
Capturing Nuanced Preferences: Preference-Aligned Distillation for Small
Language Models

Anonymous ACL submission

Abstract

Aligning small language models (SLMs) with001
human values typically involves distilling pref-002
erence knowledge from large language models003
(LLMs). However, existing distillation meth-004
ods model preference knowledge in teacher005
LLMs by comparing pairwise responses, over-006
looking the extent of difference between re-007
sponses. This limitation prevents student SLMs008
from capturing the nuanced preferences for009
multiple responses. In this paper, we pro-010
pose a Preference-Aligned Distillation (PAD)011
framework, which models teacher’s preference012
knowledge as a probability distribution over all013
possible preferences, thereby providing more014
nuanced supervisory signals. Our insight in015
developing PAD is rooted in the demonstration016
that language models can serve as reward func-017
tions, reflecting their intrinsic preference distri-018
butions. Based on this, PAD comprises three019
key steps: (1) generating diverse responses us-020
ing high-temperature sampling; (2) comput-021
ing rewards for both teacher and student to022
construct their intrinsic preference; and (3)023
training the student’s intrinsic preference dis-024
tribution to align with the teacher’s. Experi-025
ments on four mainstream alignment bench-026
marks demonstrate that PAD consistently and027
significantly outperforms existing approaches,028
achieving over 20% improvement on AlpacaE-029
val 2 and Arena-Hard, indicating superior align-030
ment with human preferences. Notably, on MT-031
Bench, using the GEMMA model family, the032
student trained by PAD surpasses its teacher,033
further validating the effectiveness of our PAD.034

1 Introduction035

Recently, small language models (SLMs) have036

demonstrated remarkable performance across a037

range of tasks (Grattafiori et al., 2024; Riviere038

et al., 2024; Jiang et al., 2023). Compared to large039

language models (LLMs) such as GPT4 (OpenAI,040

2024), the smaller parameter numbers of SLMs041

make them more efficient for deployment across042

A user asks for travel tips.

LLM

Scenario 1

Paris is a wonderful city to visit. Be sure 
to explore the Eiffel Tower and try the 
local cuisine.

Response A

Paris is a great place to visit. Don't miss 
the Eiffel Tower.

Response B

Teacher-as-Annotator

A   B≻

Our PAD

P(A ≻ B)=0.61

P(B ≻ A)=0.39

A user asks for advice on mental health.
Scenario 2

If you're feeling overwhelmed, consider 
reaching out to a therapist or a trusted 
friend for support.

Response A

Feeling overwhelmed is normal; you don't 
need to talk to anyone about it.

Response B

rewardLLM

LLM

Teacher-as-Annotator

A   B≻

Our PAD

P(A ≻ B)=0.91

P(B ≻ A)=0.09rewardLLM

Figure 1: Comparison of the Teacher-as-Annotator
methods and our PAD, where “A ≻ B” means the LLM
prefers response A over B.

a wide range of applications. However, their rela- 043

tively small parameter numbers constrain their abil- 044

ity to capture the nuances of human preferences. 045

This specific challenge requires SLMs to generate 046

responses that align with human values, such as 047

providing harmless replies to extreme or sensitive 048

questions (Tunstall et al., 2024). 049

Compared to SLMs, LLMs demonstrate supe- 050

rior alignment with human preferences (OpenAI, 051

2024; Georgiev et al., 2024). Consequently, ex- 052

isting works leverage LLMs as teachers to distill 053

preference knowledge into student SLMs (Bai et al., 054

2022; Cui et al., 2023; Tunstall et al., 2024; Wang 055

et al., 2024; Yuan et al., 2024). All these works 056

model preference knowledge in teacher LLMs by 057

comparing pairwise responses. For example, Bai 058

et al. (2022) uses teacher-annotated responses to 059

train a reward model, which guides the student 060

through reinforcement learning. Similarly, Tunstall 061

et al. (2024) employs a teacher model for prefer- 062

ence annotation but directly optimizes the student 063

model using distilled Direct Preference Optimiza- 064

tion (Rafailov et al., 2023) on the annotated dataset. 065

However, the supervision signals provided by these 066

“Teacher-as-Annotator” methods take the ordering 067
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between responses into account and not the extent068

