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Abstract

In this paper, we present a new strategy to prove the convergence of deep learning ar-
chitectures to a zero training (or even testing) loss by gradient ow. Our analysis is
centered on the notion of Rayleigh quotients in order to prove Kurdyka-Łojasiewicz
inequalities for a broader set of neural network architectures and loss functions. We
show that Rayleigh quotients provide a unied view for several convergence anal-
ysis techniques in the literature. Our strategy produces a proof of convergence for
various examples of parametric learning. In particular, our analysis does not require
the number of parameters to tend to innity, nor the number of samples to be nite,
thus extending to test loss minimization and beyond the over-parameterized regime.

1 Introduction

In order to understand the performance of vastly over-parameterized networks, various works have
investigated the properties of neural tangent kernels (NTK, see Jacot et al., 2018) and their eigenspaces.
While the study of these spectra has led to proofs of convergence to global minima despite the non-
convexity of the problem, these analyses typically rely on an over-parameterization assumption,
or even innite-width limits, casting a shadow on their applicability. Positive-deniteness of the
NTK in particular, granted by the innite-width limit, does not hold with nite width and a growing
number of samples, despite observed successes of neural networks in this regime. We provide a (toy)
counter-example in dimension two to better outline this issue, and x this aw by re-centering the
discussion on Rayleigh quotients, corresponding to xed directions, rather than positive deniteness,
i.e. uniformly bounding in all directions. We give several ideas to obtain bounds on Rayleigh
quotients, and provide non-trivial examples for each of the presented ideas, including a recovery of
known results, but also a new convergence speed guarantee for the multi-class logistic regression.

Overview. In a typical supervised learning task, one is given a training dataset of n ∈ N la-
beled samples D = ((xi, yi) ∈ R

d × R)i∈[n], and a parametric model with m ∈ N parameters,
f : Rm × R

d → R. The task is to nd parameters tting the training data, i.e. nd θ∗ ∈ R
m such

that ∀i ∈ [n], f(θ∗;xi) ≈ yi. Aggregating these into a single vector F : θ → fθ = (f(θ;xi))i∈[n],
this becomes a satisfaction of a system of equations F (θ) ≈ y ∈ R

n. After choosing a functional loss
ℓ : Rn → R+, one can learn the associated parameters by gradient ow ∂tθ = −DF (θ)T ·∇ℓ(F (θ)),
where the jacobian of the parameterization F is a matrix DF (θ) ∈ R

n×m. This corresponds exactly
to the usual practice of dening a parametric function F , a functional loss ℓ, and training by gradient
ow on the parameters to minimize the parametric lossL = ℓ◦F . The question is then when does this
algorithm converge, and how fast ? Our focus is on the regime of nitely many parameters (m ∈ N)
and large data (n → +∞), where the over-parameterization arguments (m ≫ n) are insufcient.
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Context. Early arguments for the proof of convergence of this system to a loss of zero revolved
around strong convexity hypotheses on the loss [see Boyd and Vandenberghe, 2004, Section 9.3.1].
However the parameterization F , typically as a neural network, leads to non-convex parametric
losses L even when the functional loss ℓ is convex, sometimes even parametric losses that are not
locally quasi-convex [for details, see Liu et al., 2022]. Recently, a common solution has been the
leverage of Polyak-Łojasiewicz inequalities ∥∇L(θ)∥22 ≥ µL(θ), which grant linear convergence
by integrating with Grönwall’s lemma since for gradient ows it holds −∂tL(θ) = ∥∇L(θ)∥22
(thus forµ ∈ R

∗
+,−∂tL(θ) ≥ µL(θ) ⇒ L(θt) ≤ L(θ0) exp(−µt)). For examples in continuous

time, see Chizat [2020, Theorem 3.3 and 3.4]. Other results with discrete time include Arora et al.
[2019, Theorem 4.1], Oymak and Soltanolkotabi [2019, Theorem 2.1], Liu et al. [2020, Theorem
5.1] and Liu et al. [2022, Eq (3)] . Generally speaking, discretized versions with sufciently small
learning rate have very similar dynamics, at the cost of some local smoothness assumption, and
similarly, stochastic versions can leverage the same Łojasiewicz inequalities to prove convergence
rates, so the continous-time dynamics proof can be viewed as a rst step in the analysis of these more
complex cases. These inequalities ensure that there are no critical points that are not global minima,
and can hold even for non-convex losses L, although they can be hard to prove.

The behavior of the dynamical system ∂tθ = −∇L(θ) has been shown to be closely tied with
the eigenspaces of the Neural Tangent Kernel (NTK) matrix K(θ) = DF (θ) · DF (θ)T ∈ R

n×n,
introduced in Jacot et al. [2018, Section 4]. More precisely, the local decrease of the loss is
−∂tL(θ) = ∇ℓ(fθ)

T ·K(θ) ·∇ℓ(fθ). As an example, for the quadratic loss, the gradient satises
∥∇ℓ(fθ)∥22 = 4ℓ(fθ) = 4L(θ), such that a positive deniteness condition K(θ) ⪰ µ > 0 guarantees
the Polyak-Łojasiewicz condition −∂tL(θ) ≥ 4µL(θ), and thus by integration, convergence to zero
with a linear convergence speed. Several works, starting with Jacot et al. [2018, Proposition 2] but
also Du et al. [2018], have shown that the smallest eigenvalue of this K(θ) operator is indeed strictly
positive if the network is sufciently overparameterized (m ≫ n). Subsequent papers have also
anayzed how overparameterized the network needs to be for this argument to hold, with interesting
asymptotic bounds on the number of parameters required [Ji and Telgarsky, 2020, Chen et al., 2021].

