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ABSTRACT

We propose MILPnet, a multi-scale hybrid attention framework that models Mixed
Integer Linear Programming (MILP) problems as geometric sequences rather than
graphs. This approach directly addresses the challenge of Foldable MILP instances,
a class of problems that graph-based models, specifically Graph Neural Networks
(GNNgs), fail to distinguish due to expressiveness limits imposed by the Weisfeiler-
Lehman test. By representing MILPs through sequences of constraint and objective
features, MILPnet captures both local and global geometric structure using a theo-
retically grounded multi-scale attention mechanism. We theoretically prove that
MILPnet can approximate feasibility, optimal objective value, and optimal solution
mappings over a measurable topological space with arbitrarily small error. Empiri-
cally, MILPnet outperforms graph-based methods by multiple orders of magnitude
in feasibility prediction accuracy and convergence speed on Foldable MILPs, while
using significantly fewer parameters. It also generalizes effectively across prob-
lem scales and demonstrates strong performance on real-world MILP benchmarks
when integrated into an end-to-end solver pipeline. Our code is available with the
https://anonymous.4open.science/r/MILPnet-2BD1/.

1 INTRODUCTION

Mixed-integer linear programming (MILP) is a foundational combinatorial optimization problem
characterized by a linear objective function and linear constraints, with decision variables that can
be either continuous or discrete. This flexibility makes MILP highly expressive and applicable in
diverse real-world domains, such as transportation systems (Goldman & Trevisan, 2023; |Wang et al.,
2023a), route optimization (Mammeri, |2019} |Chen et al., |2023a)), and power system planning (Zhang
et al., [2020; |Chen et al.| [2024).

However, as a well-known NP-hard problem, solving MILP remains a significant challenge. Tra-
ditional methods, such as Branch-and-Bound (Land & Doig}, |1960) and Cutting Planes (Gomoryl,
1958)), are commonly employed but become impractical for large-scale instances due to their intensive
resource requirements.

Recently, Machine Learning methods have emerged as a promising alternative. ML models can
approximate solutions efficiently by leveraging the implicit structure and patterns within MILP
problems and integrating them with reinforcement learning or MILP Exact solvers. These approaches
can significantly reduce computational costs while delivering effective solutions within practical
timeframes (Bengio et al., [2018} tian Wu & min Yang| 2022; Wang et al.,|2023a;2024). Generative
models, including diffusion models, have also been explored for solving structured MILP variants,
such as the Traveling Salesman Problem (TSP) and the Maximum Independent Set Problem (MIS)
(Sun & Yang| |2023}; [Sanokowski et al., 2024; Ma et al., [2024), showing strong performance and
generalization.

A recent trend has been to solve MILPs using Graph Neural Networks (GNNs), treating MILP
instances as bipartite graphs that link variables and constraints (Han et al., 2023 |Ye et al.| 2023}
Paulus & Krausel 2023a; |Geng et al.| [2024). However, Bipartite graphs and GNNs can capture
relationships between constraints and variables, missing the interactions between the constraints
themselves, which potentially contain crucial features, such as feasible regions or optimal solutions of
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the MILP. Thus, GNN-based solutions suffer from a fundamental limitation: they cannot distinguish
between non-isomorphic MILP instances that differ in feasibility, due to the expressive bounds of
the Weisfeiler-Lehman (WL) test. As shown in recent work (Chen et al., [2023b)), this leads to failure
cases known as Foldable MILPs, where multiple distinct MILP instances are indistinguishable to
GNNGs but differ critically in their feasible regions.

Although, recent research (Chen et al., 2023b) par-
tially addresses this by injecting random features into Overall Performance Comparison
graph structures. However, they only bypass WL-test
limitations without capturing fundamental character-

istics of MILP instances themselves. Current graph-  ""jren
based models remain inadequate for robust feasibility
prediction and high-fidelity representation of general
MILP problems, especially Foldable MILPs.
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To overcome these limitations, we propose a novel
representation framework that departs from the graph
paradigm and instead adopts a computational geome-
try perspective. Considering the geometric and topo-
logical uniqueness of MILP problems (Huchette & p
Vielmal, 2019 [Conforti et al., 2010), we encode each Time

MILP instance by extracting spatial geometric fea-

ture vectors, including hyperplane vectors from linear  Figure 1: Overall performance comparison
constraints, discrete integer point features, and direc- between MILPnet and graph-based models.
tion vector from the linear objective function, and Larger area indicates better performance.
assemble these into a sequence. To the best of our

knowledge, this is the first work to represent MILPs

as sequences.
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Given the complexity of MILP problems, we propose a Multi-Scale Hybrid Attention mechanism
that enables our model, MILPnet, to learn both local and global features from the MILP sequence.
Furthermore, we mathematically prove that our model can effectively approximate the feature
mappings of any MILP instance with arbitrarily small error.

We validated our approach on Foldable MILP instances, which are specifically challenging for GNN-
and Graph-based models. Across feasibility, optimal solution, and optimal object value predictions,
MILPnet achieves improvements of multiple orders of magnitude in accuracy and convergence speed,
while using significantly fewer parameters and pre-training time. As summarized in Figure[T| MILPnet
consistently outperforms baseline models across five key dimensions: generalization, accuracy, model
size, inference time, and GPU memory usage. These results highlight the effectiveness of our
geometric modeling and its broad potential.

2 RELATED WORK

MILP is a classic NP-hard problem. Traditional methods, such as branch-and-bound (Gomory, |1958)
and cut-plane methods (Land & Doig| |1960), typically solve MILPs by simplifying or relaxing the
problem. However, these methods can incur exponential time complexity in the worst case, limiting
their scalability for large or real-time applications.

To address these challenges, machine learning methods have been applied to accelerate the MILP
solving process. Specifically, most methods model MILP instances with GNNs, framing them as
weighted bipartite graphs (Gupta et al.| 2020). These graphs typically consist of two disjoint sets
of nodes: variables and constraints. Message-passing mechanisms within GNNs are then used to
capture their structural relationships. Notable ML-based methods include diffusion-model-based
MILP solvers (Sun & Yang, 2023} |Yu et al., [2024; |[Sanokowski et al., 2024])), predict and search
frameworks (Han et al., 2023; [Huang et al., 2023)), hybrid approaches that combine GNNs with
reinforcement learning or traditional solving techniques (Wang et al.,[2023a)), and heuristic algorithms
(He et al.,[2014; |Gasse et al., 2019; (Chmuiela et al., 2021} |Paulus & Krausel [2023a)).

Formally, a bipartite graph is denoted as G = (V U W, E'), where V' and W represent the variable
and constraint nodes, respectively. The set G,, ,, includes all such graphs with |V| = m and
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|W| = n, while the complete graph representation with node features for an MILP is given by
(G,H) € G x HY x HYV.

While these graph-based models are effective in capturing variable-constraint relationships, they
inherently miss higher-order interactions, particularly between constraints themselves, which may
encode crucial information about feasibility or optimality. Therefore, for a class of MILP instances
known as Foldable MILPs (Theorem 2.1), GNN-based models cannot represent their feasibility as
the underlying WL-test cannot distinguish non-isomorphic graphs. Conversely, MILP instances that
are not Foldable MILPs are Unfoldable MILPs.

Theorem 1. (Lemma 3.2. in (Chen et al.||2023b)) There exist two MILP problems (G, H) and
(G, H), with one being feasible and the other one being infeasible, such that (G, H) ~ (G, H).

This finding underscores a critical gap: graph-based models, regardless of feature augmentation,
fundamentally cannot resolve the feasibility of Foldable MILP instances. It signifies the need for
alternative representations beyond graph-based modeling to enhance the feasibility prediction for
complex MILP problems.
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Figure 2: Overview of MILPnet. (a) An MILP instance is transformed into a sequence of geometric
feature tokens, including constraint hyperplanes, variable bounds, integer indicators, and the objective
vector. (b) The sequence is processed by a multi-scale hybrid attention architecture, enabling accurate
approximation of feasibility, optimal objective value, and solution mappings.

3 PRELIMINARIES

MILP formulation. MILP is an NP-hard optimization problem characterized by a linear objective
function and a set of linear constraints, with a subset of variables restricted to integer values. The
standard formulation is:

m%{nch st. Azob, I<z<u, z;€ZVjel (1)
zeR™ :

whereA € R™*™, b € R™, and ¢ € R™ are the problem parameters, ,u € (R U {£o0})™ specifies
the variable bounds, o € {<, =, >}" denotes the constraint types, and I C {1,...,n} indexes the
variables that are required to be integer.

Feasibility. From a geometric perspective, define the continuous feasible region as a polyhedron
P={zeR"| Az ob, | <z < u} and the integer lattice as Z} = {x € R" | z; € Z, Vj € I}.
The MILP feasible set is their intersection S = PNZ7, i.e. all points that satisfy the linear constraints
and bounds while taking integer values in the specified dimensions. If S = (), the MILP is infeasible.

Optimal solution and optimal objective value. A point * € S is called an optimal solution if it
minimizes the objective function over all feasible points: ¢ z* < ¢"z,Va € S. The corresponding
scalar ¢ 2* is the optimal objective value. If the objective can be decreased arbitrarily, i.e., for any
€ > 0, there exists & € S such that ¢" & < —e, the MILP is unbounded and the optimal value is —oo.
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4 SEQUENCE MODELING FOR MILP: MILP-SEQUENCE

This section introduces the first component of MILPnet (Figure [2] (a)), which encodes an MILP
instance into a sequence representation from a geometric perspective. The MILP instance is decom-
posed into multiple components, each modeled in a well-defined topological space, forming what we
refer to as the MILP-sequence.

4.1 GEOMETRIC MODELING OF MILP

We first reformulate the MILP problem from a geometric perspective. The MILP space consists of
high-dimensional hyperplanes or half-spaces (from linear constraints and variable bounds), discrete
point sets (from integrality requirements), and a direction vector (from the objective function).
Together, these are represented as Peonstraint U Prange U I U ¢. Each of these components is defined
within a topological space as follows:

Linear constraints. The linear constraints are represented as the union of hyperplanes: Peonstraine =
Ui, Hi, where H; is the i-th hyperplane or half-space defined by the vector hl,,, = (n;,d;, b;),

where n; € R™ is the normal vector of H;, d; € {—1,0, 1} denotes its directional type, and b; € R is
the bias term. h; is chosen from the topological space H*" = (R™) x {—1,0,1} x R.

Variable bounds. The bounds on variables define upper and lower half-spaces: Prpee =
(U;‘L:1 Hupper,j> U (U;'L:1 Hlowenj)’ whereHypper,j = {2 € R" | z; < u;} and Hioyer; = {7 €
R™ | x; > I;}. We encode the bounds as vectors h’ = (I1,1a,...,1,) and h® = (uy,ua, ..., uy,),
drawn from the topological spaces L = H;;l L;CcR"and U = H?zl U; C R™, respectively, each

equipped with the standard Euclidean topology. [] denotes the Cartesian product. The combined
vector £ U U belongs to the space HY* = R?",

Integer set. The integrality constraints are encoded using a binary vector: h? = (i1, 42,43, ...,i,) €
{0,1}", where 5, = 1 if ay, is constrained to be an integer, and i;, = 0 otherwise. This vector resides
in the discrete topological space I = {0,1}".

Linear optimization direction. The objective function is represented by a coefficient vector h°¢ =
(c1,¢a,...,¢,) € R™, drawn from the topological space H° = R™.

It is worth noting that, although the MILP feasible region is mathematically defined by intersections,
we use unions in our geometric reformulation to denote the collection of individual components
(e.g., constraint hyperplanes and bounds) treated as sequence tokens. This formulation expands
the representational space, enabling MILPnet to more effectively explore the solution structure and
approximate optimal outcomes.

4.2 MEASURES OF THE MILP GEOMETRIC SPACES

To unify component representations and manage dimensionality differences, we apply zero-padding,
yielding two related topological spaces HM (original) and HM"™? (padded). The padded compo-

nent spaces include H", H Var' frobi’ T’ As shown in Theorem [|in Appendix, the spaces padded
and non-padded are homeomorphic, ensuring no representation loss.

Measures. We equip each continuous space (R™,R?”,R) with Borel o-algebra and Lebesgue
measure, and each discrete component ({—1,0, 1}, {0}, {0, 1}™) with the counting measure. By
product construction, the component measures are figeons = Agrn X f{_1,01} X AR> flgvar =

ARzn X N?o}’ Hpgobit = ARn X U%o}’ [ = pfo,1e X /‘%0}‘ The overall padded topological space is

HMILP — ((eonsym ( V'Y s ' % HOY' | which is measurable by construction.

