad \langle c, x \rangle > \langle c, x^* \rangle + \gamma,$$

1795 for some $\gamma > 0$. Then there exists $\delta > 0$ such that for any perturbation $\mathbf{x}' = \mathbf{x} + \epsilon$ with $\|\epsilon\|_2 \leq \delta$:

$$1796 \quad 1797 \quad \Phi_{\text{solu}}(\mathbf{x}') = x^*.$$

1798 That is, the optimal solution remains unchanged.
 1799

1800 *Proof.* For the perturbed instance with objective $c' = c + \Delta c$ where $\|\Delta c\|_2 \leq \delta$:

1801 For any $x \in \text{Feas}(\mathbf{x}') \cap \mathbb{Z}^n$ with $x \neq x^*$:

$$1802 \quad \begin{aligned} \langle c', x \rangle - \langle c', x^* \rangle &= \langle c + \Delta c, x \rangle - \langle c + \Delta c, x^* \rangle \\ &= (\langle c, x \rangle - \langle c, x^* \rangle) + \langle \Delta c, x - x^* \rangle \\ &\geq \gamma - \|\Delta c\|_2 \|x - x^*\|_2 \\ &\geq \gamma - \delta \cdot D, \end{aligned}$$

1803 where $D = \max_{x \neq x^*} \|x - x^*\|_2$ over the finite integer feasible set. If $\delta < \frac{\gamma}{D}$, then $\langle c', x \rangle > \langle c', x^* \rangle$
 1804 for all $x \neq x^*$, ensuring x^* remains optimal for \mathbf{x}' . \square
 1805

1811 I DETAILS OF THE TIME-COMPLEXITY OF MILPNET

1812 Excluding the linear transformation, the time complexity for multi-scale operations across all
 1813 windows is $O\left(\sum_{k=1}^N h \cdot \eta_k^2\right)$. The global attention mechanism employs a global multi-head
 1814 self-attention mechanism over the entire sequence, resulting in a final time complexity of
 1815 $O\left(\sum_{k=1}^N h \eta_k^2 d + h(m+4)^2 d\right)$ for the hybrid attention. Given that the maximum window size
 1816 satisfies $w_{\max} \leq m+4$, it follows that $\sum_{k=1}^N \eta_k^2 \leq N \cdot (m+4)^2$. Therefore, the time complexity
 1817 can be further simplified to $O(h \cdot (m+4)^2 d (N+1))$, where d represents the linear embedding
 1818 size and h denotes the number of attention heads.
 1819

1822 J SPARSE VARIANT

1823 To mitigate the quadratic overhead of global attention, we evaluated a multi-scale sliding sparse
 1824 attention (with sliding mask) to replace the global attention, and discovered that it can achieve faster
 1825 inference while maintaining comparable performance. As the sparse sliding attention uses sparse
 1826 masks to restrict each position’s attention only to specific locations beyond the step interval s , the
 1827 time complexity of the stride attention is:
 1828

$$1829 \quad 1830 \quad \mathcal{T}_{\text{stride}} = \mathcal{O}\left(\frac{h(m+4)^2 d}{s}\right) \quad (23)$$

1832 Thus, the time complexity of multi-scale sliding sparse attention becomes:
 1833

$$1834 \quad \mathcal{T}_{\text{sparse}} = \mathcal{O}(knwdh) + \mathcal{O}(n^2 dh/s) \quad (24)$$

$$1835 \quad = \mathcal{O}(dh(k(m+4)w + (m+4)^2/s)) \quad (25)$$

1836

Table 14: Experimental results on FOLD(200,20) with 1-hour pre-training and a stride of 2

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

	Fold(200,20)		
	Error	Inference Time	MSE
GCN	5000	0.228	0.268
MILPnet(Sparse)	763	0.033	0.091
MILPnet(ours)	191	0.117	0.016

We can calculate the speed-up ratio against our original design as:

$$\text{Speedup} = \frac{Nw^2 + n^2}{Nw^2 + n^2/s} \quad (26)$$

In practice, $n^2 \gg Nw^2$ (sequence length is much larger than window size), so the speed-up of the time-complexity is finally as:

$$\text{Speedup} \approx \frac{n^2}{n^2/s} = \boxed{s}$$

This signifies that the model's scalability with engineering optimizations.

