
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MILPNET: A MULTI-SCALE ARCHITECTURE WITH GE-
OMETRIC FEATURE SEQUENCE REPRESENTATIONS FOR
ADVANCING MILP PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose MILPnet, a multi-scale hybrid attention framework that models Mixed
Integer Linear Programming (MILP) problems as geometric sequences rather than
graphs. This approach directly addresses the challenge of Foldable MILP instances,
a class of problems that graph-based models, specifically Graph Neural Networks
(GNNs), fail to distinguish due to expressiveness limits imposed by the Weisfeiler-
Lehman test. By representing MILPs through sequences of constraint and objective
features, MILPnet captures both local and global geometric structure using a theo-
retically grounded multi-scale attention mechanism. We theoretically prove that
MILPnet can approximate feasibility, optimal objective value, and optimal solution
mappings over a measurable topological space with arbitrarily small error. Empiri-
cally, MILPnet outperforms graph-based methods by multiple orders of magnitude
in feasibility prediction accuracy and convergence speed on Foldable MILPs, while
using significantly fewer parameters. It also generalizes effectively across prob-
lem scales and demonstrates strong performance on real-world MILP benchmarks
when integrated into an end-to-end solver pipeline. Our code is available with the
https://anonymous.4open.science/r/MILPnet-2BD1/.

1 INTRODUCTION

Mixed-integer linear programming (MILP) is a foundational combinatorial optimization problem
characterized by a linear objective function and linear constraints, with decision variables that can
be either continuous or discrete. This flexibility makes MILP highly expressive and applicable in
diverse real-world domains, such as transportation systems (Goldman & Trevisan, 2023; Wang et al.,
2023a), route optimization (Mammeri, 2019; Chen et al., 2023a), and power system planning (Zhang
et al., 2020; Chen et al., 2024).

However, as a well-known NP-hard problem, solving MILP remains a significant challenge. Tra-
ditional methods, such as Branch-and-Bound (Land & Doig, 1960) and Cutting Planes (Gomory,
1958), are commonly employed but become impractical for large-scale instances due to their intensive
resource requirements.

Recently, Machine Learning methods have emerged as a promising alternative. ML models can
approximate solutions efficiently by leveraging the implicit structure and patterns within MILP
problems and integrating them with reinforcement learning or MILP Exact solvers. These approaches
can significantly reduce computational costs while delivering effective solutions within practical
timeframes (Bengio et al., 2018; tian Wu & min Yang, 2022; Wang et al., 2023a; 2024). Generative
models, including diffusion models, have also been explored for solving structured MILP variants,
such as the Traveling Salesman Problem (TSP) and the Maximum Independent Set Problem (MIS)
(Sun & Yang, 2023; Sanokowski et al., 2024; Ma et al., 2024), showing strong performance and
generalization.

A recent trend has been to solve MILPs using Graph Neural Networks (GNNs), treating MILP
instances as bipartite graphs that link variables and constraints (Han et al., 2023; Ye et al., 2023;
Paulus & Krause, 2023a; Geng et al., 2024). However, Bipartite graphs and GNNs can capture
relationships between constraints and variables, missing the interactions between the constraints
themselves, which potentially contain crucial features, such as feasible regions or optimal solutions of

1

https://anonymous.4open.science/r/MILPnet-2BD1/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the MILP. Thus, GNN-based solutions suffer from a fundamental limitation: they cannot distinguish
between non-isomorphic MILP instances that differ in feasibility, due to the expressive bounds of
the Weisfeiler-Lehman (WL) test. As shown in recent work (Chen et al., 2023b), this leads to failure
cases known as Foldable MILPs, where multiple distinct MILP instances are indistinguishable to
GNNs but differ critically in their feasible regions.

Figure 1: Overall performance comparison
between MILPnet and graph-based models.
Larger area indicates better performance.

Although, recent research (Chen et al., 2023b) par-
tially addresses this by injecting random features into
graph structures. However, they only bypass WL-test
limitations without capturing fundamental character-
istics of MILP instances themselves. Current graph-
based models remain inadequate for robust feasibility
prediction and high-fidelity representation of general
MILP problems, especially Foldable MILPs.

To overcome these limitations, we propose a novel
representation framework that departs from the graph
paradigm and instead adopts a computational geome-
try perspective. Considering the geometric and topo-
logical uniqueness of MILP problems (Huchette &
Vielma, 2019; Conforti et al., 2010), we encode each
MILP instance by extracting spatial geometric fea-
ture vectors, including hyperplane vectors from linear
constraints, discrete integer point features, and direc-
tion vector from the linear objective function, and
assemble these into a sequence. To the best of our
knowledge, this is the first work to represent MILPs
as sequences.

Given the complexity of MILP problems, we propose a Multi-Scale Hybrid Attention mechanism
that enables our model, MILPnet, to learn both local and global features from the MILP sequence.
Furthermore, we mathematically prove that our model can effectively approximate the feature
mappings of any MILP instance with arbitrarily small error.

We validated our approach on Foldable MILP instances, which are specifically challenging for GNN-
and Graph-based models. Across feasibility, optimal solution, and optimal object value predictions,
MILPnet achieves improvements of multiple orders of magnitude in accuracy and convergence speed,
while using significantly fewer parameters and pre-training time. As summarized in Figure 1, MILPnet
consistently outperforms baseline models across five key dimensions: generalization, accuracy, model
size, inference time, and GPU memory usage. These results highlight the effectiveness of our
geometric modeling and its broad potential.

2 RELATED WORK

MILP is a classic NP-hard problem. Traditional methods, such as branch-and-bound (Gomory, 1958)
and cut-plane methods (Land & Doig, 1960), typically solve MILPs by simplifying or relaxing the
problem. However, these methods can incur exponential time complexity in the worst case, limiting
their scalability for large or real-time applications.

To address these challenges, machine learning methods have been applied to accelerate the MILP
solving process. Specifically, most methods model MILP instances with GNNs, framing them as
weighted bipartite graphs (Gupta et al., 2020). These graphs typically consist of two disjoint sets
of nodes: variables and constraints. Message-passing mechanisms within GNNs are then used to
capture their structural relationships. Notable ML-based methods include diffusion-model-based
MILP solvers (Sun & Yang, 2023; Yu et al., 2024; Sanokowski et al., 2024), predict and search
frameworks (Han et al., 2023; Huang et al., 2023), hybrid approaches that combine GNNs with
reinforcement learning or traditional solving techniques (Wang et al., 2023a), and heuristic algorithms
(He et al., 2014; Gasse et al., 2019; Chmiela et al., 2021; Paulus & Krause, 2023a).

Formally, a bipartite graph is denoted as G = (V ∪W,E), where V and W represent the variable
and constraint nodes, respectively. The set Gm,n includes all such graphs with |V | = m and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

|W | = n, while the complete graph representation with node features for an MILP is given by
(G,H) ∈ Gm,n ×HV

m ×HW
n .

While these graph-based models are effective in capturing variable-constraint relationships, they
inherently miss higher-order interactions, particularly between constraints themselves, which may
encode crucial information about feasibility or optimality. Therefore, for a class of MILP instances
known as Foldable MILPs (Theorem 2.1), GNN-based models cannot represent their feasibility as
the underlying WL-test cannot distinguish non-isomorphic graphs. Conversely, MILP instances that
are not Foldable MILPs are Unfoldable MILPs.

Theorem 1. (Lemma 3.2. in (Chen et al., 2023b)) There exist two MILP problems (G,H) and
(G, Ĥ), with one being feasible and the other one being infeasible, such that (G,H) ∼ (G, Ĥ).

This finding underscores a critical gap: graph-based models, regardless of feature augmentation,
fundamentally cannot resolve the feasibility of Foldable MILP instances. It signifies the need for
alternative representations beyond graph-based modeling to enhance the feasibility prediction for
complex MILP problems.

Figure 2: Overview of MILPnet. (a) An MILP instance is transformed into a sequence of geometric
feature tokens, including constraint hyperplanes, variable bounds, integer indicators, and the objective
vector. (b) The sequence is processed by a multi-scale hybrid attention architecture, enabling accurate
approximation of feasibility, optimal objective value, and solution mappings.

3 PRELIMINARIES

MILP formulation. MILP is an NP-hard optimization problem characterized by a linear objective
function and a set of linear constraints, with a subset of variables restricted to integer values. The
standard formulation is:

min
x∈Rn

c⊤x s.t. Ax ◦ b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I (1)

whereA ∈ Rm×n, b ∈ Rm, and c ∈ Rn are the problem parameters, l, u ∈ (R ∪ {±∞})n specifies
the variable bounds, ◦ ∈ {≤,=,≥}m denotes the constraint types, and I ⊆ {1, . . . , n} indexes the
variables that are required to be integer.

Feasibility. From a geometric perspective, define the continuous feasible region as a polyhedron
P = {x ∈ Rn | Ax ◦ b, l ≤ x ≤ u} and the integer lattice as Zn

I = {x ∈ Rn | xj ∈ Z, ∀j ∈ I}.
The MILP feasible set is their intersection S = P ∩Zn

I , i.e. all points that satisfy the linear constraints
and bounds while taking integer values in the specified dimensions. If S = ∅, the MILP is infeasible.

Optimal solution and optimal objective value. A point x∗ ∈ S is called an optimal solution if it
minimizes the objective function over all feasible points: c⊤x∗ ≤ c⊤x, ∀x ∈ S. The corresponding
scalar c⊤x∗ is the optimal objective value. If the objective can be decreased arbitrarily, i.e., for any
ϵ > 0, there exists x̂ ∈ S such that c⊤x̂ < −ϵ, the MILP is unbounded and the optimal value is −∞.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 SEQUENCE MODELING FOR MILP: MILP-SEQUENCE

This section introduces the first component of MILPnet (Figure 2 (a)), which encodes an MILP
instance into a sequence representation from a geometric perspective. The MILP instance is decom-
posed into multiple components, each modeled in a well-defined topological space, forming what we
refer to as the MILP-sequence.

4.1 GEOMETRIC MODELING OF MILP

We first reformulate the MILP problem from a geometric perspective. The MILP space consists of
high-dimensional hyperplanes or half-spaces (from linear constraints and variable bounds), discrete
point sets (from integrality requirements), and a direction vector (from the objective function).
Together, these are represented as Pconstraint ∪ Prange ∪ I ∪ c. Each of these components is defined
within a topological space as follows:

Linear constraints. The linear constraints are represented as the union of hyperplanes: Pconstraint =⋃m
i=1 Hi, where Hi is the i-th hyperplane or half-space defined by the vector hi

cons = (ni, di, bi),
where ni ∈ Rn is the normal vector of Hi, di ∈ {−1, 0, 1} denotes its directional type, and bi ∈ R is
the bias term. hi is chosen from the topological space Hcons = (Rn)× {−1, 0, 1} × R.

Variable bounds. The bounds on variables define upper and lower half-spaces: Prange =(⋃n
j=1 Hupper,j

)⋃(⋃n
j=1 Hlower,j

)
, whereHupper,j = {x ∈ Rn | xj ≤ uj} and Hlower,j = {x ∈

Rn | xj ≥ lj}. We encode the bounds as vectors hℓ = (l1, l2, . . . , ln) and h℧ = (u1, u2, . . . , un),
drawn from the topological spaces L =

∏n
j=1 Li ⊂ Rn and U =

∏n
j=1 Ui ⊂ Rn, respectively, each

equipped with the standard Euclidean topology.
∏

denotes the Cartesian product. The combined
vector ℓ ∪ ℧ belongs to the space HVar = R2n.

Integer set. The integrality constraints are encoded using a binary vector: hi = (i1, i2, i3, . . . , in) ∈
{0, 1}n, where ik = 1 if xk is constrained to be an integer, and ik = 0 otherwise. This vector resides
in the discrete topological space I = {0, 1}n.

Linear optimization direction. The objective function is represented by a coefficient vector hc =
(c1, c2, . . . , cn) ∈ Rn, drawn from the topological space Hobj = Rn.

It is worth noting that, although the MILP feasible region is mathematically defined by intersections,
we use unions in our geometric reformulation to denote the collection of individual components
(e.g., constraint hyperplanes and bounds) treated as sequence tokens. This formulation expands
the representational space, enabling MILPnet to more effectively explore the solution structure and
approximate optimal outcomes.

4.2 MEASURES OF THE MILP GEOMETRIC SPACES

To unify component representations and manage dimensionality differences, we apply zero-padding,
yielding two related topological spaces HMILP0 (original) and HMILP (padded). The padded compo-
nent spaces include Hcons, HVar′ , Hobj′ , I

′
. As shown in Theorem 5 in Appendix, the spaces padded

and non-padded are homeomorphic, ensuring no representation loss.

Measures. We equip each continuous space (Rn,R2n,R) with Borel σ-algebra and Lebesgue
measure, and each discrete component ({−1, 0, 1}, {0}, {0, 1}n) with the counting measure. By
product construction, the component measures are µHcons = λRn × µ{−1,0,1} × λR, µHVar′ =

λR2n × µ4
{0}, µHobj′ = λRn × µ2

{0}, µI′ = µ{0,1}n × µ2
{0}. The overall padded topological space is

HMILP = ((Hcons)m ∪HVar′)× I
′ ×Hobj′ , which is measurable by construction.

4.3 GEOMETRIC FEATURE INTEGRATION

We now integrate the MILP geometric feature vectors into a sequence-based representation, treating
each feature vector as a token.

MILP-sequence. Since the linear constraints hi
cons, integer point sets hi′ , and variable ranges hℓ′

and h℧′
are permutation invariant (as formalized in Theorems 6 and 7 in Appendix), we can arrange

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

them in any order. To preserve this invariance and recognize the term objective function’s unique
role, we place the objective token hc′ at the end of the sequence. Thus, the MILP-sequence is:

x = [h1
cons, h

2
cons, . . . , h

m
cons, h

i′ , hℓ′ , h℧′
, hc′], h ∈ Rn+2 (2)

The topological space corresponding to the MILP-sequence is defined as HMILP ⊂ R(m+4)(n+2).

Sequence-based mappings. With this representation, we define the core mappings used to analyze
MILP instances: Feasibility mapping Φfeas : H

MILP → {0, 1} , Optimal objective value mapping
Φobj : H

MILP → R ∪ {∞,−∞}, and Optimal solution mapping Φsolu : H̃MILP ∩ Φ−1
feas(1) → Rn.

