
A New PHO-rmula for Improved Performance of Semi-Structured Networks

David Rügamer 1 2

Abstract
Recent advances to combine structured regres-
sion models and deep neural networks for better
interpretability, more expressiveness, and statisti-
cally valid uncertainty quantification demonstrate
the versatility of semi-structured neural networks
(SSNs). We show that techniques to properly
identify the contributions of the different model
components in SSNs, however, lead to subopti-
mal network estimation, slower convergence, and
degenerated or erroneous predictions. In order
to solve these problems while preserving favor-
able model properties, we propose a non-invasive
post-hoc orthogonalization (PHO) that guarantees
identifiability of model components and provides
better estimation and prediction quality. Our the-
oretical findings are supported by numerical ex-
periments, a benchmark comparison as well as a
real-world application to COVID-19 infections.

1. Introduction
A linear model in its original form is inherently interpretable
due to its structural model space assumption: Given features
X , the expected outcome E(y|X) of a variable of interest y
is the linear combination Xβ of the features X and weights
β. When fixing all but one of the features xj , the change
in E(y|X) can be easily quantified and interpreted by the
change in xj multiplied by its weight βj (ceteris paribus).
A deep neural network (DNN), on the other hand, can also
be seen as a linear combination of features and weights, say
Uγ, where U are latent features learned in the penultimate
layer of the neural network and γ are the weights from the
connection between the last hidden and the output layer (in
this case with linear activation function). As U itself is often
a non-linear and complex transformation of the actual DNN
inputs Z, the linear combination Uγ is not “structured” in a

1Department of Statistics, LMU Munich, Munich, Germany
2Munich Center for Machine Learning (MCML), Munich, Ger-
many. Correspondence to: David Rügamer <david@stat.uni-
muenchen.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

way that users can directly relate the effects γ to the original
inputs Z. While there is a plethora of literature characteriz-
ing the learned DNN effects in terms of Z, we in this work
focus on models that combine a structured linear model-type
predictor ηstr := Xβ and an unstructured DNN predictor
ηunstr := Uγ to combine interpretability and predictive
performance. The latent features U are learned from a set
of features Z with arbitrary shape (e.g., image tensors) and
potentially overlapping with X . An example of such a
model is the semi-structured neural network (SSN). SSNs,
exemplary depicted in Figure 1, assume a late fusion of
the structured and unstructured model by combining both
model parts additively, i.e.,

ηstr + ηunstr = Xβ +Uγ. (1)

This simple fusion has some attractive properties. Dorigatti
et al. (2023), e.g., promote SSNs in the medical application
context where researchers require some parts of the network
to be a white box and derive statistically valid uncertainty
quantification for ηstr. We will motivate our proposed
approach in this paper using SSNs, but later results also
generalize to more complex network structures.

Why make structured model parts explicit? As DNNs
can be designed very flexibly and deep architectures often
come with some form of universal approximation guarantee,
DNNs can also capture linear effects. This raises the ques-
tion as to why the structured part needs to be made explicit
in models such as the SSN. The reason is the same as for the
usage and success of residual connections (He et al., 2016):
while DNNs can represent increasingly more complex and
non-linear functions with greater depth, it also gets increas-
ingly more difficult to learn the identity function of some
input for these networks. By concatenating the outputs of
(parts of) a DNN with the inputs of this DNN, the identity
map can be made explicit and thereby allows the combined
network to better learn linear effects of the inputs.

Identifiability In late semi-structured fusion models such
as the SSN, the interpretability of the structured part can not
be preserved without additional constraints (see, e.g., Bau-
mann et al., 2021; Fritz et al., 2022; Rügamer et al., 2023).
This is due to an identifiability problem. The DNN can also
capture linear effects – to some extent – but it is unclear

1

Post-hoc Orthogonalization

Tabular Data

Additional
Input Data

Deep Neural
Network

Structured
Predictor X

concat Prediction

Orthogonalization
Z

U

Figure 1. Exemplary SSN learning latent features Uγ from tabular
and additional input data sources through a DNN and combining
these with structured effects Xβ based on tabular data X . As X
is contained in both network parts, an orthogonalization (top right)
is required to identify the true linear effect β.

to the analyst, how much additional linearity in addition
to ηstr has been learned by the DNN in ηunstr. An obvi-
ous solution is to restrict the DNN in such a way that only
the structured model part can learn structured effects and
the unstructured deep network part captures the remaining
variation while preserving the predictive performance of the
DNN. While current literature takes this route and suggests
that it is necessary to constrain the unstructured model part
to ensure the interpretability of ηstr, restricting the network
might potentially deteriorate model performance.

Our Contributions In this work, we provide new insights
into approaches that combine structured and unstructured
predictors and answer the following open questions:

• Why and when do constrained SSNs work?

• What are the limitations of semi-structured approaches
with enforced identifiability?

• How can existing limitations be overcome?

• How can SSN approaches be generalized?

Our investigations allow advancing research in the direc-
tion of SSNs and interpretability in neural networks in gen-
eral. Our proposed solutions to existing limitations are
generic and applicable wherever a structured linear assump-
tion is made, thereby also addressing use cases beyond SSNs.
More specifically, we propose a “non-invasive” method to
obtain valid interpretability post-model fitting and show
both theoretically and in numerical experiments that this
approach is superior to existing methods.

2. Related Literature
Methods that represent or learn structured model parts in
a neural network are discussed in the literature in many
different aspects. De Waal & Du Toit (2011), e.g., discuss
how generalized additive models (GAMs) can be framed as
a neural network, laying the foundation to combine GAMs

with other network parts within one large neural network.
In particular, this allows scaling GAMs to large amounts of
observations or features (Rügamer et al., 2023, see, e.g.,).
In contrast, neural additive models (NAMs; Agarwal et al.,
2021) combine neural networks and additive models by
learning the basis representations of additive effects using a
neural network. Generalized linear models and neural net-
work predictors have been combined by Tran et al. (2020) as
well as Hubin et al. (2018), and used under the name wide
& deep learning for product recommendation by Cheng
et al. (2016). Pölsterl et al. (2020) and Kopper et al. (2021;
2022) use the idea of combining structured and unstructured
predictors to learn a survival model. A combination of state
space models and neural networks has, e.g., been proposed
by Amoura et al. (2011). Another strain of literature com-
bines transformation models and DNNs (Baumann et al.,
2021; Sick et al., 2021) in a semi-structured manner to,
e.g., facilitate the combination of structured predictors and
complex DNNs for ordinal regression (Kook et al., 2022).
Next to different model combinations, properties of semi-
structured approaches such as the previously mentioned
identifiability (Rügamer et al., 2023) and also uncertainty
quantification of SSNs (Dorigatti et al., 2023) have been
discussed.

We will focus on the aspect of identifiability in this paper and
point out limitations in existing approaches. Our suggested
solutions guarantee correct interpretability, are applicable to
most of the methods and models discussed in the literature,
and are efficient to compute without modifying the SSN.

3. Identifiability and Limitations
Rügamer et al. (2023) discuss the identifiability problem
in the setup of a probabilistic density regression network
that learns K ≥ 1 distribution parameters θk, k = 1, . . . ,K
using the Maximum Likelihood approach. In their frame-
work, each of the distribution parameters θk is linked to an
additive predictor

ηk = Xkβk +Ukγk.

For the purpose of this paper, we simplify this approach and
focus on the special case of mean regression.