4.3 GEOMETRIC FEATURE INTEGRATION

We now integrate the MILP geometric feature vectors into a sequence-based representation, treating
each feature vector as a token.

MILP-sequence. Since the linear constraints h’ integer point sets k', and variable ranges h

cons’

and h®" are permutation invariant (as formalized in Theorems EI and[7|in Appendix), we can arrange
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them in any order. To preserve this invariance and recognize the term objective function’s unique
role, we place the objective token h¢ at the end of the sequence. Thus, the MILP-sequence is:

x = [hL, ., B2 re P RY RS RS, he RMT? 2)

cons? cons? * * * 2 "rcons?

The topological space corresponding to the MILP-sequence is defined as HMP ¢ R(m+4)(n+2),

Sequence-based mappings. With this representation, we define the core mappings used to analyze

MILP instances: Feasibility mapping ®r.,; : HMF — {0, 1} , Optimal objective value mapping

Dopi : HMIP — R U {00, —00}, and Optimal solution mapping @y, : HMILP A -1 (1) — R

feas

These mappings are formally defined in Definitions [§ to [I(]in the Appendix. We prove their
measurability in Appendix [G]

5 MULTI-SCALE HYBRID ATTENTION FOR MILP-SEQUENCE

This section introduces the second core component of MILPnet (Figure E] (b)): a novel Multi-Scale
Hybrid Attention mechanism specifically designed to model MILP sequences. This architecture
enables the network to capture both fine-grained local structure and global context by combining
multiple levels of attention. It operates directly on the MILP-sequence defined in the previous section
and is supported by a rigorous approximation theory over the measurable space HMIP,

5.1 SHIFTED-WINDOW MULTI-SCALE ATTENTION

The geometric structure of MILPs suggests that relationships among constraints can reflect topological
characteristics of the feasible region. To leverage this structure, we employ multi-scale local attention
via sliding windows that extract features from various neighborhoods in the MILP-sequence.

Shifted-Window Local Attention. Given an embedded MILP-sequence Xempeq € R4 % (n42)
derived through linear projection, we define local attention windows that slide across the sequence.
For each token at position i € {1,..., m+4}, a window of size 7, is centered at i, covering elements
from position iy, = max(i — ["’Cglj ,1) to position ip, = min(i 4 ["’“;W —1,m+4). To
effectively capture the relationship between multi-level features and the MILP’s overall goal, this
window also needs to incorporate the embedding of the objective function feature he at position
m + 4. Therefore, the position indices 7 (¢) for the window attention at position ¢ with the window
size 1y, are defined as:

ﬂk(l) = {] S [imina Z.max]} U {m + 4} (3)
Then, the local attention at position ¢ for scale 7, is computed as:
Q" = WoXembed,i, KJ* = WxXembed,j, V" = Wy Xembeda,j, J € (i) 4)
Q" - (KI)' , ,
ayj’? = softmax (\/(Tk] . jem(), At = Z a;’Jf“V;.”“ )
JE€mK(3)

where Wq, Wx, Wy, are the linear transformation matrices for Query, Key, and Value, and dj, is
the dimension of the key vectors, which is split from the embedding size d;,,, by the multi-heads.
softmax function is used to normalize the Attention weights.

Multi-Scale MILP-sequence Attention. To aggregate information at different granularities, we
apply local attention using N window sizes. The resulting outputs are averaged to produce the
multi-scale representation,which is like the style in the Figure 2] (b).

] m+4d N 1 N m+4
multi __ Me e\
Att™! = = SO At = N D0 | X el ©
i=1 k=1 k=1 i=1 \jenk (i)

where window sizes 1, € [2,m + 4] allow for a comprehensive evaluation of local and global
contextual influences. Let 7max = maxy (1) denote the largest window size.

Hybrid Attention Integration. To capture both multi-scale locality and global context, we define
a hybrid attention mechanism that integrates multi-scale attention with global attention using a
learnable parameter o

Atthybrid - - Attmulti + (1 _ a) . Attglobal (7)
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As illustrated in Figure 2] each MILP instance is first geometrically encoded as a feature vector in
R"*2, and then padded to form an MILP-sequence of length m + 4. This sequence undergoes linear
projection and position encoding to produce the embedded input:z = [z1,2s, ..., Zy12] + Zposition-
With this embedded sequence, MILPnet applies its Hybrid Attention (HYA) mechanism, followed by
residual connections and layer normalization. The computation at the [-th layer proceeds as:

7' = HYA(LN(z'™') + z'71), 2! = MLP(LN(2!) + 2) ®)

where LN denotes layer norm, MLP refers to a position-wise feedforward network. Detailed
information is in Figure [6]from Appendix.

Time Complexity. The computational complexity of the hybrid attention is O (h d (m+4)? (N +1))
where h is the number of attention heads, d is the embedding size, m is the number of the constraints,
and N is the number of windows. Detailed analysis is provided in Appendix [I}

5.2 MILPNET REPRESENTATION ON THE MEASURABLE SPACE HMILP

We now formally demonstrate that the multi-scale hybrid architecture of MILPnet is capable of
approximating the feature mappings of any MILP instance, when represented as a sequence in the
measurable topological space HMILP. We define two function classes: FyukP: HMILP — R for
scalar-valued network mappings, and fﬁ/%kpv : HMILP s R™ for vector-valued network mappings
with fixed output dimension n. By leveraging these mappings and the measurability structure

introduced in Sectiond.2]and [4.3] we can prove that for any MILP instance viewed as a sequence:

MILPnet can uniformly approximate MILP feasibility mapping, MILP optimal-solution mapping,
and MILP optimal objective value mapping.

The following theorems formally establish MILPnet’s approximation capabilities (see Appendix [G]
for detailed proofs and corollary on infinite set):

Theorem 2. Let D C HMP pe q finite dataset. For any € > 0, there exists a neural network
Fyya € FHEPr such that:

P (HFHYA(JC)>% 7é (I)feas(l')> <€, Yz € D, )

Theorem 3. Let D C H''P pe a finite dataset. For any €,6 > 0, there exist two neural networks

Fuya 1, Fuya 2 € FMEP! such that for classifying whether the objective value is finite:

P (L (54 # Lauwen) <€, Vo €D (10)

where 1, (»)er is an indicator function that determines whether the objective value is finite. And for
the regression problem of predicting the objective value:

P (|Fuya2(x) — @opi(x)| > 6) <, Vze DN&,(R) (11)

Theorem 4. Let D C <I>;bjl. (R) C HMIL? pe a finite dataset. For any €, > 0, there exists a Hybrid
attention based network Fyya v € FikEnet such that:

P(HFHYA,V($> — q>solu<x)|| > 5) <€, Vo € D, (12)

To train any MILPnet Iy, to approximate these mappings, we minimize the error between MILPnet
and the feature mapping as the loss function £(¢) = E|||ly — F(x)||2], where y is ground truth.

6 EXPERIMENT

We conducted comprehensive experiments to evaluate the effectiveness, efficiency, and generalizabil-
ity of MILPnet to answer:RQ1: How effectively does MILPnet represent and generalize on Foldable
MILP instances? RQ2: How does MILPnet perform on real-world MILP instances? RQ3: How do
MILPnet’s architectural components impact performance?
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Table 1: Generalization results for feasibility mapping on FOLD(20,*) and FOLD(50,*), with 10,000
foldable instances per setting and pre-training times of 3 and 10 minutes. Full results are provided in

Appendix [B.5]

Method Type FOLD(20,6) FOLD(20,16) FOLD(50,20) FOLD(50,30)
MSE  ErrorN Params |MSE  ErrorN Params | MSE  ErrorN Params | MSE  ErrorN Params
SCIP Exact — 0 — 0 — 0 — 0
GCN Graph 0.3073 5000 1.21M [0.3073 5000 1.2IM |0.3073 5000 1.21M |0.3073 5000 1.2IM
GIN Graph 0.4200 5000 1.63M |0.4209 5000 1.63M |0.4200 5000 1.63M |0.4204 5000 1.63M
SAGE Graph 0.4642 5000 0.66M |0.4999 5000 0.66M |0.4714 5000 0.66M |0.4586 5000 0.66M
PGN Graph 0.2508 5000 1.64M |0.2523 5000 1.64M |0.2511 5000 1.64M |0.2511 5000 1.64M
GraphGPS | Graph 0.2500 5000 0.66M |0.2500 5000 0.66M |0.2500 5000 0.66M |0.2500 5000  0.66M
GCN'* Rf Graph |0.2498 5000 1.2IM |0.2500 5000 1.21M |0.2476 4334 1.2IM |0.5223 5000 1.21M
GINT Rf Graph |0.2500 5000 1.63M |0.2501 5000 1.63M |0.2500 5000 1.63M |0.4204 5000 1.63M
SAGE" Rf Graph |0.2499 5009 0.66M |0.2499 4995  0.66M |0.2500 4997 0.66M |0.2500 5002  0.66M
PGN™ Rf Graph |0.2582 5000 1.64M |0.2560 5000 1.64M |0.2502 5000 1.64M |0.2502 5000 1.64M
GraphGPS™ | Rf Graph |0.2510 5000 0.66M |0.2510 5000 0.66M |0.2500 5000 0.66M |0.2502 5000 0.66M
MILPnet Ours (Seq) | 0.0005 0 0.56M |0.0004 0 0.56M | 0.0005 0 0.60M | 0.0023 12 0.60M
—— RF Graph-based —— Graph-based —— MILPnet(Ours,Sequence-based)
+~ 4000 4000 4000 - 4000 -
k) 5 I3 5
k) ) E-)
< 2000 £ 2000 & 2000 £ 2000
5 3] 5 53]
0 01 0 01
(I) 20‘00 40‘00 6 2000 40b0 0 2060 4000 6 2000 4060
Epoch Epoch Epoch Epoch
(a) FOLD(20,6) (b) FOLD(20,16) (¢) FOLD(50,20) (d) FOLD(50,30)

Figure 3: Representation Dynamics on feasibility for FOLD20 and FOLDS50. Full results are in
Figure[9]in Appendix.

6.1 EXPERIMENT SETUP

Datasets. We evaluate MILPnet on two categories of datasets: (1) Synthetic Foldable MILP Instances
(FOLD(n,m)): Following (Chen et al.,|2023b), we generate Foldable MILP instances where n and m
are the number of variables and constraints, respectively. (2) Real-World MILP Benchmarks: We se-
lect four common MILP benchmarks: IP (Item Placement) from ML4CO competition dataset (Gasse
et al.,[2022), SC (Set Covering) (Feigel 1998} |Chvatal, [1979), CA (Capacitated Assignment) (Bandya-
padhyay et al.,[2017), and FC (Facility Location) (Charikar et al.,|[1999). They are all Unfoldable
MILP instances. More details on the datasets are provided in Appendix [K.3]and Appendix

Baselines. We compare MILPnet against several representative graph-based learning models, in-
cluding GCN (Chen et al.| [2023b),GIN (Xu et al., [2019),SAGE (Wu et al., 2021),PGN (Cappart;
et al., [2022)),GraphGPS (Wang et al.||2023b). Each baseline has an augmented variation with random
features (RF), indicated by a superscript *, specifically designed to overcome WL-test limitations in
feasibility prediction. Appendix [K.I|provides more details on the baselines.

Metrics. We use MSE (Mean Squared Error) and ErrorN (number of incorrect predictions)(Chen
et al.,[2023b), Params (number of model parameters) to evaluate performance. Lower is better.

