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ABSTRACT

Defining the convolution on graphs has led to much progress in graph machine
learning, particularly through approximations based on polynomials and, ulti-
mately, message-passing neural networks (MPNNs). However, this convolution
is defined for single-channel graph signals, i.e., a single feature is given at each
node, and a single new feature is assigned to each node. As multiple initial node
features are provided for many challenging tasks and convolutions are generally
defined for these multi-channel signals, we introduce multi-channel graph con-
volutions (MCGCs) by obtaining their form using the graph Fourier transform.
MCGCs highlight the critical importance of utilizing multiple edge relations to
amplify different signals for each feature channel. We further introduce localized
multi-channel MPNNs and the multi-channel graph isomorphism network (MC-
GINs), with which we can provably obtain linear mappings that are injective on
multisets. Our experiments confirm the greatly improved capabilities of MCGCs
and MC-GINs.

1 INTRODUCTION

Many challenging tasks and applications are based on graph-structured data, e.g., property prediction
for molecules (Hu et al., 2021), fraud detection in transactions (Weber et al., 2019), and recommen-
dations (Monti et al., 2019). Developing expressive and well-performing methods to learn from such
data is thus an important challenge. As one such method, neural networks for graph-structured data
are based on defining a convolution on a graph. Spectral graph convolutions emerged by computing
the convolution exactly in the graph Fourier domain based on the convolution theorem (Hammond
et al., 2011; Bruna et al., 2014). Due to its high computational cost, various approximations based
on polynomials of the graph Laplacian emerged (Levie et al., 2019; He et al., 2021; Koke & Cre-
mers, 2024), e.g., using Chebyshev polynomials (Defferrard et al., 2016). This further led to the
graph convolutional network (GCN) (Kipf & Welling, 2017) as a localized approximation. Most
currently used message-passing neural networks (MPNNs) are derivations and improvements of this
spectral graph convolution and the GCN. This includes applying different aggregation functions like
the mean (Hamilton et al., 2017), the sum (Xu et al., 2019), utilizing attention coefficients (Velick-
ovic et al., 2018; Brody et al., 2022) or negative edge weights (Yan et al., 2022). More complex
methods like gating mechanisms (Li et al., 2016; Rusch et al., 2023), positional encodings (Kreuzer
et al., 2021; Rampásek et al., 2022; Huang et al., 2024), and normalization layers (Zhao & Akoglu,
2020) are typically combined with these approximated graph convolutions.

However, this convolution is defined for single-channel signals, i.e., each node has a single fea-
ture and a single feature per node is obtained. In most applications, each node has multiple initial
features assigned to it, e.g., a text embedding for documents and atom features for molecular data.
Similarly, the goal of these models is often to find rich node embeddings capturing both structural
properties and feature interactions, which are typically designed to have multiple feature channels.
The currently used definition of graph convolutions and, consequently, most MPNNs are ill-defined
for this task. As MPNNs amplify the same signal for each channel, issues like representational rank
collapse (Roth & Liebig, 2023) and over-smoothing (Oono & Suzuki, 2020) emerged.

The convolution that is mapping multi-channel signals to multi-channel signals is generally defined
differently. We introduce these multi-channel convolutions to graphs by obtaining their form based
on the convolution theorem and the graph Fourier transform. This multi-channel graph convolution
(MCGC) highlights the importance of utilizing multiple edge relations. Each edge relation corre-
sponds to a different signal, and the feature transformation describes the amplification or damping
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(a) Single-Channel Filter (b) Single-Channel Signal (c) Convoluted Signal

Figure 1: Single-Channel signal and filter in the Fourier domain. The eigenvalue index corresponds
to the eigenvalues (frequencies) of the graph Laplacian L. The convoluted single-channel signal in
the Fourier domain is the element-wise scalar product of the filter and signal.

of this signal for each output feature channel. While the exact formulation is computationally pro-
hibitive for large graphs, knowing the exact form of the graph convolution for multiple channels will
allow for various approximations. We define required properties for localized approximations that
similarly operate on multiple sparse edge relations. We further introduce the multi-channel graph
isomorphism network (MC-GIN) that we prove to have the same expressivity as the graph isomor-
phism network (Xu et al., 2019) while applying a linear transformation to the data. Our experiments
confirm the advantages of the MCGC and MC-GIN. We summarize our main contributions as fol-
lows:

• Based on the general definition of the convolution for multi-channel signals, we obtain the
multi-channel graph convolution (MCGCs) using the convolution theorem (Section 3).