Notation We assume n observations y ∈ Rn drawn (con-
ditionally) independent from a distribution DY |X,Z based
on a fixed set of features X ∈ Rn×p and a set of features Z
with arbitrary shape (e.g., image tensors) that are potentially
overlapping with X . As model for the data, we consider an
SSN. In the SSN, features X are modeled as a structured
linear effect with weights β ∈ Rp. For the unstructured
model part, a DNN with Z as input learns latent features
U ∈ Rn×q. These latent features are weighted in a final
layer with weights γ ∈ Rq and then added to the structured

2

Post-hoc Orthogonalization

model part (cf. Fig. 1). Put together, the SSN learns

E(y|X,Z) = η = Xβ +Uγ (2)

and we optimize the network using the mean squared error
ℓ(η) = 1

2n ||y − η||22. For better readability, we focus on
mean regression and not a general distributional regression
as in Rügamer et al. (2023), but note that results presented
in the following also hold for the distributional case.

Identifiability Based on this (simplified) regression ap-
proach defined in (2), we adapt the definition of semi-
structured identifiability as follows:

Definition 3.1. Semi-structured identifiability We say
that a semi-structured regression model is identified in its
structured model parts if there exists no ξ ∈ Rn\{0} such
that

η = ηstr + ηunstr = (ηstr − ξ) + (ηunstr + ξ)

= η̆str + η̆unstr = η̆,
(3)

where ℓ(η̆) = ℓ(η), i.e., both parameterizations perform
equally well and yield the same loss.

Simply put, the above definition says that the structured pre-
dictor is identified, if we cannot find another truly different
structured predictor that yields the same loss as the original
predictor. In particular, the definition only relates to the
structured part as ηunstr, a DNN, is in most cases never
uniquely identified. The solution to guarantee identifiability
in Rügamer et al. (2023) proposes an orthogonalization cell
that projects the unstructured (DNN) predictor U into the
orthogonal complement space X⊥ spanned by the columns
space of X , thereby ensuring identifiability and thus, in
turn, meaningful interpretability of the structured effects β.
More specifically, if the model’s predictor is as in (2), the
adapted SSN with orthogonalization computes the mean via

E(y|X,Z) = η = Xβ + P⊥
XUγ, (4)

where P⊥
X = (In×n − PX) ∈ Rn×n is the orthogonal pro-

jection matrix defined as the difference between the identity
matrix In×n and the projection matrix PX onto the space
X spanned by X . We will call this procedure “online or-
thogonalization” (ONO) as the respective constraints and
orthogonalization operations are applied during training.

In the following, we will formalize some of the limitations
of the ONO approach and then propose solutions addressing
these restrictions.

3.1. Limitations

Rügamer et al. (2023) proved that ONO yields identifiabil-
ity of the structured model part and thereby fulfilling the
purpose of preserving its interpretability. Before addressing

some downsides induced by this approach, we first show an-
other desirable property of their orthogonalization approach
not mentioned in their work.

Lemma 3.2. ONO Hypothesis space Let n > p. Then the
hypothesis space HONO of an SSN with orthogonalization
is equivalent to the hypothesis space H of the same SSN
without the orthogonalization constraint.

The proof of Lemma 3.2 can be found in the Appendix.
Contrary to the intuition that the orthogonalization directly
entails a constraint in the model space, the previous result
shows that an SSN with ONO is a priori as expressive
as the same model without the constraint. ONO, however,
induces a different optimization problem, resulting in slower
convergence in practice and a restricted hypothesis space
if the n > p-assumption of Lemma 3.2 is not met. We
formalize this in the following:

Limitation 3.3 (Rügamer et al. (2023), Remark 2.5). In the
case where p > n, the orthogonalized unstructured effect is
equal to 0.

This is due to the fact that P⊥
X = 0n×n for p > n. Using

the same argument, we have the following limitation for
mini-batch training:

Limitation 3.4. In the case where p < n but the batch
size b < p, the theoretical unstructured effect is different
from 0 but is practically estimated as a null-effect due to the
mini-batch training.

The proof is a simple result of the fact that P⊥
X is a b × b

matrix formed for every batch in mini-batch training and by
construction, P⊥

X = 0b×b if b < p. This finding also relates
to the network’s prediction as stated in the following:

Limitation 3.5. Due to the orthogonalization, the predic-
tion of an orthogonalized network depends on the batch size
used for prediction.

This is due to the fact that the network’s prediction is formed
through the matrix P⊥

X ∈ Rb×b, implying that every of the b
observations during prediction influences the b− 1 other ob-
servations (whereas in many other networks, the predictions
are independent of each other for fixed network weights).
As a consequence, an SSN network with ONO will have
an additional source of prediction error σ2

E , irrespective of
its optimization quality when the batch size b at test time
is small. Let X∗ and Z∗ be the test data sets fed into the
structured and unstructured model part, respectively, and let
Û∗ = Û(Z∗) be the penultimate layer’s features on this
test set. We can quantify the behavior of this error w.r.t. b
exemplarily using p = q = 1 as follows:

Lemma 3.6 (Error rate ONO prediction). Assume that
the latent feature Û∗ = (û∗

1, . . . , û
∗
b)

⊤ reside in X⊥, and
let features u∗

i be independent realizations of some distri-
bution with mean zero and variance σ2

U . Further assume

3

Post-hoc Orthogonalization

n: 1000 n: 10000 n: 1e+05

1e+00

1e+01

1e+02

1e+03

1e+04

1e+00

1e+01

1e+02

1e+03

1e+04

1e+00

1e+01

1e+02

1e+03

1e+04
1.5

2.0

2.5

3.0

3.5

Batch Size b

R
M

S
E

with Projection without Projection

Figure 2. Root mean squared error (RMSE) of predictions for dif-
ferent training set sizes (facets) and different batch sizes (x-axis)
when activating and deactivating the orthogonal projection. Re-
sults show that deactivation always leads to an optimal error which
is also achieved in the limit as b → ∞. For increasing n both
approaches further converge to the Bayes error (dashed black line).

that features X∗ = (x∗
1, . . . , x

∗
b)

⊤ are realizations of some
other distribution with mean zero and variance σ2

X . Then
σ2
E is O(1/b).

A corresponding proof can be found in the Appendix. This
result is also confirmed in our simulations, showing that the
additional prediction error induced by the orthogonalization
decreases at a linear rate. While this is usually considered
a good rate of convergence, note that this rate is w.r.t. the
batch size b, which does not grow in practice but is usually
fixed to a moderately small number (e.g., b = 32). In other
words, the linear decrease in the additional prediction error
has only limited benefits and might even be irrelevant in
practice if the test set is small and hence with no option to
increase b. Fortunately, this problem can be easily solved.
Define the estimated network weights for the structured
and unstructured model part as β̂ and γ̂. Then the mean
prediction on the test data is

η∗ = X∗β̂ + P⊥
X∗Û∗γ̂ = X∗β̂ + Û∗γ̂ − PX∗Û∗γ̂,

where the last term PX∗Û∗γ̂ → 0 for b → ∞ as the SSN
has been trained to learn features Û with entries (rows) re-
siding in X⊥. Thus, predictions of an SSN with ONO in
expectation (and in the limit) are given by X∗β̂ + Û∗γ̂. In
other words, if the ONO has successfully learned to generate
features Û orthogonal to the space X , the orthogonaliza-
tion cell can be deactivated at test time (also confirmed in
practice as shown in Figure 2).

While the previous result implies that inferior prediction
performance due to test set size dependency can be solved
straightforwardly, it does not solve the other issues of ONO.