6.2 PERFORMANCE ON FOLDABLE MILP INSTANCES

Representation Effectiveness. We evaluate MILPnet on Foldable MILP instances with increasing
complexity: FOLD(20,6), FOLD(20,16), FOLD(50,20), and FOLD(50,30). FigureE]shows that
MILPnet converges rapidly to near-zero ErrorN while standard graph-based models fail to improve
beyond their initial performance. Models with random feature augmentation show moderate improve-
ments on simpler instances but struggle to converge on more complex cases such as FOLD(50,30).
Similar trends are observed in MSE (more details in Appendix [B.4). These results confirm that MILP-



Under review as a conference paper at ICLR 2026

Table 2: Generalization experiments for End-to-  Table 3: Generalization experiments for End-to-
End optimal solution predict 1-hour of pre-train.  End optimal objective value prediction

Method Type FOLD(20,6) FOLD(20,16) Method Type FOLD(20,6) FOLD(20,16)
MSE Params | MSE Params MSE Params | MSE Params
GCN Graph 0.0751 1.17M [0.2000 1.17M GCN Graph 1.776e-10 0.88M |[3.928¢-10 0.58M
GIN Graph 0.0753 1.59M |0.2000 1.59M GIN Graph 6.489%-10 0.12M |6.489¢-10 0.16M
SAGE Graph 0.0750 0.60M | 0.2000 0.60M SAGE Graph 2.235¢-9 0.66M |6.742e-10 0.60M
PGN Graph 70.1485 1.64M |20.5955 1.64M PGN Graph 1.958e-10 2.91M |5.4934e-10 2.91M
GraphGPS Graph 0.0863 0.60M |4.0395 0.60M GraphGPS Graph 3.769e-6  0.92M | 1.365¢-05 0.92M
MILPnet(Ours) Sequence | 0.0473 0.56M |0.1964 0.56M MILPnet(Ours) Sequence | 1.309e-10 0.56M | 2.828e-10  0.56M
Method Type FOLD(50,20) | FOLD(50,30) Method Type FOLD(50,20) FOLD(50,30)
MSE Params | MSE Params MSE Params | MSE Params
GCN Graph 0.1000 1.17M [0.1509 1.17M GCN Graph 3.333e-10 0.96M |5.8012e-10 0.96M
GIN Graph 0.1000 1.59M |0.1501 1.59M GIN Graph 2.629e-10 1.30M |3.458e-10 1.47M
SAGE Graph 0.1000 0.86M |0.1500 0.86M SAGE Graph 1.219e-8  0.66M |7.555¢-9  0.92M
PGN Graph 55.8530 1.64M |36.5160 1.64M PGN Graph 3.935e-10 2.91M |3.762¢-9  2.30M
GraphGPS Graph 0.1020 0.67M |0.1551 0.67M GraphGPS Graph 2.531e-7 0.92M |3.442¢-6  0.92M
MILPnet(Ours) Sequence |0.1158 0.62M |0.1654 0.63M MILPnet(Ours) Sequence | 9.458e-12 0.60M | 3.007¢-10  0.60M

Table 4: Generalization results for feasibility prediction on larger Foldable instances FOLD(200,20),
FOLD(300,40), and FOLD(500,60), each with 10,000 instances and 1 hour of pre-training.

Method Type FOLD(200,20) FOLD(300,40) FOLD(500,60)
MSE  ErrorN Params | MSE  ErrorN Params | MSE  ErrorN Params
SCIP Exact — 0 — |— 0 —— [—— 0 J—
GCN Graph 0.2676 5000  0.03M [0.3073 5000 0.08M |0.2500 4999  0.14M
GIN Graph 0.2573 5000 0.04M |0.3099 5000 0.10M |0.2500 5000 0.21M
SAGE Graph 0.2814 5000 0.03M |0.3951 5000 0.05M |0.2500 5000 0.12M
PGN Graph 0.2508 5000 0.08M |0.2523 5000 0.14M |0.2523 5000 0.29M
GraphGPS | Graph 0.2500 5000 0.03M |0.2500 5000 0.59M |0.2501 5000 0.92M
GCN' Rf Graph |0.2497 4835 0.03M |0.2500 5000 0.80M |0.2611 4999  0.14M
GIN' Rf Graph |0.2500 4998  0.04M |0.2500 5012 0.10M |0.2501 5003 0.21M
SAGET Rf Graph |0.2500 5011 0.03M |0.2500 4998 0.05M |0.2500 4981 0.12M
PGN™ Rf Graph |0.2544 5000 0.08M |0.2500 5000 0.14M |0.2506 5000 0.29M
GrathPSrf Rf Graph |0.2502 5000 0.03M |0.2510 5000 0.05M |0.2506 5000 0.92M
MILPnet Seq (Ours) | 0.0155 191 0.02M | 0.0521 560 0.04M |0.1832 2453 0.11M

net effectively captures the geometric and combinatorial structure of MILPs, providing empirical
support for the theoretical guarantees in Theorems

—crs mmocor mmon mmoror mm s mmommeon G€NEralization Abilities. We evaluate MILPnet on both
azs small (FOLD(20,*), FOLD(50,*)) and large (FOLD(200,20),
FoLD(300,40), and FOLD(500,60)) Foldable MILP in-
stances under equal pre-training time, focusing on three
Forb20 FoLbso End-to-End prediction tasks: feasibility, optimal solution,

| . and optimal objective value. In feasibility prediction (Ta-
l I bles [T] and [)), MILPnet improves MSE by 1-3 orders of
oss s o magnitude and reduces ErrorN by 90% or more in most

' T roup 0 cases. For optimal solution and value prediction (Tables 2]

and[3), MILPnet significantly exceeds baselines while using
Figure 4: Inference time comparisons ~substantially fewer parameters.

Efficiency Analysis and Sparse Variant. Figure ] shows
that MILPnet consistently achieves the fastest inference time across both small and large Foldable
MILPs. GPU memory usage (Appendix Figure[I3) remains moderate (< 4GB on FOLD300), making
it suitable for deployment on a wide range of hardware. We also provide a sparse (stride) MILPnet
variant that reduces the time complexity to % of the original, with FOLD200 faster inference results
shown in Table [T4]and details in the AppendixJindicates its potential computational scalability.

Overall Model Comparison. We summarize performance across key metrics, including generaliza-
tion, parameter count, inference time, GPU memory, and ErrorN, using radar charts with performance
ranks(Figures [T] for FOLD50 and Appendix Figure [T4] for FOLD300). In both cases, MILPnet
consistently forms the outermost polygon, indicating superior performance in accuracy, efficiency,
and resource usage compared to graph-based baselines.
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Table 5: Predict + Search performance of MILPnet on four benchmarks. “Rand” denotes randomly
generated initial solutions. “gap” is computed as gap = (§ — y*) / (|y*| + 107%), where y* is the
exact optimal value by SCIP.“PT” means the predicting optimal candidate solution. “ST” is total
solving time including search. Full Comparisons with advanced methods are in Appendix

Method | Type 1P SC CA FC

gap(l) PT(s) (1) ST(s) (1)|gap()) PT(s) (1) ST(s) (1)|gap(l) PT(s) (1) ST(s) (1)|gap(l) PT(s) (1) ST(s) (1)
Rand Random [36.5397 0.1240 [1.7166 2.0173 [2.8057 6.7830 [1.4939 1.7786
GCN Graph 0.0389 0.2443 0.3774 |1.1461 0.2391 0.8386 |0.9890 0.2278  3.2328 |0.4257 0.2518 1.4875
MILPnet|Seq(Ours) |0.0234 0.0625 0.1864 |0.3483 0.0137 0.6915 |0.7651 0.0139 3.2300 |0.3503 0.0177 1.3773

Table 6: Performance impact of MILPnet’s architectural components

(a) Ablation results on the impact of HYA and MSA (b) Impact of Nmax (“/n” means Nmax = n)
Method FOLD(20,6) | FOLD(50,20) | FOLD(100,20) Method FOLD(20,6) | FOLD(50,30) | FOLD(100,20)
MSE  ErrorN | MSE  ErrorN | MSE  ErrorN MSE  ErrorN | MSE  ErrorN | MSE  ErrorN

MILPnet (ours) | 0.0001 0 0.0001 0 0.0074 6 MILPnet /2 { 0.0005 0 0.0477 235 0.0558 318

w/o HYA 0.2503 5036 |0.2501 4999 |0.2501 4987 MILPnet /3 | 0.0006 0O 0.0481 259 0.0471 272

w/o MSA 0.2500 5051 |0.2500 5008 |0.2500 4995 MILPnet /4 | 0.0026 0O 0.0841 764 0.0774 727

6.3 PERFORMANCE ON REAL-WORLD MILP INSTANCES

While our focus is on sequence-based representation, we further demonstrate the utility of MILPnet
in solving real-world MILP problems. We adopt a predict + search approach, where the model is
trained to predict an optimal solution, which is then refined via a lightweight local heuristic. Table 3]
compares MILPnet with graph-based baselines and a random search baseline. MILPnet consistently
achieves the smallest optimality gap to the exact solver, and the lowest overall solving time. These
results demonstrate the model’s strong representation quality and practical solving effectiveness.

6.4 IMPACT OF ARCHITECTURAL COMPONENTS

Ablation Study on Hybrid and Multi-scale Atten-

tion. To evaluate the contribution of MILPnet’s atten- Table 7: Permutation invariance Experiments.
tion design, we compare the removal of the Hybrid “Or *” represents randomly permutated con-
Attention (HYA) and Multi-Scale Attention (MSA) straint order in the MILP-sequence.*Original
components. Table [6a] shows that removing either *”represents the original order.

component significantly degrades feasibility predic-

tion accuracy. In particular, models without MSA Order Method + Arch| FOLD(50,20) | FOLD(50,30)
MSE  ErrorN | MSE  ErrorN

struggle to capture local structure, while disabling -GN Originaly [GNN + Graph [04719 5000 [04719 5000

HYA weakens global context integration. These re- griginal MILPnet+§eq 8-8882 8 8-8852 8
. r 1 MILPnet + Seq | 0. .0021

sults confirm that both components are essential to ., MILPnet + Seq| 0.0001 0 00014 0

MILPnet’s representation effectiveness. Or3 MILPnet + Seq | 0.0004 0 0.0021 9

Ablation study on multi-scale attention blocks We

conduct an ablation study on the depth of the multi-scale attention module by varying the number of
blocks from 1 to 3. The results, which visualize and summarize its representational and generalization
capabilities, are provided in Figure [§]in the Appendix [B]and Table [8] A key finding is that deeper
multi-scale attention modules offer a significant improvement in convergence speed and representation
at no cost to generalization ability.

Impact of the Maximum Window Size As
Table 8: Ablation study on the number of multi- shown in Tables @] (pre-train Smins) and Ap-
scale attention blocks (L). pendix Fig[7] the maximum window size 7 ax
influences the trade-off between convergence

Number of blocks | Method + Arch FOLD(ZO,IG) FOLD(SO,ZO) Speed and representational CapaCIty' Smaller
MSE  ErrorN | MSE  ErrorN . . .

GCN (Original) |GNN + Graph | 0.3070 5000 |0.4719 5000 windows accelerate convergence on simpler in-

L=; MILPnet+§eq 8.(0)88? 8 3‘8883 g stances like FOLD(20,), while large windows

L= MILPnet + Seq | 0. .0001 i

L3 MILPnet + Seq | 0.0004 0 00001 0 slow training and degrade performance on com-

plex cases such as FOLD(100,20). These results
indicate that 7y, requires careful tuning and
does not follow a monotonic pattern.
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Permutation Sensitivity of MILP-sequence. Randomly shuffling the constraint and variable
order in FOLD520 and FOLD50 keeps MILPnet’s MSE within the same magnitude (Table [7][TT]in
Appendix [B) and well below that of other models (typical MSE = 0.x, error &~ 5000). These results
demonstrate that ours MILP-sequence construction preserves invariance under both constraint and
variable permutations.

6.5 MILPNET SOLVING EFFICIENCY ANALYSIS

We analyze the solving efficiency of MILPnet across two
dimensions: (i) Large-scale public MILP benchmarks (with

240 T— T

1000+ variables, details in the Appendix) to evaluate each 25 '\l o
framework component; (ii) Heterogeneous generalization and H ! = A
scalability on four very large real-world benchmarks (with :236 q zoso L=
10000+ variables). To quantify solution quality in details, £l Time ()
we integrate both MILPNet and graph-based baselines as = ';

pre-solving heuristics using Neural Diving &2 Mg
to obtain compact sub-problems within a branch-and- 2305 % w:;““zo
bound framework for (i). Time (seconds)
Impact of Window Size 7),,x and Attention Depth L We eval- 3 -

uate the impact of maximum window size 7,,x and attention

depth L on two large MILP benchmarks. Table[9]and Figure 3] Figure 5: Neural pre solving by
show that performance is relatively insensitive to these hyper- MILPnet for SC(1000,500) for 6
parameters, with consistent improvements (Nodes, Time,Dual ~ Settings.

Gap,Obj) over graph-based methods and Strong Branching

across all configurations.

Table 9: Branch and Bound performance of MILPnet (Neural Diving based pre-solving heuristic:
H.Seq.) on 1000+ variable benchmarks for 50 instances within 60s solving limit.