Challenges. However, this argument for convergence is bound to fail when there are fewer parame-
ters than datapoints (m < n). In particular, for a xed number of parameters m ∈ N, it is impossible
to have both n → +∞ and λmin(K(θ)) > 0, since K(θ) ∈ R

n×n has rank m < n by denition.
As argued by Liu et al. [2022, Proposition 3] for the quadratic loss (ℓ : f → ∥f − y∥22, satisfying
∇ℓ(fθ) = 2(fθ − y) ∈ R

n), this implies that for underparameterized systems, the Łojasiewicz con-
dition cannot be satised for all y, since infu∈Rn uTK(θ)u/uTu = λmin(K(θ)) = 0. Nonetheless,
if some knowledge yi = f∗(xi) for some f∗ ∈ F0 is available, then it is sufcient to show that
infu∈Y0

uTK(θ)u/uTu > 0, where Y0 = {(f∗(xi)− fθ(xi))i, f
∗ ∈ F0} ⊆ R

n is only a subset of
the responses Rn on which the smallest eigenvalue of the NTK might be positive. Bounding the
eigenvalues of the NTK away from zero is sufcient, but not necessary, and for cases where the
smallest eigenvalue is zero, one can bound the Rayleigh quotient of the gradient and enjoy similar
guarantees despite the null eigenvalue(s). Although stated differently in their respective context,
previous uses of this restricted eigenvalue argument can be found for instance in Nitanda and Suzuki
[2019, Assumption A4: response is NTK-separable], or Arora et al. [2019, Section 6, bounded
inverse-NTK response] . We show how the argument used in these particular cases can be extended
to a broader setting, and introduce tools to make calculations easier and obtain such guarantees.

Rayleigh quotient bounds enable convergence guarantees in the underparameterized regime (m < n)
and in particular, for xed number of parameters m, the guarantees hold even when the number
of datapoints grows (n → +∞) and the domain becomes continuous. Letting n → +∞ requires
a slightly different formalism than the vectors and matrices used in this introduction, we will
therefore use functional spaces in the following, and the usual notations of differential geometry, with
parameters in indices for instance. Contrary to results such as Arora et al. [2019], Du et al. [2019],
the formulation using functional spaces, from Jacot et al. [2018], extends to the case where datapoints
are arbitrarily close and even identical, allowing guarantees on the expected loss with respect to a
continuous distribution and not just the empirical loss measured on nitely many well-separated
samples. In particular, these conditions need not rely on properties satised only with high-probability
by random initialization whenm → +∞, they can be proven even for xed initialization andm ∈ N.

Lastly, our analysis ties together in a more general framework the convergence arguments formulated
in the functional space [Du et al., 2018, 2019] studying dynamics of the network response, and
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similar arguments formulated in the parameter space [Li and Liang, 2018, Zou et al., 2020], by
centering the work on the singular values of the network differential DF (θ) ∈ R

n×m rather than the
functional-spaceDF (θ) ·DF (θ)T ∈ R

n×n or parameter-spaceDF (θ)T ·DF (θ) ∈ R
m×m kernels.

Contributions. We provide denitions in Sec. 2, then present Kurdyka-Łojasiewicz inequalities,
Rayleigh quotients, and their link in Sec. 3. We show in Sec. 4.1 that this recovers previously known
linear bounds for the quadratic case. We illustrate a two-dimensional counterexample to the NTK
positive-deniteness in Sec. 4.2, and how to overcome it with Rayleigh quotients. In Sec. 4.3 we
prove a new bound on logistic regression obtained by the same technique. In Sec. 4.4 and Sec. 4.5,
we outline arguments of convergence in more realistic settings and highlight future challenges.

2 Denitions for gradient ows and neural tangent kernels

Let X be a set with no particular structure. We consider the problem of learning a target function
f∗ : X → R, by having access only to samples (x, f∗(x)) ∈ X × R, where x ∼ D are random
samples from a probability distributionD on X. Let F = R

X be the vector space of functions from X

to R. The setting presented in the introduction corresponds to X being nite containing the examples
xi so that functions are represented as vectors f = (f(xi))i∈[n] andD is the empirical measure on X.

Denition 2.1. A network map is a function F : Θ → F, from Θ a vector space of nite dimension
equipped with an inner product ⟨·, ·⟩Θ, to F equipped with the topology of pointwise convergence.

To avoid confusions as much as possible, we will reserve lowercase letters (f, g, h) for functions
in F, and the uppercase F for network maps. We will usually put the parameters in index, and
inputs between parenthesis, so that for θ ∈ Θ, the function fθ : X → R sends inputs x ∈ X to
outputs fθ(x) ∈ R. Readers familiar with differential geometry will note that the assumption that Θ
is a vector space is a simplication, and could be relaxed for instance to a differentiable manifold.
However, we are interested in easily readable results closest to applications, and this assumption will
avoid cumbersome discussions on the parameter manifold’s tangent space, and keep results readable
with only some background in linear algebra. In all the examples, it is sufcient for our needs to set
Θ = R

m with canonical inner product and ∥·∥Θ = ∥·∥2, for some number of parametersm ∈ N.

Denition 2.2 (D-seminorm). Any probability distributionD onX induces on F a bilinear symmetric
positive semi-denite form ⟨·, ·⟩D : F × F → R, dened for (g, h) ∈ F × F as

⟨g, h⟩D = Ex∼D [g(x)h(x)]

The associated seminorm ∥·∥D : F → R+ is dened as ∥g∥2D = ⟨g, g⟩D = Ex∼D



g(x)2


.

This seminorm does not in general separate points, it is therefore not a norm on F. In particular, if D
does not have full support, then there are non-null functions g ∈ F with null seminorm ∥g∥D = 0.

