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Figure 1: Examples by applying our Hash3D on Gaussian-Dreamer Yi et al. (2023) and Dream-
Gaussian Tang et al. (2023). We accelerate Gaussian-Dreamer by 1.5× and Dream-Gaussian by 4×
with comparable visual quality.

ABSTRACT

The quality of 3D generative modeling has been notably improved by the adop-
tion of 2D diffusion models. Despite this progress, the cumbersome optimization
process per se presents a critical problem to efficiency. In this paper, we introduce
Hash3D, a universal acceleration for 3D score distillation sampling (SDS) with-
out model training. Central to Hash3D is the observation that images rendered
from similar camera positions and diffusion time-steps often have redundant fea-
ture maps. By hashing and reusing these feature maps across nearby timesteps
and camera angles, Hash3D eliminates unnecessary calculations. We implement
this through an adaptive grid-based hashing. As a result, it largely speeds up
the process of 3D generation. Surprisingly, this feature-sharing mechanism not
only makes generation faster but also improves the smoothness and view consis-
tency of the synthesized 3D objects. Our experiments covering 5 text-to-3D and 3
image-to-3D models, demonstrate Hash3D’s versatility to speed up optimization,
enhancing efficiency by 1.5 ∼ 4×. Additionally, Hash3D’s integration with 3D
Gaussian splatting largely speeds up 3D model creation, reducing text-to-3D pro-
cessing to about 10 minutes and image-to-3D conversion to roughly 30 seconds.

1 INTRODUCTION

In the evolving landscape of 3D generative modeling, the integration of 2D diffusion models Poole
et al. (2023); Wang et al. (2023) has led to notable advancements. These methods leverage off-the-
the-shelf image diffusion models to distill 3D models by predicting 2D score functions at different
views, known as score distillation sampling (SDS).

1
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While this approach has opened up new opportunities for creating realistic 3D assets, it also brings
significant efficiency challenges. Particularly, SDS requires thousands of score predictions from
different camera angles and denoising steps in the diffusion model. This results in long optimization
times, sometimes taking hours to create a single object Wang et al. (2024). These long durations
make them difficult to use in practical applications. We need new solutions to improve its efficiency.

To mitigate this bottleneck, current efforts concentrate on three strategies. The first strategy trains
inference-only models Li et al. (2023a); Chen et al. (2023b); Jun & Nichol (2023b); Xu et al. (2024);
Liu et al. (2024a) to bypass the lengthy optimization process. While effective, this method requires
extensive training time and substantial computational resources. The second approach Tang et al.
(2023); Yi et al. (2023); Ren et al. (2023) seeks to reduce optimization times through faster 3D rep-
resentations. However, each type of representation needs a unique design for 3D generation, which
creates its own challenges. The third approach attempts to directly generate sparse views to model
3D objects Kong et al. (2024); Liu et al. (2024b) This method assumes near-perfect consistency for
generated views, which, in practice, is often not achievable.

Returning to the core issue within SDS, the major computation is consumed in the repeated sampling
of the 2D image score function Song & Ermon (2019). Motivated by methods that accelerate 2D
diffusion sampling Song et al. (2021); Bao et al. (2022); Lu et al. (2022), we posed the question: Is
it possible to reduce the number of inference steps of the diffusion model for 3D generation?

In exploring this question, we make a crucial observation: denoising outputs and feature maps from
near camera positions and timesteps are very similar. This discovery led us to develop Hash3D,
which reduces the computation by leveraging this redundancy.

At its core, Hash3D stores and hashes previously computed features to reduce time. We do this using
a a grid-based hash table. Specifically, when a new view is close to one that has already been pro-
cessed, Hash3D retrieves and reuses the nearby features from the table. This reuse allows Hash3D
to compute the current view’s score function without repeating earlier calculations.Additionally, we
developed a method to dynamically adjust the grid size for each view, which makes the system more
adaptable. As a result, Hash3D saves computational resources without requiring any model training
or complex changes, making it easy to implement and efficient to use.

Beyond improving efficiency, Hash3D improves the view consistency of generated objects. Tradi-
tional diffusion-based methods often result in 3D objects with disjointed appearances when viewed
from various angles Armandpour et al. (2023). In contrast, Hash3D links independently generated
views by sharing features within each grid. It leads to smoother, more consistent 3D models.