Method Type SC(1000,500) CA(1000,500)
Obj.({) Node(]) Time () Dual Gap Obj.(1) Node(]) Time (|) Dual Gap
SB Exact 230.5 £28.3 39.0+41.2 19.1 £15.0 0.21+ 1.23(%) | 146.0 £ 26.6 1.0+ 0.0 3.4 £ 1.0 0.00+0.00(%)
Rand Random 235.9 +30.5 40.1 £45.3 20.0 +14.9 021+ 1.23(%) | 146.0 £26.6 1.0 0.0 3.4 + 1.0 0.00+0.00(%)
GIN H. Graph 230.5 +28.3 38.8 +40.0 18.6 & 15.4 0.214+ 1.23(%) | 146.0 +26.6 1.0 £ 0.0 1.8 £ 0.2 0.00+0.00(%)
GraphGPS Graph 230.5+28.3 389 £44.8 17.9 £ 15.1 021+ 1.23(%) | 146.0 £26.6 1.0 £ 0.0 1.8 £ 0.2 0.00+0.00(%)
MILPnet/2 Seq. L=1230.5 £ 28.3 37.7 +39.8 16.5+15.5 0.214+ 1.23(%) | 146.0 +26.6 1.0 +0.0 1.7 £ 0.2 0.00+0.00(%)

H.
H.
MILPnet/2 | H. Seq. L=2|230.5 + 28.3 37.7 +39.8 16.5 + 15.6 0.21+ 1.23(%) | 146.0 +26.6 1.0+ 0.0 1.5+ 0.2 0.00£0.00(%)
MILPnet/2 | H. Seq. L=3 | 230.5 + 28.3 38.5+41.0 16.2 &+ 15.4 0.17+ 1.21(%) | 146.0 +26.6 1.0+ 0.0 1.5+ 0.2 0.00£0.00(%)
MILPnet/2 | H. Seq. L=4|230.5 +28.3 38.3 +£42.0 163 +15.5 0.17+ 1.21(%) | 146.0 £26.6 1.0+ 0.0 1.5+ 0.2 0.00£0.00(%)

H.

MILPnet/3 Seq. L=1]230.5 £28.3 37.7+39.9 165+ 155 0.214+ 1.23(%) | 146.0 £26.6 1.0+ 0.0 1.7 £0.2 0.00+0.00(%)
MILPnet/4 | H. Seq. L=1|230.5 +28.3 37.7 +£39.8 16.5 & 15.5 0.21% 1.23(%) | 146.0 £26.6 1.0+ 0.0 1.7+ 0.2 0.00£0.00(%)

Heterogeneous solving generalization To assess het-
erogeneous generalization capability, we integrate Taple 10: Heterogeneous generalization on

MILPnet as a novel representation framework that yery_jarge benchmarks (Gleixner et al 2021
replaces graph-based representations in advanced ithin 1500s.

ML solvers such as ConPAS. Trained on the SC

dataset, MILPnet is directly transferred to solve Method 30n20b8 ‘ blp-ic98 ‘ bip-ar%8
very large MILP instances from open-source bench- Tme Obj | Time Obj | Time OB

marks (Gleixner et all, 2021). The results, includ- scip 163.96 302.00| 1500.15 4620.13 | 1500.10 6215.35
ing primal bound iterations (Fig@ in AppendiX) ConPAS(GCN) 17586 302.00 1500.00 4817‘66‘1500‘01 6254.08

an d SOlVing efﬁCienCy (Table@) demonstrate that ConPAS(MILPnet) 94.64 302.00 1500.00 4588.51|1500.01 6220.57
MILPnet generalizes stably and scalably across het-

erogeneous, large-scale benchmarks, achieving consistent performance improvements in all tested
cases.Details are in Appendix[C.2]

7 CONCLUSION

We propose MILPnet, a novel multi-scale hybrid framework for representing MILP problems through
sequence modeling, rather than conventional graph methods. We prove that this architecture can
approximate essential MILP mappings for arbitrary instances. Empirical evaluation confirms that
MILPnet outperforms graph-based methods in terms of efficiency and performance, while addressing
the Foldable MILPs where graph-based approaches fail.

10
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REPRODUCIBILITY STATEMENT

Our work is fully reproducible. Source code is available at https://anonymous.4open|
science/r/MILPnet-2BD1 /. All datasets, experiments, and architecture hyperparameters used
in our experiments are documented in the Appendix [K]and Appendix
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A DETAILED ARCHITECTURE FOR MILPNET

Figure |§| illustrates the detailed architecture of MILPnet, which connects a feed-forward network
with the core Multi-scale based Hybrid Attention.

MILP Embeddi
Sequence mbecdings Nx
hlons Position E] -
B2, = Encoding E]
5 : o

. o N '

: 2 : : Multi-Scal =
Wi | ,é RS :
hi S o g
v |E :
B s =
Re

{

MILPnet block

Figure 6: Detailed Architecture of MILPnet.

B FULL RESULTS ON MAXIMUM WINDOW SIZE,ATTENTION BLOCKS,
REPRESENTATION, AND GENERALIZATION

B.1 ABLATION STUDIES ON THE 7naz

We conducted a study on the maximum sliding-window size and visualized the resulting representation
curves in Figure[7]
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MSE loss
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ERRORnumber

00
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(2) FOLD(20,16) ERRORnumber (b) FOLD(20,16) MSE Loss
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RRORnumber
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[
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Epoch Epoch
(c) FOLD(100,20) ERRORnumber (d) FOLD(100,20) MSE Loss

Maxsize=2 —— Maxsize=3 —— Maxsize=5 —— Maxsize=6

Figure 7: Performance of varied max window size of MILPnet on FOLD(20,16) and FOLD(100,20)
for feasibility. We can observe that the maximum sliding window size affects the convergence speed
of the feasibility mapping approximation. The window size does not follow a simple pattern, but
rather requires balancing.
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B.2 ABLATION STUDY ON THE NUMBER OF ATTENTION BLOCKS L

We conduct the ablation study on the number of attention blocks on FOLD(20) and FOLD(50).

Error Rate Comparison (20) Error Rate Comparison (50)
e
— num _block=3

Error Rate
Error Rate

) 500 0 400 800
Iteration Iteration

Figure 8: Performance of varied numbers of multi-scale attention blocks in MILPnet on FOLD(20,16)
and FOLD(50,20) for feasibility with the same embedding size and same window size for blocks
=1,2,3.

B.3 PERMUTATION SENSITIVITY ON VARIABLE ORDERS

Table 11: Experiments on variable permutation invariance. “V-Or *” represents randomly permutated
variable order in the MILP-sequence.“Original *”’represents the original order.

Order Method + Arch | FOLD(20,16) | FOLD(50,20)
MSE  ErrorN|MSE  ErrorN
GCN (Original) | GNN + Graph |0.3070 5000 |0.4719 5000

Original MILPnet + Seq | 0.0003 0 0.0003 0
V-Or 1 MILPnet + Seq | 0.0006 0 0.0001 5
V-Or 2 MILPnet + Seq | 0.0003 0 0.0003 0
V-Or 3 MILPnet + Seq | 0.0004 0 0.0005 3

B.4 REPRESENTATION EXPERIMENTS

We conducted representation experiments on the representation of feasible mapping, the optimal
solution mapping, and the objective optimal value, for MILP instances. The embedding sizes used
in our experiments were chosen from {32,128, 216, 256, 512}. Figure|§| shows the representation
results of feasible mapping, Figure [T0]shows the results of optimal solution mapping, and Figure T3]
shows the results of the objective optimal value mapping.

B.5 GENERALIZATION EXPERIMENTS RESULTS

We provide the full results on FOLD(20,) to FOLD(50,) in Table 9] following.

B.6 CROSS-SIZE ADAPTION

Our approach also enables End to End Cross-Size generalization from FOLD(n,m) to FOLD(n,ms),
which is quite difficult for Bipartite Graph-based MILP End-to-End representation methods(Yehudai
et al.,2021). We directly transfer the network pre-trained on FOLD (50,20) on the feasibility mapping
to FOLD (50,30). As shown by the heatmap, the pre-trained network also easily achieves good
performance on FOLD (50,30), which demonstrates that our model can still perform inference directly
when faced with changes in length, effectively transferring its prior knowledge. This verifies that our
network can effectively extract features.
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Figure 9: Representation experiments on feasibility for FOLD20 ((a) for FOLD(20,6), (b) for FOLD(20,16)) and
FOLDS50 ((c) for FOLD(50,20),(d) for FOLD(50,30)). MILPnet approximates the feasible mapping of Foldable
MILP instances more efficiently.

Table 12: Generalization experiments for feasibility mapping on FOLD(20,*) to FOLD(50,*), with
10,000 foldable MILP instances from each.3M(20)/10M(50) means pre-train time for FOLD20 is
3mins, FOLDS50 is 10mins;SM(20)/30M(50) means pre-train time for FOLD20 is Smins, FOLD50 is
30mins.

Method Type FOLD(20,6) FOLD(20,16) FOLD(50,20) FOLD(50,30)
MSE  ErrorN Params [MSE  ErrorN Params | MSE  ErrorN Params [ MSE ~ ErrorN Params
SCIP Exact — 0 — 0 — 0 — 0
GCNawm20/10M(50) Graph 0.3073 5000 1.21IM [0.3073 5000 1.2IM [0.3073 5000 1.21M [0.3073 5000 1.2IM
GCNswm(20)/30M(50) Graph 0.3073 5000 1.21M [0.3070 5000 1.21M |0.4719 5000 1.21M |0.4719 5000 1.21M
GIN3m20)/10M(50) Graph 0.4200 5000 1.63M [0.4209 5000 1.63M |0.4200 5000 1.63M |0.4204 5000 1.63M
GINsm20)/30M(50) Graph 0.4199 5000 1.63M [0.2999 5000 1.63M |0.2939 5000 1.63M |0.4204 5000 1.63M
SAGE3m0y10m(50) Graph 0.4642 5000 0.66M [0.4999 5000 0.66M |0.4714 5000 0.66M |0.4586 5000 0.66M
SAGEsm0y30M(50) Graph 0.4642 5000 0.66M [0.4999 5000 0.66M |0.4714 5000 0.66M |0.4856 5000 0.66M
PGN3wm20/10M(50) Graph 0.2508 5000 1.64M [0.2523 5000 1.64M |0.2511 5000 1.64M |0.2511 5000 1.64M
PGNsw20/30M(50) Graph 0.2511 5000 1.64M [0.2511 5000 1.64M |0.2512 5000 1.64M |0.2512 5000 1.64M
GraphGPS3m20y10m0) | Graph 0.2500 5000 0.66M [0.2500 5000 0.66M |0.2500 5000 0.66M |0.2500 5000 0.66M
GraphGPSsm20y30m(s0) | Graph 0.2500 5000 0.66M [0.2500 5000 0.66M |0.2500 5000 0.66M |0.2500 5000 0.66M
GCNT‘5M(20)/30M(50) Rf Graph [0.2498 5000 1.2IM |0.2500 5000 1.2IM [0.2476 4334 1.21M |0.5223 5000 1.21M
GCN"SM(zm/soM(so, Rf Graph |0.2126 2853  1.2IM |0.2499 4921 1.2IM |0.1177 0 1.21M [0.2402 0 1.21M
GIN'f3N1(20)/10M(50) Rf Graph |0.2500 5000 1.63M |0.2501 5000 1.63M |0.2500 5000 1.63M |0.4204 5000 1.63M
GIN'fsM(zo)BOM(so) Rf Graph |0.2499 4757 1.63M |0.2500 5000 1.63M |0.2500 5000 1.63M |0.2458 2603 1.63M
SAGE‘f3M(zo)/10M(50) Rf Graph |0.2499 5009 0.66M |0.2499 4995 0.66M |0.2500 4997 0.66M |0.2500 5002 0.66M
SAGE® SM(20)/30M(50) Rf Graph |0.2499 5009 0.66M |0.2499 4995 0.66M |0.2500 4998  0.66M |0.2500 4999  0.66M
PGN’ng(z(,)/wM(so) Rf Graph |0.2582 5000 1.64M |0.2560 5000 1.64M |0.2502 5000 1.64M |0.2502 5000 1.64M
PGNrfSM(zo)BOM(SO) Rf Graph |0.2507 5000 1.64M |0.2514 5000 1.64M |0.2512 5000 1.64M |0.2502 5000 1.64M
GrathPS"f_;M(zo)/mM(so) Rf Graph |0.2510 5000 0.66M |0.2510 5000 0.66M |0.2500 5000 0.66M |0.2502 5000 0.66M
GrathPS"fsM(zo)mM(so) Rf Graph |0.2510 5000 0.66M |0.2510 5000 0.66M |0.2500 5000 0.66M |0.2520 5000 0.66M
MILPnetanm20)10M(50) Ours (Seq) [0.0005 0 0.56M |0.0004 0 0.56M |0.0005 0 0.60M |0.0023 12 0.60M
MILPnetsni20)/30M(50) Ours (Seq) | 0.0003 0 0.56M |8.53e-5 0 0.56M | 0.0005 0 0.60M |0.0082 0 0.60M