• To construct multi-channel MPNNs (MC-MPNNs), we introduce localized MCGCs, for
which we require multiple edge relations, with each edge relation amplifying a different
signal in the data (Section 3.1).

• We prove that with localized MCGCs, we can construct linear mappings that are injective
on multisets, which we call multi-channel graph isomorphism network (MC-GIN) due to
its expressivity being equivalent to the GIN (Xu et al., 2019) (Section 3.2).

2 PRELIMINARIES

Let G = (V, E) be a connected and undirected graph consisting of a set of n nodes V and a set of
edges E . A graph signal is defined as a function x : V → Rd that assigns a vector of real values to
each node. For notational simplicity, we stack all node signals into a matrix X ∈ Rn×d based on
some node ordering. For d = 1, we refer to this as a single-channel signal, while for d > 1, we
call it a multi-channel signal. These can either be initial features or expressive and informative node
embeddings obtained by a suitable method. Let A ∈ {0, 1}n×n with Ai,j = 1 if (i, j) ∈ E and
0 otherwise be the adjacency matrix corresponding to the same node ordering as X . The diagonal
degree matrix is D ∈ Nn×n. The symmetrically normalized adjacency matrix is given by Ã =
D−1/2AD−1/2 and the graph Laplacian by L = In − Ã. Its eigendecomposition is L = UΛUT

where Λ ∈ Rn×n is a diagonal matrix containing its eigenvalues, and U ∈ Rn×n is an orthonormal
matrix containing the corresponding eigenvectors as columns. In the graph domain, the Fourier base
is given by the eigenvectors UT of the graph Laplacian. Thus, the Fourier transformation F = UT

is performed by projecting a graph signal onto the eigenvectors, and its inverse transformation is
given by F−1 = U .

2.1 SINGLE-CHANNEL GRAPH CONVOLUTIONS

The convolution is an operation that combines two functions and produces a new function. Given a
graph with n nodes, the convolution is typically defined as the function x′ = w∗x, where x ∈ Rn is
a single-channel graph signal, w ∈ Rn is a corresponding filter, and it produces a convoluted single-
channel graph signal w′ ∈ Rn′. As this convolution involves single-channel signals, we will further
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(a) Multi-Channel Filter (b) Multi-Channel Signal (c) Convoluted Signal

Figure 2: Multi-channel signal and filter in the Fourier domain. The eigenvalue index corresponds
to the eigenvalues (frequencies) of the graph Laplacian L. The element-wise product for each eigen-
value index is a matrix-vector product.

refer to it as the single-channel graph convolution (SCGC). The convolution theorem (O’Neil, 1963)
states that the Fourier transform of a convolution

F (w ∗ x) = F (w)⊙ F (x)

is equal to the element-wise multiplication of the filter and signal in the Fourier domain. The graph
convolution (Hammond et al., 2011) can be expressed as

w ∗ x = F−1(F (w)⊙ F (x))

= U(UTw ⊙UTx)

by utilizing the graph Fourier transform F = UT and its inverse F−1 = U based on the eigenvec-
tors U of the graph Laplacian L. We visualize this process in Figure 1. Substituting UTw with
its diagonalized matrix W ∗ = diag(UTw) and the Hadamard product with a matrix multiplication
leads to the equivalent form

U(UTw ⊙UTx) = UW ∗UTx .

Bruna et al. (2014) proposed to learn the filter W ∗ directly in the Fourier domain, which is also
known as the spectral graph convolution.