to which one response is preferred over another. As069

illustrated in Figure 1, in Scenario 1, response A is070

only slightly better than B by providing more infor-071

mative details; whereas in Scenario 2, response B072

contains harmful content (in red), making the differ-073

ence with A more significant. Nonetheless, in both074

scenarios, the preference pairs are all represented075

as A ≻ B. This simplified treatment overlooks the076

differences between preference pairs, thereby neg-077

atively impacting their generations after preference078

learning (Amini et al., 2024).079

To address the limitation, we propose a080

Preference-Aligned Distillation (PAD) framework,081

in which preference knowledge is modeled as a082

probability distribution over all possible prefer-083

ences, providing subtle supervisory signals from084

the teacher. Our insight in developing PAD is085

rooted in the derivation that language models can086

be inherently treated as reward functions, draw-087

ing from the perspective of inverse reinforcement088

learning. Based on this insight, our PAD consists089

of three key steps: 1) Sample a diverse list of re-090

sponses from the student model with high temper-091

ature; 2) Calculate the rewards for each response092

using both the teacher and student models. To miti-093

gate bias in the teacher’s reward, we subsequently094

calibrate these rewards using the selection proba-095

bilities from multiple-choice questions prompting;096

3) Enumerate all possible preferences and compute097

the overall distribution based on the rewards, al-098

lowing the student model to learn and mimic the099

teacher’s preference distribution. As illustrated in100

Figure 1, our PAD is capable of delivering more101

precise signals, highlighting the subtle difference102

in Scenario 1 and significantly distinguishing the103

safe and harmful responses in Scenario 2. To en-104

hance PAD’s efficiency, we further introduce a105

Preference Decomposing Strategy, which divides106

distillation into multiple rounds to accelerate the107

process. Comprehensive experiments across four108

benchmarks, including AlpacaEval 2, Arena-Hard,109

MT-Bench, and GSM8K, with the GEMMA-2 and110

LLAMA-3 families demonstrate that PAD consis-111

tently outperforms existing approaches, effectively112

aligning SLMs with human preferences.113

Code is available1, and our main contributions114

can be summarized as follows:115

• We propose a Preference-Aligned Distillation116

(PAD) framework, which moves beyond pair-117

1https://anonymous.4open.science/r/PAD-E8C6.

wise preference by modeling the full prefer- 118

ence distribution, enabling the student to cap- 119

ture the teacher’s nuanced preferences. 120

• We demonstrate that within inverse reinforce- 121

ment learning, language models can serve as 122

reward functions, thereby inducing their in- 123

trinsic preference. 124

• Experimental results across four benchmarks 125

show that our PAD outperforms existing ap- 126

proaches, suggesting that PAD more precisely 127

captures human preferences. 128

2 Background 129

This section reviews two topics: 1) Preference mod- 130

eling in preference learning theory, and 2) The 131

generation process of language models under the 132

reinforcement learning framework. 133

Preference Modeling Given a prompt x ∈ X , 134

the language model π generates pairs of responses 135

(y1,y2) ∼ π(y | x). A possible preference can 136

be denoted as y1 ≻ y2 | x, where y1 and y2 137

represent the preferred and dispreferred responses. 138

Preferences are assumed to be generated based on a 139

reward model r(y | x), which assigns a continuous 140

reward r to each response y. For simplicity, we 141

omit x and use r(y) to denote r(y | x). 142

The pairwise preference probability p(y1 ≻ y2 | 143

x) can be modeled using the Bradley-Terry (BT) 144

framework (Bradley and Terry, 1952) as follows: 145

p(y1 ≻ y2 | x) = exp(r(y1))

exp(r(y1)) + exp(r(y2)))
.

(1) 146

Now, consider a more generalized scenario with 147

a list of n responses, denoted as Yn = {yi}ni=1, 148

and the corresponding list of reward Rn = {ri}ni=1. 149

A possible preference ranking τn = y(1) ≻ · · · ≻ 150

y(i) ≻ · · · ≻ y(n) | x, where y(i) denotes the 151

response ranked at the i-th position. Using the 152

Plackett-Luce ranking model (Plackett, 1975; Luce, 153

2012), the preference probability is defined as: 154

p(τn) =

n∏
i=1

exp(r(y(i)))∑n
j=i exp(r(y

(j)))
. (2) 155

Text Generation as a Markov Decision Process 156

(MDP) The text generation process can be mod- 157

eled as an MDP, which is represented by the triple 158

(S,V, u)2, where the state space S represents all 159

2We omit the transition dynamics T for simplicity. In text
generation, these dynamics are deterministic, as each state-
action pair uniquely determines the next state.
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possible partially generated sequences, and the ac-160

tion space V corresponds to the vocabulary in the161

language model. At each step t, an action yt ∈ V162

(a token) is taken based on the current state s ∈ S163

(the partially generated sequence) and gains a step164

(token)-level reward u.165

3 Language Models as Intrinsic Reward166

Functions167

This section introduces how we derive a reward168

function from language models without any refer-169

ence model, providing the theoretical foundation170

for the framework proposed in the next section.171

Inverse Reinforcement Learning (IRL) To in-172

duce the token-level reward model u, we follow the173

maximum-entropy IRL framework (Ziebart et al.,174

2008; Chan and van der Schaar, 2021), where the175

Q-value function at step t is defined as:176

Q(yt | y<t,x) = (3)177

u(yt | y<t,x) + log
∑
yt+1

exp[Q(yt+1 | y≤t,x)].178

Following Hao et al. (2022), we parameterize the179

Q-function as Q(·) = fπ(·), where fπ(·) represents180

the output logits of the language model π. The181

reward function u at each step t is then defined as182

u(yt | y<t,x) =fπ(yt | y<t,x) (4)183

− log
∑

yt+1∈V
exp[fπ(yt+1 | y≤t,x)]184

We further define ft := fπ(yt | y<t,x) and185

Zt :=
∑

yt∈V exp
(
fπ(yt | y≤t−1,x)

)
for simplic-186

ity, which allows us to write that u(yt | y<t,x) =187

ft − logZt+1. Please note that at last step, i.e.,188

t = |y|, we have logZ|y|+1 = 0 according to the189

definition of the Q-value.190

Cumulative Log-Likelihood Reward Given the191

token-level reward function u, the sequence-level192

reward is naturally defined by cumulating the token-193

level rewards:194

r(y | x) =
|y|∑
t=1

u(yt | y<t,x) =

|y|∑
t=1

(ft − logZt+1)195

=

|y|∑
t=1

(ft − logZt) + logZ1 −XXXXXlogZ|y|+1196

=

|y|∑
t=1

log pπ(yt | y<t,x) + logZ1197

= log pπ(y | x) + logZ1, (5)198

where pπ(yt | y<t,x) is the probability of token 199

yt given the previous sequences (y<t,x). Please 200

note that logZ1 does not depend on the particular 201

sequence y. 202

Normalized Log-Likelihood Reward By com- 203

bining the Plackett-Luce model in Eq. 2 with the 204

cumulative reward in Eq. 5, the probability for pref- 205

erence τn is given by: 206

p(τn) =
n∏

i=1

exp
(
log pπ(y

(i) | x)
)∑n

j=i exp
(
log pπ(y(j) | x)