K DETAILS OF THE EXPERIMENTS

K.1 DETAILED EXPERIMENT SETTINGS

Baselines. As methods using variant GNNs for MILP representation are still limited, we adapted several representative graph algorithms to serve as baselines. To validate the advantages of our sequence-based algorithm, we compare our model against multiple graph-based representation methods that model MILPs as bipartite graphs. The GNN-based networks include GCN (Chen et al., 2023b), GIN (Xu et al., 2019), and SAGE (Wu et al., 2021). The attention-based graph networks include PGN (Cappart et al., 2022) and GraphGPS (Wang et al., 2023b). We also include the random feature graph modeling method proposed in (Chen et al., 2023b), which is specifically designed to alleviate the feasibility prediction problem on Foldable instances.

Metrics. We established several evaluation metrics for the experimental settings of the various feature mappings discussed in the context of Mixed-Integer Linear Programming (MILP). (1) **Approximation Error:** For all feature mappings, we assessed the average approximation error, defined as the mean of prediction errors across all instances. (2) **Feasibility Error Number:** Specifically for feasibility mappings, we designed metrics to measure the error prediction rate and the number of prediction errors. (3) **Model Params:** We evaluated the size of the model parameters to assess the impact of different feature mappings on the model's complexity.

Implementation. The MILPnet module is implemented using PyTorch. Our experiments were conducted on a single NVIDIA 4090Ti GPU (24GB) and a 12th Gen Intel(R) Core(TM) i5-12600KF 3.69GHz CPU.

K.2 DETAILS OF GENERATING FOLDABLE MILP INSTANCES

We follow the foldable dataset generation method in (Chen et al., 2023a), and set the $c_1 = \dots = c_n = 0$ foldable instances as D1, the $c_1 = \dots = c_n = 0.01$ foldable instances as D2. We use D1 and D2 as our experimental datasets. It is worth mentioning that in the representation and generalization experiments on foldable instances, our training set contains 10,000 foldable instances, while the test set also includes 10,000 foldable instances, with each set containing 5,000 feasible instances. It is worth mentioning that Chen et al.'s dataset construction was only performed on FOLD(20,6), whereas we have extended it to dataset constructions on sizes FOLD(m,n).

Variable Generation: The lower and upper bounds for each variable x_j are generated from a normal distribution. If the lower bound is greater than the upper bound, they are swapped. Some variables are specified as integer variables (i.e., $x_j \in \{0, 1\}$), while others are continuous variables.

1890 **Feasible and Infeasible Problem Constraint Setup:** For the feasible problem ($k1$), the constraints
 1891 are set as follows:
 1892

$$x_{j_1} + x_{j_2} = 1, \quad x_{j_2} + x_{j_3} = 1, \quad \dots, \quad x_{j_n} + x_{j_1} = 1$$

1893 These constraints connect binary variables with equality, forming a cyclic structure that guarantees
 1894 the problem is feasible; For the infeasible problem ($k2$), the constraints are slightly adjusted to make
 1895 the problem infeasible. For example:
 1896

$$x_{j_1} + x_{j_2} = 1, \quad x_{j_2} + x_{j_3} = 1, \quad x_{j_3} + x_{j_1} = 1$$

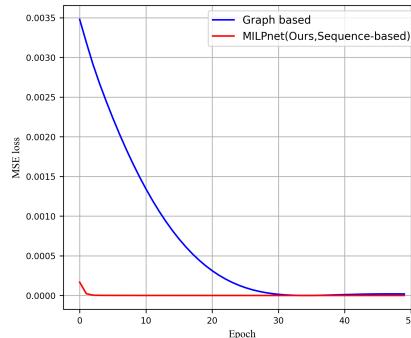
1897 This setup results in an infeasible problem.
 1898