2.2 APPROXIMATIONS USING POLYNOMIALS

As computing the eigendecomposition and performing dense matrix multiplications is computation-
ally expensive, SCGCs do not scale well to large graphs. Defferrard et al. (2016) proposed to instead
approximate and parameterize graph convolutions using a learnable function g(Λ) on the eigenval-
ues Λ of L, i.e., by approximating the diagonal matrix W ∗ ≈ g(Λ). One commonly employed
approximation

UW ∗UT ≈ U

n∑
p=1

wpUTp(Λ̃)UT

=

k∑
p=0

wpTp(UΛ∗UT )

=

k∑
p=0

wpTp(L̃)

is based on Chebyshev polynomials (Chebyshev, 1853) up to k-th order of a rescaled matrix of
eigenvectors Λ̃ = 2

λmax
Λ − In and corresponding L̃ = 1

λmax
− In (Hammond et al., 2011). The

polynomials are defined as T0(Λ) = I , T1(Λ) = Λ, and Tk(Λ) = 2ΛTk−1(Λ) − Tk−2(Λ). This
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truncated polynomial expansion is k-localized in the graph as entries
[∑k

p=0 wpTp(L̃)
]
i,j

are zero

when the shortest path between nodes i and j is larger than k. Further approximations include
Cayley polynomials (Levie et al., 2019), Bernstein polynomials (He et al., 2021). Koke & Cremers
(2024) propose an approximation for directed graphs using Faber polynomials. GPR-GNN proposes
to directly learn the filter weights (Chien et al., 2021). All these methods are approximations of the
SGCG.

2.3 MESSAGE-PASSING NEURAL NETWORKS

For further computational efficiency and empirical success, the graph convolutional network
(GCN) (Kipf & Welling, 2017) was derived as a 1-localized approximation of Chebyshev poly-
nomials. It uses the approximation

w ∗ x ≈ w0(In +D−1/2AD−1/2)x .

by setting k = 1, λmax ≈ 2, and w0 = −w1. They further substitute In + D−1/2AD−1/2 by
D̃−1/2ÃD̃−1/2 using Ã = A+ In and D̃ = D + In.

However, as the SCGC is not defined for multi-channel signals, the SCGC and its approximations
are not directly applicable to multi-channel signals. To apply the GCN to a multi-channel signal
X ∈ Rn×d or to obtain a multi-channel signal X ′ ∈ Rn×d′

as the output, they propose to replace
the scalar w ∈ R with a matrix W ∈ Rd×d′

(Kipf & Welling, 2017). This leads to their update
function

X ′ = ÂXW , (1)

where Â = D̃−1/2ÃD̃−1/2.

Recent research on over-smoothing and rank collapse has proven that graph convolutions of the
form in Eq. 1 do not allow the amplification of different signals across channels (Giovanni et al.,
2023; Roth & Liebig, 2023; Roth, 2024). The signals to be amplified are solely determined by the
spectrum of Â, which was shown to hold for any choice of Â and W . While this may be desired
if the same signal should be amplified for all feature columns, each feature channel should typically
be composed of a different mix of signals. Thus, the GCN inherited this issue from SCGCs.

Most established message-passing neural networks (MPNNs) are adaptations of the GCN and sim-
ilarly suffer from being based on single-channel convolutions. Examples include utilizing the
mean (Hamilton et al., 2017) or sum (Xu et al., 2019) aggregation, using the attention mecha-
nism (Velickovic et al., 2018; Brody et al., 2022), allowing for negative edge weights (Yan et al.,
2022) or building on top of these graph convolutions with normalization layers (Zhao & Akoglu,
2020), gating mechanisms (Li et al., 2016; Rusch et al., 2023), or positional encodings (Kreuzer
et al., 2021; Rampásek et al., 2022; Huang et al., 2024). We will thus consider how to directly define
the graph convolution for multi-channel signals, of which all approximations would benefit.

3 MULTI-CHANNEL GRAPH CONVOLUTIONS

We now consider a multi-channel graph signal X ∈ Rn×d with d channels for each node. By
applying a graph convolution, we want to obtain a convoluted multi-channel graph signal with dif-
ferent channel mixing for any input and output combination. In the last section, we have shown
that the currently used SCGC is not defined for this task. In general, the convolution is defined for
multi-channel signals X . To obtain a convoluted signal with c channels, the element-wise product
needs to map vectors with d channels to vectors with c channels. This requires elements of the
filter to be matrices Wi ∈ Rc×d and the full filter to be W ∈ Rn×c×d. This is commonly referred
to as the multi-channel convolution Burg (1964); Inouye & Sato (1999). It is commonly used in
signal processing (Burg, 1964; Inouye & Sato, 1999; Sainath et al., 2017), e.g., for multi-channel
Wiener filtering (Brandstein & Ward, 2001) and finite impulse responses (Seltzer et al., 2004). Con-
volutional neural networks (CNNs) (LeCun et al., 1989) are similarly based on the multi-channel
convolution (Zhang et al., 2021).