Denition 2.3 (Gradient ow). A gradient ow with respect to the differentiable loss L : Θ → R+

is an absolutely continuous curve θ : R+ → Θ satisfying the differential equation ∂tθ = −∇L(θ).
Additionally, we say that a gradient ow is trivial if L(θ0) = 0, since it implies that for all t, θt = θ0.
For U ⊆ Θ, if θ : R+ → Θ is a gradient ow such that θ(R+) ⊆ U then we write just θ : R+ → U.

A common choice for regression with target f∗ ∈ F is the quadratic loss L : θ → ∥F (θ)− f∗∥2D.

If a network map F : Θ → F is differentiable for the pointwise convergence, we will write
dFθ : Θ → F for the differential of F at θ ∈ Θ, with parameters in index for shortness. Evaluation
at x ∈ X and derivation with respect to θ ∈ Θ commute, easing computations (see Appendix A.2.2).
We write the corresponding gradient ∇Fθ : X → Θ, dened by ⟨∇Fθ(x), ν⟩Θ = (dFθ · ν)(x) for
all x ∈ X and ν ∈ Θ.

Denition 2.4 (Neural Tangent Kernel, NTK form). A differentiable network map F : Θ → F

denes at every point θ ∈ Θ a kernel functionKθ : X× X → R as

Kθ : (x, x′) → ⟨∇Fθ(x),∇Fθ(x
′)⟩

Θ

This function induces a bilinear symmetric positive semi-denite formK⋆
θ : F × F → R as

K⋆
θ (g, h) = Ex∼D,x′∼D [g(x)Kθ(x, x

′)h(x′)]
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In exponent notation, this bilinear form has signature K⋆
θ : R

X × R
X → R, while the kernel

Kθ ∈ R
X×X is an n × n matrix when X is nite with n ∈ N elements. Importantly, the (primal)

kernelKθ is independent of the distribution D, while the (dual) kernel formK⋆
θ changes with D.

Denition 2.5 (D-compatibility, functional gradient). A function ℓ : F → R+ is saidD-compatible
if ∀(f, g) ∈ F × F, it holds that (f = g) D-almost everywhere implies ℓ(f) = ℓ(g).

Moreover, if ℓ is D-compatible and differentiable, we say ∇ℓ : F → F is a gradient of ℓ if it satises

∀(f, g) ∈ F × F, ⟨∇ℓf , g⟩D = dℓf (g)

This formalizes the idea that the loss depends only on the training samples, and the use of a gradient
simplies the following statements. When it exists, the functional gradient is usually not unique, for
it is dened only D-almost everywhere. See Appendix A.2.1 for some examples of conditions under
which it is well dened (for instance D has nite support, or ℓ is the expectation of a pointwise loss).

3 Rayleigh quotients to obtain Kurdyka-Łojasiewicz inequalities

3.1 Context: Kurdyka-Łojasiewicz inequalities for convergence

All convergence proofs presented in this paper rely on inequalities introduced by Kurdyka [1998]
of the form of Proposition 3.1. These are used for instance to prove nite length of trajectories in
dynamical systems (see e.g. Bolte et al. [2007, Corollary 4.1]), and sufcient to prove convergence to
a loss of zero even for non-convex losses. We will therefore direct all later efforts to the construction
of such inequalities. This was introduced as an extension to the Polyak-Łojasiewicz inequalities for
linear convergence [see e.g. Nguyen, 2017, Section 1.3 for examples], to more general dynamics, and
the proof of the following proposition is a simple application of the chain rule to φ ◦ L (see A.2.3).

Proposition 3.1 (Convergence by Kurdyka-Łojasiewicz inequality). Let U ⊆ Θ. If L : U → R+ is
such that there exists µ ∈ R

∗
+ and a strictly increasing differentiable function φ : R∗

+ → R satisfying

∀θ ∈ U, L(θ) ̸= 0 ⇒ dφL(θ) ⟨∇L(θ),∇L(θ)⟩
Θ
≥ µ

Then all non-trivial gradient ows θ : R+ → U of L satisfy ∀t ∈ R+, L(θt) ≤ φ−1 (φ(L(θ0))− µt)

Moreover, if such a ow exists, then infθ L(θ) = 0 and φ(u) → −∞ if u → 0 (see Appendix A.2.4).

The central idea, similar to the one used in the following sections, is that a desingularizing function
φ : R∗

+ → R transports the loss evolution L(θ) : I → R
∗
+ in dom(φ) = R

∗
+ to the space Im(φ) = R

where the evolution is easy to understand, since (φ ◦ L)(θ) is bounded by an afne function of time.
The desingularizing function provides a way to transfer the understanding of the convergence in
the image of φ back to the domain of φ, where the loss evolution is a little more complicated. The
condition is also sometimes written ∇L ·∇L ≥ ψ(L), where ψ : R+ → R+ is (ψ(u))−1 = dφu.

For the case of a linear convergence speed guarantee, the Polyak-Łojasiewicz condition from the
introduction (i.e. −∂tL(θ) = ∥∇L(θ)∥22 ≥ µL(θ)) corresponds to the choice φ : u → log(u). To
accurately describe systems with more intricate dynamics, more complicated choices of φ may be
necessary, see the case of logistic regression in Sec. 4.3 for one such example.