1901 K.3 DETAILS OF THE REPRESENTATION EXPERIMENTS

1903 In the representation experiments of our MILPnet on Foldable instances, the MILPnet consists of
 1904 1 layer. The embedding dimension is 216 or 256. The learning rate is set to 0.0001, the seeds are
 1905 chosen from 42 or 0. The graph-based methods share the same set of experimental seeds as MILPnet.
 1906 And our feasibility dataset consists of 50% feasible instances and 50% infeasible instances, while
 1907 other datasets are obtained by removing infeasible samples.
 1908

1909 K.4 DETAILS OF THE GENERALIZATION EXPERIMENTS

1911 In the generalization experiments of our MILPnet on Foldable instances, the network parameters
 1912 pre-trained on the training set are the same as those used in the representation experiments. For
 1913 the feasibility generalization experiments, we limited the pre-training time, setting it to 3 minutes
 1914 and 5 minutes on FOLD20, 10 minutes and 30 minutes on FOLD50, and 1 hours on FOLD100 to
 1915 FOLD500. We then compared the performance of our model with other baselines under different
 1916 pre-training time constraints. For the optimal solution and objective optimal value generalization
 1917 experiments, we set the pre-training time of FOLD20 to 10 minutes and FOLD50 to 60 minutes. For
 1918 our MILPnet generalization experiments, we chose our dropout rate from $\{0.3, 0.5\}$, the max window
 1919 size is chosen from $\{2, 3, 4, 5\}$, and the number of the MILPnet block is 1.
 1920



1933 Figure 15: Representation experiments on the optimal objective value for FOLD20. MILPnet
 1934 approximates the optimal value mapping of Foldable MILP instances with smaller errors than graph-
 1935 based method.
 1936

1937 K.5 FOUR COMMON REAL-WORLD MILP SOLVING BENCHMARKS

1938 This section introduces the details of constructing specific MILP instances. In particular, for the SC,
 1939 CA, and FC problems, we follow the instance construction method described in Learn2Branch (Gasse
 1940 et al., 2019), and the numbers of variables and constraints are shown in the table below. Meanwhile,
 1941 for the SC problem, the density is set to 0.05; and for the FC problem, the ratio is also set to 5.
 1942

Table 15: Number of variables and constraints for real-world benchmarks

Dataset	Variables	Constraints
IP	1,083	195
SC	200	40
CA	300	40
FC	200	60

L ADDITIONAL UNFOLDABLE EXPERIMENTS.

Although this paper primarily conducts experiments on foldable MILP instances, we also perform representation experiments on unfoldable instances. Similarly, we compare our method with graph-based networks. In this part, the max window size is chosen as 2, and the MILPnet embedding size is chosen as 32, the graph-based methods (We select GCN) embedding size is 8.

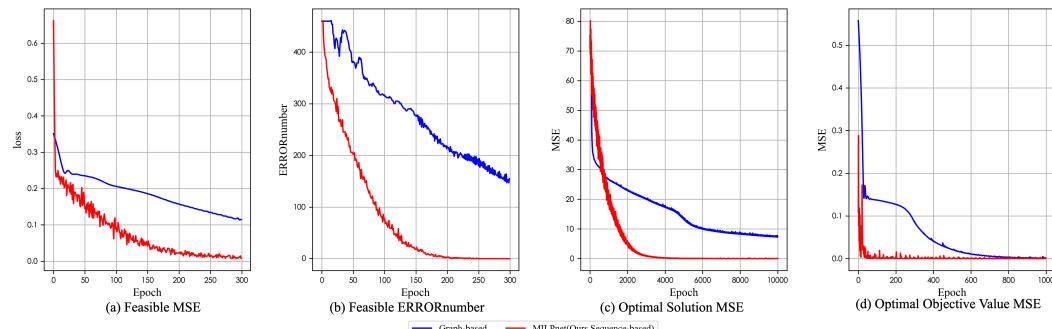


Figure 16: In the representation experiments on unfold20, MILPnet still outperforms graph-based methods with a smaller approximation error. Additionally, it maintains a smaller parameter size while achieving an estimation error lower than that of the graph-based method.