Equivalently to the single-channel convolution, we can compute the multi-channel graph convolu-
tion in the Fourier domain using the convolutional theorem. The exact form of the multi-channel
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convolution on graphs is a direct consequence of the general multi-channel convolution and the
graph Fourier transform:
Theorem 3.1. (Multi-Channel Graph Convolution) Let L ∈ Rn×n be a graph Laplacian of an undi-
rected graph and the graph Fourier transform be given by its matrix of eigenvectors UT ∈ Rn×n.
Further, let X ∈ Rn×d be a multi-channel graph signal, and W ∈ Rn×c×d be a corresponding
filter matrix. Then,

W ∗X =

n∑
i=1

uiu
T
i XŴi (2)

where Ŵk = [UT W]Tk is the graph Fourier transformed filter, uk is the k-th eigenvector of L.

Proof. We use the vectorized signal x̂ = vec(X) ∈ Rn·c by stacking its columns. The graph
Fourier transform on matrices and tensors is applied along the node dimension, i.e., independently
on each channel. For matrix X this results in

F (X) = UTX ∈ Rn×d

and for tensor W in
Ŵ = F (W) = UT ×1 W ∈ Rn×c×d

where ×1 is the 1-mode tensor matrix product (Kolda & Bader, 2009) that performs the desired
broadcasted matrix multiplication. With this, we state the multi-channel graph convolution in the
Fourier domain as

W ∗X = U(UT ×1 W ⊙UTX) = U(Ŵ ⊙UTX) .

This product is visualized in Figure 2. Similarly to the single-channel, we simplify this expres-
sion using matrix multiplications. Equivalently to the single-channel case, this can be achieved by
diagonalizing Ŵ into a block matrix of diagonal blocks

D =



Ŵ1,0,0 0 0 Ŵ1,0,d 0 0

0
. . . 0 . . . 0

. . . 0

0 0 Ŵn,0,0 0 0 Ŵn,0,d

...
. . .

...
Ŵ1,c,0 0 0 Ŵ1,c,d 0 0

0
. . . 0 . . . 0

. . . 0

0 0 Ŵn,c,0 0 0 Ŵn,c,d


∈ Rnc×nd

where each Ŵk,i,j ∈ R corresponds to position i, j in Ŵk ∈ Rc×d. This simplifies the equivalent
vectorized form into

vec(Ŵ ⊙UTX) = Dvec(UTX) = D
(
Id ⊗UT

)
vec(X)

by utilizing the Kronecker product ⊗. The matrix D can further be decomposed into a sum of
Kronecker products D =

∑n
i=1 Ŵi ⊗ I

(i)
n , where for each I

(i)
n ∈ Rn×n all entries are zero, apart

from position i, i which is one. This lets us state the full vectorized multi-channel graph convolution
as

vec(W ∗X) = (In ⊗U)

(
n∑

i=1

Ŵi ⊗ I(i)
n

)(
In ⊗UT

)
vec(X)

=

(
n∑

i=1

Ŵi ⊗ uiu
T
i

)
vec(X)

by using the fact that UI
(i)
n UT = uiu

T
i . Inverting the vec operation allows us to avoid the Kro-

necker product and state the exact multi-channel graph convolution as

W ∗X =

n∑
i=1

uiu
T
i XŴ

T

i

This concludes the proof.
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We emphasize that this form is a mathematical fact and not a definition made by us. We interpret
the multi-channel graph convolutions as follows: Each term uiu

T
i XŴi corresponds to one Fourier

basis vector. The corresponding parameter matrix Ŵi specifies how much this signal coming from
each input channel should be amplified or damped for each output channel. Utilizing n terms al-
lows the multi-channel graph convolution to amplify and filter specific input signals for each output
channel.