These mappings are formally defined in Definitions 8 to 10 in the Appendix. We prove their
measurability in Appendix G.

5 MULTI-SCALE HYBRID ATTENTION FOR MILP-SEQUENCE

This section introduces the second core component of MILPnet (Figure 2 (b)): a novel Multi-Scale
Hybrid Attention mechanism specifically designed to model MILP sequences. This architecture
enables the network to capture both fine-grained local structure and global context by combining
multiple levels of attention. It operates directly on the MILP-sequence defined in the previous section
and is supported by a rigorous approximation theory over the measurable space HMILP.

5.1 SHIFTED-WINDOW MULTI-SCALE ATTENTION

The geometric structure of MILPs suggests that relationships among constraints can reflect topological
characteristics of the feasible region. To leverage this structure, we employ multi-scale local attention
via sliding windows that extract features from various neighborhoods in the MILP-sequence.

Shifted-Window Local Attention. Given an embedded MILP-sequence Xembed ∈ R(m+4)×(n+2),
derived through linear projection, we define local attention windows that slide across the sequence.
For each token at position i ∈ {1, . . . ,m+4}, a window of size ηk is centered at i, covering elements
from position imin = max(i −

⌊
ηk−1

2

⌋
, 1) to position imax = min(i +

⌈
ηk−1

2

⌉
− 1,m + 4). To

effectively capture the relationship between multi-level features and the MILP’s overall goal, this
window also needs to incorporate the embedding of the objective function feature hc′ at position
m+ 4. Therefore, the position indices ηk(i) for the window attention at position i with the window
size ηk are defined as:

ηk(i) = {j ∈ [imin, imax]} ∪ {m+ 4}. (3)
Then, the local attention at position i for scale ηk is computed as:

Qηk

i = WQXembed,i,K
ηk

j = WKXembed,j ,V
ηk

j = WV Xembed,j , j ∈ ηk(i) (4)

αηk

ij = softmax

(
Qηk

i · (Kηk

j)⊤
√
dk

)
, j ∈ ηk(i), Attηk

i =
∑

j∈ηk(i)

αηk

ij V
ηk

j (5)

where WQ, WK , WV are the linear transformation matrices for Query, Key, and Value, and dk is
the dimension of the key vectors, which is split from the embedding size ddim by the multi-heads.
softmax function is used to normalize the Attention weights.

Multi-Scale MILP-sequence Attention. To aggregate information at different granularities, we
apply local attention using N window sizes. The resulting outputs are averaged to produce the
multi-scale representation,which is like the style in the Figure 2 (b).

Attmulti =
1

N

m+4∑
i=1

N∑
k=1

Attηk

i =
1

N

N∑
k=1

m+4∑
i=1

 ∑
j∈ηk(i)

αηk

ij V
ηk

j

 (6)

where window sizes ηk ∈ [2,m + 4] allow for a comprehensive evaluation of local and global
contextual influences. Let ηmax = maxk(ηk) denote the largest window size.

Hybrid Attention Integration. To capture both multi-scale locality and global context, we define
a hybrid attention mechanism that integrates multi-scale attention with global attention using a
learnable parameter α:

Atthybrid = α ·Attmulti + (1− α) ·Attglobal (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As illustrated in Figure 2, each MILP instance is first geometrically encoded as a feature vector in
Rn+2, and then padded to form an MILP-sequence of length m+ 4. This sequence undergoes linear
projection and position encoding to produce the embedded input:z = [z1, z2, ..., zn+2] + zposition.
With this embedded sequence, MILPnet applies its Hybrid Attention (HYA) mechanism, followed by
residual connections and layer normalization. The computation at the l-th layer proceeds as:

ẑl = HYA(LN(zl−1) + zl−1), zl = MLP(LN(ẑl) + ẑl) (8)

where LN denotes layer norm, MLP refers to a position-wise feedforward network. Detailed
information is in Figure 6 from Appendix.

Time Complexity. The computational complexity of the hybrid attention is O
(
h d (m+4)2 (N+1)

)
where h is the number of attention heads, d is the embedding size, m is the number of the constraints,
and N is the number of windows. Detailed analysis is provided in Appendix I.

5.2 MILPNET REPRESENTATION ON THE MEASURABLE SPACE HMILP

We now formally demonstrate that the multi-scale hybrid architecture of MILPnet is capable of
approximating the feature mappings of any MILP instance, when represented as a sequence in the
measurable topological space HMILP. We define two function classes: FMILP

HYA : HMILP → R for
scalar-valued network mappings, and FMILP

HYA,V : HMILP → Rn for vector-valued network mappings
with fixed output dimension n. By leveraging these mappings and the measurability structure
introduced in Section 4.2 and 4.3, we can prove that for any MILP instance viewed as a sequence:

MILPnet can uniformly approximate MILP feasibility mapping, MILP optimal-solution mapping,
and MILP optimal objective value mapping.

The following theorems formally establish MILPnet’s approximation capabilities (see Appendix G
for detailed proofs and corollary on infinite set):

Theorem 2. Let D ⊂ HMILP be a finite dataset. For any ϵ > 0, there exists a neural network
FHYA ∈ FMILPnet

HYA such that:

P
(
IFHYA(x)>

1
2
̸= Φfeas(x)

)
< ϵ, ∀x ∈ D, (9)

Theorem 3. Let D ⊂ HMILP be a finite dataset. For any ϵ, δ > 0, there exist two neural networks
FHYA,1, FHYA,2 ∈ FMILPnet

HYA such that for classifying whether the objective value is finite:

P
(
IFHYA,1(x)>

1
2
̸= IΦobj(x)∈R

)
< ϵ, ∀x ∈ D (10)

where IΦobj(x)∈R is an indicator function that determines whether the objective value is finite. And for
the regression problem of predicting the objective value:

P (|FHYA,2(x)− Φobj(x)| > δ) < ϵ, ∀x ∈ D ∩ Φ−1
obj (R) (11)

Theorem 4. Let D ⊂ Φ−1
obj (R) ⊂ HMILP be a finite dataset. For any ϵ, δ > 0, there exists a Hybrid

attention based network FHYA,V ∈ FMILPnet
HYA,V such that:

P (∥FHYA,V (x)− Φsolu(x)∥ > δ) < ϵ, ∀x ∈ D, (12)

To train any MILPnet Fϕ to approximate these mappings, we minimize the error between MILPnet
and the feature mapping as the loss function L(ϕ) = E[∥y − Fϕ(x)∥2], where y is ground truth.
6 EXPERIMENT

We conducted comprehensive experiments to evaluate the effectiveness, efficiency, and generalizabil-
ity of MILPnet to answer:RQ1: How effectively does MILPnet represent and generalize on Foldable
MILP instances? RQ2: How does MILPnet perform on real-world MILP instances? RQ3: How do
MILPnet’s architectural components impact performance?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Generalization results for feasibility mapping on FOLD(20,*) and FOLD(50,*), with 10,000
foldable instances per setting and pre-training times of 3 and 10 minutes. Full results are provided in
Appendix B.5.

Method Type FOLD(20,6) FOLD(20,16) FOLD(50,20) FOLD(50,30)
MSE ErrorN Params MSE ErrorN Params MSE ErrorN Params MSE ErrorN Params

SCIP Exact —— 0 —— —— 0 —— —— 0 —— —— 0 ——
GCN Graph 0.3073 5000 1.21M 0.3073 5000 1.21M 0.3073 5000 1.21M 0.3073 5000 1.21M
GIN Graph 0.4200 5000 1.63M 0.4209 5000 1.63M 0.4200 5000 1.63M 0.4204 5000 1.63M
SAGE Graph 0.4642 5000 0.66M 0.4999 5000 0.66M 0.4714 5000 0.66M 0.4586 5000 0.66M
PGN Graph 0.2508 5000 1.64M 0.2523 5000 1.64M 0.2511 5000 1.64M 0.2511 5000 1.64M
GraphGPS Graph 0.2500 5000 0.66M 0.2500 5000 0.66M 0.2500 5000 0.66M 0.2500 5000 0.66M
GCNrf Rf Graph 0.2498 5000 1.21M 0.2500 5000 1.21M 0.2476 4334 1.21M 0.5223 5000 1.21M
GINrf Rf Graph 0.2500 5000 1.63M 0.2501 5000 1.63M 0.2500 5000 1.63M 0.4204 5000 1.63M
SAGErf Rf Graph 0.2499 5009 0.66M 0.2499 4995 0.66M 0.2500 4997 0.66M 0.2500 5002 0.66M
PGNrf Rf Graph 0.2582 5000 1.64M 0.2560 5000 1.64M 0.2502 5000 1.64M 0.2502 5000 1.64M
GraphGPSrf Rf Graph 0.2510 5000 0.66M 0.2510 5000 0.66M 0.2500 5000 0.66M 0.2502 5000 0.66M
MILPnet Ours (Seq) 0.0005 0 0.56M 0.0004 0 0.56M 0.0005 0 0.60M 0.0023 12 0.60M

Figure 3: Representation Dynamics on feasibility for FOLD20 and FOLD50. Full results are in
Figure 9 in Appendix.

6.1 EXPERIMENT SETUP

Datasets. We evaluate MILPnet on two categories of datasets: (1) Synthetic Foldable MILP Instances
(FOLD(n,m)): Following (Chen et al., 2023b), we generate Foldable MILP instances where n and m
are the number of variables and constraints, respectively. (2) Real-World MILP Benchmarks: We se-
lect four common MILP benchmarks: IP (Item Placement) from ML4CO competition dataset (Gasse
et al., 2022), SC (Set Covering) (Feige, 1998; Chvátal, 1979), CA (Capacitated Assignment) (Bandya-
padhyay et al., 2017), and FC (Facility Location) (Charikar et al., 1999). They are all Unfoldable
MILP instances. More details on the datasets are provided in Appendix K.3 and Appendix K.5.

Baselines. We compare MILPnet against several representative graph-based learning models, in-
cluding GCN (Chen et al., 2023b),GIN (Xu et al., 2019),SAGE (Wu et al., 2021),PGN (Cappart
et al., 2022),GraphGPS (Wang et al., 2023b). Each baseline has an augmented variation with random
features (RF), indicated by a superscript ∗rf, specifically designed to overcome WL-test limitations in
feasibility prediction. Appendix K.1 provides more details on the baselines.

Metrics. We use MSE (Mean Squared Error) and ErrorN (number of incorrect predictions)(Chen
et al., 2023b), Params (number of model parameters) to evaluate performance. Lower is better.

6.2 PERFORMANCE ON FOLDABLE MILP INSTANCES

Representation Effectiveness. We evaluate MILPnet on Foldable MILP instances with increasing
complexity: FOLD(20,6), FOLD(20,16), FOLD(50,20), and FOLD(50,30). Figure 3 shows that
MILPnet converges rapidly to near-zero ErrorN while standard graph-based models fail to improve
beyond their initial performance. Models with random feature augmentation show moderate improve-
ments on simpler instances but struggle to converge on more complex cases such as FOLD(50,30).
Similar trends are observed in MSE (more details in Appendix B.4). These results confirm that MILP-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Generalization experiments for End-to-
End optimal solution predict 1-hour of pre-train.

Method Type FOLD(20,6) FOLD(20,16)
MSE Params MSE Params

GCN Graph 0.0751 1.17M 0.2000 1.17M
GIN Graph 0.0753 1.59M 0.2000 1.59M
SAGE Graph 0.0750 0.60M 0.2000 0.60M
PGN Graph 70.1485 1.64M 20.5955 1.64M
GraphGPS Graph 0.0863 0.60M 4.0395 0.60M
MILPnet(Ours) Sequence 0.0473 0.56M 0.1964 0.56M
Method Type FOLD(50,20) FOLD(50,30)

MSE Params MSE Params
GCN Graph 0.1000 1.17M 0.1509 1.17M
GIN Graph 0.1000 1.59M 0.1501 1.59M
SAGE Graph 0.1000 0.86M 0.1500 0.86M
PGN Graph 55.8530 1.64M 36.5160 1.64M
GraphGPS Graph 0.1020 0.67M 0.1551 0.67M
MILPnet(Ours) Sequence 0.1158 0.62M 0.1654 0.63M

Table 3: Generalization experiments for End-to-
End optimal objective value prediction

Method Type FOLD(20,6) FOLD(20,16)
MSE Params MSE Params

GCN Graph 1.776e-10 0.88M 3.928e-10 0.58M
GIN Graph 6.489e-10 0.12M 6.489e-10 0.16M
SAGE Graph 2.235e-9 0.66M 6.742e-10 0.60M
PGN Graph 1.958e-10 2.91M 5.4934e-10 2.91M
GraphGPS Graph 3.769e-6 0.92M 1.365e-05 0.92M
MILPnet(Ours) Sequence 1.309e-10 0.56M 2.828e-10 0.56M
Method Type FOLD(50,20) FOLD(50,30)

MSE Params MSE Params
GCN Graph 3.333e-10 0.96M 5.8012e-10 0.96M
GIN Graph 2.629e-10 1.30M 3.458e-10 1.47M
SAGE Graph 1.219e-8 0.66M 7.555e-9 0.92M
PGN Graph 3.935e-10 2.91M 3.762e-9 2.30M
GraphGPS Graph 2.531e-7 0.92M 3.442e-6 0.92M
MILPnet(Ours) Sequence 9.458e-12 0.60M 3.007e-10 0.60M

Table 4: Generalization results for feasibility prediction on larger Foldable instances FOLD(200,20),
FOLD(300,40), and FOLD(500,60), each with 10,000 instances and 1 hour of pre-training.

Method Type FOLD(200,20) FOLD(300,40) FOLD(500,60)
MSE ErrorN Params MSE ErrorN Params MSE ErrorN Params

SCIP Exact —— 0 —— —— 0 —— —— 0 ——
GCN Graph 0.2676 5000 0.03M 0.3073 5000 0.08M 0.2500 4999 0.14M
GIN Graph 0.2573 5000 0.04M 0.3099 5000 0.10M 0.2500 5000 0.21M
SAGE Graph 0.2814 5000 0.03M 0.3951 5000 0.05M 0.2500 5000 0.12M
PGN Graph 0.2508 5000 0.08M 0.2523 5000 0.14M 0.2523 5000 0.29M
GraphGPS Graph 0.2500 5000 0.03M 0.2500 5000 0.59M 0.2501 5000 0.92M
GCNrf Rf Graph 0.2497 4835 0.03M 0.2500 5000 0.80M 0.2611 4999 0.14M
GINrf Rf Graph 0.2500 4998 0.04M 0.2500 5012 0.10M 0.2501 5003 0.21M
SAGErf Rf Graph 0.2500 5011 0.03M 0.2500 4998 0.05M 0.2500 4981 0.12M
PGNrf Rf Graph 0.2544 5000 0.08M 0.2500 5000 0.14M 0.2506 5000 0.29M
GraphGPSrf Rf Graph 0.2502 5000 0.03M 0.2510 5000 0.05M 0.2506 5000 0.92M
MILPnet Seq (Ours) 0.0155 191 0.02M 0.0521 560 0.04M 0.1832 2453 0.11M

net effectively captures the geometric and combinatorial structure of MILPs, providing empirical
support for the theoretical guarantees in Theorems 2–4.