3.2 Contribution: Kurdyka-Łojasiewicz inequalities by composition

Denition 3.2 (Rayleigh quotients of bilinear maps). Let (V, ∥·∥V ) and (W, ∥·∥W ) be two vector
spaces equipped with seminorms, and letA : V×W → R be a bilinear map. Then for (x, y) ∈ V×W
such that (∥x∥V ∈ R+ \ {0}), and (∥y∥W ∈ R+ \ {0}), dene the Rayleigh quotient

R(A;x, y) =
A(x, y)

∥x∥V ∥y∥W

With a symmetric map A : V × V → R, the Rayleigh quotient R(A;x, x) is a convex combination
of the eigenvalues of A (which are real-valued), whose weighting depends on x. Moreover, the
minimal value is attained when x is an eigenvector corresponding to the minimal eigenvalue, and
λmin(A) = infx∈V \{0} R(A;x, x). Lastly, when the map is an inner product, then the Rayleigh
quotient R(⟨·, ·⟩Θ; a, b) = ⟨a, b⟩Θ/∥a∥Θ∥b∥Θ is a form of cosine similarity. The most common
usage is with x = y, but the asymmetric denition will be necessary later for the variational bound.
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Proposition 3.3 (Kurdyka-Łojasiewicz inequality by composition). Let F : Θ → F be a differen-
tiable network map, and Kθ the associated neural tangent kernel (by Def 2.4). Let U ⊆ Θ be a
subset of parameters and FU = F (U) ⊆ F its image by F . Let ℓ : FU → R+ be a D-compatible
differentiable loss with gradient ∇ℓ : FU → F whose seminorm is nite ∀f ∈ FU, ∥∇ℓf∥D < +∞.
Assume that there exists a strictly increasing differentiable φ : R∗

+ → R satisfying

∀f ∈ FU, ℓ(f) ̸= 0 ⇒ dφℓ(f) ⟨∇ℓf ,∇ℓf ⟩D ≥ 1

If theK⋆
θ -Rayleigh quotient of the gradient of ℓ is bounded below, i.e. if there exists µ ∈ R

∗
+ such that

∀θ ∈ U, ℓ(F (θ)) ̸= 0 ⇒ R


K⋆
θ ;∇ℓF (θ),∇ℓF (θ)



≥ µ

Then, for L = (ℓ ◦ F ) : U → R+, it holds

∀θ ∈ U, L(θ) ̸= 0 ⇒ dφL(θ) ⟨∇L(θ),∇L(θ)⟩
Θ
≥ µ

The proof of this statement is deferred to Appendix A.3.1, and similar to the usual NTK arguments.
If K⋆

θ is µ-uniformly conditioned, then in particular K⋆
θ (∇ℓf ,∇ℓf ) ≥ µ⟨∇ℓf ,∇ℓf ⟩D, which is

exactly the Rayleigh quotient condition. The main difference is that it is not necessary to require
uniform conditioning, it is sufcient for this property to hold on any subspace containing the gradient
(and in particular the one-dimensional subspace dened by the gradient, i.e. the Rayleigh quotient).

Kurdyka-Łojasiewicz (KŁ) inequalities provide a reasonable path to convergence bounds, outside the
usual convex framework. However, they can still be very difcult to obtain. This proposition splits
the parametric-space KŁ inequality into a functional-space KŁ inequality which is easier to obtain
(trivial for quadratic losses, see Sec. 4.1; available for cross-entropy for instance, see Sec. 4.3) and a
Rayleigh quotient bound, which is the focus of the following propositions. Similarly, we provide
hereafter several variational forms that can help break the Rayleigh quotient bounding problem down
into smaller blocks that can be easier to compute independently before reassembling.
Proposition 3.4 (Variational bound). Let F : Θ → F be a differentiable network map, Kθ the
associated neural tangent kernel (by Def 2.4), and θ ∈ Θ. If h ∈ F satises ∥h∥D ̸= 0, then it holds

R(K⋆
θ ;h, h) = sup

ν∈Θ\{0}

R( dF ⋆
θ ; ν, h)

2

Where dF ⋆
θ is the bilinear form (ν, h) → ⟨ dFθ · ν, h⟩D associated with the linear operator dFθ.

This property is particularly useful to avoid dealing with the square of the differential, and instead
obtain lower-bounds on the Rayleigh quotient by carefully selecting (suboptimal) inputs ν ∈ Θ \ {0}.
Proposition 3.5 (Split cosine - singular value). Let F : Θ → F be a differentiable network map,K
the associated neural tangent kernel, θ ∈ Θ, and h ∈ F such that ∥h∥D ̸= 0. If there exists a subspace
Θ0 ⊆ Θ and some µ ∈ R

∗
+ such that there exists ν ∈ Θ0 satisfying R(⟨·, ·⟩D; dFθ · ν, h) ≥ µ, then

for λ = infν∈Θ0
∥dFθ · ν∥2D/∥ν∥2

Θ
∈ R+, it holds R(K

⋆
θ ;h, h) ≥ µ2 λ.

This proposition is a trivial consequence of the following one, but is easier to parse while still making
apparent the distinction between a geometric quantity µ and the singular value λ. See Sec. 4.2 for
an example in dimension two, where µ is dened only by the angle between the gradient and the
lemniscate’s tangent, independently of the parameterization. Observe on the other hand that as λ, the
speed at which the lemniscate is traveled, changes, so does the gradient ow’s convergence speed.
Proposition 3.6. Let F : Θ → F be a differentiable network map, θ ∈ Θ, and h ∈ F s.t. ∥h∥D ̸= 0.

Let k ∈ N
∗. Let (ai)i∈[k] ∈ (Θ \ {0})k and (gi)i∈[k] ∈ (F \ (∥·∥D)−1(0))k. If h ∈ Span(g), then

max
ν∈Span(a)\{0}

R( dF ⋆
θ ; ν, h) ≥

λmin



R(⟨·, ·⟩D; dFθ · ai, gj)i,j



mini∈[k]∥dFθ · ai∥D/∥ai∥Θ


λmax



R(⟨·, ·⟩Θ; ai, aj)i,j


λmax



R(⟨·, ·⟩D; gi, gj)i,j



where the smallest singular value of A ∈ R
k×k is λmin(A) = minu̸=0 u

TAu/uTu (resp. max).