) . (6) 207

When modeling preferences, the term logZ1 can 208

be eliminated due to the translation invariance prop- 209

erty of the softmax function. Therefore, the cumu- 210

lative reward simplifies to: 211

r(y | x) = 1

|y|
log pπ(y | x). (7) 212

where 1/|y| is a length-normalized term to avoid 213

bias towards longer sequences (Meng et al., 2024; 214

Gu et al., 2024). 215

In other words, the reward of a language model 216

can be formalized as the average log-likelihood. 217

This approach naturally reflects the inherent pref- 218

erences of the language model, meaning that the 219

higher the probability the model assigns to generat- 220

ing a particular response y, the greater its reward. 221

Additionally, the average log-likelihood directly 222

corresponds to the language model’s inference pro- 223

cess, and thus numerous studies practically employ 224

it as the objective during the optimization process 225

(Meng et al., 2024; Song et al., 2024). 226

4 PAD: Preference-Aligned Distillation 227

In this section, we first describe our framework, 228

whose training consists of three key steps (§4.1- 229

4.3), and then introduce a preference decomposing 230

strategy to accelerate the training process (§4.4). 231

4.1 Diverse Response Generation 232

As the first step, taking prompt x as input, we 233

directly sample n responses Yn from the student 234

model πstu through repeated sampling. To enhance 235

the diversity of responses, a higher decoding tem- 236

perature, i.e., 0.8, is applied. Repeated sampling 237

directly from the student model offers two key ad- 238

vantages. First, enabling the generation of higher- 239

quality responses. Existing works have shown that 240

as the number of repeated samples increases, the 241

likelihood of the model generating better answers 242
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Why is the problem always DNS?
Prompt

Because it is a core 
component of the internet…

The statement is a 
humorous exaggeration…

I'd like to clarify that the 
concept of …

Repeated sampling

(a) Response Sampling (b) Reward Calculation

Response A

Response B

Response C

Student

(c) Preference Distillation

(i) Vanilla Preference Distillation (VPD)

P (A ≻ B ≻ C)

P (A ≻ C ≻ B)

P (B ≻ A ≻ C)

···
teacherstudent

Ranking
Permutation

-0.24

argsort(·)

Unique Ranking

Student

A
B

≻

≻

NLL Loss

(ii) Probabilistic Preference Distillation (PPD)

Student

Teacher
reward

calibrate

-0.24

-0.16

-0.35

-0.15

-0.17

-0.20

-0.31

-0.12

-0.24

Please evaluate and select 
the best response to a query.
# Query
A) Because … B) The state …

MCQ

Reward function
A C

C

C B

A B C

-0.31

B
-0.12

A BC≻ ≻ 

JSD Loss

Figure 2: The overall process of the PAD contains three critical steps. The initial step involves sampling diverse
responses with high temperature (§4.1). Next, rewards for both models are computed, where the rewards of the
teacher would be calibrated(§4.2). Finally, the student is trained to mimic the teacher’s preference distributions.(§4.3)