Figure 4: Inference time comparisons

Generalization Abilities. We evaluate MILPnet on both
small (FOLD(20,*), FOLD(50,*)) and large (FOLD(200,20),
FOLD(300,40), and FOLD(500,60)) Foldable MILP in-
stances under equal pre-training time, focusing on three
End-to-End prediction tasks: feasibility, optimal solution,
and optimal objective value. In feasibility prediction (Ta-
bles 1 and 4), MILPnet improves MSE by 1–3 orders of
magnitude and reduces ErrorN by 90% or more in most
cases. For optimal solution and value prediction (Tables 2
and 3), MILPnet significantly exceeds baselines while using
substantially fewer parameters.

Efficiency Analysis and Sparse Variant. Figure 4 shows
that MILPnet consistently achieves the fastest inference time across both small and large Foldable
MILPs. GPU memory usage (Appendix Figure 13) remains moderate (< 4GB on FOLD300), making
it suitable for deployment on a wide range of hardware. We also provide a sparse (stride) MILPnet
variant that reduces the time complexity to 1

s of the original, with FOLD200 faster inference results
shown in Table 14 and details in the AppendixJ,indicates its potential computational scalability.

Overall Model Comparison. We summarize performance across key metrics, including generaliza-
tion, parameter count, inference time, GPU memory, and ErrorN, using radar charts with performance
ranks(Figures 1 for FOLD50 and Appendix Figure 14 for FOLD300). In both cases, MILPnet
consistently forms the outermost polygon, indicating superior performance in accuracy, efficiency,
and resource usage compared to graph-based baselines.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Predict + Search performance of MILPnet on four benchmarks. “Rand” denotes randomly
generated initial solutions. “gap” is computed as gap = (ŷ − y∗) / (|y∗| + 10−9), where y∗ is the
exact optimal value by SCIP.“PT” means the predicting optimal candidate solution. “ST” is total
solving time including search. Full Comparisons with advanced methods are in Appendix C.1.

Method Type IP SC CA FC
gap(↓) PT(s) (↓) ST(s) (↓) gap(↓) PT(s) (↓) ST(s) (↓) gap(↓) PT(s) (↓) ST(s) (↓) gap(↓) PT(s) (↓) ST(s) (↓)

Rand Random 36.5397 —— 0.1240 1.7166 —— 2.0173 2.8057 —— 6.7830 1.4939 —— 1.7786
GCN Graph 0.0389 0.2443 0.3774 1.1461 0.2391 0.8386 0.9890 0.2278 3.2328 0.4257 0.2518 1.4875
MILPnet Seq(Ours) 0.0234 0.0625 0.1864 0.3483 0.0137 0.6915 0.7651 0.0139 3.2300 0.3503 0.0177 1.3773

Table 6: Performance impact of MILPnet’s architectural components

(a) Ablation results on the impact of HYA and MSA

Method FOLD(20,6) FOLD(50,20) FOLD(100,20)
MSE ErrorN MSE ErrorN MSE ErrorN

MILPnet (ours) 0.0001 0 0.0001 0 0.0074 6
w/o HYA 0.2503 5036 0.2501 4999 0.2501 4987
w/o MSA 0.2500 5051 0.2500 5008 0.2500 4995

(b) Impact of ηmax (“/n” means ηmax = n)

Method FOLD(20,6) FOLD(50,30) FOLD(100,20)
MSE ErrorN MSE ErrorN MSE ErrorN

MILPnet /2 0.0005 0 0.0477 235 0.0558 318
MILPnet /3 0.0006 0 0.0481 259 0.0471 272
MILPnet /4 0.0026 0 0.0841 764 0.0774 727

6.3 PERFORMANCE ON REAL-WORLD MILP INSTANCES

While our focus is on sequence-based representation, we further demonstrate the utility of MILPnet
in solving real-world MILP problems. We adopt a predict + search approach, where the model is
trained to predict an optimal solution, which is then refined via a lightweight local heuristic. Table 5
compares MILPnet with graph-based baselines and a random search baseline. MILPnet consistently
achieves the smallest optimality gap to the exact solver, and the lowest overall solving time. These
results demonstrate the model’s strong representation quality and practical solving effectiveness.

6.4 IMPACT OF ARCHITECTURAL COMPONENTS

Table 7: Permutation invariance Experiments.
“Or *” represents randomly permutated con-
straint order in the MILP-sequence.“Original
*”represents the original order.

Order Method + Arch FOLD(50,20) FOLD(50,30)
MSE ErrorN MSE ErrorN

GCN (Original) GNN + Graph 0.4719 5000 0.4719 5000
Original MILPnet + Seq 0.0005 0 0.0022 0
Or 1 MILPnet + Seq 0.0006 0 0.0021 0
Or 2 MILPnet + Seq 0.0001 0 0.0014 0
Or 3 MILPnet + Seq 0.0004 0 0.0021 9

Ablation Study on Hybrid and Multi-scale Atten-
tion. To evaluate the contribution of MILPnet’s atten-
tion design, we compare the removal of the Hybrid
Attention (HYA) and Multi-Scale Attention (MSA)
components. Table 6a shows that removing either
component significantly degrades feasibility predic-
tion accuracy. In particular, models without MSA
struggle to capture local structure, while disabling
HYA weakens global context integration. These re-
sults confirm that both components are essential to
MILPnet’s representation effectiveness.

Ablation study on multi-scale attention blocks We
conduct an ablation study on the depth of the multi-scale attention module by varying the number of
blocks from 1 to 3. The results, which visualize and summarize its representational and generalization
capabilities, are provided in Figure 8 in the Appendix B and Table 8. A key finding is that deeper
multi-scale attention modules offer a significant improvement in convergence speed and representation
at no cost to generalization ability.

Table 8: Ablation study on the number of multi-
scale attention blocks (L).

Number of blocks Method + Arch FOLD(20,16) FOLD(50,20)
MSE ErrorN MSE ErrorN

GCN (Original) GNN + Graph 0.3070 5000 0.4719 5000
L=1 MILPnet + Seq 0.0006 0 0.0003 0
L=2 MILPnet + Seq 0.0001 0 0.0001 0
L=3 MILPnet + Seq 0.0004 0 0.0001 0

Impact of the Maximum Window Size As
shown in Tables 6b (pre-train 5mins) and Ap-
pendix Fig 7, the maximum window size ηmax

influences the trade-off between convergence
speed and representational capacity. Smaller
windows accelerate convergence on simpler in-
stances like FOLD(20,), while large windows
slow training and degrade performance on com-
plex cases such as FOLD(100,20). These results
indicate that ηmax requires careful tuning and

does not follow a monotonic pattern.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Permutation Sensitivity of MILP-sequence. Randomly shuffling the constraint and variable
order in FOLD520 and FOLD50 keeps MILPnet’s MSE within the same magnitude (Table 7,11 in
Appendix B) and well below that of other models (typical MSE ≈ 0.x, error ≈ 5000). These results
demonstrate that ours MILP-sequence construction preserves invariance under both constraint and
variable permutations.

6.5 MILPNET SOLVING EFFICIENCY ANALYSIS

Figure 5: Neural pre solving by
MILPnet for SC(1000,500) for 6
settings.

We analyze the solving efficiency of MILPnet across two
dimensions: (i) Large-scale public MILP benchmarks (with
1000+ variables, details in the Appendix) to evaluate each
framework component; (ii) Heterogeneous generalization and
scalability on four very large real-world benchmarks (with
10000+ variables). To quantify solution quality in details,
we integrate both MILPNet and graph-based baselines as
pre-solving heuristics using Neural Diving (Paulus & Krause,
2023b) to obtain compact sub-problems within a branch-and-
bound framework for (i).

Impact of Window Size ηmax and Attention Depth L We eval-
uate the impact of maximum window size ηmax and attention
depth L on two large MILP benchmarks. Table 9 and Figure 5
show that performance is relatively insensitive to these hyper-
parameters, with consistent improvements (Nodes,Time,Dual
Gap,Obj) over graph-based methods and Strong Branching
across all configurations.
Table 9: Branch and Bound performance of MILPnet (Neural Diving based pre-solving heuristic:
H.Seq.) on 1000+ variable benchmarks for 50 instances within 60s solving limit.

Method Type SC(1000,500) CA(1000,500)
Obj.(↓) Node(↓) Time (↓) Dual Gap Obj.(↑) Node(↓) Time (↓) Dual Gap

SB Exact 230.5 ± 28.3 39.0 ± 41.2 19.1 ± 15.0 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 3.4 ± 1.0 0.00±0.00(%)
Rand Random 235.9 ± 30.5 40.1 ± 45.3 20.0 ± 14.9 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 3.4 ± 1.0 0.00±0.00(%)
GIN H. Graph 230.5 ± 28.3 38.8 ± 40.0 18.6 ± 15.4 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 1.8 ± 0.2 0.00±0.00(%)
GraphGPS H. Graph 230.5 ± 28.3 38.9 ± 44.8 17.9 ± 15.1 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 1.8 ± 0.2 0.00±0.00(%)
MILPnet/2 H. Seq. L=1 230.5 ± 28.3 37.7 ± 39.8 16.5 ± 15.5 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 1.7 ± 0.2 0.00±0.00(%)
MILPnet/2 H. Seq. L=2 230.5 ± 28.3 37.7 ± 39.8 16.5 ± 15.6 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 1.5 ± 0.2 0.00±0.00(%)
MILPnet/2 H. Seq. L=3 230.5 ± 28.3 38.5 ± 41.0 16.2 ± 15.4 0.17± 1.21(%) 146.0 ± 26.6 1.0 ± 0.0 1.5 ± 0.2 0.00±0.00(%)
MILPnet/2 H. Seq. L=4 230.5 ± 28.3 38.3 ± 42.0 16.3 ± 15.5 0.17± 1.21(%) 146.0 ± 26.6 1.0 ± 0.0 1.5 ± 0.2 0.00±0.00(%)
MILPnet/3 H. Seq. L=1 230.5 ± 28.3 37.7 ± 39.9 16.5 ± 15.5 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 1.7 ± 0.2 0.00±0.00(%)
MILPnet/4 H. Seq. L=1 230.5 ± 28.3 37.7 ± 39.8 16.5 ± 15.5 0.21± 1.23(%) 146.0 ± 26.6 1.0 ± 0.0 1.7 ± 0.2 0.00±0.00(%)

Table 10: Heterogeneous generalization on
very-large benchmarks (Gleixner et al., 2021)
within 1500s.

Method 30n20b8 blp-ic98 blp-ar98
18.4K 13.6K 16.0K

Time Obj Time Obj Time Obj

SCIP 163.96 302.00 1500.15 4620.13 1500.10 6215.35

ConPAS(GCN) 175.86 302.00 1500.00 4817.66 1500.01 6254.08
ConPAS(MILPnet) 94.64 302.00 1500.00 4588.51 1500.01 6220.57

Heterogeneous solving generalization To assess het-
erogeneous generalization capability, we integrate
MILPnet as a novel representation framework that
replaces graph-based representations in advanced
ML solvers such as ConPAS. Trained on the SC
dataset, MILPnet is directly transferred to solve
very large MILP instances from open-source bench-
marks (Gleixner et al., 2021). The results, includ-
ing primal bound iterations (Fig.12 in Appendix)
and solving efficiency (Table 10), demonstrate that
MILPnet generalizes stably and scalably across het-
erogeneous, large-scale benchmarks, achieving consistent performance improvements in all tested
cases.Details are in Appendix C.2.

7 CONCLUSION

We propose MILPnet, a novel multi-scale hybrid framework for representing MILP problems through
sequence modeling, rather than conventional graph methods. We prove that this architecture can
approximate essential MILP mappings for arbitrary instances. Empirical evaluation confirms that
MILPnet outperforms graph-based methods in terms of efficiency and performance, while addressing
the Foldable MILPs where graph-based approaches fail.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our work is fully reproducible. Source code is available at https://anonymous.4open.
science/r/MILPnet-2BD1/. All datasets, experiments, and architecture hyperparameters used
in our experiments are documented in the Appendix K and Appendix B.

REFERENCES

Charalambos D Aliprantis and Kim C Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Springer, Berlin, 3rd edition, 2006.

Sayan Bandyapadhyay, Santanu Bhowmick, Tanmay Inamdar, and Kasturi Varadarajan. Capaci-
tated covering problems in geometric spaces, 2017. URL https://arxiv.org/abs/1707.
05170.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. CoRR, abs/1811.06128, 2018. URL http://arxiv.org/
abs/1811.06128.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks, 2022. URL https:
//arxiv.org/abs/2102.09544.

Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approximation
algorithm for the k-median problem (extended abstract). In Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, STOC ’99, pp. 1–10, New York, NY, USA, 1999.
Association for Computing Machinery. ISBN 1581130678. doi: 10.1145/301250.301257. URL
https://doi.org/10.1145/301250.301257.

Hao Chen, Kai-Chieh Hsu, Walker J. Turner, Po-Hsuan Wei, Keren Zhu, David Z. Pan, and Haoxing
Ren. Reinforcement learning guided detailed routing for custom circuits. In Proceedings of the 2023
International Symposium on Physical Design, ISPD ’23, pp. 26–34, New York, NY, USA, 2023a.
Association for Computing Machinery. ISBN 9781450399784. doi: 10.1145/3569052.3571874.

Lin Chen, Yiran Liu, Zehan Qi, Zhaoyuan Wu, and Yang Yu. Constraint-adaptive reinforcement learn-
ing for large-scale power system planning. November 2024. doi: 10.36227/techrxiv.173161402.
22049085/v1.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
linear programs by graph neural networks, 2023b. URL https://arxiv.org/abs/2210.
10759.