Another key advantage of Hash3D is on its versatility. It integrates seamlessly into a diverse array
of diffusion-based 3D generative workflows. Our experiments, covering 5 text-to-3D and 3 image-
to-3D models, demonstrate Hash3D’s versatility to speed up optimization, enhancing efficiency by
1.3 ∼ 4×, without compromising on performance. Specifically, the integration of Hash3D with 3D
Gaussian Splatting Kerbl et al. (2023) brings a significant leap forward, cutting down the time for
text-to-3D to about 10 minutes and image-to-3D to roughly 30 seconds.

The contribution of this paper can be summarized into

• We introduce the Hash3D, a versatile, plug-and-play and training-free acceleration method
for diffusion-based text-to-3D and image-to-3D models.

• The paper emphasizes the redundancy in diffusion models when processing nearby views
and timesteps. This finding motivates the development of Hash3D, aiming to boost effi-
ciency without compromising quality.

• Hash3D employs an adaptive grid-based hashing to efficiently retrieve features, signifi-
cantly reducing the computations across view and time.

• Our extensive testing demonstrates that Hash3D not only speeds up the generative process
by 1.5 ∼ 4×, but also results in a slight improvement in performance.

2 PRELIMINARY

In this section, we provide the notations and background on optimization-based 3D generation,
focusing on diffusion models and Score Distillation Sampling (SDS) Poole et al. (2023).

2
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2.1 DIFFUSION MODELS

Diffusion models are generative models that reverse a noise-adding process through a series of latent
variables. Starting with data x0 ∼ q(x0), Gaussian noise is progressively added over T steps during
the forward process, each defined by q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt ∈ [0, 1].

Due to the Gaussian nature, xt can be directly sampled as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

where αt = 1− βt and ᾱt =
∏t

s=1 αs

The reverse process is modeled as a Markov chain parameterized by a denoising neural network
ϵ(xt, t, y), where y is the conditional input, such as text Saharia et al. (2022) or camera pose Liu
et al. (2023c). The training of the denoiser aims to minimize a re-weighted evidence lower bound
(ELBO), aligning with the noise:

LDDPM = Et,x0,ϵ

[
||ϵ− ϵ(xt, t, y)||22

]
(2)

Here, ϵ(xt, t, y) approximates the score function ∇xt log p(xt|x0). Data generation is achieved
by denoising from noise, often enhanced using classifier-free guidance with scale parameter ω:
ϵ̂(xt, t, y) = (1 + ω)ϵ(xt, t, y)− ωϵ(xt, t, ∅).
Extracting Feature from Diffusion Model. A diffusion denoiser ϵ is typically parameterized with
a U-Net Ronneberger et al. (2015). It uses l down-sampling layers {Di}li=1 and up-sampling layers
{Ui}li=1, coupled with skip connections that link features from Di to Ui. This module effectively
merges high-level features from Ui+1 with low-level features from Di, as expressed by the equation:

v
(U)
i+1 = concat(Di(v

(D)
i−1), Ui+1(v

(U)
i )) (3)

In this context, v(U)
i and v

(D)
i+1 represent the up-sampled and down-sampled features after the i-th

layer, respectively.

2.2 SCORE DISTILLATION SAMPLING (SDS)

The Score Distillation Sampling (SDS) Poole et al. (2023) represents an optimization-based 3D
generation method. This method focuses on optimizing the 3D representation, denoted as Θ, using
a pre-trained 2D diffusion models with its noise prediction network, denoted as ϵpretrain(xt, t, y).

Given a camera pose c = (θ, ϕ, ρ) ∈ R3 defined by elevation ϕ, azimuth θ and camera distances ρ,
and the its corresponding prompt yc, a differentiable rendering function g(·; Θ), SDS aims to refine
the parameter Θ, such that each rendered image x0 = g(c; θ) is perceived as realistic by ϵpretrain.
The optimization objective is formulated as follows:

min
Θ

LSDS = Et,c

[
σt

αt
ω(t)KL

(
qΘ(xt|yc, t) ∥ p(xt|yc; t)

)]
(4)

By excluding the Jacobian term of the U-Net, the gradient of the optimization problem can be
effectively approximated:

∇ΘLSDS ≈ Et,c,ϵ

[
ω(t)(ϵpretrain(xt, t, y

c)− ϵ)
∂x

∂Θ

]
(5)

To optimize Eq. 5, we randomly sample different time-step t, camera c, and random noise ϵ, and
compute gradient of the 3D representation, and update θ accordingly. This approach ensures that
the rendered image from 3D object aligns with the distribution learned by the diffusion model.