Now that we have obtained the graph convolution for multi-channel input or output signals, we
could directly apply it to suitable tasks. However, we expect similar issues for the multi-channel
graph convolution as we have seen for the single-channel graph convolution. Issues with directly
computing the single-channel graph convolution include high computational costs due to dense ma-
trix multiplication and computing the eigendecomposition. It is also inherently transductive, as the
eigenvectors change across graphs, and thus, a learned filter is not applicable. It was also observed
that the single-channel graph convolution quickly overfits given training data. Many directions
have been proposed to approximate the single-channel convolution, as outlined in Section 2.1. The
most prominent approximation and derivation from single-channel graph convolutions are MPNNs.
While a similar multitude of novel approximations can be constructed for the multi-channel graph
convolution, we want to outline how MPNNs based on MCGC should be designed.

3.1 MULTI-CHANNEL MPNNS

Each outer product uiu
T
i can be seen as one edge relation type with full connectivity and edge

weights ui,pui,q between nodes p and q. Multi-channel MPNNs should be localized and still utilize
multiple edge relations Â(1), . . . , Â(k) ∈ Rn×n, with each relation amplifying a different signal.
While a sparse graph will have more than one non-zero eigenvalue, its dominating eigenvector can
be controlled by its edge weights. The corresponding transformations W (1), . . . ,W (k) ∈ Rd×d′

can then similarly determine the amplification or damping of these signals for each channel. Split-
ting a graph into a multi-relational graph was recently proposed to avoid representational rank col-
lapse (Roth et al., 2024). We define localized multi-channel graph convolutions as follows:
Definition 3.2. (Localized Multi-Channel Graph Convolution (l-MCGC)) Let A ∈ Rn×n be an
adjacency matrix. A function

ϕ(X) = X ′ =

k∑
m=1

Â(m)XW (m) (3)

with X ∈ Rn×d, Â(1), . . . , Â(k) ∈ Rn×n, and W (1), . . . ,W (k) ∈ Rd×c is called a localized
multi-channel graph convolution (l-MCGC) if the following two conditions are satisfied:

• the dominant eigenvectors of Â(1), . . . , Â(k) are linearly independent and

• ∀i, j ∈ {1, . . . , n}, l ∈ {1, . . . , k} : Aij = 0 =⇒ Â
(l)
ij = 0.

These l-MCGCs can be equivalently expressed as a node-based update function

x′
i = ϕ(X)i =

k∑
m=1

∑
j∈Ni

â
(m)
i,j xjW

(m)

=
∑
j∈Ni

xjW
(i,j)

for node i using its set of neighbors Ni, edge weights a
(m)
i,j = A

(m)
i,j . For each message, a linear

combination W (i,j) =
∑k

m=1 â
(m)
i,j W (m) of feature transformations W (1), . . . ,W (k) is applied to

the corresponding node state. This form also confirms that l-MCGCs remain permutation equivari-
ant when requiring all â(m)

i,j to be obtained using a permutation equivariant method. There are many
ways to obtain a set of graphs Â(1), . . . , Â(k) with distinct eigenvectors. As graph attention net-
works (Velickovic et al., 2018) with multiple attention heads can be expressed in this form as well,
we will similarly refer to each term as a head. However, each A(1), . . . ,A(k) is a row-stochastic
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matrix because of the softmax activation. As all row-stochastic matrices have the constant vector
as dominant eigenvector (Asmussen, 2003), all heads amplify the same signal. We now identify a
connection between l-MCGCs and their expressivity with respect to the Weisfeiler-Leman test (We-
isfeiler & Lehman, 1968), which leads to one possible instantiation of l-MCGCs.

3.2 EXPRESSIVITY

Our analysis has shown the advantages of multi-channel graph convolutions for amplifying differ-
ent signals across channels. However, much attention has been paid to the structural expressivity
of MPNNs, which studies the ability of MPNNs to distinguish non-isomorphic graphs. It was de-
termined that MPNNs are upper-bounded in expressivity by the Weisfeiler-Leman test (Xu et al.,
2019; Morris et al., 2019). To achieve this maximal expressivity, the graph isomorphism network
(GIN) Xu et al. (2019) is typically employed and applies a complex non-linear feature transforma-
tion. We show that we can achieve the same expressivity by obtaining a linear l-MCGC:
Proposition 3.3. (Injectivity on multisets.) Let X = {{x1, . . . ,xn}} be a countable multiset with
xi ∈ R1×d for d ∈ N. Then, there exists a function f : Rd × Rd → Rk so that

x′
i =

k∑
l=1

∑
xj∈Xi

f(xi,xj)lxjW
(l)

is injective for all xi ∈ X and Xi ⊂ X of bounded size, all k > 1, and a.e. W (1), . . . ,W (k) ∈
Rd×d′

with d′ ∈ {1, . . . , n}.