Antonia Chmiela, Elias B. Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning
to schedule heuristics in branch-and-bound, 2021. URL https://arxiv.org/abs/2103.
10294.

V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4
(3):233–235, 1979. doi: 10.2307/3689577.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Polyhedral Approaches to Mixed
Integer Linear Programming, pp. 343–385. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
ISBN 978-3-540-68279-0. doi: 10.1007/978-3-540-68279-0_11. URL https://doi.org/
10.1007/978-3-540-68279-0_11.

L. E Dubins and L. J Savage. How to gamble if you must. 2014.

Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, July 1998. ISSN
0004-5411. doi: 10.1145/285055.285059. URL https://doi.org/10.1145/285055.
285059.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. CoRR, abs/1906.01629, 2019. URL
http://arxiv.org/abs/1906.01629.

11

https://anonymous.4open.science/r/MILPnet-2BD1/
https://anonymous.4open.science/r/MILPnet-2BD1/
https://arxiv.org/abs/1707.05170
https://arxiv.org/abs/1707.05170
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1811.06128
https://arxiv.org/abs/2102.09544
https://arxiv.org/abs/2102.09544
https://doi.org/10.1145/301250.301257
https://arxiv.org/abs/2210.10759
https://arxiv.org/abs/2210.10759
https://arxiv.org/abs/2103.10294
https://arxiv.org/abs/2103.10294
https://doi.org/10.1007/978-3-540-68279-0_11
https://doi.org/10.1007/978-3-540-68279-0_11
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/285055.285059
http://arxiv.org/abs/1906.01629

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maxime Gasse, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia
Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil, Pawel
Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageor-
giou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon,
Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Shengcheng
Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang
Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and Mao Kun. The machine
learning for combinatorial optimization competition (ml4co): Results and insights, 2022. URL
https://arxiv.org/abs/2203.02433.

Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep instance generative
framework for milp solvers under limited data availability, 2024. URL https://arxiv.org/
abs/2310.02807.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke,
Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shi-
nano. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library.
Mathematical Programming Computation, 2021. doi: 10.1007/s12532-020-00194-3. URL
https://doi.org/10.1007/s12532-020-00194-3.

Michael Goldman and Dario Trevisan. Optimal transport methods for combinatorial optimization
over two random point sets, 2023.

Ralph E. Gomory. An algorithm for integer solutions to linear programs. 1958.

Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. CoRR, abs/2006.15212, 2020. URL https://arxiv.
org/abs/2006.15212.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming,
2023. URL https://arxiv.org/abs/2302.05636.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning, 2023. URL https://
arxiv.org/abs/2302.01578.

Joey Huchette and Juan Pablo Vielma. A geometric way to build strong mixed-integer programming
formulations, 2019. URL https://arxiv.org/abs/1811.10409.

Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28:497, 1960.

He Ma, Wenlian Lu, and Jianfeng Feng. Efficient combinatorial optimization via heat diffusion.
ArXiv, abs/2403.08757, 2024. URL https://api.semanticscholar.org/CorpusID:
268379750.

Zoubir Mammeri. Reinforcement learning based routing in networks: Review and classification of
approaches. IEEE Access, 7:55916–55950, 2019. doi: 10.1109/ACCESS.2019.2913776.

J. V. Neumann. On a certain topology for rings of operators. Annals of Mathematics, 37(1):111–115,
1936.

Max B. Paulus and Andreas Krause. Learning to dive in branch and bound, 2023a. URL https:
//arxiv.org/abs/2301.09943.

Max B. Paulus and Andreas Krause. Learning to dive in branch and bound, 2023b. URL https:
//arxiv.org/abs/2301.09943.

12

https://arxiv.org/abs/2203.02433
https://arxiv.org/abs/2310.02807
https://arxiv.org/abs/2310.02807
https://doi.org/10.1007/s12532-020-00194-3
https://arxiv.org/abs/2006.15212
https://arxiv.org/abs/2006.15212
https://arxiv.org/abs/2302.05636
https://arxiv.org/abs/2302.01578
https://arxiv.org/abs/2302.01578
https://arxiv.org/abs/1811.10409
https://api.semanticscholar.org/CorpusID:268379750
https://api.semanticscholar.org/CorpusID:268379750
https://arxiv.org/abs/2301.09943
https://arxiv.org/abs/2301.09943
https://arxiv.org/abs/2301.09943
https://arxiv.org/abs/2301.09943

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization, 2024. URL https://arxiv.org/abs/
2406.01661.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion, 2023. URL https://arxiv.org/abs/2302.08224.

Wei tian Wu and Xin min Yang. The hybridization of branch and bound with metaheuristics for
nonconvex multiobjective optimization, 2022.

Jie Wang, Zhihai Wang, Xijun Li, Yufei Kuang, Zhihao Shi, Fangzhou Zhu, Mingxuan Yuan, Jia
Zeng, Yongdong Zhang, and Feng Wu. Learning to cut via hierarchical sequence/set model for
efficient mixed-integer programming, 2024.

Shaohua Wang, Junyuan Zhou, Haojian Liang, Zhenbo Wang, Cheng Su, and Xiao Li. A new
approach for solving location routing problems with deep reinforcement learning of emergency
medical facility. In Proceedings of the 8th ACM SIGSPATIAL International Workshop on Security
Response Using GIS, EM-GIS ’23, pp. 50–53, New York, NY, USA, 2023a. Association for
Computing Machinery. ISBN 9798400703461. doi: 10.1145/3615884.3629429. URL https:
//doi.org/10.1145/3615884.3629429.

Tianze Wang, Amir H. Payberah, and Vladimir Vlassov. Graph representation learning with graph
transformers in neural combinatorial optimization. In 2023 International Conference on Machine
Learning and Applications (ICMLA), pp. 488–495, 2023b. doi: 10.1109/ICMLA58977.2023.
00074.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, January 2021. ISSN 2162-2388. doi: 10.1109/tnnls.2020.2978386.
URL http://dx.doi.org/10.1109/TNNLS.2020.2978386.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019. URL https://arxiv.org/abs/1810.00826.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn & gbdt-guided fast
optimizing framework for large-scale integer programming. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 39864–39878. PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/ye23e.html.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to
size generalization in graph neural networks, 2021. URL https://arxiv.org/abs/2010.
08853.

Kexiong Yu, Hang Zhao, Yuhang Huang, Renjiao Yi, Kai Xu, and Chenyang Zhu. Disco: Efficient
diffusion solver for large-scale combinatorial optimization problems, 2024. URL https://
arxiv.org/abs/2406.19705.

Zidong Zhang, Dongxia Zhang, and Robert C. Qiu. Deep reinforcement learning for power system
applications: An overview. CSEE Journal of Power and Energy Systems, 6(1):213–225, 2020. doi:
10.17775/CSEEJPES.2019.00920.

13

https://arxiv.org/abs/2406.01661
https://arxiv.org/abs/2406.01661
https://arxiv.org/abs/2302.08224
https://doi.org/10.1145/3615884.3629429
https://doi.org/10.1145/3615884.3629429
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1810.00826
https://proceedings.mlr.press/v202/ye23e.html
https://proceedings.mlr.press/v202/ye23e.html
https://arxiv.org/abs/2010.08853
https://arxiv.org/abs/2010.08853
https://arxiv.org/abs/2406.19705
https://arxiv.org/abs/2406.19705

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED ARCHITECTURE FOR MILPNET

Figure 6 illustrates the detailed architecture of MILPnet, which connects a feed-forward network
with the core Multi-scale based Hybrid Attention.

Figure 6: Detailed Architecture of MILPnet.

B FULL RESULTS ON MAXIMUM WINDOW SIZE,ATTENTION BLOCKS,
REPRESENTATION, AND GENERALIZATION

B.1 ABLATION STUDIES ON THE ηmax

We conducted a study on the maximum sliding-window size and visualized the resulting representation
curves in Figure 7.

Figure 7: Performance of varied max window size of MILPnet on FOLD(20,16) and FOLD(100,20)
for feasibility. We can observe that the maximum sliding window size affects the convergence speed
of the feasibility mapping approximation. The window size does not follow a simple pattern, but
rather requires balancing.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 ABLATION STUDY ON THE NUMBER OF ATTENTION BLOCKS L

We conduct the ablation study on the number of attention blocks on FOLD(20) and FOLD(50).

Figure 8: Performance of varied numbers of multi-scale attention blocks in MILPnet on FOLD(20,16)
and FOLD(50,20) for feasibility with the same embedding size and same window size for blocks
=1,2,3.

B.3 PERMUTATION SENSITIVITY ON VARIABLE ORDERS

Table 11: Experiments on variable permutation invariance. “V-Or *” represents randomly permutated
variable order in the MILP-sequence.“Original *”represents the original order.

Order Method + Arch FOLD(20,16) FOLD(50,20)
MSE ErrorN MSE ErrorN

GCN (Original) GNN + Graph 0.3070 5000 0.4719 5000
Original MILPnet + Seq 0.0003 0 0.0003 0
V-Or 1 MILPnet + Seq 0.0006 0 0.0001 5
V-Or 2 MILPnet + Seq 0.0003 0 0.0003 0
V-Or 3 MILPnet + Seq 0.0004 0 0.0005 3

B.4 REPRESENTATION EXPERIMENTS

We conducted representation experiments on the representation of feasible mapping, the optimal
solution mapping, and the objective optimal value, for MILP instances. The embedding sizes used
in our experiments were chosen from {32, 128, 216, 256, 512}. Figure 9 shows the representation
results of feasible mapping, Figure 10 shows the results of optimal solution mapping, and Figure 15
shows the results of the objective optimal value mapping.

B.5 GENERALIZATION EXPERIMENTS RESULTS

We provide the full results on FOLD(20,) to FOLD(50,) in Table 9 following.

B.6 CROSS-SIZE ADAPTION

Our approach also enables End to End Cross-Size generalization from FOLD(n,m1) to FOLD(n,m2),
which is quite difficult for Bipartite Graph-based MILP End-to-End representation methods(Yehudai
et al., 2021). We directly transfer the network pre-trained on FOLD (50,20) on the feasibility mapping
to FOLD (50,30). As shown by the heatmap, the pre-trained network also easily achieves good
performance on FOLD (50,30), which demonstrates that our model can still perform inference directly
when faced with changes in length, effectively transferring its prior knowledge. This verifies that our
network can effectively extract features.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Representation experiments on feasibility for FOLD20 ((a) for FOLD(20,6), (b) for FOLD(20,16)) and
FOLD50 ((c) for FOLD(50,20),(d) for FOLD(50,30)). MILPnet approximates the feasible mapping of Foldable
MILP instances more efficiently.

Table 12: Generalization experiments for feasibility mapping on FOLD(20,*) to FOLD(50,*), with
10,000 foldable MILP instances from each.3M(20)/10M(50) means pre-train time for FOLD20 is
3mins, FOLD50 is 10mins;5M(20)/30M(50) means pre-train time for FOLD20 is 5mins, FOLD50 is
30mins.

Method Type FOLD(20,6) FOLD(20,16) FOLD(50,20) FOLD(50,30)
MSE ErrorN Params MSE ErrorN Params MSE ErrorN Params MSE ErrorN Params

SCIP Exact —— 0 —— —— 0 —— —— 0 —— —— 0 ——
GCN3M(20)/10M(50) Graph 0.3073 5000 1.21M 0.3073 5000 1.21M 0.3073 5000 1.21M 0.3073 5000 1.21M
GCN5M(20)/30M(50) Graph 0.3073 5000 1.21M 0.3070 5000 1.21M 0.4719 5000 1.21M 0.4719 5000 1.21M
GIN3M(20)/10M(50) Graph 0.4200 5000 1.63M 0.4209 5000 1.63M 0.4200 5000 1.63M 0.4204 5000 1.63M
GIN5M(20)/30M(50) Graph 0.4199 5000 1.63M 0.2999 5000 1.63M 0.2939 5000 1.63M 0.4204 5000 1.63M
SAGE3M(20)/10M(50) Graph 0.4642 5000 0.66M 0.4999 5000 0.66M 0.4714 5000 0.66M 0.4586 5000 0.66M
SAGE5M(20)/30M(50) Graph 0.4642 5000 0.66M 0.4999 5000 0.66M 0.4714 5000 0.66M 0.4856 5000 0.66M
PGN3M(20)/10M(50) Graph 0.2508 5000 1.64M 0.2523 5000 1.64M 0.2511 5000 1.64M 0.2511 5000 1.64M
PGN5M(20)/30M(50) Graph 0.2511 5000 1.64M 0.2511 5000 1.64M 0.2512 5000 1.64M 0.2512 5000 1.64M
GraphGPS3M(20)/10M(50) Graph 0.2500 5000 0.66M 0.2500 5000 0.66M 0.2500 5000 0.66M 0.2500 5000 0.66M
GraphGPS5M(20)/30M(50) Graph 0.2500 5000 0.66M 0.2500 5000 0.66M 0.2500 5000 0.66M 0.2500 5000 0.66M
GCNrf

5M(20)/30M(50) Rf Graph 0.2498 5000 1.21M 0.2500 5000 1.21M 0.2476 4334 1.21M 0.5223 5000 1.21M
GCNrf

5M(20)/30M(50) Rf Graph 0.2126 2853 1.21M 0.2499 4921 1.21M 0.1177 0 1.21M 0.2402 0 1.21M
GINrf

3M(20)/10M(50) Rf Graph 0.2500 5000 1.63M 0.2501 5000 1.63M 0.2500 5000 1.63M 0.4204 5000 1.63M
GINrf

5M(20)/30M(50) Rf Graph 0.2499 4757 1.63M 0.2500 5000 1.63M 0.2500 5000 1.63M 0.2458 2603 1.63M
SAGErf

3M(20)/10M(50) Rf Graph 0.2499 5009 0.66M 0.2499 4995 0.66M 0.2500 4997 0.66M 0.2500 5002 0.66M
SAGErf

5M(20)/30M(50) Rf Graph 0.2499 5009 0.66M 0.2499 4995 0.66M 0.2500 4998 0.66M 0.2500 4999 0.66M
PGNrf

3M(20)/10M(50) Rf Graph 0.2582 5000 1.64M 0.2560 5000 1.64M 0.2502 5000 1.64M 0.2502 5000 1.64M
PGNrf

5M(20)/30M(50) Rf Graph 0.2507 5000 1.64M 0.2514 5000 1.64M 0.2512 5000 1.64M 0.2502 5000 1.64M
GraphGPSrf

3M(20)/10M(50) Rf Graph 0.2510 5000 0.66M 0.2510 5000 0.66M 0.2500 5000 0.66M 0.2502 5000 0.66M
GraphGPSrf

5M(20)/30M(50) Rf Graph 0.2510 5000 0.66M 0.2510 5000 0.66M 0.2500 5000 0.66M 0.2520 5000 0.66M
MILPnet3M(20)/10M(50) Ours (Seq) 0.0005 0 0.56M 0.0004 0 0.56M 0.0005 0 0.60M 0.0023 12 0.60M
MILPnet5M(20)/30M(50) Ours (Seq) 0.0003 0 0.56M 8.53e-5 0 0.56M 0.0005 0 0.60M 0.0082 0 0.60M

C MILPNET SOLVING EFFICIENCY RESULTS

C.1 ADDITIONAL EXPERIMENTS ON REAL-WORLD BENCHMARKS

This part, we use MILPnet and advanced graph-based network for predicting the near-optimal solution
and refine by a local heuristic algorithm, the results are summarized in following Table 13. This result
demonstrate that MILPnet consistently outperforms these advanced graph-based models in terms
of solving efficiency and inference speed. This further validates the effectiveness of the sequence-
based architecture and the representation advantage of MILP-sequence. For SC and CA with 1000

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 10: Representation experiments on optimal solution for FOLD20 and FOLD50 on D1 and D2 (details is
shown in Appendix F). MILPnet approximates the solution mapping of Foldable MILP instances with smaller
errors than graph-based method.