across various tasks, such as math and coding, also243

improves (Wang et al., 2023; Rozière et al., 2024;244

Brown et al., 2024). Second, mitigating the expo-245

sure bias. Exposure bias arises from the mismatch246

between training and inference, where the model247

is trained on ground truth contexts but relies on its248

own predictions during inference, leading to error249

accumulation. Following Gu et al. (2024); Agarwal250

et al. (2024), we train the student model on self-251

generated responses to help align the distributions,252

reducing this issue.253

4.2 Reward Calculation and Calibration254

Given a prompt x and its corresponding list of255

responses Yn from the previous step, we can com-256

pute the rewards of the teacher and the student257

models for each response yi ∈ Yn using Equation258

(2). These rewards are denoted as rtch(yi) and259

rstu(yi), respectively, and correspond to the mod-260

els’ average log-likelihood for each response. How-261

ever, language models often exhibit miscalibration,262

where the likelihood assigned to sequences does263

not correlate well with their actual quality (Zhao264

et al., 2023). For example, the phrases "pros and265

cons" and "cons and pros" convey the same mean-266

ing, but the former may appear more frequently in267

the training dataset, leading the model to assign it a268

higher probability. This miscalibration introduces269

a significant challenge: if the teacher’s reward is270

miscalibrated, aligning the student to the teacher271

model may propagate this issue.272

Building upon the findings of Ren et al.273

(2023a,b), which demonstrate that Multiple-Choice274

Question (MCQ) selection probabilities more ef-275

fectively capture the quality of responses compared276

to sequence likelihood, we introduce the selec-277

tion probability from MCQ prompting to calibrate278

the teacher model’s reward. Specifically, we ran- 279

domly map each response yi ∈ Yn to a choice 280

within a predefined alphabet set Cn, for example, 281

C3 = {‘A’, ‘B’, ‘C’}. We present these choices in 282

the MCQ format and compute the probability of 283

selecting each choice based on the model’s token- 284

level probabilities: 285

psel(yi) = p(ci | Yn, Cn,x), (8) 286

where ci corresponds to the choice associated with 287

response yi. 288

We then calibrate the reward for each response 289

by combining the normalized log-likelihood reward 290

with the selection probability: 291

r̂tch(y) = (1− α)rtch(y) + α log psel(y), (9) 292

where the reward calibration ratio α ∈ [0, 1] is a 293

hyperparameter that balances the influence of the 294

original reward and the MCQ selection probability. 295

4.3 Preference Distillation 296

Based on different ways of modeling teacher pref- 297

erences, we employ two losses to distillation: the 298

vanilla preference loss LVPD, and the probabilistic 299

preference loss LPPD. 300

Vanilla Preference Distillation (VPD) Follow- 301

ing Rafailov et al. (2023); Song et al. (2024), the 302

preference is modeled as a unique ranking. Specifi- 303

cally, we obtain ranking τn of the responses Yn by 304

sorting them according to their rewards r̂tch. The 305

student model is then trained with negative log- 306

likelihood (NLL) loss to maximize the probability 307

of teacher preference using Eq. 6. 308

LVPD =
n∑

i=1

log
exp

(
βrstu(y(i))

)∑n
j=i exp

(
βrstu(y(j))

) , (10) 309
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where β is a hyperparameter that controls the scal-310

ing of the reward difference.311

Probabilistic Preference Distillation (PPD) In-312

spired by Cao et al. (2007), we treat the teacher’s re-313

wards as uncertain indicators of preference, which314

means any preference ranking is assumed to be315

possible but has a different likelihood. The prefer-316

ence distribution over all possible rankings for the317

teacher is expressed as:318

∀τn ∈ T , pπtch(τn) =

n∏
i=1

exp
(
βr̂tch(y(i))

)∑n
j=i exp

(
βr̂tch(y(j))

) ,
(11)319

where T represents the set of all possible rankings,320

and the distribution for the student pπstu(τn) also321

can be modeled in the same way.322

We then employ the Jensen-Shannon divergence323

(JSD) loss to align the student’s and teacher’s pref-324

erence distributions:325

LPPD =
1

2

[
DKL(π

tch||πmix) +DKL(π
stu||πmix)

]
,

(12)326

where mixed distribution πmix = (πtch + πstu)/2,327

and DKL(·∥·) is the Kullback-Leibler divergence328

(KLD). Specifically, the KLD between the teacher’s329

preference distribution and the mixed distribution330

is defined as:331

DKL(π
tch||πmix) =

∑
τn∈T

pπtch(τn) log
pπtch(τn)

pπmix(τn)
.332

Similarly, DKL(π
stu||πmix) can be calculated as333

the same way. By aligning the student’s preference334

distribution with the teacher’s, the student model335

not only learns specific preference rankings but also336

captures the teacher’s confidence in these rankings.337

4.4 Preference Decomposing Strategy338

In our PAD, the number of sampled responses, i.e.,339

the sample size n, is a crucial parameter. A larger340

n allows for a more macro comparison among re-341

sponses, reduces the variance introduced by sam-342

pling, and increases the likelihood of generating343

high-quality responses (Brown et al., 2024). How-344

ever, as n increases, the computational cost of both345

sampling and forward propagation also rises. Par-346

ticularly when modeling preference distributions,347

the complexity grows factorially, making the com-348

putation unfeasible when n becomes large.349

To mitigate the computational cost during train-350

ing, we propose a preference decomposition strat-351

egy. This strategy breaks down the preference of352

(for i from 1 to k)

Next iteration

Prompt

Si+1

-0.31

-0.12

-0.24

Si T

S student

T teacher

sample

reward
calculation

training

A B C

A

B

C

Figure 3: Iterative Distillation Process.

a large batch of responses into the preferences of 353

multiple smaller batches, allowing the training pro- 354

cess to be split into several iterative rounds, thereby 355

reducing the overall computational load. 356

Decomposing Preference Modeling Given a 357

preference ranking τn, we define a prefer- 358

ence decomposition function ϕ to decompose 359

it into k sub-preferences, such that ϕ(τn) = 360

{τ (1)m , τ
(2)
m , . . . , τ

(k)
m }. Assuming that these sub- 361

preferences are independent, we simplify the prob- 362

ability of the complete preference to the probability 363

of the decomposed preferences as follows: 364

p(τn)
simplify−−−−→ p(ϕ(τn)) =

k∏
i=1

p(τ (i)m ). (13) 365

Hence, we use decomposed preferences as the 366

learning objective, for VPD, its NLL loss for de- 367

composed preferences as 368

log p(ϕ(τn)) =
k∑

i=1

log p(τ (i)m ). (14) 369

This demonstrates that the distillation loss for 370

decomposed preferences on a large batch of re- 371

sponses is equivalent to the sum of losses over 372

multiple smaller batches of responses. A similar 373

decomposition also applies to PPD, and the proof 374

can be found in Appendix A. Based on this insight, 375

we adopt the Iterative Distillation Process, as illus- 376

trated in Figure 3. We decompose the full distilla- 377

tion process over n responses into k iterations of 378

distillation over m responses each. In this process, 379

the complexity of modeling the preference distribu- 380

tion is reduced from O(n!) to O(k ·m!), thereby 381

decreasing the computational cost of training. 382
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Model Families Method Alpaca-Eval 2.0 Arena-Hard MT-Bench GSM8K
LC (%) WR (%) WR (%) Score (1∼10) Acc. (%)

GEMMA-2

Teacher (9B) 55.27 42.50 61.16 6.99 87.41
Student (2B) 39.51 41.99 37.55 6.70 51.63
Standard KD 41.67 (↑2.2) 45.24 (↑3.3) 52.36 (↑14.8) 6.78 (↑0.1) 54.37 (↑2.7)