Proof. Given any xj ∈ X, two linear transformations W (m), . . . ,W (n) map xj to pairwise linearly
independent vectors y(m)

j = xjW
(m) and y

(n)
j = xjW

(n) for a.e. W (m), . . . ,W (n) with respect
to the Lebesgue measure.

To prove the existence of the desired f , we follow the proof of Lemma 5 in Xu et al. (2019) (injec-
tivity of GIN): Because X is countable, there exist injective mappings Z1 : X → N, Z2 : X → N
mapping elements xm ∈ X to natural numbers. As each Xn is of bounded size, there ex-
ists a number N ∈ N so that |X| < N for all X . An example of such f is f(xm,xn) =[
N−Z1(xm) 1 . . . 1 N−Z2(xn)

]
. The first and last output values of f can be viewed as con-

tinuous one-hot vectors of xm and xn, respectively. Because X is countable, Z1 and Z2 can further
be chosen to output linearly independent vectors for all pairs of distinct inputs.

Thus, for all xi ∈ X and xj ∈ X, we have a different linear combination of pairwise
linear independent vectors and pairwise linearly independent linear combinations, and thus
si,j =

∑k
l=1 f(xi,xj)ly

(l)
j is pairwise linearly independent for all i, j, and a.e. choice of

W (1), . . . ,W (k).

Each node state is updated as the sum

x′
i =

∑
xj∈Xi

si,j

of these terms, which is also linearly independent for a.e. choice of W (1), . . . ,W (k). Thus, all x′
i

are linearly independent for different xi ∈ X and Xi ⊂ X which implies injectivity.

By this injectivity, the expressivity of l-MCGCs is equivalent to that of the graph isomorphism net-
work (GIN) (Xu et al., 2019), and thus also to the Weisfeiler-Leman test (Weisfeiler & Lehman,
1968). This is the maximal achievable expressivity for models following the message-passing
scheme. Due to the universal approximation theorem (Hornik et al., 1989; Hornik, 1991), f can
be represented by a multi-layer perception (MLP). GIN similarly utilizes an injective function f that
is modeled by an MLP, which is applied instead of the linear feature transformation W1 with k = 1.
We will further to this l-MCGC as the multi-channel graph isomorphism network (MC-GIN). This is
a critical advantage of MC-GINs: As convolutions are linear operators, it is desired to approximate
multi-channel graph convolutions similarly by a linear transformation on X . While f may introduce
a complex transformation, it constructs a linear transformation that is applied to X . Allowing for
learnable edge weights also lifts the constraint of requiring the sum as aggregation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Mean squared error (MSE) during optimization of our function approximation task by
applying a single-layer of different methods.

4 EXPERIMENTS

Our aim with this work is to introduce MCGCs in general and to inspire future research to find
efficient and effective approximations that will lead to state-of-the-art results. We briefly want to
empirically confirm the potential of MCGCs for learning on graphs using one synthetic and one
benchmark task. Additional details on models, datasets, and hyperparameters can be found in Ap-
pendix A.3. Our implementation is based on PyTorch Geometric (Fey & Lenssen, 2019).