C MILPNET SOLVING EFFICIENCY RESULTS

C.1 ADDITIONAL EXPERIMENTS ON REAL-WORLD BENCHMARKS

This part, we use MILPnet and advanced graph-based network for predicting the near-optimal solution
and refine by a local heuristic algorithm, the results are summarized in following Table[I3] This result
demonstrate that MILPnet consistently outperforms these advanced graph-based models in terms
of solving efficiency and inference speed. This further validates the effectiveness of the sequence-
based architecture and the representation advantage of MILP-sequence. For SC and CA with 1000
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Figure 10: Representation experiments on optimal solution for FOLD20 and FOLDS50 on D1 and D2 (details is
shown in Appendix F). MILPnet approximates the solution mapping of Foldable MILP instances with smaller
errors than graph-based method.
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Figure 11: Cross-size adaptation

variables and 500 constraints, the number of the dataset are:training on 10000 instances, solving on

50 instances.
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Table 13: Additional evaluations with more powerful GNN baselines, including GIN, PGN, and
GraphGPS, on the Real world practical problems

1P SC CA FA
Time Gap | Time Gap | Time Gap Time Gap
GIN 0.6254 0.0320]0.8223 0.6616 | 3.3065 0.7655| 8.8688 0.7504
PGN 0.6023 0.1020|1.0492 0.4207 [4.8369 1.0759|12.4009 0.7438
GraphGps 0.7324 0.0595|1.9202 0.4292|4.5980 1.0472| 8.1973 0.8328
MILPnet(Ours) | 0.1864 0.0234 | 0.6915 0.3483 | 3.2300 0.7651| 1.3773 0.3503

C.2 CONPAS STYLE HETEROGENEOUS VARIANT ON REAL-WORLD INSTANCES SOLVING

To address complex heterogeneous optimization problems in the real world,we train the hetergeneoous
MILPnet as the solution representation predictors on SC problems and construct the trust region

solving into three very large benchmarks from (Gleixner et al.|[2021)). The visualization of the solving
results in terms of primal bound trajectories is shown in Figure[12]
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Figure 12: Primal bound iterations on very-large benchmarks solving with ConPAS(MILPnet)+SCIP
and ConPAS(GCN)+SCIP

D GPU ANALYSIS AND OVERALL PERFORMANCE COMPARISON
D.1 GPU MEMORY ANALYSIS

Figure [[3] visualizes the GPU usage during the training process.

D.2 OVERALL PERFORMANCE COMPARISON

We conducted a comprehensive evaluation of various performance dimensions on the instances of
FOLD300, and the results are shown in Figure [T4]
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Figure 13: GPU memory usage on FOLD(20 ,*) to FOLD(300 ,*). (The lower the better)
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E PROOF OF THE SECTION [4.21 AND SECTION [4.3]

We establish the results stated in Remark[4.2]and Section[d.3] where the former follows from Theorem
and the latter from Theorem [@ as follows.

Theorem 5 (Padding Equivalence). Define the topological space before padding as: HM™0 =
((Heomym™ U HY) x I x H°Y and the padded topological space as HM'P, HMILP and HMILPO gre

homeomorphic (topologically equivalent):
HMILP o HM[LPO (13)

Proof. Define f as follows:

f((hwhvaiaho)): hC7 hvaoa-"70 ) i707"'70 ) h0707-'-70 ’
—— —— ——

k times k times k times
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where:
o h. € (Hcons)m’
. hv c HVar
e €1,
* h, € H®,
* 0,...,0 € {0}* are the padded zero dimensions.

Define f~! as:

71 | hey | ho0,...,0], [4,0,...,0], | ho,0,...,0 = (he, o, iy ho).
—— —— ——
k times k times k times
Subsequently, we introduce (i) and (ii), which are instrumental in establishing the main theorem.
(i) f is Bijective
Proof.f is Injectivity: Suppose f(h1) = f(hs) for hy, hy € HMP0 Then,
F(h) = f(he) = (het, (hy1,0,...,0), (i1,0, .., 0), (o1, 0, .., 0)) (14)
= (he2, (hy2,0,...,0), (i2,0,...,0), (ho2,0,...,0)). (15)
This equality implies:
hei = hea,  hyr = hy2, 11 =142,  her = hoa.
Therefore, h; = ho, establishing injectivity.

f is Surjectivity: For any i/ € HMP suppose h' = (he, (hl,py), (i',p:), (hl,po)), Where
Do, iy Do € {0}F. Then, there exists h € HM such that:

h = (he, bl i’ hl).
Applying f to h, we obtain:
f(h) = (he, (B,0,...,0),(,0,...,0),(h.,0,...,0)) = K.
Thus, f is surjective.

(i) f and f~! are both continuous Proof. Both HM™0 and FMILP are equipped with the product
topology. In the product topology, a function is continuous if and only if each of its component
functions is continuous.

Continuity of f: The mapping f involves embedding each component of HM0 into a higher-
dimensional space by appending zero vectors. Each such embedding is continuous because it is
defined by coordinate-wise inclusion and fixed assignments (adding zeros). Specifically:

fi : H,L — Hz X {O}k
is continuous for each component H; € {H™, HY* [, H%}.

Continuity of f~': The inverse mapping f~! involves projecting each padded component back to
its original space by removing the appended zero vectors. Projection maps in the product topology
are continuous. Specifically:

-1 k
fi : H; x {O} — H;
is continuous for each component H,;.

Drawing upon the results presented in (i) and (ii), the f is bijective and both f and f~! are continuous,
f is a homeomorphism. Therefore, the topological spaces HMY and HMP are homeomorphic:

HMILP ~ HMILPO
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Theorem 6 (Constraint Permutation Invariance). Let (H{"™, H5™™, ..., HZ™, I, H'" HY) be
topological spaces corresponding respectively to the m constraint feature spaces H;", the integer-
index space I', the variable-bounds space H"", and the objective-coefficient space H%'. For any

permutation o on the index set {1,2,...,m, ‘I’, ‘Var’, ‘obj’}, their product spaces are homeomor-
phic:
M s .o HOS s T % HVar’ > Hobj’ ~ H H(factor)k
1 m - .

keo({1,...,m,I",Var’,0bj'})
In other words, the topological structure of the full MILP-sequence feature space is invariant under
permutation of its component spaces.

Proof The ordered product is
X = HO x oo x HO x I x H™ x H
m ?

Let H
Xa _ H(factor)k,
keo({1,...,m,I’,Var’,obj’})
be an arbitrary permutation of the factors, where o is a permutation of the index set.
We explicitly construct a coordinate-exchange (or coordinate-reordering) map
P X — X,.
Given a point
_ cons cons Var’ obj’
x—(hl U (e AN A 1) )EX7
where . '
hgons c Hl_cons’ i/ c I, hVar c HVar , hObj c Hob] ,

define ®(x) by rearranging these coordinate components according to . Concretely, if o sends the
index 1 to position o (1), the index 2 to position o(2), etc., then

d(z) = (h{ ).

the factor with index o= 1(1)”

ordered according to o

In simpler terms, ® reorders the factors (hcl"“s, ooy hEOms g pVar h"bj) into the sequence ( .. ) deter-
mined by o.

Bijection. & is a bijection because:

* Injective: If ®(x1) = ®(x2), then their coordinates in each position of the reordered product
are identical. Since a product space comparison equates each factor, it follows that z; = x,.

* Surjective: Given an arbitrary point y € X, we can “reverse reorder” its factors to form
x € X. By construction, ®(z) = y.

Because @ is bijective and both ¢ and &1 are continuous, ® is a homeomorphism. Hence

Hions NN, HrcvamS x I/ x HVa.r X HOb_] o H H(fac[or)k7
keo({1,...,m,I’,Var’ ,obj’})
O

Theorem 7 (Variable Permutation Invariance). Let HMLP be the topological space of MILP-
sequences defined in Section For any permutation © on the variable indices {1,2,...,n},
the MILP-sequence space is homeomorphic under variable permutations:

MILP ~ MILP
HMILP o~

)

where HMILP denotes the space after permuting variable coordinates according to w. Consequently,
the feasibility mapping ®r.qs, optimal objective value mapping ®.j, and optimal solution mapping
D, are all invariant under variable permutation.
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Proof. We explicitly construct a variable-coordinate reordering map

. MILP MILP
g gMILP _, pMILP

Given an MILP-sequence

B B RO ) e M,

cons?

x = [h}

cons? ©

where each component is a vector in R"*2, we define ¥ (x) by applying the coordinate permutation
to each token:

For each token h = (h1, ..., hn, Apg1, Ante) € R™*2 in the MILP-sequence, we define the coordi-
nate permutation operator P, : R"*2 — R"+2 by

Pﬂ'(h) = (h7r(1)7 sy h‘n’(n)a hn+1a hn+2)a

where 7 permutes only the first n variable-related coordinates, leaving the last two padding coordinates
unchanged. This operator applies uniformly to all tokens: constraint tokens h;°", integer set token

R, variable bounds tokens h*" and h¥', and objective token A .

Then
U(x) = [Pr(hg

COHS)"'

L P(hT

cons

), Pr(h"), Pr(h”), P (), Pe(h)] € HY™.

Then we prove that W is bijective and continuous:

1. Bijection. U is a bijection because:

* Injective: If ¥(xy1) = ¥(x2), then for each token, the permuted coordinates are
identical. Since 7 is a bijection, the original coordinates must also be identical, hence
X1 = Xa.

* Surjective: Given an arbitrary point y € HMP we can apply the inverse permutation
7! to each coordinate of each token to obtain x € HMF such that ¥(x) = y.

2. Continuity. Both ¥ and ¥ ~! are continuous because coordinate permutation is a continuous
operation in the product topology of R"*2. Specifically, for each token space R"*2, the
permutation map is a linear isomorphism, and the composition over all tokens preserves
continuity in the product space HMILP ¢ R(m+4)(n+2),

Therefore, ¥ is a homeomorphism, and

MILP ~ MILP
HMILP o pMILP,

Remark E.1 (Permutation Invariance). Theorems [6]and[7]establish that HM™ is invariant under
both constraint permutation (reordering tokens) and variable permutation (reordering coordinates
within tokens). These homeomorphisms ensure that different representations of the same MILP
instance are topologically equivalent and define identical optimization problems. Consequently, the
mappings Preqs, Popj, and Py, are invariant under both types of permutations, which is crucial for
designing permutation-equivariant neural architectures.

F PROOF OF THE MAPPINGS.

We introduced the details of the MILP-sequence mapping definitions: with the defined topological
space HMP ' which encapsulates the MILP-sequence, we can define key mappings essential for
analyzing MILP instances. These mappings assess feasibility, compute optimal objective values, and
identify optimal solutions, providing a comprehensive toolkit for MILP analysis.

22



Under review as a conference paper at ICLR 2026

Definition 8. (Feasibility mapping by sequence) The feasibility mapping is a classification function
that determines whether a sequence within HM'? represents a feasible solution:

Bpogs : HMP — {0, 1} (16)
where ®r.,s = 1 indicates that the MILP instance is feasible.

Definition 9. (Optimal objective value mapping by sequence) The optimal objective value mapping
for each MILP instance is defined as:

Doy : HMP — R U {00, —00} (17)
which projects feasible sequences to their respective optimal values.

Definition 10. (Optimal solution mapping by sequence) To simplify the discussion, we focus on
settings where all components of the vectors £ and u are finite. This assumption ensures the existence
of an optimal solution when the MILP problem is feasible. Consequently, we define a restricted

subset of the MILP topological space, HMP — HMILP \which only has finite variable bounds. The
optimal solution mapping for the MILP-sequence is defined as: For any F' € ®_(R), the MILP

obj
problem has a unique optimal solution with the smallest £5-norm. Let
Dyo : HMP N DL (1) — R™ (18)

feas

Then we prove the feature mappings of the MILP-sequence are measurable in the following theorems.
Theorem 11. The feasibility mapping for MILP-sequence is measurable.