Efficiency Problem. The main challenge lies in the need for thousands to tens of thousands of
iterations to optimize Eq 5, each requiring a separate diffusion model inference. This process is
time-consuming due to the model’s complexity. We make it faster by using a hash function to reuse
features from similar inputs, cutting down on the number of calculations needed.

3
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Figure 2: Feature similarity extracted from different camera poses.

3 HASH3D

This section introduces Hash3D, , a plug-and-play tool that enhances the efficiency of SDS. We
start by analyzing the redundancy presented in the diffusion model when performing 3D generation.
Based on the finding, we present our strategy that employs a grid-based hashing to reuse feature
across different sampling iterations.

3.1 PROBING THE REDUNDANCY IN SDS

Typically, SDS randomly samples camera poses and timesteps to ensure that the rendered views
align with the diffusion model’s distribution. However, during this repeated sampling, we observe
that deep feature extraction at proximate c and t often reveals a high degree of similarity. Therefore,
this similarity underpins our method, suggesting that reusing features from nearby points does not
significantly impact the model’s predictions.

Measuring the Similarity. Intuitively, images captured from similar camera positions and at similar
times result in similar visual content. We hypothesize that features produced by diffusion models
exhibit a similar pattern. Specifically, we propose two hypotheses: (1) temporal similarity: fea-
tures extracted at close timesteps are similar, and (2) spatial similarity: features extracted at close
estimated camera poses are similar.

Regarding the temporal similarity, previous studies Ma et al. (2023); Li et al. (2023b) have noted
that features extracted from adjacent timesteps in diffusion models show a high level of similarity.

To test the hypothesis about spatial similarity, we conducted a preliminary study using the diffusion
model to generate novel views of the same object from different camera positions. Specifically, we
used Zero-123 Liu et al. (2023c), which generates images from different camera poses conditioned
on a single input image. For each specific camera angle and timestep, we extracted the features
v
(U)
l−1 from the input of the last up-sampling layer. By adjusting elevation angles (ϕ) and azimuth

angles (θ), we were able to measure the cosine similarity of these features between different views,
averaging the results across all timesteps.

The findings, presented in Figure 2, reveal a large similarity score in features from views within a
[−10◦, 10◦] range, with the value higher than 0.8. This phenomenon was not unique to Zero-123;
we observed similar patterns in text-to-image diffusion models like Stable Diffusion Rombach et al.
(2022). These findings underscore the redundancy in predicted outputs within the SDS process.

Synthesising Novel View for Free. To leverage redundancy in SDS, we conducted an experiment
to create new views by reusing and interpolating scores from precomputed nearby cameras. Specif-
ically, we generated two images using Zero-123 at angles (θ, ϕ) = (10◦ ± δ, 90◦) and saved all
denoising predictions. By averaging these predictions, we synthesized a third view at (10◦, 90◦)
without additional computation. We experimented with varying δ ∈ {1◦, 5◦, 10◦, 20◦}, and com-
pared them with the full denoising predictions.

4
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Figure 3: By interpolating latent between generated views, we enable the synthesis of novel views
with no computations.

Figure 3 demonstrates that for angles (δ) up to 5◦, novel views closely match fully generated ones,
proving effective for closely positioned cameras. Yet, interpolations between cameras at wider an-
gles yield blurrier images. Additionally, optimal window sizes vary by object; for example, a δ = 5◦

suits the ghost but not the capybara, indicating that best window size is sample-specific.

Based on these insights, we presents a novel approach: instead of computing the noise prediction
for every new camera pose and timestep, we create a memory system to store previously computed
features. As such, we can retrieve and reuse these pre-computed features whenever needed. Ideally,
this approach could reduces redundant calculations and speeds up the optimization process.

3.2 HASHING-BASED FEATURE REUSE

Based on our analysis, we developed Hash3D, which uses hashing techniques to optimize SDS.
Hash3D reduces the repetitive computational cost in diffusion models by trading storage space for
faster 3D optimization.