SeqKD 42.91 (↑3.4) 46.44 (↑4.4) 54.87 (↑17.3) 6.88 (↑0.2) 55.72 (↑4.1)

MiniLLM 42.97 (↑3.5) 48.32 (↑6.3) 55.75 (↑18.2) 6.88 (↑0.2) 55.26 (↑3.6)

DPO 43.77 (↑4.3) 54.02 (↑12.0) 57.43 (↑19.9) 6.87 (↑0.2) 57.07 (↑5.4)

SimPO 44.94 (↑5.4) 54.16 (↑12.2) 58.64 (↑21.1) 6.91 (↑0.2) 57.24 (↑5.6)

PRO 45.87 (↑6.4) 56.48 (↑14.5) 58.95 (↑21.4) 6.96 (↑0.3) 58.83 (↑7.2)

PAD w/ LVPD 46.13 (↑6.6) 57.94 (↑16.0) 59.07 (↑21.5) 6.93 (↑0.2) 59.06 (↑7.4)

PAD w/ LPPD 49.62 (↑10.1) 59.50 (↑17.5) 60.00 (↑22.4) 7.02 (↑0.3) 59.29 (↑7.7)

LLAMA-3

Teacher (8B) 37.01 38.93 52.66 7.00 84.00
Student (3B) 27.82 29.02 31.70 6.42 57.09
Standard KD 29.11 (↑1.3) 29.60 (↑0.6) 41.68 (↑10.0) 6.49 (↑0.1) 59.15 (↑2.1)

SeqKD 29.48 (↑1.7) 30.04 (↑1.0) 42.52 (↑10.8) 6.53 (↑0.1) 60.94 (↑3.8)

MiniLLM 30.05 (↑2.2) 30.38 (↑1.4) 42.21 (↑10.5) 6.67 (↑0.3) 60.35 (↑3.3)

DPO 31.42 (↑3.6) 32.01 (↑3.0) 44.71 (↑13.0) 6.62 (↑0.2) 61.63 (↑4.5)

SimPO 32.74 (↑4.9) 32.46 (↑3.4) 44.85 (↑13.2) 6.73 (↑0.3) 61.22 (↑4.1)

PRO 32.11 (↑4.3) 32.23 (↑3.2) 45.09 (↑13.4) 6.71 (↑0.3) 61.47 (↑4.4)

PAD w/ LVPD 32.71 (↑4.9) 32.34 (↑3.3) 45.23 (↑13.5) 6.77 (↑0.3) 61.35 (↑4.3)

PAD w/ LPPD 33.61 (↑5.8) 32.55 (↑3.5) 46.73 (↑15.0) 6.84 (↑0.4) 62.24 (↑5.1)

Table 1: Main results with the Gemma-2 and LLaMA-3 Models.

5 Experiment383

5.1 Setup384

Models We evaluate two model families in our385

main experiments: 1) GEMMA-2 Models3 (Riv-386

iere et al., 2024) include GEMMA-2-9B-IT as387

teacher and GEMMA-2-2B-IT as the student, and388

2) LLAMA-3 Models4 (Grattafiori et al., 2024)389

includes LLAMA-3.1-8B-INSTRUCT as teacher390

and LLAMA-3.2-3B-INSTRUCT as student.391

Training We construct the training data from UL-392

TRAFEEDBACK5 (Cui et al., 2023), which com-393

prises around 60k preference data. This dataset394

covers a broad range of real user prompts, spanning395

tasks such as mathematical reasoning and open-396

ended writing. We filter out samples that exceed397

the context length of the models. We set the num-398

ber of sampled responses n to 4. To mitigate the399

reward bias of the teacher model, we set the reward400

calibration ratio α to 0.8. By default, our training401

epoch is 1. Detailed experimental settings can be402

found in Appendix B.1.403

Evaluation We evaluate our model on the fol-404

lowing four benchmarks: AlpacaEval 2.0 (Li et al.,405

2023), MT-Bench (Zheng et al., 2023), Arena-Hard406

3https://ai.google.dev/gemma
4https://ai.meta.com/blog/meta-llama-3/
5https://huggingface.co/datasets/argilla/

ultrafeedback-binarized-preferences-cleaned

(Li et al., 2024), and GSM8K (Cobbe et al., 2021). 407

These benchmarks assess the model’s versatile con- 408

versational capabilities across various queries and 409

have been widely adopted by the community. For 410

AlpacaEval, we provide both the raw win rate (WR) 411

and the length-controlled win rate (LC) against the 412

reference model. The LC metric is specifically de- 413

signed to be robust against model verbosity. For 414

Arena-Hard, we report the win rate (WR)6. For 415

MT-Bench, we report the average MT-Bench score 416

evaluated by GPT-4 Turbo. Detailed evaluation 417

settings can be found in the Appendix B.2 418

Baselines We compare PAD with two types of 419

baselines: 1) Traditional Knowledge Distillation, 420

which aims to learn the teacher’s distribution at 421

the logits level, including Standard KD (Hin- 422

ton et al., 2015), SeqKD (Kim and Rush, 2016), 423

and MiniLLM (Gu et al., 2024); 2) Preference 424

Knowledge Distillation, which aims to transfer 425

the teacher’s preference knowledge to the stu- 426

dent model. Under the “Teacher-as-Annotator” 427

paradigm, we choose DPO (Tunstall et al., 2024), 428

SimPO (Meng et al., 2024), and PRO (Song et al., 429

2024) as baselines. A detailed description of these 430

baselines can be found in Appendix B.3. 431

6Please note that for AlpacaEval 2.0 and Arena-Hard, we
employ LLAMA-3.1-70B-INSTRUCT as the judge model,
which achieved capabilities comparable to GPT-4 Turbo on
the judge test of AlpacaEval while being more cost-effective
and faster.