Figure 11: Cross-size adaptation

variables and 500 constraints, the number of the dataset are:training on 10000 instances, solving on
50 instances.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 13: Additional evaluations with more powerful GNN baselines, including GIN, PGN, and
GraphGPS, on the Real world practical problems

IP SC CA FA
Time Gap Time Gap Time Gap Time Gap

GIN 0.6254 0.0320 0.8223 0.6616 3.3065 0.7655 8.8688 0.7504
PGN 0.6023 0.1020 1.0492 0.4207 4.8369 1.0759 12.4009 0.7438

GraphGps 0.7324 0.0595 1.9202 0.4292 4.5980 1.0472 8.1973 0.8328
MILPnet(Ours) 0.1864 0.0234 0.6915 0.3483 3.2300 0.7651 1.3773 0.3503

C.2 CONPAS STYLE HETEROGENEOUS VARIANT ON REAL-WORLD INSTANCES SOLVING

To address complex heterogeneous optimization problems in the real world,we train the hetergeneoous
MILPnet as the solution representation predictors on SC problems and construct the trust region
solving into three very large benchmarks from (Gleixner et al., 2021). The visualization of the solving
results in terms of primal bound trajectories is shown in Figure 12.

Figure 12: Primal bound iterations on very-large benchmarks solving with ConPAS(MILPnet)+SCIP
and ConPAS(GCN)+SCIP

D GPU ANALYSIS AND OVERALL PERFORMANCE COMPARISON

D.1 GPU MEMORY ANALYSIS

Figure 13 visualizes the GPU usage during the training process.

D.2 OVERALL PERFORMANCE COMPARISON

We conducted a comprehensive evaluation of various performance dimensions on the instances of
FOLD300, and the results are shown in Figure 14.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 13: GPU memory usage on FOLD(20 ,*) to FOLD(300 ,*). (The lower the better)

Figure 14: Overall performance comparisons on FOLD(300,*).(The Broader the better)

E PROOF OF THE SECTION 4.2 AND SECTION 4.3

We establish the results stated in Remark 4.2 and Section 4.3, where the former follows from Theorem
5 and the latter from Theorem 6 as follows.
Theorem 5 (Padding Equivalence). Define the topological space before padding as: HMILP0 =
((Hcons)m ∪HVar)× I ×Hobj and the padded topological space as HMILP. HMILP and HMILP0 are
homeomorphic (topologically equivalent):

HMILP ∼= HMILP0 (13)

Proof. Define f as follows:

f ((hc, hv, i, ho)) =

hc,

hv, 0, . . . , 0︸ ︷︷ ︸
k times

 ,

i, 0, . . . , 0︸ ︷︷ ︸
k times

 ,

ho, 0, . . . , 0︸ ︷︷ ︸
k times

 ,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where:

• hc ∈ (Hcons)m,

• hv ∈ HVar,

• i ∈ I ,

• ho ∈ Hobj,

• 0, . . . , 0 ∈ {0}k are the padded zero dimensions.

Define f−1 as:

f−1

hc,

hv, 0, . . . , 0︸ ︷︷ ︸
k times

 ,

i, 0, . . . , 0︸ ︷︷ ︸
k times

 ,

ho, 0, . . . , 0︸ ︷︷ ︸
k times

 = (hc, hv, i, ho).

Subsequently, we introduce (i) and (ii), which are instrumental in establishing the main theorem.

(i) f is Bijective

Proof.f is Injectivity: Suppose f(h1) = f(h2) for h1, h2 ∈ HMILP0. Then,

f(h1) = f(h2) =⇒ (hc1, (hv1, 0, . . . , 0), (i1, 0, . . . , 0), (ho1, 0, . . . , 0)) (14)
= (hc2, (hv2, 0, . . . , 0), (i2, 0, . . . , 0), (ho2, 0, . . . , 0)) . (15)

This equality implies:

hc1 = hc2, hv1 = hv2, i1 = i2, ho1 = ho2.

Therefore, h1 = h2, establishing injectivity.

f is Surjectivity: For any h′ ∈ HMILP, suppose h′ = (hc, (h
′
v, pv), (i

′, pi), (h
′
o, po)), where

pv, pi, po ∈ {0}k. Then, there exists h ∈ HMILP0 such that:

h = (hc, h
′
v, i

′, h′
o).

Applying f to h, we obtain:

f(h) = (hc, (h
′
v, 0, . . . , 0), (i

′, 0, . . . , 0), (h′
o, 0, . . . , 0)) = h′.

Thus, f is surjective.

(ii) f and f−1 are both continuous Proof. Both HMILP0 and HMILP are equipped with the product
topology. In the product topology, a function is continuous if and only if each of its component
functions is continuous.

Continuity of f : The mapping f involves embedding each component of HMILP0 into a higher-
dimensional space by appending zero vectors. Each such embedding is continuous because it is
defined by coordinate-wise inclusion and fixed assignments (adding zeros). Specifically:

fi : Hi → Hi × {0}k

is continuous for each component Hi ∈ {Hcons, HVar, I,Hobj}.

Continuity of f−1: The inverse mapping f−1 involves projecting each padded component back to
its original space by removing the appended zero vectors. Projection maps in the product topology
are continuous. Specifically:

f−1
i : Hi × {0}k → Hi

is continuous for each component Hi.

Drawing upon the results presented in (i) and (ii), the f is bijective and both f and f−1 are continuous,
f is a homeomorphism. Therefore, the topological spaces HMILP and HMILP0 are homeomorphic:

HMILP ∼= HMILP0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Theorem 6 (Constraint Permutation Invariance). Let
(
Hcons

1 , Hcons
2 , . . . ,Hcons

m , I, HVar, Hobj
)

be
topological spaces corresponding respectively to the m constraint feature spaces Hcons

i , the integer-
index space I ′, the variable-bounds space HVar’, and the objective-coefficient space Hobj’. For any
permutation σ on the index set {1, 2, . . . ,m, ‘I’, ‘Var’, ‘obj’}, their product spaces are homeomor-
phic:

Hcons
1 × · · · ×Hcons

m × I ′ × HVar’ × Hobj’ ∼=
∏

k∈σ({1,...,m,I’,Var’,obj’})

H (factor)k .

In other words, the topological structure of the full MILP-sequence feature space is invariant under
permutation of its component spaces.

Proof The ordered product is

X = Hcons
1 × · · · ×Hcons

m × I
′
×HVar’ ×Hobj’,

Let
Xσ =

∏
k∈σ({1,...,m,I’,Var’,obj’})

H (factor)k

be an arbitrary permutation of the factors, where σ is a permutation of the index set.

We explicitly construct a coordinate-exchange (or coordinate-reordering) map

Φ: X −→ Xσ.

Given a point
x =

(
hcons
1 , . . . , hcons

m , i
′
, hVar’, hobj’) ∈ X,

where
hcons
i ∈ Hcons

i , i′ ∈ I, hVar ∈ HVar’, hobj’ ∈ Hobj’,

define Φ(x) by rearranging these coordinate components according to σ. Concretely, if σ sends the
index 1 to position σ(1), the index 2 to position σ(2), etc., then

Φ(x) =
(
h(factor)

the factor with index σ−1(1), . . .︸ ︷︷ ︸
ordered according to σ

)
.

In simpler terms, Φ reorders the factors
(
hcons
1 , . . . , hcons

m , i, hVar, hobj
)

into the sequence
(
. . .
)

deter-
mined by σ.

Bijection. Φ is a bijection because:

• Injective: If Φ(x1) = Φ(x2), then their coordinates in each position of the reordered product
are identical. Since a product space comparison equates each factor, it follows that x1 = x2.

• Surjective: Given an arbitrary point y ∈ Xσ, we can “reverse reorder” its factors to form
x ∈ X . By construction, Φ(x) = y.

Because Φ is bijective and both Φ and Φ−1 are continuous, Φ is a homeomorphism. Hence

Hcons
1 × · · · ×Hcons

m × I ′ ×HVar’ ×Hobj’ ∼=
∏

k∈σ({1,...,m,I’,Var’,obj’})

H (factor)k ,

Theorem 7 (Variable Permutation Invariance). Let HMILP be the topological space of MILP-
sequences defined in Section 4.3. For any permutation π on the variable indices {1, 2, . . . , n},
the MILP-sequence space is homeomorphic under variable permutations:

HMILP ∼= HMILP
π ,

where HMILP
π denotes the space after permuting variable coordinates according to π. Consequently,

the feasibility mapping Φfeas, optimal objective value mapping Φobj, and optimal solution mapping
Φsolu are all invariant under variable permutation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. We explicitly construct a variable-coordinate reordering map

Ψ: HMILP −→ HMILP
π .

Given an MILP-sequence

x = [h1
cons, . . . , h

m
cons, h

i′ , hℓ′ , h℧′
, hc′] ∈ HMILP,

where each component is a vector in Rn+2, we define Ψ(x) by applying the coordinate permutation
to each token:

For each token h = (h1, . . . , hn, hn+1, hn+2) ∈ Rn+2 in the MILP-sequence, we define the coordi-
nate permutation operator Pπ : Rn+2 → Rn+2 by

Pπ(h) = (hπ(1), . . . , hπ(n), hn+1, hn+2),

where π permutes only the first n variable-related coordinates, leaving the last two padding coordinates
unchanged. This operator applies uniformly to all tokens: constraint tokens hcons

i , integer set token
hi′ , variable bounds tokens hℓ′ and h℧′

, and objective token hc′ .

Then

Ψ(x) = [Pπ(h
1
cons), . . . , Pπ(h

m
cons), Pπ(h

i′), Pπ(h
ℓ′), Pπ(h

℧′
), Pπ(h

c′)] ∈ HMILP
π .

Then we prove that Ψ is bijective and continuous:

1. Bijection. Ψ is a bijection because:

• Injective: If Ψ(x1) = Ψ(x2), then for each token, the permuted coordinates are
identical. Since π is a bijection, the original coordinates must also be identical, hence
x1 = x2.

• Surjective: Given an arbitrary point y ∈ HMILP
π , we can apply the inverse permutation

π−1 to each coordinate of each token to obtain x ∈ HMILP such that Ψ(x) = y.

2. Continuity. Both Ψ and Ψ−1 are continuous because coordinate permutation is a continuous
operation in the product topology of Rn+2. Specifically, for each token space Rn+2, the
permutation map is a linear isomorphism, and the composition over all tokens preserves
continuity in the product space HMILP ⊂ R(m+4)(n+2).

Therefore, Ψ is a homeomorphism, and

HMILP ∼= HMILP
π .

Remark E.1 (Permutation Invariance). Theorems 6 and 7 establish that HMILP is invariant under
both constraint permutation (reordering tokens) and variable permutation (reordering coordinates
within tokens). These homeomorphisms ensure that different representations of the same MILP
instance are topologically equivalent and define identical optimization problems. Consequently, the
mappings Φfeas, Φobj, and Φsolu are invariant under both types of permutations, which is crucial for
designing permutation-equivariant neural architectures.

F PROOF OF THE MAPPINGS.

We introduced the details of the MILP-sequence mapping definitions: with the defined topological
space HMILP, which encapsulates the MILP-sequence, we can define key mappings essential for
analyzing MILP instances. These mappings assess feasibility, compute optimal objective values, and
identify optimal solutions, providing a comprehensive toolkit for MILP analysis.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Definition 8. (Feasibility mapping by sequence) The feasibility mapping is a classification function
that determines whether a sequence within HMILP represents a feasible solution:

Φfeas : H
MILP → {0, 1} (16)

where Φfeas = 1 indicates that the MILP instance is feasible.
Definition 9. (Optimal objective value mapping by sequence) The optimal objective value mapping
for each MILP instance is defined as:

Φobj : H
MILP → R ∪ {∞,−∞} (17)

which projects feasible sequences to their respective optimal values.
Definition 10. (Optimal solution mapping by sequence) To simplify the discussion, we focus on
settings where all components of the vectors ℓ and u are finite. This assumption ensures the existence
of an optimal solution when the MILP problem is feasible. Consequently, we define a restricted
subset of the MILP topological space, H̃MILP ⊂ HMILP, which only has finite variable bounds. The
optimal solution mapping for the MILP-sequence is defined as: For any F ∈ Φ−1

obj (R), the MILP
problem has a unique optimal solution with the smallest ℓ2-norm. Let

Φsolu : H̃MILP ∩ Φ−1
feas(1) → Rn (18)

Then we prove the feature mappings of the MILP-sequence are measurable in the following theorems.
Theorem 11. The feasibility mapping for MILP-sequence is measurable.

Proof The target space {0, 1} is equipped with the discrete σ-algebra, where every subset is Borel.
Specifically, the Borel sets in {0, 1} are:

B{0,1} = {∅, {0}, {1}, {0, 1}} .

We consider each possible Borel set B ⊆ {0, 1} and examine Φ−1
feas(B):

1. B = ∅:
Φ−1

feas(∅) = ∅,
which is trivially a Borel set.