If the vectors (a, g) are taken orthogonal and such that dFθ · ai = σigi for some σi ∈ R, then the
three matrices are the identity, and only the minimal Rayleigh quotient remains. If they are chosen
only approximately orthogonal, then a corresponding multiplicative penalty is incurred.

The proofs of the preceding three propositions are deferred to Appendix A.3.2, A.3.3 and A.3.4
respectively.
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4 Case studies

4.1 Linear models with quadratic loss, recovering known bounds

As a sanity check and simple rst contact with the variational bound, we consider a model linear in
its parameters, with quadratic loss, and recover the (known optimal) linear convergence rate. This
proposition is the continuous time form of Karimi et al. [2016, Theorem 1].

Proposition 4.1 (Convergence of quadratic-loss linear models). Let X = Θ = R
d, and F : Θ → F,

be the linear network map F : θ → fθ dened by fθ(x) = ⟨x, θ⟩. Let f∗ : X → R be a linear
function. Let L : Θ → R+ be the quadratic loss L : θ → ∥F (θ) − f∗∥2D where D a distribution
over X such that L is well-dened and nite.

If θ : R+ → Θ is a gradient ow of L, then for all t ∈ R+, it holds L(θt) ≤ L(θ0) e
−4λ

+

min
(A) t,

where A = Ex∼D



xxT


∈ R
d×d is the (uncentered) covariance matrix of the samples, and λ+

min(A)
its smallest non-null eigenvalue. Moreover, there exists D such that this bound is an equality.

The idea is to apply Proposition 3.3. The functional Kurdyka-Łojasiewicz inequality is immediate,
and we bound the Rayleigh quotient with Proposition 3.5 applied to the subspace Θ0 = Ker(A)⊥.

Proof. Let ℓ : F → R+, f → ∥f − f∗∥2D be the functional-space quadratic loss, whose gradient
∇ℓf = 2(f − f∗) satises the Polyak-Łojasiewicz inequality ∥∇ℓf∥2D ≥ 4 ℓ(f). Hence, let us show
L(θ) ̸= 0 ⇒ R(K⋆

θ ;∇ℓF (θ),∇ℓF (θ)) ≥ λ+
min(A), which is sufcient by applying Proposition 3.3.

Let θ∗ ∈ Θ be any parameter such that f∗ = fθ∗ , where existence is guaranteed by linearity of f∗.
Observe that the loss can be written L(θ) = (θ − θ∗)TA(θ − θ∗). Let θ ∈ Θ such that L(θ) ̸= 0. In
particular, θ − θ∗ /∈ Ker(A). Then, let Θ0 = Ker(A)⊥. On one hand, it follows that

sup
ν∈Θ0\{0}

⟨ dFθ · ν, F (θ)− F (θ∗)⟩2D
∥ dFθ · ν∥22 ∥F (θ)− F (θ∗)∥2

D

=
(uTA(θ − θ∗))2

(uTAu)((θ − θ∗)TA(θ − θ∗))
= 1

with the maximum attained for u ∈ Ker(A)⊥ \{0} the orthogonal projection of (θ−θ∗) toKer(A)⊥,
satisfying A(θ− θ∗) = Au and ⟨θ− θ∗, u⟩ = 0, thus uTAu = uTA(θ− θ∗) = (θ− θ∗)TA(θ− θ∗).

Then by denition infν∈Θ0\{0}∥ dF (θ) · ν∥2D/∥ν∥22 = infν∈Θ0\{0}(ν
TAν)/(νT ν) = λ+

min(A).
Conclude by Proposition 3.5, with µ = 1 and λ = λ+

min(A). Equality is recovered for A = Id.

This is to be contrasted with a direct proof of the Kurdyka-Łojasiewicz inequality, i.e. showing that

∥∇L(θ)∥22
L(θ)

= 4
(θ − θ∗)TA2(θ − θ∗)

(θ − θ∗)TA(θ − θ∗)
≥ 4λ+

min(A)

Although the proof seems a bit convoluted, the interesting part here is that the original bound can
be split into two (hopefully simpler) subproblems, while still allowing the use of knowledge on
(fθ − f∗), leveraged here by the assumption (θ− θ∗) ∈ Ker(A)⊥. Note that knowledge of a property
such as (θ− θ∗) ∈ Θ0 ⊆ R

d for any subspace Θ0 could have been used to eliminate any eigenvalues
of A on Θ⊥

0 , including strictly positive eigenvalues, there is nothing specic to Ker(A)⊥ other than
the existence of the prior knowledge (θ − θ∗) /∈ Ker(A) granted by L(θ) ̸= 0.

4.2 Lemniscate-constrained optimization, singular values

We now present a toy example simple enough to allow for explicit computations and constructed to
illustrate the importance of parametrization. We consider linear functions in two dimensions where
the function f(a,b) : R

2 → R, f(a,b) : (x, y) → ax + by is simply identied with (a, b) ∈ R
2. We

will still consider a quadratic loss but we now assume that the target function f∗ = f(a∗,b∗) is linear
and with (a∗, b∗) ∈ F0 = {(a, b) ∈ R

2 | (a2 + b2)2 = a2 − b2}. Although we are looking for a two
dimensional linear functions f∗, knowing that f∗ ∈ F0 reduces the "degrees of freedom". In such a
scenario in machine learning, we typically incorporate this information in the parametrization. As a
result, we now have only one parameter to estimate, i.e. Θ = R and our network maps F : R → R

2

will satisfy Im(F ) = F0. Note that Bernoulli’s lemniscate F0 (pictured in Fig .2a) is neither a convex
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set, nor a manifold (due to the crossing at zero). There is no "natural" parametrization of F0 and as
shown below, the chosen parametrization will matter. For more clarity on the consequences of this
parameterization, we use two parameterizations of the lemniscate F0:

FS : θ →


cos(θ)

1 + sin(θ)2
,
sin(θ) cos(θ)

1 + sin(θ)2



and, FL : θ →


1− θ4

1 + 6θ2 + θ4
,

2θ(1− θ2)

1 + 6θ2 + θ4



.