At its core, Hash3D employs a hash table to store and retrieve previously computed features. When
Hash3D samples a specific camera pose c and timestep t, it first checks the hash table for similar
features. If a match is found, it’s reused directly in the diffusion model, significantly cutting down
on computation. If not, it performs standard inference and adds the new features to the hash table
for future use.

Grid-based Hashing. To efficiently index the hash table, we use a grid-based hashing function
based on camera poses c = (θ, ϕ, ρ) and timestep t. This function assigns each camera and timestep
to a grid cell for data organization and retrieval.

Firstly, we define the size of our grid cells in both the spatial and temporal domains, denoted as
∆θ,∆ϕ,∆ρ and ∆t respectively. For each input key [θ, ϕ, ρ, t], we calculate the grid cell indices:

i =

⌊
θ

∆θ

⌋
, j =

⌊
ϕ

∆ϕ

⌋
, k =

⌊
ρ

∆ρ

⌋
, l =

⌊
t

∆t

⌋
(6)

These indices are combined into a single hash code: idx = (i+N1 · j+N2 ·k+N3 · l) mod n is
used, where N1, N2, N3 are large prime numbers Teschner et al. (2003); Nießner et al. (2013), and
n denotes the size of the hash table. This hash function maps keys with similar camera poses and
timesteps to the same bucket. This grid-based approach not only speeds up data retrieval but also
preserves the spatial-temporal relationships in the data, which is crucial for our method.

Collision Resolution. When multiple keys are assigned to the same hash value, a collision occurs.
We address these collisions using separate chaining. In this context, each hash value idx is linked
to a distinct queue, denoted as qidx. To ensure the queue reflects the most recent data and remains
manageable in size, it is limited to a maximum length Q = 3. When this limit is reached, the
oldest elements is removed to accommodate the new entry, ensuring the queue stays relevant to the
evolving 3D representation.

Feature Retrieval and Update. After computing the hash value idx, we either retrieve features
from the hash table or update it with new ones. We control this with hash probability 0 < η < 1.
With probability η, we retrieve features; otherwise, we perform an update.

For feature updates, following prior work Ma et al. (2023), we extract the feature v(U)
l−1, which is the

input of the last up-sampling layer in the U-net. Once extracted, we compute the hash code idx
and append the data to the corresponding queue qidx. The stored data includes noisy latent input x,
camera pose c, timestep t, and extracted diffusion features v(U)

l−1.

5
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Figure 4: Overall pipeline of our Hash3D. Given the sampled camera and time-step, we retrieve
the intermediate diffusion feature from hash table. If no matching found, it performs a standard
inference and stores the new feature in the hash table; otherwise, if a feature from a close-up view
already exists, it is reused without re-calculation.

For feature retrieval, we aggregate data from qidx through weighted averaging. This method con-
siders the distance of each noisy input xi from the current query point x. The weighted average v
for a given index is calculated as follows:

v =

|qidx|∑
i=1

Wivi, where Wi =
e(−||x−xi||22)∑|qidx|

i=1 e(−||x−xi||22)
(7)

Here, Wi is the weight assigned to vi based on its distance from the query point, and |qidx| is the
current length of the queue. An empty queue |qidx| indicates unsuccessful retrieval, necessitating
feature update.

3.3 ADAPTIVE GRID HASHING

In grid-based hashing, the selection of an appropriate grid size ∆θ,∆ϕ,∆ρ,∆t — plays a pivotal
role. As illustrated in Section 3.1, we see three insights related to grid size. First, feature similarity
is only maintained at a median grid size; overly large grids tend to produce artifacts in generated
views. Second, it is suggested that ideal grid size differs across various objects. Third, even for a
single object, optimal grid sizes vary for different views and time steps, indicating the necessity for
adaptive grid sizing to ensure optimal hashing performance.

Learning to Adjust the Grid Size. To address these challenges, we propose to dynamically adjust-
ing grid sizes. The objective is to maximize the average cosine similarity cos(·, ·) among features
within each grid. In other words, only if the feature is similar enough, we can reuse it. Such problem
is formulated as

max
∆θ,∆ϕ,∆ρ,∆t

1

|qidx|

|qidx|∑
i,j

cos(vj ,vi), s.t.|qidx| > 0 [Non-empty] (8)

Given our hashing function is non-differentiale, we employ a brute-force approach. Namely, we
evaluate M predetermined potential grid sizes, each corresponding to a distinct hash table, and only
use best one.