4. Post-Hoc Orthogonalization (PHO)
To overcome the remaining previously mentioned problems,
we propose the procedure described in Algorithm 1 and
dubbed PHO (Post-Hoc Orthogonalization).

Algorithm 1 PHO
Input: Data set D; unconstrained SSN
1. Train SSN on D
2. Replace Û γ̂ with P⊥

XÛ γ̂ in the last layer
3. Set β̂ = β̂+X†Û γ̂ with X† being the Moore-Penrose
pseudoinverse of X
Output: Return adapted SSN

The underlying idea of PHO is that all constraints proposed
in Rügamer et al. (2023) only relate to the identifiability of
β, but not to the identifiability of the additive predictors η.
In other words, the unconstrained model is able to find the
same η as the constrained model, implying that the optimal
amount of structured effects needs to be contained in η in
some form. Otherwise, the optimization routine could just
change β̂ and thereby improve the predictions η̂. Moreover,
the unconstrained model is not only theoretically able to
learn the same effects as the one with ONO but will have
more degrees of freedom in the optimization in practice. It is
therefore not unlikely that it will find a similar or even better
solution compared to the constrained model. The adaptions
of fitted effects of the unconstrained SSN in steps 2 and 3 of
Algorithm 1 can then be justified as follows. Given the final
(not meaningfully interpretable) model output η̂ we have

η̂ = Xβ̂ + Û γ̂ = Xβ̃ + Ũ γ̂,

with β̃ = β̂ +X†Û γ̂ and Ũ = P⊥
XÛ ,

(5)

where X† is the Moore-Penrose pseudoinverse of X . The
reformulation stems from the fact that we can split any
predictor into

η̂k = Xβ̂ + Û γ̂

= Xβ̂ + (PXÛ + P⊥
XÛ)γ̂

= Xβ̂ +XX†Û γ̂ + P⊥
XÛ γ̂

= X(β̂ +X†Û γ̂) + P⊥
XÛ γ̂

=: Xβ̃ + Ũ γ̂,

(6)

where PX is the projection matrix into the column space
spanned by X and P⊥

X its orthogonal complement. In other
words, β̃ is defined such that all linear effects of X found
in Û γ̂ are moved to the structured model part. From (5)
it follows that the adjusted structured effects are β̃ and the
unstructured predictions are Ũ γ̂. Notably, as also apparent
from (5), the prediction of the model is not affected by
this reformulation. Similarly, other constraints required
to identify a model can be applied post-hoc (e.g., mean-
centering to identify the global bias term of the model).

4.1. Properties, Efficient Computation and Prediction

Why does using PHO solve the aforementioned prob-
lems? First, training the SSN unconstrained removes the

4

Post-hoc Orthogonalization

constrained-induced difficulties in optimizing the SSN. Sec-
ond, while Limitation 3.3 still exists also for PHO, we now
have the guarantee that this does not deteriorate the pre-
diction performance (as (5) states that predictions are un-
changed by PHO). Moreover, this finding also solves Limi-
tation 3.5 as no orthogonalization is required for predictions
(and, in contrast to ONO, not part of the network). As
PHO is applied on the final model output and does not re-
quire any form of mini-batch updates, computations in (5)
can be applied on the whole data set and thereby solves
Limitation 3.4.

A possible downside of PHO is that P⊥
X ∈ Rn×n is poten-

tially very large and its computation or storage is not possi-
ble. An alternative and computationally more efficient algo-
rithm to compute PHO is the following Algorithm 2 using
the partitioning of the data set D into batches B1, . . . ,BM

with sizes b1, . . . , bM . This algorithm is an exact procedure
and is inspired by distributed computations of linear mod-
els (e.g., Karr et al., 2005), i.e., no information is lost by
switching to a mini-batch routine in this case, allowing us
to scale our method arbitrarily. A similar algorithm can be

Algorithm 2 Mini-Batch PHO
Input: Data set D; unconstrained SSN; batches
B1, . . . ,BM

1. Train SSN on D
2. Initialize H = 0p×p; s = 0p×1 and compute sum-
mary statistics as follows:
for m = 1, . . . ,M do

a) Compute ÛBm
(Û for batch Bm)

b) Compute and store ζ̂m := ÛBm
γ̂ ∈ Rbm×1

c) Compute H = H + (X⊤
Bm

XBm
)

d) Compute s = s+X⊤
Bm

ζ̂m
end for
3. Compute α := H−1s

4. Set β̃ = β̂ +α
5. Compute ηunstr = stack((ζ̂m −XBm

α)m=1,...,M)

Output: β̃, ηunstr

used to calculate the different contributions of structured
and unstructured network parts on a new data set D∗ (see
Appendix B.1) when computing predictions. The total stor-
age required for Algorithm 2 is O(p2+n). As p is typically
relatively small in semi-structured model applications and
therefore negligible, the relevant memory requirement is
to store a vector of size n (i.e., the same size as the out-
come vector y). The time complexity of Algorithm 2 is
O(c + n · p2 + p3) where c is the total cost of a single
forward pass of the SSN using all M mini-batches. Again,
if p is small and since c is usually a multiple of n, the time
complexity is practically not different from the one of a
single forward pass (in batches) over the whole data set.

Note that it is straightforward to extend the presented al-
gorithm to K additive predictors ηk, k = 1, . . . ,K as dis-
cussed in Rügamer et al. (2023) by simply iterating over k
and applying Algorithm 2 to all K predictors.

4.2. Semi-Structured Importance Measures

As the last line of (5) creates two functional parts which are
orthogonal to each other, the model decomposition follows
the axioms proposed in the functional ANOVA approach
(Hooker, 2004). We can thus derive importance measures
post-hoc, relating to the variance explained by the different
model parts (structured/unstructured) in the SSN. Various
definitions are given in Appendix C.

4.3. Relationship to other Methods

The proposed approach opens up several links to other meth-
ods in the literature on model interpretability, which we
want to briefly discuss in the following.

Post-hoc Explanation Methods As mentioned in the
previous subsection, the PHO approach for SSNs is a func-
tional ANOVA-type decomposition as introduced in Hooker
(2004). Similar techniques have been applied to other ma-
chine learning models and have also been recently discussed
for interaction effects and tree-based models (Lengerich
et al., 2020). The SSN approach already specifies the hy-
pothesis space using structural assumptions (for reasons dis-
cussed in the introduction) while other existing techniques
assume no structure a priori and only impose the structure
post-model fitting.

Feature Adjustment (Trend Adjustment) In statistical
literature, feature (or trend) adjustment in linear models (see,
e.g., Robinson & Jewell, 1991) follows a similar principle
as our approach. By regressing the outcome on a feature
or trend variable χ that needs to be adjusted for, one can
remove the influence of this variable before regressing the
resulting linear model residuals (the remaining information
in the outcome left after adjusting for χ) on the actual set
of features X . In the special case of a linear model where
the mean is parametrized by a semi-structured predictor, i.e.,
η = ηstr +ηunstr, our approach coincides with the feature
adjustment approach by setting χ = η̂unstr. For general
parametric regression models, our approach can be seen as
repeatedly applying the first step of feature detrending to
(every of the K) additive predictor(s) separately.

4.4. PHO with Splines

Various approaches listed in Section 2 use an SSN but define
the structured model part X using a spline basis represen-
tation. This allows modeling structured non-linearities in
ηstr and thereby defining a combination of a DNN and a
generalized additive model. In many of these applications,

5

Post-hoc Orthogonalization

the structured part defined by the spline basis representa-
tion is, however, estimated using a penalized smoothing
approach (i.e., using a quadratic difference penalty matrix
for spline coefficients in β). This leads to another limitation
of ONO and, in this case, also of our PHO approach.
Limitation 4.1 (Orthogonalization in penalized SSNs). If
the structured model part ηstr in an SSN is estimated using
a quadratic penalty matrix, the orthogonalization via P⊥

X

results in an “over-orthogonalization” by removing more
contribution than necessary from ηunstr.