Proof The target space {0, 1} is equipped with the discrete o-algebra, where every subset is Borel.
Specifically, the Borel sets in {0, 1} are:

B{O,l} = {@v {0}7 {1}7 {07 1}} :

We consider each possible Borel set B C {0, 1} and examine ®;_ (B):

feas

1. B=0:

which is trivially a Borel set.
2. B={1}:

L ({1}) = {(%h) c gMLP

The feasibility of a MILP instance is determined by the existence of solutions that satisfy all
linear constraints and integrality conditions. Specifically, it requires that there exists z € R"
such that:

the MILP instance is feasible} .

Az <b, (<z<u, z;€ZVjel,
where 7 is the set of indices corresponding to integer variables.
The set of feasible MILP instances can be expressed as the intersection of:

* A finite union of closed half-spaces defined by the linear constraints Az < b.
* Closed intervals defined by the variable bounds ¢ < x < .
* Discrete conditions x; € Z for integer variables.

Since finite unions and intersections of closed sets are closed (hence Borel), and the discrete
conditions correspond to countable intersections, ®;.. ({1}) is a Borel set in the product

topology of R(m+4)(n+2) 5 pyMILP
3. B={0}:
PeA((0)) = { (o) € 0
The infeasibility set is the complement of the feasibility set:
P ({01) = (Pras({11)°

Since @, ({1}) is a Borel set and the complement of a Borel set is also a Borel set,
P+ ({0}) is Borel.

the MILP instance is infeasible} .
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4. B={0,1}: B e
(I)feas({ov 1}) =H ’

which is the entire space and hence a Borel set.

Since for every Borel set B C {0, 1}, the preimage ®,_ (B) is a Borel set in R(m+4)(n+2) . yMILP,

feas
the feasibility mapping ®¢.,s is measurable. O
Remark F.1. The measurability of ®r. is crucial for ensuring that probabilistic and statistical
analyses involving MILP instances are well-defined. Since ®p,, maps measurable spaces to a
discrete space with a simple o-algebra, its measurability guarantees that feasibility can be reliably
incorporated into broader measure-theoretic frameworks.

Remark F.2. Both the domain HM'P and the codomain {0, 1} are equipped with their respective
o-algebras. The domain utilizes the product topology, and HM'" itself is a product of measurable
spaces as defined earlier. The codomain {0, 1} employs the discrete o-algebra, where all subsets are
measurable.

Theorem 12. The optimal objective value mapping for MILP-sequence is measurable.
Proof To prove that the optimal objective value mapping ®op; : HM* — R U {00, —oco} is

measurable, we need to demonstrate that for every Borel set B C R U {00, —o0}, the preimage
‘I’(;)jl (B) is a Borel set in R(m+4)(n+2) o pyMILP

The codomain R U {oo, —oo} can be equipped with the extended real line topology, where the Borel
o-algebra is generated by the open intervals in R along with the points {oo} and {—o0o0}. The Borel
sets in R U {00, —oo} include:

1. BCR

2. B contains oo and/or —oo

We consider each category of Borel sets in R U {co, —co} and examine <I>(;)j1 (B).

1. BCR:

<I>0’bj1 (B) = {(m, h) € HMP | the optimal objective value of the MILP instance is in B } .

Assuming that the MILP’s optimal objective value is determined by a continuous opti-
mization process (which holds under certain regularity conditions, such as linearity of the
objective function and constraints), ®.p; can be considered a continuous function on the
feasible set. Therefore, the preimage of any Borel set B C R under @ is a Borel set in the
domain.

2. B contains co and/or — oco:

D (B) = {(x, h) € gMP

<I)0bj(x, h) € B} .
The inclusion of co or —oo typically corresponds to the infeasibility or unboundedness of

the MILP instance:

¢ If ®ypi(x, h) = oo, the MILP instance is unbounded above.
o If ®ypi(x, h) = —oo, the MILP instance is unbounded below.

These conditions define specific subsets of the domain:

@@Hm»—{mwweﬂww

MILP is unbounded above} ,

and
@@«—wn={uwneﬂww

Assuming that the conditions for unboundedness are also defined by Borel sets (similar to
feasibility), these preimages are Borel sets in the domain.

MILP is unbounded below} .
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Since for every Borel set B C RU {oco0, —oc}, the preimage @ (B) is a Borel set in R(M+4)(n+2)

obj
HMP the mapping ®,p; is measurable. O

Before we give the proof of the mensurability of the optimal solution mapping for the MILP-
sequence,we first introduce the Jankov-von Neumann Measurable Selection Theorem.

Theorem 13 (Jankov-von Neumann Measurable Selection Theorem,(Dubins & Savage, [2014;
Neumann, [1936)). Let (X,.A) and (Y,B) be measurable spaces, and let S : X — 2Y be a
measurable set-valued map such that for all v € X, S(x) is non-empty and closed in Y. Then, there
exists a measurable function f : X —'Y such that f(x) € S(x) forall x € X.

Remark E.3. The Jankov-von Neumann Measurable Selection Theorem provides a crucial guaran-
tee in measure theory and its applications. Given a measurable space X and a set-valued mapping
A X — 2Y where each A(x) is a non-empty set, the theorem ensures the existence of a measurable
Sunction f that selects an element from each A(x) in a measurable manner. Specifically, for almost
every © € X, the function | assigns a value f(x) that belongs to the set A(x). This result is
particularly useful in areas such as optimization, probability theory, and economics, where selecting
measurable choices from a set of feasible options is essential.

Then we prove the measurblity of the optimal solution mapping for the MILP-sequence.
Theorem 14. The optimal solution mapping for the MILP-sequence is measurable.

Proof. This part proves the optimal solution mapping for the MILP-sequence is measurable. To
prove that the optimal solution mapping

Boopy : HMP NP1

feas

(1) - R"
is measurable, we need to demonstrate that for every Borel set B C R", the preimage

Do (B)

solu
is a Borel set in HMILP,

Consider the mapping P, as a selection function that assigns to each feasible MILP instance its
unique optimal solution with the smallest £5-norm. Formally, for each

(z,h) € HMYP N o1 (1),

feas
there exists at least one * € R"™ such that * is an optimal solution. We aim to select a unique z*
for each instance in a measurable manner. With Theorem[13] for each
(z,h) € HMP o l(1),
the set of optimal solutions
S(xz,h) ={z* € R" | 2 is an optimal solution for (z, h)}
is non-empty and closed, then there exists a measurable selection function

(I)solu . E[MILP ) (I)._l

feas

(1) - R"
such that
Do (x,h) € S(x, h)
for all -
(z,h) € HMIP A o1 (1).

feas

Then, we prove the Non-emptiness and Cloasedness of HM™ 1 &1 (1), detailed as:

1. Non-emptiness: By definition,
HYE 0@, (1)

consists of MILP instances that are feasible and have finite bounds, ensuring that an optimal
solution exists. Therefore, S(x, h) is non-empty for all

(z,h) € HMYP N oL (1).

feas
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2. Closedness: The set of optimal solutions S(x, ) is closed in R™. This is because optimal
solutions to MILP problems, defined by linear constraints and objective functions, form
closed sets under standard topologies.

Given that both the closedness and non-emptiness conditions are satisfied, Theorem [T3]ensures the
existence of a measurable selection function ®g},. Since Py, is @ measurable selection function by
the theorem, for any Borel set B C R",

o1 (B) = {('th) e g™ ‘ q)solu(xah) € B}

solu

is a Borel set in HM™P, Therefore, the mapping @, is measurable. O

After establishing the measurability of the feasibility, optimal objective value, and optimal solution
mappings, we define the corresponding measurable mapping sets for each of these mappings as
follows:

Definition 15. (Measurable Mapping Set for Feasibility Mapping) The Feasibility Mapping Set
consists of all measurable functions

(pfeas : HMILP — {07 1}7
where ®@e,s(x, h) = 1 indicates that the MILP instance defined by (z, h) is feasible, and @pe,s(x, h) =

0 indicates infeasibility. Formally, the set is defined as:

J-‘Eﬁ}" = {@feas : FMILP {0,1} | Preys is measurable} .

Definition 16 (Measurable Mapping Set for Optimal Objective Value Mapping). The Optimal
Objective Value Mapping Set comprises all measurable functions

Doy : HMP - R U {00, —o0},
which assign to each MILP instance (z, h) its optimal objective value. Specifically,
c¢Tx*  if the MILP instance is feasible and bounded,

Dopi(x, h) = ¢ 00 if the MILP instance is unbounded above,
—oo  if the MILP instance is unbounded below.

Formally, the set is defined as:

fé‘g}LP = {(I)obj MR S Ry {00, =00} | Dop; is measurable} .

Definition 17 (Measurable Mapping Set for Optimal Solution Mapping). The Optimal Solution
Mapping Set consists of all measurable functions

Doy HMP N D)

feas

(1) = R",

which assign to each feasible and bounded MILP instance (z, h) its unique optimal solution z* with
the smallest /5-norm. Formally, the set is defined as:

FMILP {(I)wlu CHMP A oL (1) 5 R™ | By is measurable} .

G THE PROOF OF THE SECTION [5.2]
Firstly, theorem Lusin is presented before the proof in this section.
Theorem 18 (Lusin’s Theorem,(Mammeril, 2019)). Let f : R — R be a measurable function on a

measurable set E C R with finite measure. For every € > 0, there exists a closed set C C E such
that the measure of E \ C'is less than €, and [ restricted to C' is continuous.
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Secondly, for the probability measure used in Theorems 2H4] we would like give the Remark [G.T]to
clarify the probability using:

Remark G.1 (On the Probability Measure). The probability P(-) in Theorems accounts for the
randomness in neural network training, including random initialization and stochastic optimization
(SGD). Specifically, P is the probability measure over the space of trained networks induced by the
random training process. This formulation aligns with the Probably Approximately Correct learning.
For a fixed trained network Fyya, the probability can be interpreted as the empirical error rate on the
finite dataset D.

Then we give the proof of the theorems in the Section[5.2}

G.1 PROOF AND COROLLARY ON THEOREM 2]

Proof of Theorem 2] We leverage the measurability of the feasibility mapping ®ge,s, the Jankov-von
Neumann Measurable Selection Theorem, and Lusin’s Theorem to construct a neural network Fyya
that approximates ®¢.,s with high accuracy on the finite dataset D.

From our earlier definitions in Definition Bops : HMILP {0, 1} is measurable. This ensures
that ®y,s is compatible with measure-theoretic frameworks. Lusin’s Theorem states that for any
measurable function and any ¢ > 0, there exists a compact subset where the function is continuous
and the measure of the complement is less than 6. However, since D is a finite dataset, we can
consider the discrete measure where each point in D has an equal probability mass.

Given the finiteness of D, Lusin’s Theorem trivially holds as we can define § = ¢ and select the
entire dataset D as the compact subset where ®y, is continuous (since all functions on finite sets are
continuous).

By the Universal Approximation Theorem, Since our MILPnet is an architecture that combines
at least one-layer feedforward network structure with activation functions, it can approximate any

continuous function on a compact subset to arbitrary accuracy. Since D is finite, and Py, 1S

effectively continuous on D, there exists a neural network Fiyya € FHukPret that satisfies:

1
| Frya (7) — Ppeas ()| < 3 Vz € D.

This ensures that:
1 if FHYA(LL') > %,
0 otherwise,

Troa(2) = {

matches P, () exactly for all z € D. Since D is finite, the probability P can be interpreted as a
uniform distribution over D. Given that Fyyys correctly classifies all x € D, we have:

P (HFHYA(Z')>% # (I)feas(m)> =0<e.

Thus, the constructed neural network Fyya satisfies the required condition for the theorem. O

Remark G.2. While the above steps suffice for a finite dataset, the framework can be extended
using the Jankov-von Neumann Measurable Selection Theorem for more general settings. This
theorem ensures the existence of a measurable selection function that can be approximated by neural
networks even in infinite-dimensional spaces, provided the feasibility mapping satisfies the necessary
measurability and closedness conditions. However, for the scope of this theorem with a finite dataset
D, the construction above is sufficient to guarantee the existence of the desired neural network Fyyy.