6

https://ai.google.dev/gemma
https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned


5.2 Main Result432

Table 1 presents the main experimental results433

across multiple benchmarks, including Alpaca-434

Eval 2.0, Arena-Hard, MT-Bench, and GSM8K.435

The key finding is that the student models trained436

by PAD consistently outperform its initial counter-437

part and existing approaches, achieving over 20%438

improvement on AlpacaEval 2.0 and Arena-Hard,439

demonstrating that PAD is able to more precisely440

capture the teacher’s preferences, thereby better441

aligning with human values.442

When comparing PAD with traditional knowl-443

edge distillation (KD) and preference distillation444

methods, PAD demonstrates a clear edge. Tradi-445

tional KD methods, such as Standard KD and Se-446

qKD, show limited improvement over the initial stu-447

dent model, with performance improvements rang-448

ing from 1-3% in Alpaca-Eval 2.0 LC scores. In449

contrast, distillation methods like DPO and SimPO450

show more significant improvements, particularly451

in aligning better with human preferences, as ob-452

served in the Alpaca-Eval 2.0 and Arena-Hard453

benchmarks, which is consistent with the findings454

of Tunstall et al. (2024).455

PAD w/ LPPD consistently outperforms PAD456

w/ LVPD, with notable gains across benchmarks457

such as Alpaca-Eval 2.0 LC (49.62 vs. 46.13) and458

MT-Bench (7.02 vs. 6.93). In particular, for the459

GEMMA-2 model family, the student trained with460

LPPD even slightly surpasses the teacher model in461

MT-Bench, achieving a score of 7.02 compared462

to the teacher’s 6.99. The key advantage of PPD463

over VPD lies in the preference modeling strategy.464

Instead of just giving a simple preference ranking,465

modeling the full preference distribution provides466

more nuanced supervisory signals. This enhance-467

ment is crucial, as it better captures subtle human468

preference, a factor often overlooked in existing469

distillation methods.470

5.3 Analysis471

We analyze the impact of our proposed Preference472

Decomposing Strategy and Reward Calibration. To473

explore the generalization capability of PAD, we474

also analyze the performance when the teacher and475

student come from different model families. More476

detailed analyses can be found in Appendix C.477

Effect of Preference Decomposing Strategy478

Based on the preference decomposing strategy, we479

investigated the impact of the iterative distillation480

process on performance and training time. Table 2481

Figure 4: Alpaca-Eval 2 LC with different iterations.

Iteration /
Sample Size

Alpaca-Eval 2 GPU Hours
LC (%) A800

1 / 4 49.42 12.32
2 / 2 48.94 12.35
1 / 8 50.57 31.51
2 / 4 51.42 27.98

Table 2: Impact of different number of iterations and
sample sizes on performance and training time.

illustrates the effects of different numbers of iter- 482

ations and sample sizes. When the sample size is 483

4, decomposing the sampling process into two iter- 484

ative steps does not reduce training time, because 485

the complexity of modeling the distribution with 486

fewer samples is low and thus negligible. However, 487

when the sample size increases to 8, adopting a two- 488

iteration decomposition shortens the time by 12%, 489

indicating that as the sample size increases, the 490

preference decomposing strategy becomes more 491

advantageous in accelerating training. Moreover, 492

decomposing the sampling into multiple iterative 493

steps does not lead to a significant performance 494

drop, demonstrating that this strategy can maintain 495

stable performance while improving efficiency. 496

We further explored the impact of the itera- 497

tive distillation process as a continuous learning 498

method. In Figure 4, we compared three high- 499

performing baseline methods: DPO, SimPO, and 500

PRO. The results show that the iterative distillation 501

process enhances performance across all methods, 502

with our PAD achieving the best results, highlight- 503

ing its effectiveness. 504

Influence of Reward Calibration Ratio We in- 505

vestigate the effect of the calibration ratio α in 506

our PAD (Figure 5). Without reward calibration 507

(α = 0), the performance improvement of the dis- 508

tilled student model is marginal, possibly due to 509

mis-calibration of sequence likelihood. Increasing 510

α improves performance, with the best results at 511
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α

LC 

(%)

Figure 5: Alpaca-Eval 2 LC Win Rate with different α

Method
Alpaca-Eval Arena-Hard

LC (%) WR (%)

Student 27.82 31.70

DPO 49.42(↑21.6) 56.72(↑25.0)

SimPO 49.78(↑22.0) 56.69(↑25.0)

PRO 50.18(↑22.4) 58.23(↑26.5)

PAD w/ LVPD 50.45(↑22.6) 58.47(↑26.8)

PAD w/ LPPD 51.96(↑24.1) 59.96(↑28.3)

Table 3: Heterogeneous Distillation Study. We use
GEMMA-2-9B-IT as the teacher and LLAMA-3.2-3B-
INSTRUCT as the student.