We can overcome this restriction by accounting for the pe-
nalization when projecting the unstructured model part onto
the space X as done in (5). Limitation 4.1 can also be seen
as some form of overfitting. When applying X†Û γ̂ in (5)
without regularization, we are more likely to learn spline
coefficients β that interpolate the data. Instead, given X ,
the quadratic spline penalty K as well as the amount of
penalization λ ≥ 0, we can perform the corrected update

β̃ = β̂ + (X⊤X + λK)−1X⊤Û γ̂. (7)

While some of the related literature use a pre-defined
smoothness λ and the previous equation then directly yields
the updated structured parameters, the projection in (7)
can also be implemented by running a generalized addi-
tive model (GAM) routine with inputs X , penalty matrix K
and response η̂unstr to estimate λ in a data-driven fashion.
We call this approach PHOGAM in our experiments.

4.5. Generalization Beyond Semi-structured Networks

Lastly, we address one final limitation of ONO and present a
generalization of the orthogonalization approach to a much
larger class of networks beyond SSNs.
Limitation 4.2 (Model-class restriction of ONO). As
ONO iteratively performs a projection into the space X⊥,
P⊥
X must be a non-random matrix and thus known prior to

model training.

The reason for P⊥
X to be known a priori is that it would

otherwise not be possible to calculate gradients for this pro-
jection. While this is not a limitation for the class of SSNs
as the structured model part is always defined a priori by
the modeler, Limitation 4.2 implies that the separation into
structured and unstructured components can only be done if
X is fixed. This, e.g., excludes cases such as neural additive
models (NAMs; Agarwal et al., 2021), where additive com-
ponents are learned features themselves and thus not known
a priori. In contrast to ONO, our PHO approach only ap-
plies the orthogonalization post-hoc and therefore allows its
application to additive combinations with learnable inputs
which only need to be fixed after training. This effectively
generalizes the approach presented in Rügamer et al. (2023)
to a much larger model class and allows the investigation of
(non-)linearities in DNNs with learnable structured parts.

n: 100
n: 1000

1 / 1 3 / 3 10 / 10 1 / 31 3 / 33 10 / 40

0

3

6

9

0

3

6

9

p / q

R
M

S
E

PHO ONO unconstrained

Figure 3. Linear coefficient estimation performance of different
methods (colors) for different numbers of structured and unstruc-
tured features (p / q, x-axis) and data sizes n (rows).

5. Numerical Experiments
In the following, we investigate all derived properties of
ONO as well as the performance of PHO using simulated
and real-world data. Further experiments and details such as
optimization, computing environment, and hyperparameters
can be found in Appendices D and E. All code is made
available on Github.

5.1. Convergence of ONO

We first empirically investigate the convergence speed of
ONO compared to PHO. As the convergence speed is influ-
enced by the projection PX , we investigate different settings
of structured features p ∈ {1, 3, 10} as well as different
numbers of observations n ∈ {100, 1000}. We use a DNN
with 2 hidden layers with 100 and 50 units and ReLU ac-
tivation each followed by a dropout layer with a dropout
probability of 20%. A final layer learning the effects γ is
defined by a linearly activated fully-connected layer. Re-
sults (see Figure 8 in the Appendix) confirm our hypothesis,
showing that additional iterations required by ONO com-
pared to PHO increase linearly with the number of features
p, implying that the projection can slow down the training
of an SSN notably. While this issue seems to be mitigated
with more observations, ONO still requires a multiple of
iterations of PHO for p = 10.

5.2. Semi-Structured Models with Linear Effects

In our next numerical experiment, we investigate the estima-
tion quality of structured effects β using ONO, PHO, and
an unconstrained model (Figure 3). We adopt the setup of
the previous analysis to investigate different numbers of fea-
tures p and q as well as the number of observations n. The
deep neural network and optimization routine is defined as

6

Post-hoc Orthogonalization

x4 x5 x6

x1 x2 x3

−2 0 2 −2 0 2 −2 0 2

−2 0 2 −2 0 2 −2 0 2
−40

−20

0

20

0.0
2.5
5.0
7.5

10.0

−1.0
−0.5

0.0
0.5
1.0
1.5

−2

0

2

−1
0
1
2
3

−20
−15
−10

−5
0
5

Feature value

P
ar

tia
l e

ffe
ct

GAM ONO PHO PHOGAM truth unconstrained

Figure 4. Visual comparison of different methods (colors) for six
of the simulated non-linear functions (different facets; truth in
red) visualized by the average curve over 20 repetitions (lines) for
n = 1000 and exact overlap between X and Z.

in Subsection 5.1. The estimation quality of the structured
part is measured using the root mean squared error (RMSE)
between the estimated and true model weights (β) which are
defined as equispaced values between −2.5 and 2.5. The re-
sults are depicted in Figure 3 showing that the unconstrained
model is not able to find the right coefficients (the RMSE in
most cases is larger than 1.5, which is the average absolute
value of β). In contrast, both ONO and PHO perform well
in general, but the optimization of ONO sometimes does
not work perfectly, showing larger RMSEs in some cases.

5.3. Semi-Structured Models with Non-Linear Effects

We now investigate SSNs with non-linear structured effects
based on a spline representation. We adopt the setup of the
two previous subsections but define a non-linear structured
relationship in the true data-generating process (i.e., the
data-generating process is an additive model). The p ∈
{1, 3, 10} non-linear functions along with further details
are defined in Appendix D. Six of the non-linear functions
are visualized in Figure 4 together with estimated splines
using ONO, PHO, PHOGAM, an unconstrained model and
the gold-standard method for GAMs (Wood, 2017). As
Figure 4 suggests, the unconstrained model has difficulties
properly estimating the non-linear effects while all other
methods work similarly well. Quantitative results (Fig. 9
in Appendix E.2) show that PHOGAM indeed improves
over PHO in some cases, suggesting that accounting for the
model’s penalization is beneficial. PHO, in turn, performs
again better than ONO in most cases. All neural approaches
exhibit a shrinkage effect towards zero, most likely caused
by the implicit regularization of the first-order optimization
routine.

5.4. Prediction Error of ONO

In a final simulation study, we investigate the additional
prediction error of ONO. For this, we create an SSN
with ONO and simulate random features X ∈ Rn×10 and
Z ∈ Rn×20 from a standard random normal distribution,
set β = 0 and define the true non-linear data generating
model as y = sin(Z[:,1]) + Z2

[:,2] + ε, ε ∼ N (0, I). The
latent features U are generated using a single hidden layer
with 10 units, no bias, and ReLU activation. A final dense
layer with one unit learns the last layer’s weights γ using
a linear activation. We vary n ∈ {1e4, 1e5, 1e6} and train
the network with an 80/20-split for training and validation
data with early stopping the validation data with a patience
of 50 iterations. We then evaluate the network on a separate
test data set of size n which we predict with a batch size
b ∈ {1e0, 1e1, 1e2, 1e3, 1e4}. Finally, we evaluate the pre-
diction performance using the RMSE both with activated
and deactivated projection. We repeat this simulation 4
times and average the prediction errors across runs. The
visual result from this simulation study was given in Sec-
tion 3 in Figure 2, confirming our theoretical understanding.
We use the same data to also investigate the behavior of the
additional prediction error σ2

E in terms of the batch size b
and find that numerically the rate is very close to 1/b.