4.1 FUNCTION APPROXIMATION

We first want to evaluate whether the MCGC and the MC-GIN can obtain more informative embed-
dings by approximating the mapping Y = ϕ(X) where X,Y ∈ Rn×d are multi-channel signals of
random but fixed values Xi,j ∼ N (0, 1) and Yi,j ∼ N (0, 1). For ϕ, we evaluate a single layer of
several graph convolutional operators. Namely the GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), GATv2 (Brody et al., 2022), GIN (Xu et al., 2019), the SAGE convolution (Hamilton
et al., 2017), our proposed MC-GIN. We set the number of heads for GAT, GATv2, and MC-GIN to
k = 2. For functions f in GIN and MC-GIN, we utilize a three-layer MLP with ReLU activations
after the first two layers. As an ablation, we further evaluate two versions that do not satisfy our re-
quired property for multi-channel MPNNs. We apply a softmax activation to incoming edge weights
obtained by f for each node and head with k = 2, equivalently to attention (MC-GIN+softmax),
and MC-GIN with k = 1. We also evaluate the MC-GIN with k = 3 and MC-GIN with a one-
layer MLP for f and MC-GIN with a two-layer MLP, which satisfy our multi-channel properties.
We additionally present results for the MCGC, which, in theory, can represent any such mapping
exactly. As the benefits of MCGCs do not depend on specific graph properties, we sample a random
undirected Erdős–Rényi graph (Erdős & Rényi, 1959) with n nodes and an edge probability of 5%.
We minimize the mean-squared error (MSE) between ϕ(X) and Y using the Adam optimizer. The
base learning rate is tuned in {0.01, 0.003, 0.001, 0.0003} for each method and is halved every 2000
steps. We set n = 64 and d = 32.

The averaged loss progression over five runs during optimization is visualized in Figure 3, and the
average minimum MSE scores after 40 000 steps are presented in Table 1. MC-GIN achieves an
improved approximation error by at least four orders of magnitude compared to all other methods.
Notably, all methods that use a single head (GCN, GIN, and MC-GIN (k=1)) achieve the worst
approximation. Similarly, the error for methods that apply the softmax activation (GAT, GATv2, and
MC-GIN+softmax) is significantly higher, as each head amplifies the same signal for all channels.
With our ablations, we also find the choice for f not to influence the results strongly (MC-GIN 1
layer MLP, MC-GIN 2 layer MLP) and an additional head to further improve the results (MC-GIN
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Method MSE

GCN 39 · 10−3 ± 10 · 10−4

GAT 14 · 10−4 ± 12 · 10−4

GATv2 88 · 10−5 ± 15 · 10−4

SAGE 14 · 10−4 ± 46 · 10−5

GIN 10 · 10−3 ± 35 · 10−4

MC-GIN 20 · 10−9 ± 41 · 10−9

MC-GIN+softmax 76 · 10−5 ± 15 · 10−4

MC-GIN (k=1) 18 · 10−3 ± 27 · 10−4

MC-GIN (k=3) 20 · 10−15 ± 17 · 10−15

MC-GIN (1 layer MLP) 18 · 10−11 ± 23 · 10−11

MC-GIN (2 layer MLP) 15 · 10−9 ± 17 · 10−9

MCGC 37 · 10−16 ± 44 · 10−17

Table 1: Average and standard deviation of the min-
imal mean-squared error (MSE). Best MSE in bold,
second-best underlined.

MAE Time
Method Train Test (s)

GCN 6.2± 0.2 16.0± 0.2 32
GATv2 5.7± 0.2 13.6± 0.6 63
SAGE 3.9± 0.1 12.3± 0.2 36
GIN 5.8± 0.1 12.3± 0.4 42
MC-GIN 3.3± 0.2 10.5± 0.2 52

Table 2: Results on ZINC. Mean absolute
error (MAE) scores are multiplied by 100
for clarity. Best scores in bold, second-best
underlined.

(k=3). While these improved capabilities come with the risk of overfitting noise in the data, MCGCs
are beneficial for complex tasks in which MPNNs struggle to achieve satisfying performance.

4.2 ZINC

We now consider the ZINC dataset (Sterling & Irwin, 2015) to show that approximations of the
MCGC can generally also improve benchmark results. It consists of around 250 000 molecular
graphs, with the task being to predict the constrained solubility of each molecule. We integrate
several base message-passing layers (GCN (Kipf & Welling, 2017), Gatv2 (Brody et al., 2022),
SAGE (Hamilton et al., 2017), GIN (Xu et al., 2019), and MC-GIN with k = 2) into the implemen-
tation of the Long Range Graph Benchmark (Dwivedi et al., 2022) and the updated training scheme
of Tönshoff et al. (2024). The number of layers and the learning rate are tuned for each method. As
proposed by Dwivedi et al. (2022), each model utilizes at most 500 000 parameters.