2. B = {1}:

Φ−1
feas({1}) =

{
(x, h) ∈ HMILP

∣∣∣∣ the MILP instance is feasible
}
.

The feasibility of a MILP instance is determined by the existence of solutions that satisfy all
linear constraints and integrality conditions. Specifically, it requires that there exists x ∈ Rn

such that:
Ax ≤ b, ℓ ≤ x ≤ u, xj ∈ Z ∀j ∈ I,

where I is the set of indices corresponding to integer variables.
The set of feasible MILP instances can be expressed as the intersection of:

• A finite union of closed half-spaces defined by the linear constraints Ax ≤ b.
• Closed intervals defined by the variable bounds ℓ ≤ x ≤ u.
• Discrete conditions xj ∈ Z for integer variables.

Since finite unions and intersections of closed sets are closed (hence Borel), and the discrete
conditions correspond to countable intersections, Φ−1

feas({1}) is a Borel set in the product
topology of R(m+4)(n+2) ×HMILP.

3. B = {0}:

Φ−1
feas({0}) =

{
(x, h) ∈ HMILP

∣∣∣∣ the MILP instance is infeasible
}
.

The infeasibility set is the complement of the feasibility set:

Φ−1
feas({0}) =

(
Φ−1

feas({1})
)c

.

Since Φ−1
feas({1}) is a Borel set and the complement of a Borel set is also a Borel set,

Φ−1
feas({0}) is Borel.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

4. B = {0, 1}:
Φ−1

feas({0, 1}) = HMILP,

which is the entire space and hence a Borel set.

Since for every Borel set B ⊆ {0, 1}, the preimage Φ−1
feas(B) is a Borel set in R(m+4)(n+2) ×HMILP,

the feasibility mapping Φfeas is measurable.
Remark F.1. The measurability of Φfeas is crucial for ensuring that probabilistic and statistical
analyses involving MILP instances are well-defined. Since Φfeas maps measurable spaces to a
discrete space with a simple σ-algebra, its measurability guarantees that feasibility can be reliably
incorporated into broader measure-theoretic frameworks.

Remark F.2. Both the domain HMILP and the codomain {0, 1} are equipped with their respective
σ-algebras. The domain utilizes the product topology, and HMILP itself is a product of measurable
spaces as defined earlier. The codomain {0, 1} employs the discrete σ-algebra, where all subsets are
measurable.

Theorem 12. The optimal objective value mapping for MILP-sequence is measurable.

Proof To prove that the optimal objective value mapping Φobj : HMILP → R ∪ {∞,−∞} is
measurable, we need to demonstrate that for every Borel set B ⊆ R ∪ {∞,−∞}, the preimage
Φ−1

obj (B) is a Borel set in R(m+4)(n+2) ×HMILP.

The codomain R ∪ {∞,−∞} can be equipped with the extended real line topology, where the Borel
σ-algebra is generated by the open intervals in R along with the points {∞} and {−∞}. The Borel
sets in R ∪ {∞,−∞} include:

1. B ⊆ R
2. B contains ∞ and/or −∞

We consider each category of Borel sets in R ∪ {∞,−∞} and examine Φ−1
obj (B).

1. B ⊆ R:

Φ−1
obj (B) =

{
(x, h) ∈ HMILP

∣∣∣∣ the optimal objective value of the MILP instance is in B

}
.

Assuming that the MILP’s optimal objective value is determined by a continuous opti-
mization process (which holds under certain regularity conditions, such as linearity of the
objective function and constraints), Φobj can be considered a continuous function on the
feasible set. Therefore, the preimage of any Borel set B ⊆ R under Φobj is a Borel set in the
domain.

2. B contains ∞ and/or −∞:

Φ−1
obj (B) =

{
(x, h) ∈ HMILP

∣∣∣∣ Φobj(x, h) ∈ B

}
.

The inclusion of ∞ or −∞ typically corresponds to the infeasibility or unboundedness of
the MILP instance:

• If Φobj(x, h) = ∞, the MILP instance is unbounded above.
• If Φobj(x, h) = −∞, the MILP instance is unbounded below.

These conditions define specific subsets of the domain:

Φ−1
obj ({∞}) =

{
(x, h) ∈ HMILP

∣∣∣∣MILP is unbounded above
}
,

and

Φ−1
obj ({−∞}) =

{
(x, h) ∈ HMILP

∣∣∣∣MILP is unbounded below
}
.

Assuming that the conditions for unboundedness are also defined by Borel sets (similar to
feasibility), these preimages are Borel sets in the domain.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Since for every Borel set B ⊆ R∪{∞,−∞}, the preimage Φ−1
obj (B) is a Borel set in R(m+4)(n+2)×

HMILP, the mapping Φobj is measurable.

Before we give the proof of the mensurability of the optimal solution mapping for the MILP-
sequence,we first introduce the Jankov-von Neumann Measurable Selection Theorem.
Theorem 13 (Jankov-von Neumann Measurable Selection Theorem,(Dubins & Savage, 2014;
Neumann, 1936)). Let (X,A) and (Y,B) be measurable spaces, and let S : X → 2Y be a
measurable set-valued map such that for all x ∈ X , S(x) is non-empty and closed in Y . Then, there
exists a measurable function f : X → Y such that f(x) ∈ S(x) for all x ∈ X .

Remark F.3. The Jankov-von Neumann Measurable Selection Theorem provides a crucial guaran-
tee in measure theory and its applications. Given a measurable space X and a set-valued mapping
A : X → 2Y where each A(x) is a non-empty set, the theorem ensures the existence of a measurable
function f that selects an element from each A(x) in a measurable manner. Specifically, for almost
every x ∈ X , the function f assigns a value f(x) that belongs to the set A(x). This result is
particularly useful in areas such as optimization, probability theory, and economics, where selecting
measurable choices from a set of feasible options is essential.

Then we prove the measurblity of the optimal solution mapping for the MILP-sequence.
Theorem 14. The optimal solution mapping for the MILP-sequence is measurable.

Proof. This part proves the optimal solution mapping for the MILP-sequence is measurable. To
prove that the optimal solution mapping

Φsolu : H̃MILP ∩ Φ−1
feas(1) → Rn

is measurable, we need to demonstrate that for every Borel set B ⊆ Rn, the preimage

Φ−1
solu(B)

is a Borel set in HMILP.

Consider the mapping Φsolu as a selection function that assigns to each feasible MILP instance its
unique optimal solution with the smallest ℓ2-norm. Formally, for each

(x, h) ∈ H̃MILP ∩ Φ−1
feas(1),

there exists at least one x∗ ∈ Rn such that x∗ is an optimal solution. We aim to select a unique x∗

for each instance in a measurable manner. With Theorem 13, for each

(x, h) ∈ H̃MILP ∩ Φ−1
feas(1),

the set of optimal solutions

S(x, h) = {x∗ ∈ Rn | x∗ is an optimal solution for (x, h)}

is non-empty and closed, then there exists a measurable selection function

Φsolu : H̃MILP ∩ Φ−1
feas(1) → Rn

such that
Φsolu(x, h) ∈ S(x, h)

for all
(x, h) ∈ H̃MILP ∩ Φ−1

feas(1).

Then, we prove the Non-emptiness and Cloasedness of H̃MILP ∩ Φ−1
feas(1), detailed as:

1. Non-emptiness: By definition,
H̃MILP ∩ Φ−1

feas(1)

consists of MILP instances that are feasible and have finite bounds, ensuring that an optimal
solution exists. Therefore, S(x, h) is non-empty for all

(x, h) ∈ H̃MILP ∩ Φ−1
feas(1).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2. Closedness: The set of optimal solutions S(x, h) is closed in Rn. This is because optimal
solutions to MILP problems, defined by linear constraints and objective functions, form
closed sets under standard topologies.

Given that both the closedness and non-emptiness conditions are satisfied, Theorem 13 ensures the
existence of a measurable selection function Φsolu. Since Φsolu is a measurable selection function by
the theorem, for any Borel set B ⊆ Rn,

Φ−1
solu(B) = {(x, h) ∈ HMILP | Φsolu(x, h) ∈ B}

is a Borel set in HMILP. Therefore, the mapping Φsolu is measurable.

After establishing the measurability of the feasibility, optimal objective value, and optimal solution
mappings, we define the corresponding measurable mapping sets for each of these mappings as
follows:

Definition 15. (Measurable Mapping Set for Feasibility Mapping) The Feasibility Mapping Set
consists of all measurable functions

Φfeas : H
MILP → {0, 1},

where Φfeas(x, h) = 1 indicates that the MILP instance defined by (x, h) is feasible, and Φfeas(x, h) =
0 indicates infeasibility. Formally, the set is defined as:

FMILP
feas =

{
Φfeas : H

MILP → {0, 1}
∣∣∣∣ Φfeas is measurable

}
.

Definition 16 (Measurable Mapping Set for Optimal Objective Value Mapping). The Optimal
Objective Value Mapping Set comprises all measurable functions

Φobj : H
MILP → R ∪ {∞,−∞},

which assign to each MILP instance (x, h) its optimal objective value. Specifically,

Φobj(x, h) =


cTx∗ if the MILP instance is feasible and bounded,
∞ if the MILP instance is unbounded above,
−∞ if the MILP instance is unbounded below.

Formally, the set is defined as:

FMILP
obj =

{
Φobj : H

MILP → R ∪ {∞,−∞}
∣∣∣∣ Φobj is measurable

}
.

Definition 17 (Measurable Mapping Set for Optimal Solution Mapping). The Optimal Solution
Mapping Set consists of all measurable functions

Φsolu : H̃MILP ∩ Φ−1
feas(1) → Rn,

which assign to each feasible and bounded MILP instance (x, h) its unique optimal solution x∗ with
the smallest ℓ2-norm. Formally, the set is defined as:

FMILP
solu =

{
Φsolu : H̃MILP ∩ Φ−1

feas(1) → Rn

∣∣∣∣ Φsolu is measurable
}
.

G THE PROOF OF THE SECTION 5.2.

Firstly, theorem Lusin is presented before the proof in this section.
Theorem 18 (Lusin’s Theorem,(Mammeri, 2019)). Let f : R → R be a measurable function on a
measurable set E ⊂ R with finite measure. For every ϵ > 0, there exists a closed set C ⊂ E such
that the measure of E \ C is less than ϵ, and f restricted to C is continuous.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Secondly, for the probability measure used in Theorems 2–4 we would like give the Remark G.1 to
clarify the probability using:

Remark G.1 (On the Probability Measure). The probability P (·) in Theorems 2–4 accounts for the
randomness in neural network training, including random initialization and stochastic optimization
(SGD). Specifically, P is the probability measure over the space of trained networks induced by the
random training process. This formulation aligns with the Probably Approximately Correct learning.
For a fixed trained network FHYA, the probability can be interpreted as the empirical error rate on the
finite dataset D.

Then we give the proof of the theorems in the Section 5.2.

G.1 PROOF AND COROLLARY ON THEOREM 2

Proof of Theorem 2 We leverage the measurability of the feasibility mapping Φfeas, the Jankov-von
Neumann Measurable Selection Theorem, and Lusin’s Theorem to construct a neural network FHYA
that approximates Φfeas with high accuracy on the finite dataset D.

From our earlier definitions in Definition 15, Φfeas : H
MILP → {0, 1} is measurable. This ensures

that Φfeas is compatible with measure-theoretic frameworks. Lusin’s Theorem states that for any
measurable function and any δ > 0, there exists a compact subset where the function is continuous
and the measure of the complement is less than δ. However, since D is a finite dataset, we can
consider the discrete measure where each point in D has an equal probability mass.

Given the finiteness of D, Lusin’s Theorem trivially holds as we can define δ = ϵ and select the
entire dataset D as the compact subset where Φfeas is continuous (since all functions on finite sets are
continuous).

By the Universal Approximation Theorem, Since our MILPnet is an architecture that combines
at least one-layer feedforward network structure with activation functions, it can approximate any
continuous function on a compact subset to arbitrary accuracy. Since D is finite, and Φfeas is
effectively continuous on D, there exists a neural network FHYA ∈ FMILPnet

HYA that satisfies:

|FHYA(x)− Φfeas(x)| <
1

2
, ∀x ∈ D.

This ensures that:

IFHYA(x) =

{
1 if FHYA(x) >

1
2 ,

0 otherwise,

matches Φfeas(x) exactly for all x ∈ D. Since D is finite, the probability P can be interpreted as a
uniform distribution over D. Given that FHYA correctly classifies all x ∈ D, we have:

P
(
IFHYA(x)>

1
2
̸= Φfeas(x)

)
= 0 < ϵ.

Thus, the constructed neural network FHYA satisfies the required condition for the theorem.

Remark G.2. While the above steps suffice for a finite dataset, the framework can be extended
using the Jankov-von Neumann Measurable Selection Theorem for more general settings. This
theorem ensures the existence of a measurable selection function that can be approximated by neural
networks even in infinite-dimensional spaces, provided the feasibility mapping satisfies the necessary
measurability and closedness conditions. However, for the scope of this theorem with a finite dataset
D, the construction above is sufficient to guarantee the existence of the desired neural network FHYA.

Then we have corollary on the infinite dataset for feasibility mapping:

Corollary 1 (Extension to infinite dataset). Let D ⊂ HMILP be an infinite or continuous dataset with
a finite measure µ(D) < ∞. For any ϵ > 0, there exists a neural network FHYA ∈ FMILPnet

HYA such that:

P
(
IFHYA(x)>

1
2
̸= Φfeas(x)

)
< ϵ, ∀x ∈ D, (19)

where x is the MILP-sequence, and Φfeas(x) is the feasibility mapping of the MILP instance.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. We have proven that the feasibility mapping Φfeas : HMILP → {0, 1} is assumed to be
measurable on D in Theorem B.1.

By Lusin’s Theorem, for the measurable function Φfeas and for any ϵ > 0, there exists a compact
(closed and bounded) subset C ⊂ D such that:

µ(D \ C) < ϵ

and Φfeas restricted to C is continuous:

Φfeas|C : C → {0, 1} is continuous.

Since Φfeas is a simple indicator function, its continuity on C implies that C avoids the boundary
cases where the feasibility of the MILP instances changes.