5.5. Benchmark

Table 1. Prediction performances (average MSE and its standard
deviation in brackets) for different methods (rows) and data sets
(columns) based on 10 train-test splits. The best method per data
set is highlighted in bold.

Airfoil Concrete Diabetes Energy ForestF Yacht

GAM 119 (1.9) 7.1 (0.53) 140 (9.6) 3.4 (0.36) 1.5 (0.16) 3.0 (0.43)
DNN (large) 22 (1.6) 5.0 (0.66) 63 (7.7) 3.2 (0.39) 1.4 (0.10) 2.0 (0.44)
DNN (small) 23 (1.4) 7.0 (1.40) 58 (7.1) 3.3 (0.31) 1.4 (0.11) 2.8 (0.54)
ONO (large) 113 (1.6) 7.2 (0.55) 120 (9.4) 3.4 (0.36) 1.5 (0.12) 2.9 (0.43)
ONO (small) 115 (1.6) 7.2 (0.56) 130 (9.5) 3.4 (0.36) 1.5 (0.15) 2.9 (0.43)
PHO (large) 14 (1.5) 4.9 (0.80) 57 (7.8) 3.3 (0.36) 1.5 (0.16) 1.9 (0.49)
PHO (small) 6 (0.4) 6.3 (0.63) 57 (7.2) 3.3 (0.37) 1.5 (0.13) 2.3 (0.56)

The previous sections showed that PHO and ONO yield
the same structured effects while the first does not need
any network adaptions before or during model training. We
now compare both approaches in terms of prediction perfor-
mance. As our approach is less restrictive during training
and implies an easier optimization problem, we hypothesize
that this will also result in better prediction performance.
We, therefore, compare the two approaches (constrained
vs. unconstrained) on different benchmark data sets from
the UCI repository (Dua & Graff, 2017) using 10 different
train-test splits. We report average MSE values and their
standard deviation. In addition to the previously analyzed
SSN models, we run the two obvious baselines, a model
without an unstructured (neural network) predictor (i.e., a
GAM) and a model without a structured (additive model)
predictor (i.e., a DNN). For the models that include a DNN

7

Post-hoc Orthogonalization

−0.15 −0.10 −0.05 0.00

Figure 5. Spatial effect on the logarithmic prevalence of infection
in the US estimated by PHOGAM (lower means infections are less
likely).

component, we choose between four pre-defined multi-layer
perceptron architectures (see Appendix D for more details).

Table 1 summarizes the results when choosing the best-
performing hyperparameter set per method and data set.
Further details on DNN architectures, hyperparameters, the
full list of results, and details on benchmark data sets can
be found in Section D in the Appendix. Results indicate
that PHO works notably better in prediction compared to
ONO and is almost on par with the DNN in cases where
the deep unstructured model yields the best performance. In
particular, for Airfoil, ONO (due to its limited flexibility)
is effectively estimated as a GAM with almost zero DNN
part, hence the similar performance to the GAM. Both DNN
and PHO perform similarly well but the additional inductive
bias through the structural assumption of the SSN (PHO)
allows further improvement over the DNN.

6. Real-World Applications
Finally, we demonstrate our approach by applying it to two
large real-world data sets.

6.1. Covid-19 Analysis

We first analyze a recently published data set on global-scale
spatially granular meta-data for coronavirus disease model-
ing (Wahltinez et al., 2022). We subset the data to complete
observations from the United States (US) and calculate the
prevalence of infection per 1,000 people in the provided ad-
ministration regions. We then model the logarithmic preva-
lence using an SSN including the average temperature, the
relative humidity, the time (days since the start of the first
outbreak), longitude, and latitude as well as the logarithmic
population size as predictors. All features except the longi-
tude and latitude are modeled as univariate splines whereas
the geo-coordinates are modeled using a bivariate tensor-
product spline to account for spatial interaction. We fit SSNs

population temperature

days since start humidity

4 8 12 16 −20 0 20 40

0 200 400 600 25 50 75 100

−0.050

−0.025

0.000

0.025

−0.10

−0.05

0.00

0.05

0.10

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.20

−0.15

−0.10

−0.05

0.00

Value

P
ar

tia
l E

ffe
ct

NAM ONO PHO PHOGAM PHONAM

Figure 6. Estimated non-linear effects (mean-centered) for differ-
ent features (facets) using different methods (colors).

with ONO, PHO, and PHOGAM and compare them with
a semi-structured neural additive model (NAM; Agarwal
et al., 2021). In contrast to the SSN approaches, the NAM
learns each of the univariate non-linear effects as well as
the bivariate non-linear effect using a feature-specific DNN.
Details on network architectures and optimization routines
can be found in Appendix F. As PHO(GAM) can also work
with learnable features, we apply PHO also to the NAM
(which we call PHONAM in the following) to demonstrate
the generality of our approach discussed in Section 4.5.

Results All models provide well-interpretable structured
effects (see, e.g., Figure 5 for a spatial effect visualization of
PHOGAM). When comparing the different approaches, we
find similar patterns across models for all SSN approaches
(Figure 6, and Figure 10 in Appendix F). In contrast to the
pre-defined basis representation approaches (ONO, PHO,
PHOGAM), the learned non-linear effects of NAM are less
smooth as clearly visible in Figure 6 or show no trend (likely
in cases when the optimization of the respective feature-
specific network gets stuck in a local minimum). PHONAM
is able to correct for missing smoothness, but can only learn
as much additional feature information as present in NAM’s
deep predictor. Further effect comparisons can be found in
Appendix F.

6.2. Flight Delay Data

To demonstrate the scalability of our approach, we further
analyze the flight delay data set (Harvard Dataverse, 2008).
The data set contains detailed information about commercial
flights within the US from October 1987 to April 2008, com-
prising approximately 120 million records. Data includes
flight arrival and departure specifics, such as times, carrier
codes, flight numbers, delays, cancellation details, and more.

8

Post-hoc Orthogonalization

sched. departure time (min + 0:00) sched. arrival time (min + 0:00)

day of month distance

year month

0 500 1000 1500 0 500 1000 1500

0 10 20 30 0 1000 2000 3000 4000 5000

1990 1995 2000 2005 2.5 5.0 7.5 10.0 12.5

−2
−1

0
1
2
3

−1.5

−1.0

−0.5

0.0

0.5

−4

−2

0

2

−2

0

2

−1.0
−0.5

0.0
0.5
1.0

−5.0

−2.5

0.0

2.5

Value

P
ar

tia
l E

ffe
ct

SSN PHO

Figure 7. Partial effect (average arrival delay in minutes) of splines
for all numerical features from both SSN (without adjusting for
identifiability) and PHO.

After filtering the data for non-canceled and non-diverted
flights as well as routes and carriers that are present for all
22 years, we analyze the data with an SSN by modeling the
year, the month, the day of the month, and the distance using
splines, the scheduled departure and arrival time as cyclic
splines (to enforce continuity for the transition between
11:59 pm and 0:00 am), as well as the origin, destination,
their interaction, the day of the week and the carrier as factor
effects (i.e., dummy-encoded binary features). The deep
neural network also processing this information is defined
by a 3-hidden layer ReLU network with 100 neurons each
followed by 1 output neuron.