Then we have corollary on the infinite dataset for feasibility mapping:

Corollary 1 (Extension to infinite dataset). Let D C HM™ be an infinite or continuous dataset with
a finite measure p(D) < co. For any € > 0, there exists a neural network Fyya € fﬁ%kp et such that:

P <HFHYA($)>% 7& cheas(JU)) <e, VxeD, (19)

where z is the MILP-sequence, and ®g.,s() is the feasibility mapping of the MILP instance.
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Proof. We have proven that the feasibility mapping ®ras : HMYP — {0,1} is assumed to be
measurable on D in Theorem B.1.

By Lusin’s Theorem, for the measurable function @, and for any € > 0, there exists a compact
(closed and bounded) subset C' C D such that:

n(D\C) <e
and Py, restricted to C' is continuous:
Bfens|c : C — {0, 1} is continuous.

Since P, is a simple indicator function, its continuity on C' implies that C' avoids the boundary
cases where the feasibility of the MILP instances changes.

Given that ®g, is continuous on C', by the Universal Approximation Theorem, there exists a neural

network Fyya € Fhya ™ that approximates the indicator function I, (,) to within an error less

than % on C'. Specifically:

1
| Fiiva () = Lo, ()| < 3 Vr € C
This implies that:
]IFHYA(Q:)>% = lppe) =1, Vz el

Thus, the neural network Fyya correctly classifies the feasibility of MILP instances in C'. Consider
the probability that the classification error occurs:

P (HFHYA($)>% # ¢feas(‘/'r"))

This event can only occur if z € D\ C, since for x € C, the classification is guaranteed to be correct.
Therefore:

P (T (0) > 5 # Ben(0)) < WD\ C) <

Thus, the probability that Fyyya misclassifies any € D is bounded by e. By constructing Fyya
using Lusin’s Theorem to ensure continuity on a large compact subset C' of D, and then applying the
Universal Approximation Theorem to approximate the feasibility indicator function on C, we have
established the existence of a neural network within Fjyyx " that satisfies the desired probabilistic

bound for the classification task on infinite or continuous datasets D. O

G.2 PROOF AND COROLLARY OF THEOREM 3]

Proof of Theorem 3] To prove the theorem, we leverage the Lusin’s Theorem alongside the Universal
Approximation Theorem for neural networks. The proof is divided into two parts corresponding to
the classification and regression problems.

1. Classification Problem:

We aim to construct a neural network Fyya, 1 that accurately classifies whether the objective value
Dypi() is finite for all z € D.

First, we have proven that the feature mapping ®op; : HM™ — R U {oc} is measurable. By Lusin’s
Theorem, for any measurable function f defined on a measurable set with finite measure, and for
any € > 0, there exists a closed set C' C D such that:

w(D\C) <e

and f restricted to C' is continuous. Since D is finite, the measure p(D) is finite, and thus Lusin’s
Theorem is applicable. Therefore, there exists a subset C' C D where ®y; is continuous.

Given that ®; is continuous on C, by the Universal Approximation Theorem, there exists a neural
network Fiya,1 € Fiiyx ™ that approximates the indicator function Ig,, (z)er to within an error less
than € on C'. Specifically:

1
| Fava1(2) =~ Togy@yer| < 5, Vo el
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Since p(D \ C) < e, the probability that Fiyys 1 misclassifies any x € D is less than e:
P (HFHYA,1(1)>% # I[‘bobj(ﬂc)eR) <€ VreD

2. Regression problems:

Next, we construct a neural network Fiya 2 to predict the objective value <I>0bj(at) with an error less
than § for all z € D where ® () is finite.

We have proven that the ®; is measurable in Theorem B.2. By Lusin’s Theorem, for the regression

task, there exists a closed subset C' C D N CIJ(;)} (R) such that:

n((DNAZIR)\C') <
and ®; is continuous on C”.

By the Universal Approximation Theorem, there exists a neural network Fiya o € Frak ™ that
approximates P to within an error 6 on C":

| Faya 2(z) — ®ovj(z)] < 6, Vo e’

Since the measure of the complement set is less than ¢, the probability that the prediction error
exceeds ¢ is bounded by e:

P (|Fuya2(x) — ®ovj(z)| > ) <€, Yz e DN @&}(R)

By constructing Fyyya,1 and Fyya 2 using Lusin’s Theorem to ensure measurability and continuity on
large subsets, and then applying the Universal Approximation Theorem to approximate the respective
functions, we have established the existence of neural networks within Fiys " that satisfy the
desired probabilistic bounds for both classification and regression tasks on the finite dataset D. [

Then we give the corollary on the infinite dataset for optimal objective mapping as follows:

Corollary 2 (Extension to Compact Infinite Sets). Let K C HMP be a compact subset equipped with
the measure y e defined in Section[d.2] Define the probability measure P on K by normalizing:

P(A) = % for any measurable set A C K.

For any €, > 0, there exist two neural networks Figya 1, Faya 2 € FaukP™e such that:

1. Classification of finite objective values:
P (Tpgy, (0154 # lomier) <€ Vo €K (20)

2. Regression of objective values:

P (|Faya2(z) — opj(x)| > 0) <6, Ve KNP (R) 21)
Proof. The proof parallels Theorem|[3] replacing the counting measure on finite D with the probability
measure P on compact K.
1. Classification Problem.
Since ‘I)obj : HMILP
Lusin’s Theorem.

— R U {oo} is measurable and K is compact with pgmme (K) < 0o, we apply

For any € > 0, there exists a closed set C' C K such that:

P(K\C) = Mb,lm(ﬁf\()@ <§

and @ | is continuous. By the Universal Approximation Theorem, there exists Fiya,1 € Fynkrret
such that: )
sup |Faya,1(2) — Lo, ()er| < 1
zeC
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This ensures that for all z € C:
HFHYAJ(I)>% = Ip,(z)er

The set of misclassified points is contained in K \ C, therefore:

P (HFHYAJ(;L»»% a Héobj(z)eR> SP(K\C)<e

—1
obj

/,LHM"‘P (A)
Pane(A) = -
ﬁmle( ) b FpMILP (Kﬁnite) ’
By Lusin’s Theorem applied to ®opj on Kgpiee, for any e > 0, there exists a closed set C" C Kgpie
such that:

2. Regression Problem. Let Ky = K N O
K; finite by

(R). Define the conditional probability measure on

AcC Kﬁnile

€
Pﬁnite(Kﬁnile \ C,) < 5

and Py | is continuous. By the Universal Approximation Theorem, there exists Fiya 2 € f}l}d&[’ net
such that:

sup |Fuya,2(z) — Popj(z)| < 0
zeC’

Therefore:

Phnite (|Frya,2(x) — @opj ()| > 0) < Prinite(Kiinite \ C”) < €

G.3 PROOF AND THE COROLLARY OF THEOREM [4]

Proof of Theorem 4| Since D is finite, let us denote it as:
D ={z1,29,..., 2}
for some integer n > 1. For each x; € D, Oy, (x;) is a well-defined finite solution in R™.

The Universal Approximation Theorem states that a feedforward neural network with at least one
hidden layer and a sufficient number of neurons can approximate any continuous function on compact
subsets of R™ to any desired degree of accuracy, provided the activation function is non-linear (e.g.,
Sigmoid, ReLU).

Given that D is finite, it is trivially compact. Therefore, there exists a neural network Fyya w that
can approximate the mapping P, on D with arbitrary precision. Specifically, for each z; € D, we
can ensure:

| Fraya,w () — Pso () || < &
by appropriately choosing the network architecture and weights W.

Since D is finite, the probability P can be interpreted over a uniform distribution or any probability
measure defined on D. However, because we have constructed Fiyya w such that the approximation
error is less than § for every x € D, the event

| Frya,w () — Psona ()| > 0
does not occur for any x € D. Therefore:
P (|| Faya,w () — @sonu(x)]| > ) =0< €
for any € > 0.

By the Universal Approximation Theorem, we can construct a neural network Fyya w that approx-
imates the solution mapping P, on the finite dataset D with an error less than § for all z € D.
Consequently, the probability that the approximation error exceeds ¢ is zero, which is trivially less

than any € > 0. This establishes the existence of such a neural network within FHakFnet, O

Then we have the corollary on the infinite dataset:
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Corollary 3 (Extension to infinite dataset). Let D C ® i (R) C HM™ be an infinite dataset with a
‘FMILPnel

finite measure 1(D) < oo. For any €, > 0, there exists a neural network Fiaya,w € Fyjys i such
that:
P(HFHYA,W(-Z') — (bsolu(x)H > (5) <e, VxeD, (22)

where P denotes the probability measure on D.
Proof. To extend the theorem to infinite datasets, we employ Lusin’s Theorem in conjunction with

the Universal Approximation Theorem.

Assume D is equipped with a probability measure p such that ;1(D) = 1 (without loss of generality, as
we can normalize the measure). Also, we have proven that the solution mapping ®y, : HMP — R”
is measurable on D before.

By Lusin’s Theorem, for the measurable function ®,, and for any € > 0, there exists a compact
(closed and bounded) subset C' C D such that:

w(D\C)<e
and ®,, restricted to C' is continuous:
Dol : C — R™ is continuous.

Since C'is compact and P,y |¢ is continuous, the Universal Approximation Theorem ensures that
there exists a neural network Fyya w € FusPiet such that:

Sug ||FHYA,W($) — (I)S(,]u(l’)H < 0.
fAS

This implies that for all x € C:
| Frva,w (2) — Pson(@)[| < 6.

Consider the probability that the approximation error exceeds §:

P (|1 Faya,w () — Pson ()| > 9).

This event can only occur if x € D \ C, since for z € C, the error is guaranteed to be less than 0.
Therefore:
P ([[Frva,w (2) = @son(2)[| > 6) < u(D\ C) <e.
Thus, we have:
P (|| Faya,w () — Peon(@)]| > 9) < €.

By Lusin’s Theorem, we ensure that @), is continuous on a large subset C' of D. The Universal
Approximation Theorem then guarantees the existence of a neural network Fyya 1 that approximates
Doy within 6 on C'. Consequently, the probability that the approximation error exceeds ¢ on the
entire dataset D is bounded by e.

This establishes that for infinite or continuous datasets with finite measure, there exists a neural

network within F iy ot that satisfies the desired probabilistic bound on the approximation error. [

H PROOF OF THE STABILITY

In this section, we establish the stability properties of the MILP mappings ®Preas, Pobj, and Pop, under
small perturbations of problem coefficients. Our analysis builds upon Berge’s Maximum Theorem
(Aliprantis & Border} |20006).

Theorem 19 (Berge’s Maximum Theorem |Aliprantis & Border| (2000)). Let X and T be topological
spaces, and let f : X x T — R be continuous. Let C : T = X be a correspondence (set-valued
map) such that:

1. C(t) is non-empty and compact for all t € T,

2. C is continuous, i.e., its graph Gr(C) = {(t,z) : * € C(t)} is closed and C is lower
hemicontinuous.
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Define the value function and argmax correspondence by:

V(t) = max f(z,t), X*(t)=arg max f(z,t) ={z e C(¥): f(z,t) =V (¢}

zeC(t) zeC(t)

Then:

1. V() is continuous in t.

2. X*(t) is non-empty, compact-valued, and upper hemicontinuous in t.

We first analyze the stability of ®p;, which exhibits the strongest stability properties among the three
mappings.

Definition 20 (Continuous Relaxation for MILP sequence). For a MILP sequence x =
[he Jh G R R RS R € HMIP its continuous relaxation is the linear program obtained

cons? * * ‘cons?

by droppmg the 1ntegrahty constraints:

CR(x) : mﬁn{(c x): Az <b, ¢ <z <u},
1/‘6 n

where A, b, ¢, £, u are extracted from the tokens in x.

Proposition 21 (Stability of Continuous Relaxation). Let x € HMP be a feasible MILP instance
whose continuous relaxation has a bounded feasible region. Then the optimal value function of
the continuous relaxation, denoted <I)0C,§, is continuous at x. Furthermore, if the optimal solution is

non-degenerate, then éocg is locally Lipschitz continuous with constant:

L = ||c||2 - diam(Feas(x)),

where Feas(x) denotes the feasible region and diam(-) its diameter.

Proof. The continuous relaxation defines a parametric linear program where the parameter { =
(A, b, c,l,u) lives in HMYP Let X = R™ and T = HM™P, The objective function f(x,t) = {c,
is continuous in (z,t). Then the feasible region correspondence C(t) = {x € R™ : Az < b, ¢ <
x < u} satisfies:

]

» Compactness: By assumption, C'(x) is bounded. Combined with the closed constraints,
C(x) is compact.