Given that Φfeas is continuous on C, by the Universal Approximation Theorem, there exists a neural
network FHYA ∈ FMILPnet

HYA that approximates the indicator function IΦfeas(x) to within an error less
than 1

2 on C. Specifically: ∣∣FHYA(x)− IΦfeas(x)

∣∣ < 1

2
, ∀x ∈ C

This implies that:
IFHYA(x)>

1
2

⇐⇒ IΦfeas(x) = 1, ∀x ∈ C

Thus, the neural network FHYA correctly classifies the feasibility of MILP instances in C. Consider
the probability that the classification error occurs:

P
(
IFHYA(x)>

1
2
̸= Φfeas(x)

)
This event can only occur if x ∈ D \C, since for x ∈ C, the classification is guaranteed to be correct.
Therefore:

P

(
IFHYA(x) >

1

2
̸= Φfeas(x)

)
≤ µ(D \ C) < ϵ

Thus, the probability that FHYA misclassifies any x ∈ D is bounded by ϵ. By constructing FHYA
using Lusin’s Theorem to ensure continuity on a large compact subset C of D, and then applying the
Universal Approximation Theorem to approximate the feasibility indicator function on C, we have
established the existence of a neural network within FMILPnet

HYA that satisfies the desired probabilistic
bound for the classification task on infinite or continuous datasets D.

G.2 PROOF AND COROLLARY OF THEOREM 3

Proof of Theorem 3 To prove the theorem, we leverage the Lusin’s Theorem alongside the Universal
Approximation Theorem for neural networks. The proof is divided into two parts corresponding to
the classification and regression problems.

1. Classification Problem:

We aim to construct a neural network FHYA,1 that accurately classifies whether the objective value
Φobj(x) is finite for all x ∈ D.

First, we have proven that the feature mapping Φobj : H
MILP → R ∪ {∞} is measurable. By Lusin’s

Theorem, for any measurable function f defined on a measurable set with finite measure, and for
any ϵ > 0, there exists a closed set C ⊂ D such that:

µ(D \ C) < ϵ

and f restricted to C is continuous. Since D is finite, the measure µ(D) is finite, and thus Lusin’s
Theorem is applicable. Therefore, there exists a subset C ⊂ D where Φobj is continuous.

Given that Φobj is continuous on C, by the Universal Approximation Theorem, there exists a neural
network FHYA,1 ∈ FMILPnet

HYA that approximates the indicator function IΦobj(x)∈R to within an error less
than ϵ on C. Specifically: ∣∣FHYA,1(x)− IΦobj(x)∈R

∣∣ < 1

2
, ∀x ∈ C

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Since µ(D \ C) < ϵ, the probability that FHYA,1 misclassifies any x ∈ D is less than ϵ:

P
(
IFHYA,1(x)>

1
2
̸= IΦobj(x)∈R

)
< ϵ, ∀x ∈ D

2. Regression problems:

Next, we construct a neural network FHYA,2 to predict the objective value Φobj(x) with an error less
than δ for all x ∈ D where Φobj(x) is finite.

We have proven that the Φobj is measurable in Theorem B.2. By Lusin’s Theorem, for the regression
task, there exists a closed subset C ′ ⊂ D ∩ Φ−1

obj (R) such that:

µ
(
(D ∩ Φ−1

obj (R)) \ C
′
)
< ϵ

and Φobj is continuous on C ′.

By the Universal Approximation Theorem, there exists a neural network FHYA,2 ∈ FMILPnet
HYA that

approximates Φobj to within an error δ on C ′:

|FHYA,2(x)− Φobj(x)| < δ, ∀x ∈ C ′

Since the measure of the complement set is less than ϵ, the probability that the prediction error
exceeds δ is bounded by ϵ:

P (|FHYA,2(x)− Φobj(x)| > δ) < ϵ, ∀x ∈ D ∩ Φ−1
obj (R)

By constructing FHYA,1 and FHYA,2 using Lusin’s Theorem to ensure measurability and continuity on
large subsets, and then applying the Universal Approximation Theorem to approximate the respective
functions, we have established the existence of neural networks within FMILPnet

HYA that satisfy the
desired probabilistic bounds for both classification and regression tasks on the finite dataset D.

Then we give the corollary on the infinite dataset for optimal objective mapping as follows:

Corollary 2 (Extension to Compact Infinite Sets). Let K ⊂ HMILP be a compact subset equipped with
the measure µHMILP defined in Section 4.2. Define the probability measure P on K by normalizing:
P (A) =

µHMILP (A)

µHMILP (K) for any measurable set A ⊂ K.

For any ϵ, δ > 0, there exist two neural networks FHYA,1, FHYA,2 ∈ FMILPnet
HYA such that:

1. Classification of finite objective values:

P
(
IFHYA,1(x)>

1
2
̸= IΦobj(x)∈R

)
< ϵ, ∀x ∈ K (20)

2. Regression of objective values:

P (|FHYA,2(x)− Φobj(x)| > δ) < ϵ, ∀x ∈ K ∩ Φ−1
obj (R) (21)

Proof. The proof parallels Theorem 3, replacing the counting measure on finite D with the probability
measure P on compact K.

1. Classification Problem.

Since Φobj : H
MILP → R ∪ {∞} is measurable and K is compact with µHMILP(K) < ∞, we apply

Lusin’s Theorem.

For any ϵ > 0, there exists a closed set C ⊂ K such that:

P (K \ C) =
µHMILP(K \ C)

µHMILP(K)
<

ϵ

2

and Φobj|C is continuous. By the Universal Approximation Theorem, there exists FHYA,1 ∈ FMILPnet
HYA

such that:
sup
x∈C

∣∣FHYA,1(x)− IΦobj(x)∈R
∣∣ < 1

4

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

This ensures that for all x ∈ C:
IFHYA,1(x)>

1
2
= IΦobj(x)∈R

The set of misclassified points is contained in K \ C, therefore:

P
(
IFHYA,1(x)>

1
2
̸= IΦobj(x)∈R

)
≤ P (K \ C) < ϵ

2. Regression Problem. Let Kfinite = K ∩ Φ−1
obj (R). Define the conditional probability measure on

Kfinite by:

Pfinite(A) =
µHMILP(A)

µHMILP(Kfinite)
, A ⊂ Kfinite

By Lusin’s Theorem applied to Φobj on Kfinite, for any ϵ > 0, there exists a closed set C ′ ⊂ Kfinite
such that:

Pfinite(Kfinite \ C ′) <
ϵ

2

and Φobj|C′ is continuous. By the Universal Approximation Theorem, there exists FHYA,2 ∈ FMILPnet
HYA

such that:
sup
x∈C′

|FHYA,2(x)− Φobj(x)| < δ

Therefore:

Pfinite (|FHYA,2(x)− Φobj(x)| > δ) ≤ Pfinite(Kfinite \ C ′) < ϵ

G.3 PROOF AND THE COROLLARY OF THEOREM 4

Proof of Theorem 4 Since D is finite, let us denote it as:

D = {x1, x2, . . . , xn}

for some integer n ≥ 1. For each xi ∈ D, Φsolu(xi) is a well-defined finite solution in Rn.

The Universal Approximation Theorem states that a feedforward neural network with at least one
hidden layer and a sufficient number of neurons can approximate any continuous function on compact
subsets of Rn to any desired degree of accuracy, provided the activation function is non-linear (e.g.,
Sigmoid, ReLU).

Given that D is finite, it is trivially compact. Therefore, there exists a neural network FHYA,W that
can approximate the mapping Φsolu on D with arbitrary precision. Specifically, for each xi ∈ D, we
can ensure:

∥FHYA,W (xi)− Φsolu(xi)∥ < δ

by appropriately choosing the network architecture and weights W .

Since D is finite, the probability P can be interpreted over a uniform distribution or any probability
measure defined on D. However, because we have constructed FHYA,W such that the approximation
error is less than δ for every x ∈ D, the event

∥FHYA,W (x)− Φsolu(x)∥ > δ

does not occur for any x ∈ D. Therefore:

P (∥FHYA,W (x)− Φsolu(x)∥ > δ) = 0 < ϵ

for any ϵ > 0.

By the Universal Approximation Theorem, we can construct a neural network FHYA,W that approx-
imates the solution mapping Φsolu on the finite dataset D with an error less than δ for all x ∈ D.
Consequently, the probability that the approximation error exceeds δ is zero, which is trivially less
than any ϵ > 0. This establishes the existence of such a neural network within FMILPnet

HYA,V .

Then we have the corollary on the infinite dataset:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Corollary 3 (Extension to infinite dataset). Let D ⊂ Φ−1
obj (R) ⊂ HMILP be an infinite dataset with a

finite measure µ(D) < ∞. For any ϵ, δ > 0, there exists a neural network FHYA,W ∈ FMILPnet
HYA,W such

that:
P (∥FHYA,W (x)− Φsolu(x)∥ > δ) < ϵ, ∀x ∈ D, (22)

where P denotes the probability measure on D.

Proof. To extend the theorem to infinite datasets, we employ Lusin’s Theorem in conjunction with
the Universal Approximation Theorem.

Assume D is equipped with a probability measure µ such that µ(D) = 1 (without loss of generality, as
we can normalize the measure). Also, we have proven that the solution mapping Φsolu : HMILP → Rn

is measurable on D before.

By Lusin’s Theorem, for the measurable function Φsolu and for any ϵ > 0, there exists a compact
(closed and bounded) subset C ⊂ D such that:

µ(D \ C) < ϵ

and Φsolu restricted to C is continuous:

Φsolu|C : C → Rm is continuous.

Since C is compact and Φsolu|C is continuous, the Universal Approximation Theorem ensures that
there exists a neural network FHYA,W ∈ FMILPnet

HYA,W such that:

sup
x∈C

∥FHYA,W (x)− Φsolu(x)∥ < δ.

This implies that for all x ∈ C:

∥FHYA,W (x)− Φsolu(x)∥ < δ.

Consider the probability that the approximation error exceeds δ:

P (∥FHYA,W (x)− Φsolu(x)∥ > δ) .

This event can only occur if x ∈ D \ C, since for x ∈ C, the error is guaranteed to be less than δ.
Therefore:

P (∥FHYA,W (x)− Φsolu(x)∥ > δ) ≤ µ(D \ C) < ϵ.

Thus, we have:
P (∥FHYA,W (x)− Φsolu(x)∥ > δ) < ϵ.

By Lusin’s Theorem, we ensure that Φsolu is continuous on a large subset C of D. The Universal
Approximation Theorem then guarantees the existence of a neural network FHYA,W that approximates
Φsolu within δ on C. Consequently, the probability that the approximation error exceeds δ on the
entire dataset D is bounded by ϵ.

This establishes that for infinite or continuous datasets with finite measure, there exists a neural
network within FMILPnet

HYA,V that satisfies the desired probabilistic bound on the approximation error.

H PROOF OF THE STABILITY

In this section, we establish the stability properties of the MILP mappings Φfeas, Φobj, and Φsolu under
small perturbations of problem coefficients. Our analysis builds upon Berge’s Maximum Theorem
(Aliprantis & Border, 2006).
Theorem 19 (Berge’s Maximum Theorem Aliprantis & Border (2006)). Let X and T be topological
spaces, and let f : X × T → R be continuous. Let C : T ⇒ X be a correspondence (set-valued
map) such that:

1. C(t) is non-empty and compact for all t ∈ T ,

2. C is continuous, i.e., its graph Gr(C) = {(t, x) : x ∈ C(t)} is closed and C is lower
hemicontinuous.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Define the value function and argmax correspondence by:

V (t) = max
x∈C(t)

f(x, t), X∗(t) = arg max
x∈C(t)

f(x, t) = {x ∈ C(t) : f(x, t) = V (t)}.

Then:

1. V (t) is continuous in t.

2. X∗(t) is non-empty, compact-valued, and upper hemicontinuous in t.

We first analyze the stability of Φobj, which exhibits the strongest stability properties among the three
mappings.

Definition 20 (Continuous Relaxation for MILP sequence). For a MILP sequence x =

[h1
cons, . . . , h

m
cons, h

i′ , hℓ′ , h℧′
, hc′] ∈ HMILP, its continuous relaxation is the linear program obtained

by dropping the integrality constraints:

CR(x) : min
x∈Rn

{⟨c, x⟩ : Ax ≤ b, ℓ ≤ x ≤ u},

where A, b, c, ℓ, u are extracted from the tokens in x.

Proposition 21 (Stability of Continuous Relaxation). Let x ∈ HMILP be a feasible MILP instance
whose continuous relaxation has a bounded feasible region. Then the optimal value function of
the continuous relaxation, denoted ΦCR

obj , is continuous at x. Furthermore, if the optimal solution is
non-degenerate, then ΦCR

obj is locally Lipschitz continuous with constant:

L = ∥c∥2 · diam(Feas(x)),

where Feas(x) denotes the feasible region and diam(·) its diameter.

Proof. The continuous relaxation defines a parametric linear program where the parameter t =
(A, b, c, ℓ, u) lives in HMILP. Let X = Rn and T = HMILP. The objective function f(x, t) = ⟨c, x⟩
is continuous in (x, t). Then the feasible region correspondence C(t) = {x ∈ Rn : Ax ≤ b, ℓ ≤
x ≤ u} satisfies:

• Compactness: By assumption, C(x) is bounded. Combined with the closed constraints,
C(x) is compact.

• Continuity: The graph Gr(C) is closed because the constraints define a closed set in
Rn ×HMILP. Moreover, C is lower hemicontinuous: for any x ∈ C(t) and tn → t, since
the constraints are linear and continuous in t, small perturbations preserve feasibility in a
neighborhood.

By Berge’s Theorem 19, ΦCR
obj(x) is continuous at x. Under non-degeneracy, the optimal basis remains

unchanged in a neighborhood of x. The optimal value is given by the basis solution x∗ = B−1bB ,
where B is the optimal basis matrix. The objective value is:

ΦCR
obj(x) = ⟨cB , B−1bB⟩,

which is a linear function of (cB , bB) within the neighborhood where the basis is constant.