Results Upon inspecting the fitted model, it is apparent
that the interaction effects modeled by the DNN do not sub-
stantially influence the prediction. This finding is supported
by Figure 7, which only displays minor adjustments after
running PHO for the majority of variables. The exceptions
are the scheduled arrival and departure times, which show
more significant variation and larger effects when we extract
their unidentified univariate information from the DNN com-
ponent of the SSN. Overall, the estimated effects display a
plausible pattern. For instance, flights scheduled early in
the morning tend to be less delayed on average (indicating a
negative partial effect). Conversely, flights during the sum-
mer and winter months typically experience more delays on
average.

7. Conclusion
Semi-structured networks can be used to explicitly learn
structured (non-)linear feature effects while jointly model-
ing other relationships using a deep network. The combi-
nation of structured and unstructured models can lead to
identifiability issues, impeding the interpretability of the
structured part. While this problem has been successfully
addressed in previous work, we show that there exists an
easy-to-implement, scalable, better-performing, and more
general algorithm that theoretically circumvents the down-
sides of the previous solution and also excels in practice.

Limitations While solving most of the limitations of pre-
vious work, our approach is not able to solve Limitation 3.3.
A possible solution could be to use PHOGAM together with
a sparsity-inducing regularization. Another restriction of the
approach is given when applied to learned features as pre-
sented in the previous section. If structured features learned
by the network (e.g., by the feature-specific networks in
NAMs) exhibit large correlation, an additional regulariza-
tion is required to allow PHO to extract additional linear
information from the unstructured model part.

Future Research Our approach opens up several future
research directions. As mentioned in Section 4.5, PHO – in
contrast to ONO – can be applied to learned bases. Sim-
ilar to the functional ANOVA approach (Hooker, 2004),
this, e.g., also allows for a hierarchical decomposition post-
model fitting, can be used to solve identifiability issues
in NAMs, or to speed up networks that include structured
assumptions.

Caveat We further want to emphasize that the given ap-
plication in this paper only addresses a small subset of pro-
cesses involved in the spread of COVID-19 and should not
be (the sole) basis for decision-making in the future. A more
elaborate analysis could, e.g., impute missing information
on the stringency index to explain some of the temporal
dynamics now comprised in the time effect in our analysis.

Acknowledgements
We would like to thank the three anonymous reviewers for
their comments that helped to further improve the paper.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
pp. 265–283, 2016.

Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich,
B., Caruana, R., and Hinton, G. E. Neural additive mod-

9

Post-hoc Orthogonalization

els: Interpretable machine learning with neural nets. Ad-
vances in Neural Information Processing Systems, 34:
4699–4711, 2021.

Amoura, K., Wira, P., and Djennoune, S. A state-space neu-
ral network for modeling dynamical nonlinear systems.
In IJCCI (NCTA), pp. 369–376, 2011.

Baumann, P. F. M., Hothorn, T., and Rügamer, D. Deep
conditional transformation models. In Machine Learning
and Knowledge Discovery in Databases (ECML-PKDD),
pp. 3–18. Springer International Publishing, 2021.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T.,
Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir,
M., et al. Wide & deep learning for recommender systems.
In Proceedings of the 1st workshop on deep learning for
recommender systems, pp. 7–10. ACM, 2016.

Cortez, P. and Morais, A. d. J. R. A data mining approach
to predict forest fires using meteorological data. 2007.

De Waal, D. A. and Du Toit, J. V. Automation of general-
ized additive neural networks for predictive data mining.
Applied Artificial Intelligence, 25(5):380–425, 2011.

Dorigatti, E., Schubert, B., Bischl, B., and Ruegamer, D.
Frequentist uncertainty quantification in semi-structured
neural networks. In International Conference on Artificial
Intelligence and Statistics, pp. 1924–1941. PMLR, 2023.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. The Annals of statistics, 32(2):407–499,
2004.

Fritz, C., Dorigatti, E., and Rügamer, D. Combining graph
neural networks and spatio-temporal disease models to
predict covid-19 cases in germany. Scientific Reports, 12:
2045–2322, 2022.

Harvard Dataverse. Data Expo 2009: Airline on time data,
2008.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hooker, G. Discovering additive structure in black box
functions. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’04, pp. 575–580. Association for
Computing Machinery, 2004.

Hubin, A., Storvik, G., and Frommlet, F. Deep Bayesian
regression models. 2018.

Karr, A. F., Lin, X., Sanil, A. P., and Reiter, J. P. Secure
regression on distributed databases. Journal of Computa-
tional and Graphical Statistics, 14(2):263–279, 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kook, L., Herzog, L., Hothorn, T., Dürr, O., and Sick, B.
Deep and interpretable regression models for ordinal out-
comes. Pattern Recognition, 122:108263, 2022.

Kopper, P., Pölsterl, S., Wachinger, C., Bischl, B., Bender,
A., and Rügamer, D. Semi-structured deep piecewise
exponential models. In Survival Prediction-Algorithms,
Challenges and Applications, pp. 40–53. PMLR, 2021.

Kopper, P., Wiegrebe, S., Bischl, B., Bender, A., and
Rügamer, D. DeepPAMM: Deep Piecewise Exponential
Additive Mixed Models for Complex Hazard Structures
in Survival Analysis. In Advances in Knowledge Discov-
ery and Data Mining (PAKDD), pp. 249–261. Springer
International Publishing, 2022.

Lengerich, B., Tan, S., Chang, C.-H., Hooker, G., and Caru-
ana, R. Purifying interaction effects with the functional
anova: An efficient algorithm for recovering identifiable
additive models. In International Conference on Artificial
Intelligence and Statistics, pp. 2402–2412. PMLR, 2020.

McFadden, D. et al. Conditional logit analysis of qualitative
choice behavior. 1973.

Ortigosa, I., Lopez, R., and Garcia, J. A neural networks ap-
proach to residuary resistance of sailing yachts prediction.
In Proceedings of the international conference on marine
engineering MARINE, volume 2007, pp. 250, 2007.

Pölsterl, S., Sarasua, I., Gutiérrez-Becker, B., and
Wachinger, C. A wide and deep neural network for sur-
vival analysis from anatomical shape and tabular clinical
data. Communications in Computer and Information
Science, pp. 453–464, 2020.

R Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing,
2022.

Robinson, L. D. and Jewell, N. P. Some surprising results
about covariate adjustment in logistic regression models.
International Statistical Review/Revue Internationale de
Statistique, pp. 227–240, 1991.

Rügamer, D., Kolb, C., Fritz, C., Pfisterer, F., Kopper, P.,
Bischl, B., Shen, R., Bukas, C., de Andrade e Sousa,
L. B., Thalmeier, D., Baumann, P., Kook, L., Klein, N.,
and Müller, C. L. deepregression: a flexible neural net-
work framework for semi-structured deep distributional
regression. Journal of Statistical Software, 2022.

10

http://archive.ics.uci.edu/ml

Post-hoc Orthogonalization

Rügamer, D., Bender, A., Wiegrebe, S., Racek, D., Bischl,
B., Müller, C. L., and Stachl, C. Factorized structured re-
gression for large-scale varying coefficient models. In Ma-
chine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2022, Grenoble,
France, September 19–23, 2022, Proceedings, Part V, pp.
20–35. Springer, 2023.

Rügamer, D., Kolb, C., and Klein, N. Semi-structured
distributional regression. The American Statistician, 0
(ja):1–25, 2023.

Sick, B., Hothorn, T., and Dürr, O. Deep transformation
models: Tackling complex regression problems with neu-
ral network based transformation models. In 2020 25th
International Conference on Pattern Recognition (ICPR),
pp. 2476–2481. IEEE, 2021.