Average train and test errors with independent optimal hyperparameters are presented in Table 2.
MC-GIN improves both train and test loss by at least 15% compared to the four other methods.
The execution time of our implementation is increased by around 24% compared to the GIN. While
countless combinations with other techniques, datasets, and tasks can be evaluated, we want to mo-
tivate general research on approximating MCGC that will eventually lead to state-of-the-art results.

5 CONCLUSION

In this work, we introduced multi-channel convolutions to graphs by obtaining their form based
on the convolution theorem and the graph Fourier transform. While the currently used single-
channel graph convolutions, their polynomial approximations, and most MPNNs are not defined
for nodes with multiple features, MCGCs are specifically defined for multi-channel signals. This
allows MCGCs to obtain more informative embeddings, as different signals can be amplified for
each feature channel. Corresponding multi-channel MPNNs need to utilize multiple aggregations
and transformations, each amplifying a different signal. We introduce the multi-channel graph iso-
morphism network (MC-GIN), which can obtain a linear mapping with equivalent expressive power
to the graph isomorphism network (Xu et al., 2019). Our experiments confirm the strongly im-
proved abilities to fit complex functions. While our experimental evaluation is limited, the benefits
of MCGCs compared to SCGCs are very clear. Having access to the mathematically correct con-
volution for multi-channel signals allows for the development of various approximations. As more
complex interactions between channels may not be required for all tasks, MCGCs increase the risk
of overfitting. Approximations of the MCGC will be particularly important as more complex graph-
related tasks emerge and more powerful convolutions are needed.
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A EXPERIMENTAL DETAILS

Experiments on ZINC were executed on an Nvidia H100 GPU with 96 GB, and experiments on
function approximation were executed on an Intel Xeon 8468 Sapphire with 48 cores.

A.1 METHODS

For all methods, we use their standard implementation from PyTorch Geometric (Fey & Lenssen,
2019). We mostly use their default parameters but do not add self-loops to any method. For GAT
and GATv2, we use two heads and compute the element-wise mean over the outputs of both heads.
For GIN, the MLP consists of three linear layers with a bias, followed by a ReLU activation after
the first two layers. For MC-GIN, the two adjacent node states of each edge are concatenated, and
the same three-layer MLP is applied. Only the number of input channels doubles and the number of
output channels is set to the number of heads. The number of heads is set to k = 2 unless explicitly
stated otherwise.

A.2 ZINC

The ZINC dataset (Sterling & Irwin, 2015) consists of 249 456 graphs, each representing a molecule.
Nodes in the graphs represent to heavy atoms, and edges correspond to their connectivity. Each
molecule consists of 23.2 nodes and 49.8 edges on average. The task is to predict the constrained
solubility, which is a graph regression task. The type of atom is the only feature given. A batch size
of 32 is used. The mean absolute error (MAE) is used for optimization and reporting on the test
set. Best test scores based on the minimum MAE are considered. Hyperparameters are optimized
for each model using a grid search with values for the learning rate in {0.001, 0.0003, 0.0001} and
the number of layers in {1, 2, 4, 8}. Each combination is repeated for three random seeds. The
minimum average validation score is used to select the hyperparameters for reporting on the test set.
The minimum average train scores are directly selected for reporting. ZINC is available under the
license DbCL.

A.3 HYPERPARAMETERS

For ZINC, a grid search on the learning rate in {0.001, 0.0003, 0.0001} and the number of layers
in {1, 2, 4, 8} is performed for each method. For the function approximation, a grid search on the
learning rate is performed with values {0.03, 0.01, 0.003, 0.001}. Selected hyperparameters are
presented in Table 3 and Table 4.
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Method Loss

GCN 0.01
GAT 0.03
GATv2 0.01
SAGE 0.03
GIN 0.003
MC-GIN+softmax 0.01
MC-GIN (k=1) 0.01
MC-GIN 0.01

MCGC 0.001

Table 3: Best hyperparameters (learn-
ing rate (LR)) for Table 1.

Train Test
Method LR Layers LR Layers

GCN 0.0001 8 0.0001 8
GATv2 0.0003 8 0.0003 8
SAGE 0.0003 8 0.0003 8
GIN 0.0003 8 0.0003 8
MC-GIN 0.0001 8 0.0001 8

Table 4: Best hyperparameters for the results in Table 2.
Learning rate (LR) and number of layers (Layers).
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