For a perturbation x′ = x+ ϵ with ∥ϵ∥2 ≤ δ:

|ΦCR
obj(x

′)− ΦCR
obj(x)| = |⟨c′, x′∗⟩ − ⟨c, x∗⟩|

≤ |⟨c′ − c, x′∗⟩|+ |⟨c, x′∗ − x∗⟩|
≤ ∥c′ − c∥2 · ∥x′∗∥2 + ∥c∥2 · ∥x′∗ − x∗∥2
≤ L · δ,

where L = ∥c∥2 · diam(Feas(x)) bounds both terms.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

H.1 STABILITY OF THE OPTIMAL OBJECTIVE MAPPING

Theorem 22 (Conditional Stability of MILP Objective Value). Let x ∈ HMILP be a feasible MILP
sequence with bounded feasible region. Consider a perturbation x′ = x+ ϵ where ∥ϵ∥2 ≤ δ. If the
following assumptions hold:

1. Feasibility preservation: Φfeas(x
′) = 1,

2. Optimal solution stability: The optimal integer solution x∗ ∈ Zn of x remains feasible for
x′,

3. Bounded diameter: diam(Feas(x) ∩ Zn) ≤ D,

then:
|Φobj(x

′)− Φobj(x)| ≤ (∥c∥2 + δ) ·D.

Proof. Let x∗ ∈ Zn be an optimal solution to x, and x′∗ ∈ Zn be an optimal solution to x′.

By condition (2), x∗ is feasible for x′, so:

Φobj(x
′) = ⟨c′, x′∗⟩ ≤ ⟨c′, x∗⟩.

Similarly, x′∗ is feasible for its problem, and by condition (1), both x∗ and x′∗ lie in the bounded
integer feasible region. Thus:

Φobj(x) = ⟨c, x∗⟩.

Now:

|Φobj(x
′)− Φobj(x)| = |⟨c′, x′∗⟩ − ⟨c, x∗⟩|

≤ |⟨c′, x′∗⟩ − ⟨c, x′∗⟩|+ |⟨c, x′∗⟩ − ⟨c, x∗⟩|
= |⟨c′ − c, x′∗⟩|+ |⟨c, x′∗ − x∗⟩|
≤ ∥c′ − c∥2 · ∥x′∗∥2 + ∥c∥2 · ∥x′∗ − x∗∥2
≤ δ ·D + ∥c∥2 ·D
= (∥c∥2 + δ) ·D,

where we used ∥c′ − c∥2 ≤ δ (from the perturbation bound) and ∥x′∗ − x∗∥2, ∥x′∗∥2 ≤ D (from
condition 3).

H.2 STABILITY OF THE FEASIBILITY MAPPING

We now analyze the stability of Φfeas.
Theorem 23 (Conditional Stability of Feasibility). Let x ∈ HMILP with Φfeas(x) = 1. Suppose
the feasible integer points satisfy a strict feasibility condition: there exists ρ > 0 such that for all
x∗ ∈ Feas(x) ∩ Zn,

Ax∗ ≤ b− ρ1, ℓ+ ρ1 ≤ x∗ ≤ u− ρ1,

where 1 is the all-ones vector. Then for any perturbation x′ = x+ ϵ with ∥ϵ∥∞ ≤ δ < ρ, we have:

Φfeas(x
′) = 1.

Proof. Let x∗ ∈ Feas(x) ∩ Zn be any feasible integer point for x.

For the perturbed instance x′ with parameters (A′, b′, ℓ′, u′), we have:

∥A′ −A∥∞ ≤ δ, |b′i − bi| ≤ δ, |ℓ′j − ℓj | ≤ δ, |u′
j − uj | ≤ δ.

Check constraint satisfaction:

A′x∗ = (A+∆A)x∗ = Ax∗ +∆Ax∗

≤ (b− ρ1) + ∥∆A∥∞∥x∗∥11
≤ b− ρ1+ δ∥x∗∥11.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

If δ < ρ
∥x∗∥1

, then A′x∗ < b− (ρ− δ∥x∗∥1)1 < b′.

For sufficiently small δ < ρ, we can ensure all integer points remain strictly feasible. Therefore,
Φfeas(x

′) = 1.

H.3 STABILITY OF THE OPTIMAL SOLUTION MAPPING

Finally, we analyze Φsolu.

Theorem 24 (Conditional Stability of Solution Mapping). Let x ∈ HMILP with optimal solution
x∗ ∈ Zn. Suppose x∗ is the unique optimal solution and satisfies a strong optimality gap condition:
for all x ∈ Feas(x) ∩ Zn with x ̸= x∗,

⟨c, x⟩ > ⟨c, x∗⟩+ γ,

for some γ > 0. Then there exists δ > 0 such that for any perturbation x′ = x+ ϵ with ∥ϵ∥2 ≤ δ:

Φsolu(x
′) = x∗.

That is, the optimal solution remains unchanged.

Proof. For the perturbed instance with objective c′ = c+∆c where ∥∆c∥2 ≤ δ:

For any x ∈ Feas(x′) ∩ Zn with x ̸= x∗:

⟨c′, x⟩ − ⟨c′, x∗⟩ = ⟨c+∆c, x⟩ − ⟨c+∆c, x∗⟩
= (⟨c, x⟩ − ⟨c, x∗⟩) + ⟨∆c, x− x∗⟩
≥ γ − ∥∆c∥2∥x− x∗∥2
≥ γ − δ ·D,

where D = maxx ̸=x∗ ∥x− x∗∥2 over the finite integer feasible set. If δ < γ
D , then ⟨c′, x⟩ > ⟨c′, x∗⟩

for all x ̸= x∗, ensuring x∗ remains optimal for x′.

I DETAILS OF THE TIME-COMPLEXITY OF MILPNET

Excluding the linear transformation, the time complexity for multi-scale operations across all
windows is O

(∑N
k=1 h · η2k

)
. The global attention mechanism employs a global multi-head

self-attention mechanism over the entire sequence, resulting in a final time complexity of
O
(∑N

k=1 hη
2
kd+ h(m+ 4)2d

)
for the hybrid attention. Given that the maximum window size

satisfies wmax ≤ m+ 4, it follows that
∑N

k=1 η
2
k ≤ N · (m+ 4)2. Therefore, the time complexity

can be further simplified to O
(
h · (m+ 4)2d (N + 1)

)
, where d represents the linear embedding

size and h denotes the number of attention heads.

J SPARSE VARIANT

To mitigate the quadratic overhead of global attention, we evaluated a multi-scale sliding sparse
attention (with sliding mask) to replace the global attention, and discovered that it can achieve faster
inference while maintaining comparable performance. As the sparse sliding attention uses sparse
masks to restrict each position’s attention only to specific locations beyond the step interval s, the
time complexity of the stride attention is:

Tstride = O
(
h(m+ 4)2d

s

)
(23)

Thus, the time complexity of multi-scale sliding spare attention becomes:

Tsparse = O(knwdh) +O(n2dh/s) (24)

= O(dh(k(m+ 4)w + (m+ 4)2/s)) (25)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 14: Experimental results on FOLD(200,20) with 1-hour pre-training and a stride of 2

Fold(200,20)
Error Inference Time MSE

GCN 5000 0.228 0.268
MILPnet(Sparse) 763 0.033 0.091
MILPnet(ours) 191 0.117 0.016

We can calculate the speed-up ratio against our original design as:

Speedup =
Nw2 + n2

Nw2 + n2/s
(26)

In practice, n2 ≫ Nw2 (sequence length is much larger than window size), so the speed-up of the
time-complexity is finally as:

Speedup ≈ n2

n2/s
= s

This signifies that the model’s scalability with engineering optimizations.

K DETAILS OF THE EXPERIMENTS

K.1 DETAILED EXPERIMENT SETTINGS

Baselines. As methods using variant GNNs for MILP representation are still limited, we
adapted several representative graph algorithms to serve as baselines. To validate the advantages of
our sequence-based algorithm, we compare our model against multiple graph-based representation
methods that model MILPs as bipartite graphs. The GNN-based networks include GCN (Chen
et al., 2023b), GIN (Xu et al., 2019), and SAGE (Wu et al., 2021). The attention-based graph networks
include PGN (Cappart et al., 2022) and GraphGPS (Wang et al., 2023b). We also include the random
feature graph modeling method proposed in (Chen et al., 2023b), which is specifically designed to
alleviate the feasibility prediction problem on Foldable instances.

Metrics. We established several evaluation metrics for the experimental settings of the various feature
mappings discussed in the context of Mixed-Integer Linear Programming (MILP). (1)Approximation
Error: For all feature mappings, we assessed the average approximation error, defined as the mean
of prediction errors across all instances. (2) Feasibility Error Number: Specifically for feasibility
mappings, we designed metrics to measure the error prediction rate and the number of prediction
errors. (3)Model Params: We evaluated the size of the model parameters to assess the impact of
different feature mappings on the model’s complexity.

Implementation. The MILPnet module is implemented using PyTorch. Our experiments were
conducted on a single NVIDIA 4090Ti GPU (24GB) and a 12th Gen Intel(R) Core(TM) i5-12600KF
3.69GHz CPU.

K.2 DETAILS OF GENERATING FOLDABLE MILP INSTANCES

We follow the foldable dataset generation method in (Chen et al., 2023a), and set the c1 = · · · =
cn = 0 foldable instances as D1, the c1 = · · · = cn = 0.01 foldable instances as D2. We use D1 and
D2 as our experimental datasets. It is worth mentioning that in the representation and generalization
experiments on foldable instances, our training set contains 10,000 foldable instances, while the test
set also includes 10,000 foldable instances, with each set containing 5,000 feasible instances. It is
worth mentioning that Chen et al.’s dataset construction was only performed on FOLD(20,6), whereas
we have extended it to dataset constructions on sizes FOLD(m,n).

Variable Generation: The lower and upper bounds for each variable xj are generated from a normal
distribution. If the lower bound is greater than the upper bound, they are swapped. Some variables
are specified as integer variables (i.e., xj ∈ {0, 1}), while others are continuous variables.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Feasible and Infeasible Problem Constraint Setup: For the feasible problem (k1), the constraints
are set as follows:

xj1 + xj2 = 1, xj2 + xj3 = 1, . . . , xjn + xj1 = 1

These constraints connect binary variables with equality, forming a cyclic structure that guarantees
the problem is feasible; For the infeasible problem (k2), the constraints are slightly adjusted to make
the problem infeasible. For example:

xj1 + xj2 = 1, xj2 + xj3 = 1, xj3 + xj1 = 1

This setup results in an infeasible problem.

K.3 DETAILS OF THE REPRESENTATION EXPERIMENTS

In the representation experiments of our MILPnet on Foldable instances, the MILPnet consists of
1 layer. The embedding dimension is 216 or 256. The learning rate is set to 0.0001, the seeds are
chosen from 42 or 0. The graph-based methods share the same set of experimental seeds as MILPnet.
And our feasibility dataset consists of 50% feasible instances and 50% infeasible instances, while
other datasets are obtained by removing infeasible samples.

K.4 DETAILS OF THE GENERALIZATION EXPERIMENTS

In the generalization experiments of our MILPnet on Foldable instances, the network parameters
pre-trained on the training set are the same as those used in the representation experiments. For
the feasibility generalization experiments, we limited the pre-training time, setting it to 3 minutes
and 5 minutes on FOLD20, 10 minutes and 30 minutes on FOLD50, and 1 hours on FOLD100 to
FOLD500. We then compared the performance of our model with other baselines under different
pre-training time constraints. For the optimal solution and objective optimal value generalization
experiments, we set the pre-training time of FOLD20 to 10 minutes and FOLD50 to 60 minutes. For
our MILPnet generalization experiments, we chose our dropout rate from {0.3, 0.5}, the max window
size is chosen from {2, 3, 4, 5}, and the number of the MILPnet block is 1.

Figure 15: Representation experiments on the optimal objective value for FOLD20. MILPnet
approximates the optimal value mapping of Foldable MILP instances with smaller errors than graph-
based method.

K.5 FOUR COMMON REAL-WORLD MILP SOLVING BENCHMARKS

This section introduces the details of constructing specific MILP instances. In particular, for the SC,
CA, and FC problems, we follow the instance construction method described in Learn2Branch (Gasse
et al., 2019), and the numbers of variables and constraints are shown in the table below. Meanwhile,
for the SC problem, the density is set to 0.05; and for the FC problem, the ratio is also set to 5.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 15: Number of variables and constraints for real-world benchmarks

Dataset Variables Constraints
IP 1,083 195
SC 200 40
CA 300 40
FC 200 60

L ADDITIONAL UNFOLDABLE EXPERIMENTS.

Although this paper primarily conducts experiments on foldable MILP instances, we also perform
representation experiments on unfoldable instances. Similarly, we compare our method with graph-
based networks. In this part, the max window size is chosen as 2, and the MILPnet embedding size is
chosen as 32, the graph-based methods (We select GCN) embedding size is 8.

Figure 16: In the representation experiments on unfold20, MILPnet still outperforms graph-based
methods with a smaller approximation error. Additionally, it maintains a smaller parameter size while
achieving an estimation error lower than that of the graph-based method.

37

	Introduction
	Related work
	Preliminaries
	Sequence Modeling for MILP: MILP-sequence
	Geometric Modeling of MILP
	Measures of the MILP Geometric Spaces
	Geometric Feature Integration

	Multi-Scale Hybrid Attention for MILP-sequence
	Shifted-Window Multi-Scale Attention
	MILPnet Representation on the Measurable Space HMILP

	Experiment
	Experiment Setup
	Performance on Foldable MILP Instances
	Performance on Real-World MILP Instances
	Impact of Architectural Components
	MILPnet solving efficiency analysis

	Conclusion
	Detailed Architecture for MILPnet
	Full Results on Maximum Window Size,Attention blocks, Representation, and Generalization
	Ablation studies on the max
	Ablation study on the number of attention blocks L
	Permutation sensitivity on variable orders
	Representation experiments
	Generalization experiments results
	Cross-size Adaption

	MILPnet solving Efficiency results
	Additional Experiments on Real-world benchmarks
	ConPAS style Heterogeneous Variant on real-world instances solving

	GPU Analysis and Overall Performance Comparison
	GPU memory analysis
	Overall Performance Comparison

	Proof of the Section 4.2 and Section 4.3
	Proof of the Mappings.
	The proof of the Section 5.2.
	Proof and Corollary on Theorem 2
	Proof and corollary of Theorem 3
	Proof and the corollary of Theorem 4

	Proof of the Stability
	Stability of the Optimal Objective Mapping
	Stability of the Feasibility Mapping
	Stability of the Optimal Solution Mapping

	Details of the Time-complexity of MILPnet
	Sparse Variant
	Details of the Experiments
	Detailed Experiment Settings
	Details of Generating Foldable MILP instances
	Details of the Representation experiments
	Details of the Generalization Experiments
	Four Common Real-World MILP solving benchmarks

	Additional Unfoldable experiments.