Tran, M.-N., Nguyen, N., Nott, D., and Kohn, R. Bayesian
deep net GLM and GLMM. Journal of Computational
and Graphical Statistics, 29(1):97–113, 2020.

Tsanas, A. and Xifara, A. Accurate quantitative estimation
of energy performance of residential buildings using sta-
tistical machine learning tools. Energy and Buildings, 49:
560–567, 2012.

Wahltinez, O., Cheung, A., Alcantara, R., Cheung, D.,
Daswani, M., Erlinger, A., Lee, M., Yawalkar, P., Lê, P.,
Navarro, O. P., et al. Covid-19 open-data a global-scale
spatially granular meta-dataset for coronavirus disease.
Scientific data, 9(1):1–11, 2022.

Wood, S. N. Thin plate regression splines. Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 65(1):95–114, 2003.

Wood, S. N. Generalized additive models: an introduction
with R. Chapman and Hall/CRC, 2017.

Yeh, I.-C. Modeling of strength of high-performance con-
crete using artificial neural networks. Cement and Con-
crete research, 28(12):1797–1808, 1998.

11

Post-hoc Orthogonalization

A. Proofs
A.1. Proof of Lemma 3.2

First, note that
HPHO ≡ H, (8)

where H is the hypothesis space of the unconstrained model.
Eq. 8 holds as PHO first uses an unconstrained model to
find the model parameters and given the model parameters
β̂, γ̂, PHO just shifts explained variance from one to the
other predictor by adjusting the weights, yielding the same
model output, i.e.,

η̂ = Xβ̂ + Û γ̂ = Xβ̃ + Ũ γ̂ = η̂. (9)

For ONO, it holds:

HONO ={
η̂ = Xβ̂ + Û γ̂ : β̂ ∈ Rp, γ̂ ∈ Rq, Û ∈ X⊥n×q

}
,

(10)

where X⊥ is the orthogonal complement of the column
space X spanned by X . This might already look like a hy-
pothesis space restriction as for H, we allow Û ∈ Rn×q ⊃
X⊥n×q while this is not the case for ONO. However, the
following Corollary shows that this is, in fact, not restrictive.

Corollary A.1. For every ŷ ∈ H where Û ∈ Xn×q, n > p,

there is always a parameter set β̆, γ̆ with Ŭ ∈ X⊥n×q
that

yields HONO ∋ η̆ = Xβ̆ + Ŭ γ̆ = η̂.

The proof is, in turn, given by (6) when using ŷ = η̂k

yielding β̆ = β̃, Ŭ = Ũ , and γ̆ = γ̂. As a consequence,
the previous corollary also proves Lemma 3.2 since SSNs
are a function of their additive predictor η only (and the
same also holds for distributional regression models with K
predictors ηk, k = 1, . . . ,K).

A.2. Proof of Lemma 3.6

In order to prove Lemma 3.6, we make the following as-
sumptions:

Assumption A.2. Let û∗
1, . . . , û

∗
b be independent realiza-

tions from a random variable U with E(U) = 0 and
Var(U) = σ2

U . Let x∗
1, . . . , x

∗
b be independent realiza-

tions from a random variable X with E(X) = 0 and
Var(X) = σ2

X .

Note that these assumptions are not very restrictive as 1)
no distribution assumption is made, 2) the latent features
Û are usually mean zero as the bias term is modeled in the
structured model part in SSNs, 3) features X can always
be mean-centered to fulfill the zero mean assumption, and
4) independence for data points are given per definition
of the analysis setup (Section 3). When the projection of

the SSN works properly and U and X are orthogonal, i.e.,
E(XU) = 0, then the inner product X∗⊤Û∗ =

∑b
i=1 x

∗
i û

∗
i

is the sum of b independent variables with expectation zero.
Therefore, by the central limit theorem, this inner product
converges in distribution to a normal distribution with mean
0 and variance σ2

E = σ2
Uσ

2
Xb−1. Thus the variance of the

inner product converges to 0 with rate O(1/b) for b → ∞.

While this proves the limiting behavior of the variance in-
duced by the projection, it does not discuss additional biases
induced by it. However, as the mean of X∗⊤Û∗ is zero
(also theoretically), the additional term PX∗Û∗γ̂ in the pro-
jection also has mean zero, implying that the projection
does not induce any additional bias but only additional vari-
ance yielding to the increase in RMSE. This variance is
proportional to σ2

E .

B. Further Algorithms
B.1. Computing Out-of-sample Contributions

Given a new data set D∗ with structured features X∗ and
unstructured features Z∗ and trained network on features
(X,Z), the contributions of both network parts are given
by

ηstr
k = X∗β̃, (11)

ηunstr
k = (Û(Z∗)−X∗X†Û(Z))γ̂, (12)

where Û(·) indicates the penultimate layer’s features as a
function of the unstructured network inputs. The contribu-
tion in (12) follows from the fact that

ηunstr
k = X∗β̂ + Û(Z∗)γ̂ −X∗β̃

after orthogonalization.

C. Semi-Structured Importance Measures
Using the orthogonality property of predictors post-
processed by PHO, we can define importance measures
in the spirit of a functional ANOVA.

Definition C.1. Structured predictor importance The
importance of a structured predictor in a post-hoc or-
thogonalized SSN can be characterized by EVstr =

Var(Xβ̃)/Var(η̂).

The explained variance EVstr is a proportion ∈ [0, 1] and de-
scribes how much of the model’s explanation can be related
to the structured model part. Furthermore, a feature-based
importance measure (also for SSNs beyond simple Gaussian
mean regression) can be constructed as follows:

Definition C.2. Structured feature importance Let ℓ
be the model’s likelihood. Then a measure of impor-
tance for the jth structured predictor in ηstr is R2

j :=

12

Post-hoc Orthogonalization

1 − (ℓ(η̂)/ℓ(η̂−j)), where η̂−j is the predictor excluding
the jth term in the structured predictor ηstr.

The importance measure defined in Definition C.2 is also
known as McFadden’s pseudo-R2 (McFadden et al., 1973),
yielding values between 0 and 1 (the higher, the more ex-
plained “variance”). Both importance measures can also be
further generalized to modeling setups with K predictors in
various ways. The structured predictor importance can, e.g.,
be calculated by considering the variance of only one of the
K structured predictors ηstr

k , yielding the importance of the
structured model part for the kth parameter. For the struc-
tured feature importance, on the other hand, a meaningful
definition would remove the jth feature from all predictors
ηk, k = 1, . . . ,K, that include this feature.

D. Simulation and Benchmark Details
D.1. Implementation

To allow for a fair comparison between the methods, we use
the package deepregression (Rügamer et al., 2022)
that implements both GAMs, DNNs, and SSNs in Tensor-
Flow (Abadi et al., 2016) and R (R Core Team, 2022). This
mitigates differences in performance due to different soft-
ware implementations.

D.2. Simulation Details

For all simulations, we generate features using a stan-
dard normal distribution. The data-generating process of
the simulation introduced in Subsection 5.3 defines the
10 non-linear functions as follows: f0(x0) = cos(5x0),
f1(x1) = tanh(3x1), f2(x2) = −(x3

2), f3(x3) =
−3x3 cos(3x3−2), f4(x4) = exp(0.5x4)−1, f5(x5) = x2

5,
f6(x6) = sin(x6) cos(x6), f7(x7) =

√
|x7|, f8(x8) =

ϕ(x8)− 1/8 with standard normal density ϕ, and f9(x9) =
−x9 tanh(3x9) sin(4x9).