α = 0.8. However, further increases in α offer512

diminishing returns and may slightly decrease per-513

formance. For lower-performance requirements,514

using α = 1 is a viable option, as it avoids the515

computational cost of calculating the teacher’s log-516

likelihood.517

Heterogeneous Study In previous experiments,518

both the teacher and the student models belonged519

to the same model family, indicating that they share520

the same vocabulary and have similar architectures.521

To verify the generalization capability of our PAD,522

we conducted experiments where the teacher and523

student models come from different model fami-524

lies. As shown in Table 3, our method consistently525

outperforms other approaches, achieving a 24.1526

improvement in LC on Alpaca-Eval and a 28.3 im-527

provement in WR on Arena-Hard. These results528

demonstrate its generalization ability.529

6 Related Work530

Traditional Knowledge Distillation Knowledge531

distillation (KD), introduced by Hinton et al.532

(2015), primarily aims at model compression by533

training a smaller student model to mimic the534

output behavior of a larger teacher model (Kim535

and Rush, 2016; Liang et al., 2021; Zhang et al.,536

2023; Gu et al., 2024; Agarwal et al., 2024). Kim537

and Rush (2016) extended KD to machine transla-538

tion by training students on sequences generated539

by teachers in order to imitate teacher behavior.540

More recently, Gu et al. (2024) advanced KD us- 541

ing reverse KL divergence on student -generated 542

sequence to mitigate exposure bias, improving stu- 543

dent model performance. A key feature of these 544

methods is that distillation is performed over the 545

shared vocabulary of both teacher and student mod- 546

els. Our PAD eliminates this limitation, enabling 547

effective distillation with different vocabularies. 548

Preference Knowledge Distillation Motivated 549

by the observation that large models have achieved 550

a high degree of alignment with human values and 551

preferences, many efforts focus on distilling pref- 552

erence knowledge from large models to smaller 553

ones (Bai et al., 2022; Cui et al., 2023; Lee et al., 554

2024; Yuan et al., 2024; Tunstall et al., 2024; Yang 555

et al., 2024). Bai et al. (2022) first introduced this 556

concept, also known as Reinforcement Learning 557

from AI Feedback (RLAIF), where teacher models 558

annotate response pairs from the student to create a 559

preference dataset for training a reward model. Tun- 560

stall et al. (2024) further utilized teacher-annotated 561

preferences with Direct Preference Optimization 562

(DPO) (Rafailov et al., 2023), streamlining the 563

training of student models. These approaches fol- 564

low the "Teacher-as-Annotator" paradigm. The 565

annotated preference datasets generated through 566

this paradigm can be directly employed with meth- 567

ods such as DPO, SimPO (Meng et al., 2024), and 568

PRO (Song et al., 2024), enabling preference opti- 569

mization of student models. However, a significant 570

limitation of these methods lies in their reliance on 571

unique ranking, which constrains their ability to 572

model nuanced preferences. In contrast, our PAD 573

treats modeling preference knowledge as a distribu- 574

tion over all possible preferences, enabling nuanced 575

alignment for the student and teacher models. 576

7 Conclusion 577

In this paper, we introduced the Preference-Aligned 578

Distillation (PAD) framework, in which we model 579

the teacher’s preference knowledge as a probabil- 580

ity distribution over all possible preferences. This 581

supervisory signal allows the student to learn the 582

subtle differences between responses. Our exper- 583

iments on the GEMMA-2 and LLAMA-3 model 584

families demonstrated that PAD outperforms tra- 585

ditional knowledge distillation and existing prefer- 586

ence distillation methods across four benchmarks, 587

showcasing its emergent capability of learning in- 588

depth human preferences. 589
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Limitations590

Our research has several limitations. Firstly, the591

generalization capability is insufficient as we have592

not conducted experiments on larger-scale teacher593

and student models, primarily due to limited com-594

putational resources. Secondly, sampling multiple595

responses consumes more computational overhead.596

However, because SLMs have relatively smaller pa-597

rameter sizes, this overhead remains comparatively598

modest. Thirdly, our method requires token-level599

probabilities, which are unavailable in some black-600

box models.601
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hyperparameter Value Searching Space
β 10 [1, 2, 5, 8, 10]

batch size 128 [32, 64, 128]

warmup ratio 0.1 [0.05, 0.1]

Table 4: The hyperparameter values in PAD training.

A Decomposing Probabilistic Preference820

Distillation821

Substituting Eq. 13 into the KLD:822

∑
τn

(
k∏

i=1

pπtch(τ (i)m )

)
log

(∏k
i=1 pπtch(τ

(i)
m )∏k

i=1 pπmix(τ
(i)
m )

)
823

=
∑
τn

(
k∏

i=1

pπtch(τ (i)m )

)(
k∑

i=1

log
pπtch(τ

(i)
m )

pπmix(τ
(i)
m )

)
824

interchange summations,825

=
k∑

i=1

∑
τn

 k∏
j=1

pπtch(τ (j)m )

 log
pπtch(τ

(i)
m )

pπmix(τ
(i)
m )

826

notice that for a fixed i, the logarithm term only827

depends on τ
(i)
m , and the product can be separated,828

=

k∑
i=1

∑
τ
(i)
m

pπtch(τ
(i)
m ) log

pπtch(τ
(i)
m )

pπmix(τ
(i)
m )

∏
j ̸=i

∑
τ
(j)
m

pπtch(τ
(j)
m )

829

830

based on the independence assumption of sub-
preferences,

∑
τ
(j)
m

pπtch(τ
(j)
m ) = 1 for each j,831

=
k∑

i=1

∑
τ
(i)
m

pπtch(τ (i)m ) log
pπtch(τ

(i)
m )

pπmix(τ
(i)
m )

832

Therefore, the KLD can be decomposed as:833

DKL(pπtch(τn)∥pπmix(τn)) =834

k∑
i=1

DKL(pπtch(τ (i)m )∥pπmix(τ (i)m ))835

The JSD Loss (Eq. 12) used in PPD is the av-836

erage of two KLDs in different directions, making837

JSD also decomposable.838

B Implementation Details839

B.1 Training840

We individually search the learning rates for dif-841

ferent model families in the range of [3e− 7, 5e−842

Model Human Agreement
GPT4 69.17

LLAMA-3.1-70B-INSTRUCT 69.10
GPT4-Turbo 68.09

LLAMA-3-70B-INSTRUCT 67.53
QWEN2.5-72B-INSTRUCT 67.51

Humans 65.66

Table 5: Leaderboard of judge models in AlpacaEval.