The graph of these parameterizations {(θ, F (θ)) | θ ∈ R} ⊆ R
3 is depicted in Fig. 1. The rst,

FS is differentiable 2π-periodic and surjective, satisfying FS([0, 2π]) = F0. The second, FL is
differentiable, but it is neither injective (since FL(−1) = (0, 0) = FL(+1)) nor surjective. It is a
punctured lemniscate Im(FL) = F0 \ {(−1, 0)}, it is only dense in the lemniscate Im(FL) = F0.

(a) Periodic lemniscate (FS : sphere to lemniscate) (b) Punctured lemniscate (FL: line to lemniscate)

Figure 1: Graph of the two parameterizations presented (with 11 dots regularly spaced on [-1,+1])

Note that in both cases, the neural tangent kernel Kθ has rank one (because there is only one
parameter), thus λmin(K

⋆
θ ) = 0 by rank deciency but we can still prove convergence to zero loss.

To make things even more clear, we assume that all samples are lying on a line: D is a distribution
supported on the one-dimensional subspace R t with t = (u, v) ∈ R

2 \ {0}. In words, all the labeled
samples are of the form z(t, a∗u + b∗v) ∈ R

2 × R for some z ∈ R and any function f(a,b) with
(a−a∗)u+(b− b∗)v = 0 will achieve a loss of zero. Indeed as shown in previous section, a standard
linear regression in this case converges to a loss of zero but the parameters inferred will not be on the
lemniscate F0. With the parametrization FS or FL, we will nd a solution living on F0, namely one
of the two points in ℓ−1(0) ∩ F0, as seen in Figure 2a.

(a) Bernoulli’s lemniscate F0 and level sets of ℓ
(b) Observed convergence speeds

Figure 2: Loss level sets with parameters t = (4,−1) and f∗(t) = −3, corresponding to quadratic
loss ℓ : (a, b) → (4a − b + 3)2 and convergence speed with step size 10−3 and initial estimate
θ(0) = 0. Both ows converge to the same functional minimum (FS(θ

∗
S) = FL(θ

∗
L)), the one

depicted on the bottom in (a). Initializing at a different point could have led to a convergence to the
other minimum. Proposition 4.2 only shows that the loss converges to zero, leaving unaddressed the
question of which minimum is reached.

Proposition 4.2 (Lemniscate convergence with varying speed). Let (u, v) ∈ R
2 such that u > 0 and

|v| < |u|. Let y ∈ R− such that the equation (au+ bv = y) has exactly two solutions (a, b) ∈ F0.
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Let ℓ : R
2 → R+ be the quadratic loss ℓ(a, b) → (au + bv − y)2. Let θS : R+ → R (resp.

θL : R+ → R) be a gradient ow with respect to the loss ℓ ◦ FS (resp. ℓ ◦ FL) such that θ(0) = 0.
Then there exists a constant µ0 ∈ R

∗
+ such that it holds ℓ(FS(θS(t))) ≤ ℓ(0) exp(−4µ2

0λ
∗
St) and

ℓ(FL(θL(t))) ≤ ℓ(0) exp(−4µ2
0λ

∗
Lt), where λ

∗
S = 1

2 and λ∗
L = ∥∇FL(θ

∗
L)∥22, for θ∗L = limt θL(t).

The sketch of this proof is given in Appendix A.4.1. For the numerical values taken in Fig. 2a, we
have λ∗

L ≈ 4.05× 10−3 showing that our bounds capture the speed of convergence. The idea is as
previously, to use the quadratic loss Polyak-Łojasiewicz property (∥∇ℓ∥22 ≥ 4ℓ) that will grant linear
convergence provided we can show R(K⋆

θ ;∇ℓF (θ),∇ℓF (θ)) ≥ µ2
0λ

∗
S for all θ ∈ θS(R+) (resp. λ∗

L

for θ ∈ θL(R+)), achieved by a variational bound (Proposition 3.4) split according to Proposition 3.5.

4.3 Cross-entropy minimization with linear models

We now consider a classication task with c ≥ 1 classes. Let ∆c = {u ∈ (R+)
c |



i∈[c] ui = 1}

be the set of distributions over those classes. The samples x live in X = R
d and the target function

is f∗ : X → ∆c. Let E : Rc → ∆c, u → (exp(ui)/


j exp(uj))i be the softargmax map. Let

Θ = R
c×d be the parameter space, and X : Θ → (X → R

c) be the operator mapping parameters
to linear functions, such that X(θ) : x → θ · x. We use the parameterization F : θ → E(X(θ))
where E is applied pointwise. For any xed sample x ∈ X, we dene the loss for this sample as
Hx : ∆c → R+, p → −



i∈[c] f
∗
i (x) log(pi). The complete loss used to train this model is then the

logistic regression L : θ → Ex∼D [Hx(F (θ)(x))], for which we give a new convergence bound.

Θ (X → R
c) (X → ∆c) (X → R+) R+

X E H Ex∼D

Denition 4.3 (Isolation). A real-valued random variable Y ∈ L1 is κ-isolated if P(Y ≥ E[Y ]) ≥ κ.