D.3. Benchmark Details

Benchmark Data Sets Table 2 gives an overview of the
different data sets used in our benchmark.

Network Architecture and Optimization For all DNNs
in our benchmark, we define architectures consisting of
fully-connected layers, each with a 0.1 dropout rate after
every hidden layer. Hidden layers are defined using a ReLU
activation, and the output layer uses no activation. The num-
bers of units of the four options are a) 200/1, b) 200/200/1,
c) 20/1, and d) 20/20/1. All models are optimized using
Adam (Kingma & Ba, 2014) with a learning rate of 0.001,
and early stopping based on 10% validation data with a
patience of 50 iterations.

n: 100 n: 1000

1 3 10 1 3 10

0

1000

2000

3000

#Features p

A
dd

iti
on

al
 it

er
at

io
ns

 w
ith

 c
on

st
ra

in
t

#Unstructured features q 0 30

Figure 8. Difference in iterations when training the SSN with and
without constraint (positive values indicate longer convergence
with constraint) for different numbers of p (x-axis), q (colors), and
data sizes n (facets).

Table with all Results

E. Additional Experiments and Results
E.1. Convergence of ONO

The following Figure 8 shows the additional iteration re-
quired by ONO compared to PHO until the validation error
is not improving anymore and early-stopping is triggered.

Results suggest a linear increase with p whereas larger n
seems to mitigate the issue. However, as in general with
more data fewer iterations are required, it is not directly clear
whether this trend is indeed related to the projection. The
size of q, i.e., the number of unstructured features, does not
seem to play a role in the convergence speed. We, however,
note that in general, many different factors can potentially
influence the convergence and this simulation only shows
that there is a downside in convergence speed which will
get worse with increasing p.

E.2. Semi-Structured Models with Non-Linear Effects

The results of Subsection 5.3 are visualized in the following
Figure 9.

As for linear effects, we see that the unconstrained model
is not able to correctly estimate the splines, yielding large
RMSE values in most settings. As a gold standard, the
GAM model defines a lower bound on the performance,
which is often reached by the SSNs. While there is no
clear trend or ranking between ONO, PHO, and PHOGAM,
larger RMSE values are more often obtained using ONO. In
various cases, PHOGAM further shows better performance
than PHO, suggesting an improvement when accounting for
the model’s penalization.

13

Post-hoc Orthogonalization

Table 2. Data set characteristics and references.
Data set # Obs. # Feat. Pre-processing Reference
Airfoil 1503 5 - Dua & Graff (2017)

Concrete 1030 8 - Yeh (1998)
Diabetes 442 10 - Efron et al. (2004)
Energy 768 8 - Tsanas & Xifara (2012)
ForestF 517 12 logp1 transformation for area; numerical rep-

resentation for month and day
Cortez & Morais (2007)

Yacht 308 6 - Ortigosa et al. (2007); Dua & Graff (2017)

GAM ONO (a) ONO (b) ONO (c/d) PHO (a) PHO (b) PHO (c) PHO (d) MLP (a) MLP (b) MLP (c) MLP (d)
Airfoil 120 (1.9) 110 (1.6) 110 (1.8) 110 (1.6) 14 (1.5) 3.4 (0.22) 9.5 (1.2) 5.9 (0.41) 22 (1.6) 3.3 (0.24) 23 (1.4) 5.8 (0.28)

Concrete 7.1 (0.53) 7.2 (0.56) 7.2 (0.55) 7.2 (0.56) 6 (0.58) 4.9 (0.8) 6.3 (0.63) 7.6 (0.63) 7.5 (1.5) 5 (0.66) 7.4 (0.87) 7 (1.4)
Diabetes 140 (9.6) 130 (9.5) 120 (9.4) 130 (9.5) 57 (7.8) 67 (9.5) 57 (7.9) 57 (7.2) 63 (7.7) 68 (8.5) 62 (8.3) 58 (7.1)

Energy 3.4 (0.36) 3.4 (0.36) 3.4 (0.36) 3.4 (0.36) 3.3 (0.36) 3.4 (0.42) 3.3 (0.37) 3.3 (0.38) 4.2 (0.44) 3.2 (0.39) 4.9 (0.56) 3.3 (0.31)
ForestF 1.5 (0.16) 1.5 (0.15) 1.5 (0.12) 1.5 (0.15) 1.5 (0.16) 1.7 (0.18) 1.5 (0.13) 1.5 (0.14) 1.4 (0.1) 1.6 (0.14) 1.4 (0.11) 1.4 (0.11)

Yacht 3 (0.43) 2.9 (0.43) 2.9 (0.43) 2.9 (0.43) 2.6 (0.42) 1.9 (0.49) 2.8 (0.46) 2.3 (0.56) 5 (0.54) 2 (0.44) 5 (0.61) 2.8 (0.54)

n: 100
n: 1000

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

0

1

2

3

0

1

2

3

4

Feature

R
IM

S
E

GAM ONO PHO PHOGAM unconstrained

Figure 9. Spline estimation performance of different methods (col-
ors) for different features (x-axis) and data sizes n (rows).

F. Further Details on the Application
We now give further details on the application presented in
Section 6

Structured Model We model the time, temperature, hu-
midity, and logarithmic population using a penalized thin
plate regression spline with 9 basis functions and difference
penalty following Wood (2003; 2017). The bivariate effect
of longitude and latitude is modeled using a tensor-product
spline using thin plate bases with a total of 25 basis func-
tions. Penalization is again enforced through a difference
penalty.

Deep Neural Network For the DNNs for ONOand
PHO we use 2 hidden layers each with 100 units, ReLU ac-
tivation followed by a dropout layer with 20% dropout rate.
A final linear fully-connected layer with one unit is used to
learn γ. For the DNN of NAM we use a different DNN as
we found that the otherwise either the feature-specific DNNs
or the DNN for the unstructured part learns a relationship
with the response but not both simultaneously. We, there-

fore, specify the DNN with two hidden layers each with
20 hidden units and tanh activation as well as a subsequent
dropout layer with 20% dropout rate. The feature networks
are defined as in the software accompanying Agarwal et al.
(2021) using an activation layer (here with ReLU activation)
and 64 units, followed by two hidden layers with 64 and 32
units (also activated using ReLU). The final layer is again
specified using a linearly activated layer with 1 unit. For
NAM’s feature-specific DNN for the bivariate effect, we use
the same architecture as for the other feature-specific DNNs
for both latitude and longitude, but add another dense layer
with 5 units and linear activation for both variables. We then
calculate the row-wise tensor product of those two times 5
features, yielding the new DNN-learned feature basis of di-
mension 25 (analogous to the 25 basis function in the SSNs’
structured predictors), which is finally combined with one
dense layer with 1 hidden unit and linear activation.

Optimization and Evaluation All networks are opti-
mized using Adam (Kingma & Ba, 2014) with a learning
rate of 0.001, a batch size of 1024 (chosen relatively large
due to the size of the data set), 100 epochs, a validation split
of 0.1, and a patience of 3 for early stopping. For NAM, we
chose 150 epochs and a patience of 15 to account for the
more erratic training curves.

Results Figure 10 shows the comparison between the esti-
mated spatial effects of ONO, PHOGAM (which is practi-
cally identical with PHO), NAM, and PHONAM. ONO and
PHOGAM show very similar spatial effects whereas the
NAM estimates a much more concentrated positive effect in
the northeast of the US. The PHONAM variant corrects this
effect and shows positive effects mainly in the south of the
US.

14

Post-hoc Orthogonalization

Figure 10. Estimated spatial effect of four of the methods (different facets).

15