7, 8e − 7, 1e − 6, 1e − 5]. As a result, the learn- 843

ing rate for GEMMA-2 Models is 8e − 7 and for 844

LLAMA-3 Models is 1e− 6. Table 4 shows other 845

hyperparameters for training. All the training ex- 846

periments in this paper were conducted on 2×A800 847

GPUs based on the TRL repo7. 848

B.2 Evaluation 849

Data Statistics AlpacaEval 2 consists of 805 850

questions from five datasets, MT-Bench includes 851

80 questions across eight categories, and the re- 852

cently released Arena-Hard is an enhanced version 853

of MT-Bench, comprising 500 challenging ques- 854

tions. Since the training data, ultrafeedback, in- 855

cludes some mathematical reasoning problems, we 856

additionally incorporate the GSM8K test set, which 857

contains approximately 1,300 questions, to evalu- 858

ate the model’s mathematical abilities. 859

Judge Models For AlpacaEval 2.0 and Arena- 860

Hard, we employ LLAMA-3.1-70B-INSTRUCT 861

as the judge model. For MT-Bench, we employ 862

GPT-4 Turbo as the judge model. For GSM8K, we 863

report accuracy on the test set. Table 5 presents the 864

evaluation capability test8 of these judge models on 865

AlpacaEval. We can see that LLAMA-3.1-70B- 866

INSTRUCT has evaluation capabilities comparable 867

to GPT4-Turbo. 868

B.3 Baselines 869

For traditional knowledge distillation, we consider 870

three baselines: 1) Standard KD (Hinton et al., 871

2015): Fine-tunes the student model using the 872

teacher model’s logits distribution as a supervision 873

signal, applied to golden responses. 2) SeqKD 874

(Kim and Rush, 2016): Directly fine-tunes the stu- 875

dent model with cross-entropy loss using responses 876

generated by the teacher model. 3) MiniLLM (Gu 877

et al., 2024): Employs the teacher model’s logits 878

7https://github.com/huggingface/trl/tree/main
8https://github.com/tatsu-lab/alpaca_eval/

tree/main/src/alpaca_eval/evaluators_configs
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distribution as supervision signal while fine-tuning879

the student model on its own generated responses.880

For preference knowledge distillation, under881

the "Teacher-as-Annotator" paradigm, we employ882

three offline preference optimization methods as883

baselines: 1) DPO (Rafailov et al., 2023; Tunstall884

et al., 2024): Treats the student model as a reward885

model, fine-tuning it based on a reward function886

derived from a reference model. 2) SimPO (Meng887

et al., 2024): Operates similarly to DPO but uses888

average log-likelihood as the optimization objec-889

tive. 3) RPO (Song et al., 2024): Extends the890

above approaches by optimizing with listwise pref-891

erence information. For a fair comparison, we also892

use responses sampled from the student model for893

these baselines. We use the MCQ selection prob-894

ability introduced in Section 4.2 as the score to895

rank the responses. For the pairwise preference896

optimization methods DPO and SimPO, we se-897

lect the responses with the maximum and mini-898

mum rewards to form preference pairs. For the899

listwise preference optimization method PRO, we900

directly sort the scores to form the preference rank-901

ing. Please kindly note that constructing preference902

pairs using the maximum and minimum scores of903

responses is a common practice (Cui et al., 2023;904

Meng et al., 2024). Moreover, our preliminary ex-905

periments indicate that splitting the entire listwise906

response data into multiple pairwise data and train-907

ing with DPO/SimPO does not yield significant908

performance improvements.909

C Additional Experiments and Analyses910

Method Alpaca-Eval Arena-Hard
LC (%) WR (%)

Teacher 56.89 76.09
Student 39.51 37.55

DPO 51.93 65.42
SimPO 52.36 66.36
PRO 52.45 68.01

PAD w/ LVPD 53.32 67.38
PAD w/ LPPD 55.96 69.90

Table 6: Scaling-up Study.

Scaling Up We use GEMMA-2-27B-IT as the911

teacher and GEMMA-2-2B-IT as the student. The912

overall performance is shown in Table 6. When913

employing larger-scale teacher models, our PAD914

consistently and significantly enhances the ability915

of small models to align with human preferences.916

Compared to the main result (§5.2), we observe917

(a) Alpaca-Eval 2.0 LC Win Rate (%) (b) Arena-Hard Win Rate (%) 
Sample size n Sample size n

Figure 6: Win Rate with different sample size n.

that when using a more capable teacher, the student 918

model achieves greater performance improvements, 919

indicating that the performance gap between the 920

teacher and student is a key factor in determining 921

the extent of the student’s enhancement. 922

Effect of Sample Size We investigate the impact 923

of the number of sampled responses on PPD, and 924

the results can be seen in Figure 6. We observe 925

that as the number of sample size n increases, the 926

performance of the student model improves accord- 927

ingly. This indicates that obtaining more feedback 928

knowledge through extensive sampling from the 929

text generation space facilitates better alignment of 930

the student model with the teacher’s preferences. 931
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