All L1 variables are κ-isolated for some κ > 0, but we will need a notion of uniform isolation.
A random variable Y with nite support, i.e. P(Y = yi) = pi for some y ∈ R

n and p ∈ ∆n is
(mini∈[n] pi)-isolated, regardless of the values y. This bounds the isolation of the maximal value in a
sense. Moreover, if ψ : R → R is increasing and Y is κ-isolated, then it holds E[ψ(Y )] ≥ κψ(E[Y ]).
We use κ = 1/n in our experiments (see A.5.6), where n ∈ N

∗ is the number of training points.

Denition 4.4 (Multi-class separating rays). We say that a parameter ζ ∈ R
c×d is an ε-separating

ray for the distribution D if it holds for D-almost all x ∈ X that

∃i ∈ [c], ∀j ∈ [c] \ {i}, ⟨ζi, x⟩Rd ≥ ⟨ζj , x⟩Rd + ε ∥ζ∥2
where ζi ∈ R

d is the i-th row of ζ, i.e. if (ζ · x) ∈ R
c has a unique maximum (with a xed margin).

This property is invariant by rescaling of ζ and generalizes the notion of "separation margin" usual in
two-class logistic regression. If ζ is ε-separating for some ε > 0, then for D-almost all inputs x, the
softargmax classier f = F (ζ) : X → ∆c induces a unique label i ∈ [c] as i = argmaxj f(x)j .

Proposition 4.5 (Convergence speed of logistic regression). Let D be a distribution such that the
point-loss random variable Lx = Hx(f(x)), where x ∼ D, is κ-isolated for all f ∈ F (Θ).

Let L : θ ∈ Θ → Ex∼D [Hx(F (θ)(x))] ∈ R+ be the multi-class cross-entropy loss. If there exists an
ε-separating ray ζ such that infλ∈R L(λζ) = 0, then for all non-trivial gradient ows θ : R+ → Θ,

L(θt) ≤ log



1 +
1

W0 (exp(ε2κ2t − C))



whereW0 : R+ → R+ is the Lambert function, and C = log(eL(θ0) − 1)− (eL(θ0) − 1)−1 ∈ R.

The Lambert function W0 is dened by W0(x)e
W0(x) = x, see Corless et al. [1996]. The proof is

deferred to Appendix A.5.3. The idea is to prove a functional Kurdyka-Łojasiewicz inequality by
leveraging the isolation property, then bound the Rayleigh quotient by leveraging the separation and
inf L = 0 hypotheses to obtain a parametric Kurdyka-Łojasiewicz inequality by Proposition 3.3.

Being a convex problem, the classical argument of Boyd and Vandenberghe [2004] gives a bound
L(θt) ≤ C0/t as long as there is a nite optimum θ∗ ∈ Θ. This bound becomes vacuous (C0 → +∞)
in this setting with dirac labels, common in machine learning, because the inmum is located “at
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innity”. This assumption has been previously lifted (under separability in Soudry et al. [2018],
Nacson et al. [2019] , without separability in Ji and Telgarsky [2019]) to recover theO(1/t) asymptotic
behavior, but without explicit bounds for nite times.

This result is consistent (see Appendix A.5.4) with the asymptotic O(1/t) bounds from Soudry
et al. [2018, Theorem 5] with similar hypotheses, this proposition only makes quantitative the non-
asymptotic behavior of this system, and the characteristic quantities driving the convergence speed.
To do so, the separation assumption had to be made quantitative, hence the use of ε-separating
rays for a xed positive ε, where previous work used only non-quantied data separation (i.e. ∃ε,
∃ζ s.t. ζ is an ε-separating ray for the data), see Appendix A.5.5 for more details. Similarly to
the previous section, and contrary to the parameter-direction convergence theorems Soudry et al.
[2018, Theorem 5], Nacson et al. [2019, Theorem 3], and Ji and Telgarsky [2019, Theorem 1.1],
this proposition does not, on its own, yield any insights on implicit bias (which inmum is reached)
towards max-margin rays, additional arguments are required for this purpose. The focus here is on the
precise quantication of convergence speed under separability assumptions, with continuous time.

4.4 Overparameterized two-layer networks with quadratic loss

Let X = R
d, and σ : R → R be a non-polynomial Lipschitz map. For m ∈ N \ {0} a number of

neurons. Let Θ(m) = R
m×d × R

m be a parameter set and F (m) : Θ(m) → F be the associated
network map F (m)(w, a) : x →



i∈[m] ai σ(wi · x), i.e. a two-layer network1 with non-linearity σ.

Let K ⊆ X be compact, and D a distribution supported on K. Let f∗ ∈ F be a continuous function.
Over Θ(m) = R

m×d × R
m, let Im be the (usual in practice) iid normal rescaled initialization with

density p(w, a) =


i∈[m],j∈[d] N(wi,j ; 0, 1)


k∈[m] N (ak; 0, 1/
√
m). We write (x)+ = max(0, x)

Proposition 4.6. Let ε ∈ R
∗
+, and δ ∈]0, 1[. There exists c ∈ R

∗
+ such that, for all radii R ∈ R

∗
+,

there exists a neuron count m ∈ N such that with probability (1− δ) over initializations θ0 ∼ Im,

the quadratic loss L : θ ∈ Θ(m) → ∥F (m)(θ)− f∗∥2D satises the inequality

∀θ ∈ B(θ0, R), ∥∇L(θ)∥2Θ ≥ 1

(∥θ − θ0∥2 + c)2
(L(θ)− ε)2+

Therefore, for any desired precision ε0 ∈ R
∗
+, there exists (m,κ) ∈ N

∗ × R
∗
+ such that with

probability at least (1 − δ) over initialization θ0 ∼ Im, a gradient ow θ : R+ → Θ of L with

θ(0) = θ0 satises ∀t ∈ R+, L(θt) ≤ ε0 + 1/ 3


L(θ0)−3 + κ t.