 Continuity: The graph Gr(C) is closed because the constraints define a closed set in
R™ x HMILP Moreover, C is lower hemicontinuous: for any z € C(t) and t,, — t, since
the constraints are linear and continuous in ¢, small perturbations preserve feasibility in a
neighborhood.

By Berge’s Theorem. <I>0C§ is continuous at x. Under non-degeneracy, the optimal basis remains

unchanged in a neighborhood of x. The optimal value is given by the basis solution 2* = B~ !bp,
where B is the optimal basis matrix. The objective value is:

G (x) = (cp, B 'bp),

which is a linear function of (c¢p, bp) within the neighborhood where the basis is constant.
For a perturbation x’ = x + € with ||e||s < §:
| @55 (x') — @55 (x)| = (¢ ™) — (e, 2)|
< [ = e, ™) + (e, 2™ — 27)]
<" = cllz - [l |2 + llellz - [|2" — 2™ |2
<L,

where L = ||c||2 - diam(Feas(x)) bounds both terms. O
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H.1 STABILITY OF THE OPTIMAL OBJECTIVE MAPPING

Theorem 22 (Conditional Stability of MILP Objective Value). Let x € HMP pe a feasible MILP
sequence with bounded feasible region. Consider a perturbation X' = x + € where ||€||2 < d. If the
following assumptions hold:

1. Feasibility preservation: ®.(x') =1,

2. Optimal solution stability: The optimal integer solution x* € 7" of x remains feasible for

x/,

3. Bounded diameter: diam(Feas(x) NZ") < D,

then:
Do (') — Popj(x)| < ([[c]l2 + ) - D.
Proof. Let x* € Z™ be an optimal solution to x, and z’* € Z" be an optimal solution to x’.
By condition (2), z* is feasible for x’, so:
Dori(x') = (,2") < (', 2").
Similarly, z'* is feasible for its problem, and by condition (1), both z* and z'* lie in the bounded
integer feasible region. Thus:
Do (x) = (¢, 7).
Now:

|Dobj (x) — Popj (%)

") = le,a")| + (e, = (e,2")
(¢ = e,a) |+ (.o —a”)

< ¢ =l o llo + llellz - 2" ="l
<0-D+c|z-D

= (lell2+3)- D,

where we used ||¢’ — ¢||2 < ¢ (from the perturbation bound) and ||z"* — z*||2, ||z"*||2 < D (from
condition 3).

H.2 STABILITY OF THE FEASIBILITY MAPPING

We now analyze the stability of ®gys.

Theorem 23 (Conditional Stability of Feasibility). Let x € HM with ®r,.(x) = 1. Suppose
the feasible integer points satisfy a strict feasibility condition: there exists p > 0 such that for all
x* € Feas(x) NZ",

Az* <b—pl, l+pl <z*<u-pl,
where 1 is the all-ones vector. Then for any perturbation x' = x + € with ||€|lcc < < p, we have:

(IDfms(x') =1.

Proof. Let x* € Feas(x) N Z" be any feasible integer point for x.
For the perturbed instance x’ with parameters (A’, ', ¢/, u’), we have:

|4~ Al <6, W -bl <8 141 <5 ) —uyl <4

Check constraint satisfaction:
Alr* = (A+ AA)x* = Az* + AAz”*
b—pl) + [AA[[ollz*[1 1

< (
< b— pl + 8|ja*||11.
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If 6 < ﬁ,then Ax* <b—(p—0|z*|1)1 < V.
For sufficiently small § < p, we can ensure all integer points remain strictly feasible. Therefore,
@feas(x’) =1. O

H.3 STABILITY OF THE OPTIMAL SOLUTION MAPPING

Finally, we analyze ®4qy,.
Theorem 24 (Conditional Stability of Solution Mapping). Let x € HM™P with optimal solution
x* € Z". Suppose x* is the unique optimal solution and satisfies a strong optimality gap condition:
forall x € Feas(x) N Z" with x # x*,

(e,z) > {c,x™) +,
for some v > 0. Then there exists § > 0 such that for any perturbation x' = x + € with ||€||2 < §:

(b.mlu(xl) ="

That is, the optimal solution remains unchanged.

Proof. For the perturbed instance with objective ¢’ = ¢ + Ac where ||Ac||2 < §:
For any « € Feas(x') N Z"™ with © # z*:
(' 2y —{d,2*) = (c+ Ac,z) — {c+ Ac, z*)
= ({¢,z) — (c,x™)) + (Ac,x — x™)
> — [[Adllz]|lz — 2|2
>v—0-D,

where D = max,,- |z — 2*||2 over the finite integer feasible set. If § < 3, then (¢, z) > (¢, z*)
for all x # x*, ensuring x* remains optimal for x’. O

I DETAILS OF THE TIME-COMPLEXITY OF MILPNET

Excluding the linear transformation, the time complexity for multi-scale operations across all
windows is O (Zi\;l h- n,%) The global attention mechanism employs a global multi-head
self-attention mechanism over the entire sequence, resulting in a final time complexity of
0 (Zgﬂ hnid + h(m + 4)2d) for the hybrid attention. Given that the maximum window size
satisfies wpyx < m + 4, it follows that Z,ivzl 77,% < N - (m + 4)2. Therefore, the time complexity

can be further simplified to O (h - (m 4 4)2d (N + 1)), where d represents the linear embedding
size and h denotes the number of attention heads.

J SPARSE VARIANT

To mitigate the quadratic overhead of global attention, we evaluated a multi-scale sliding sparse
attention (with sliding mask) to replace the global attention, and discovered that it can achieve faster
inference while maintaining comparable performance. As the sparse sliding attention uses sparse
masks to restrict each position’s attention only to specific locations beyond the step interval s, the
time complexity of the stride attention is:

h 4)2d
7;tride =0 <(Tn—;—)> (23)
Thus, the time complexity of multi-scale sliding spare attention becomes:
7;parse = O(kHWdh) + O(n2dh/s) (24)
= O(dh(k(m + 4)w + (m +4)?/s)) (25)
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Table 14: Experimental results on FOLD(200,20) with 1-hour pre-training and a stride of 2

Fold(200,20)
Error Inference Time MSE
GCN 5000 0.228 0.268
MILPnet(Sparse) | 763 0.033 0.091
MILPnet(ours) | 191 0.117 0.016

We can calculate the speed-up ratio against our original design as:

Nw? +n?

Nw? +n?/s (26)

Speedup =

In practice, n? > Nw? (sequence length is much larger than window size), so the speed-up of the
time-complexity is finally as:
2

n
Speedup ~ "2 =

This signifies that the model’s scalability with engineering optimizations.

K DETAILS OF THE EXPERIMENTS

K.1 DETAILED EXPERIMENT SETTINGS

Baselines. As methods using variant GNNs for MILP representation are still limited, we
adapted several representative graph algorithms to serve as baselines. To validate the advantages of
our sequence-based algorithm, we compare our model against multiple graph-based representation
methods that model MILPs as bipartite graphs. The GNN-based networks include GCN (Chen
et al.,2023b), GIN (Xu et al.,|2019), and SAGE (Wu et al.,|2021). The attention-based graph networks
include PGN (Cappart et al.,2022)) and GraphGPS (Wang et al.,[2023b)). We also include the random
feature graph modeling method proposed in (Chen et al.l 2023b)), which is specifically designed to
alleviate the feasibility prediction problem on Foldable instances.

Metrics. We established several evaluation metrics for the experimental settings of the various feature
mappings discussed in the context of Mixed-Integer Linear Programming (MILP). (1)Approximation
Error: For all feature mappings, we assessed the average approximation error, defined as the mean
of prediction errors across all instances. (2) Feasibility Error Number: Specifically for feasibility
mappings, we designed metrics to measure the error prediction rate and the number of prediction
errors. (3)Model Params: We evaluated the size of the model parameters to assess the impact of
different feature mappings on the model’s complexity.

Implementation. The MILPnet module is implemented using PyTorch. Our experiments were
conducted on a single NVIDIA 4090Ti GPU (24GB) and a 12th Gen Intel(R) Core(TM) 15-12600KF
3.69GHz CPU.

K.2 DETAILS OF GENERATING FOLDABLE MILP INSTANCES

We follow the foldable dataset generation method in (Chen et al.,[2023a), and set the ¢c; = --- =
¢, = 0 foldable instances as D1, the ¢; = - - - = ¢,, = 0.01 foldable instances as D2. We use D1 and
D2 as our experimental datasets. It is worth mentioning that in the representation and generalization
experiments on foldable instances, our training set contains 10,000 foldable instances, while the test
set also includes 10,000 foldable instances, with each set containing 5,000 feasible instances. It is
worth mentioning that Chen et al.’s dataset construction was only performed on FOLD(20,6), whereas
we have extended it to dataset constructions on sizes FOLD(m,n).

Variable Generation: The lower and upper bounds for each variable x; are generated from a normal
distribution. If the lower bound is greater than the upper bound, they are swapped. Some variables
are specified as integer variables (i.e., z; € {0, 1}), while others are continuous variables.
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Feasible and Infeasible Problem Constraint Setup: For the feasible problem (k1), the constraints
are set as follows:

Ty + T4, = 1, Tj, + X, = 1, ..., T, +Tj = 1

These constraints connect binary variables with equality, forming a cyclic structure that guarantees
the problem is feasible; For the infeasible problem (£2), the constraints are slightly adjusted to make
the problem infeasible. For example:

zj, +xj, =1, xj, =1, zj;t+wx;, =1

This setup results in an infeasible problem.

K.3 DETAILS OF THE REPRESENTATION EXPERIMENTS

In the representation experiments of our MILPnet on Foldable instances, the MILPnet consists of
1 layer. The embedding dimension is 216 or 256. The learning rate is set to 0.0001, the seeds are
chosen from 42 or 0. The graph-based methods share the same set of experimental seeds as MILPnet.
And our feasibility dataset consists of 50% feasible instances and 50% infeasible instances, while
other datasets are obtained by removing infeasible samples.

K.4 DETAILS OF THE GENERALIZATION EXPERIMENTS

In the generalization experiments of our MILPnet on Foldable instances, the network parameters
pre-trained on the training set are the same as those used in the representation experiments. For
the feasibility generalization experiments, we limited the pre-training time, setting it to 3 minutes
and 5 minutes on FOLD20, 10 minutes and 30 minutes on FOLD50, and 1 hours on FOLD100 to
FOLDS500. We then compared the performance of our model with other baselines under different
pre-training time constraints. For the optimal solution and objective optimal value generalization
experiments, we set the pre-training time of FOLD20 to 10 minutes and FOLDS50 to 60 minutes. For
our MILPnet generalization experiments, we chose our dropout rate from {0.3, 0.5}, the max window
size is chosen from {2, 3,4, 5}, and the number of the MILPnet block is 1.
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Figure 15: Representation experiments on the optimal objective value for FOLD20. MILPnet
approximates the optimal value mapping of Foldable MILP instances with smaller errors than graph-
based method.

K.5 FOUR COMMON REAL-WORLD MILP SOLVING BENCHMARKS

This section introduces the details of constructing specific MILP instances. In particular, for the SC,
CA, and FC problems, we follow the instance construction method described in Learn2Branch (Gasse
et al., 2019), and the numbers of variables and constraints are shown in the table below. Meanwhile,
for the SC problem, the density is set to 0.05; and for the FC problem, the ratio is also set to 5.
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Table 15: Number of variables and constraints for real-world benchmarks

Dataset
1P

SC

CA

FC

Variables
1,083
200

300

200

Constraints
195

40

40

60

L ADDITIONAL UNFOLDABLE EXPERIMENTS.

Although this paper primarily conducts experiments on foldable MILP instances, we also perform
representation experiments on unfoldable instances. Similarly, we compare our method with graph-
based networks. In this part, the max window size is chosen as 2, and the MILPnet embedding size is
chosen as 32, the graph-based methods (We select GCN) embedding size is 8.

8

loss
ERRORnumber
8

0 5 10 150 20 250 0 0 S 100 150 200 250 30

Epoch Epoch

P
(a) Feasible MSE (b) Feasible ERRORnumber

—— Graph-based  —— MILPnet(Ours,Sequence-based)

0 2000 400 6000 800 10000 0 0 40 60 800 1000
Epoch . Epoch
(c) Optimal Solution MSE (d) Optimal Objective Value MSE

Figure 16: In the representation experiments on unfold20, MILPnet still outperforms graph-based
methods with a smaller approximation error. Additionally, it maintains a smaller parameter size while
achieving an estimation error lower than that of the graph-based method.
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