Proof in Appendix A.7. The idea for the proof is to use universal approximation property on compacts
[Cybenko, 1989, Barron, 1993, Leshno et al., 1993], to get ∥F (θ) + dFθ · ν − f∗∥2D ≤ ε for some
ν ∈ Θ, then derive a Kurdyka-Łojasiewicz inequality from that with a variation of Proposition 3.5.
Knowledge of a Kurdyka-Łojasiewicz inequality in a ball around initialization alone is not sufcient to
show loss convergence to arbitrary precision in general, but the separable form of this inequality makes
it possible, following Scaman et al. [2022, Proposition 4.6]. This proposition shows convergence
outside the vastly overparameterized regime (m is nite even with innite data), but still relies heavily
on a (very) large number of neurons. In the next section, we give a partial convergence argument
using similar techniques in a much more constrained regime.

4.5 Periodic signal recovery

Let X = R. Among functions F = (R → R), we are interested in continuous periodic antisymmetric
functions, which we parameterize with Θ = R

m × R
m, as F : Θ → F, dened for (a,ω) ∈ Θ as

F (a,ω) : x →


i∈[m] ai sin(ωix), andK(a,ω) the associated NTK at the point (a,ω) ∈ Θ.

The central property of this application, separating it from the most common machine learning
applications, is the inability to obtain good samples. Let R ∈ R

∗
+ be a nite window size, and dene

the training data distribution D = U(−R,+R), the uniform distribution on the interval [−R,+R].
Let F0 ⊆ F be the set of continuous periodic antisymmetric functions with period less than R.
Crucially, we are interested not just in learning the function on the interval, akin to just data retrieval,

1The bias term usually present in linear layers is omitted to lighten notations, without loss of generality since
an additional dimension with non-null constant coordinate can be added to the input domain to compensate for it.
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but rather in learning the function in (R → R) as a whole. This problem is well dened, i.e. if
f∗ ∈ F0, then argming∈F0

∥g−f∗∥2D = {f∗}. The periodicity assumptions makes the data sufcient
to recover the target function among the hypotheses, however neither the assumption that the training
and testing data distributions are identical, nor the assumption that the model has more parameters
than there are data points are satised. There is innite data, but there is bias in the sampling.

We will rely on two properties of frequency parameters to show bounds. First, we say that ω ∈ R
m is

δ-separated if infi̸=j |ωi−ωj | ≥ δ and infi |ωi| ≥ δ. Then, we say that the pair (ω,ω∗) ∈ R
m×R

m

is ε-paired if supi∈[m] |ωi−ω∗
i | ≤ ε. Moreover, let x0 ∈ R+ be the rst zero of sinc′′. (x0 ≈ 2.0815).

Proposition 4.7 (Polyak-Łojasiewicz region). Let (η, µ) ∈ R
∗
+ × R

∗
+ such that η ≤ x0 and η < 1

2µ.

Let f∗ ∈ F be a target, and ℓ : f ∈ F → 1
2∥f−f∗∥2D the quadratic loss, with gradient∇ℓf = f−f∗.

Assume that there exists (a∗,ω∗) ∈ Θ such that f∗ = F (a∗,ω∗), and ω∗ is µ
R
-separated.

Then for all (a,ω) ∈ Θ such that ℓ(F (a,ω)) ̸= 0, (ω,ω∗) is η
R
-paired, and ∃α ∈ [0, 1], ∀k, a2k ≥ α,

R


K⋆
(a,ω);∇ℓF (a,ω),∇ℓF (a,ω)



≥ α



ϕ(η)− 1

µ− η



(κ0 − ρ0)
2

1 + ρ0

where with ψ = − sinc′, ϕ = − sinc′′, and H =


k≤m
1
k
≤ 1 + log(m) ∈ R+, the constants are

κ0 =
ϕ(η)− 1

µ−η

ϕ(0) + 1
µ−η

ρ0 =
ψ(η) + 1

µ−η
+ 4H

µ−2η

ϕ(η)− 1
µ−η

Moreover, ∃µ0 ∈ R+, ∀µ > µ0, ∃η > 0, s.t. κ0 > ρ0. (non degeneracy if enough periods observed)

Proof in Appendix A.6, leveraging Prop. 3.4 (variational bound) and Prop. 3.6. This shows that when
each frequency present in the signal is correctly estimated, then a gradient ow is well-suited for
ne-tuning both frequencies and amplitudes. There are sufciently few interactions to allow each
neuron (ai,ωi) to descend towards its target (a∗i ,ω

∗
i ). If the modelling hypothesis is veried (the

target is a sum of sine waves), there is a nite and small number of neurons giving a sufciently-
parameterized system, and no need to go for vast overparamterization. Letting the number of neurons
tend to innity is one way to ensure there is at least one neuron in each bassin, but not the only way.

5 Conclusion

We have shown that Kurdyka-Łojasiewicz inequalities can be leveraged to prove convergence of
gradient ows to a loss of zero, even when the convergence speed is not linear. In contrast, Polyak-
Łojasiewicz inequalities granted by positive-deniteness of the neural tangent kernel only covered
least-squares losses enjoying linear convergence speed. Furthermore, we have shown that by focusing
on lowering-bounding Rayleigh quotients rather than all eigenvalues at once, one can prove conver-
gence even when the neural tangent kernel is not positive-denite, the most striking example being
the nite-width innite-data regime, where the neural tangent kernel must have null eigenvalues by
rank deciency. We have provided several simple examples of such convergence proofs outside the
vastly over-parameterized regime where there are more parameters than samples, along with tools and
preliminary results that lead us to believe that obtaining the crucial Kurdyka-Łojasiewicz inequalities
is feasible in more reasonable machine learning settings.
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