For each input [θ, ϕ, ρ, t], we calculate the hash code {idx(m)}Mm=1 for M times, and indexing in
each bucket. Feature vectors are updated accordingly, with new elements being appended to their
respective bucket. We calculate the cosine similarity between the new and existing elements in the
bucket, maintaining a running average sidx(n) of these similarities

sidx(m) ← γsidx(m) + (1− γ)
1

|qidx(m) |

|q
idx(m) |∑
i=1

cos(vnew,vi) (9)

During retrieval, we hash across all M grid sizes but only consider the grid with the highest average
similarity for feature extraction.

Computational and Memory Efficiency. Despite employing a brute-force approach that involves
hashing M times for each input, our method maintains computational efficiency due to the low cost
of hashing. It also maintains memory efficiency, as hash tables store only references to data. To
prioritize speed, we deliberately avoid using neural networks for hashing function learning.

6
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4 EXPERIMENT

In this section, we assess the effectiveness of our HS by integrating it with various 3D generative
models, encompassing both image-to-3D and text-to-3D tasks.

4.1 EXPERIMENTAL SETUP

Baselines. To verify our method, we conduct extensive tests across a wide range of baseline text-to-
3D and image-to-3D methods.

• Image-to-3D. We build our method on Zero-123+SDS Liu et al. (2023b), DreamGaussian Tang
et al. (2023) and Magic123 Qian et al. (2024). For Zero-123+SDS, we incorporate Instant-
NGP Müller et al. (2022) and Gaussian Splatting Kerbl et al. (2023) as its representation. We
call these two variants Zero-123 (NeRF) and Zero-123 (GS).

• Text-to-3D. Our tests also covered a range of methods, such as Dreamfusion Poole et al. (2023),
Fantasia3D Chen et al. (2023a), Latent-NeRF Metzer et al. (2023), Magic3D Lin et al. (2023),
and GaussianDreamer Yi et al. (2023).

For DreamGaussian and GaussianDreamer, we implement Hash3D on top of the official code. And
for other methods, we use the reproduction from threestudio1.

Implementation Details. We stick to the same hyper-parameter setup within their original imple-
mentations of these methods. For text-to-3D, we use the stable-diffusion-2-12 as our 2D
diffusion model. For image-to-3D, we employ the stable-zero1233. We use a default hash
probability setting of η = 0.1. We use M = 3 sets of grid sizes, with ∆θ,∆ϕ,∆t ∈ {10, 20, 30}
and ∆ρ ∈ {0.1, 0.15, 0.2}. We verify this hyper-parameter setup in the ablation study.

Dataset and Evaluation Metrics. To assess our method, we focus on evaluating the computational
cost and visual quality achieved by implementing Hash3D.

• Image-to-3D. For image-to-3D experiments, we used the Google Scanned Objects (GSO)
dataset Downs et al. (2022) for evaluation Liu et al. (2024a; 2023c). We evaluated novel view syn-
thesis (NVS) performance with PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018).
We selected 30 objects, each with a 2562 input image for 3D reconstruction. We rendered 16
views at a 30-degree elevation with varying azimuths to compare the reconstructions with ground
truth. CLIP-similarity scores were calculated to ensure semantic consistency between rendered
views and original images.

• Text-to-3D. We generated 3D models from 50 different prompts, selected based on a prior study.
To evaluate our methods, we focused on two primary metrics: mean±std CLIP-similarity Radford
et al. (2021); Qian et al. (2023); Liu et al. (2023a) and the average generation time for each method.
CLIP-similarity was measured between the input prompt and 8 uniformly rendered views.

• User Study.To evaluate the visual quality of generated 3D objects, we conducted a study with 44
participants. They viewed 12 video renderings from two methods: Zero-123 (NeRF) for images-
to-3D and Gaussian-Dreamer for text-to-3D, with and without Hash3D. Participants rated each
pair by distributing 100 points to indicate perceived quality differences.

• Computational Cost. We report the running time for each experiment on a single RTX A5000
and include MACs in the tables. As feature retrieval is stochastic, we provide the theoretical
average MACs, assuming all retrievals succeed.

4.2 3D GENERATION RESULTS

Image-to-3D Qualitative Results. Figure 5 shows the results of integrating Hash3D into the Zero-
123 framework for generating 3D objects. This integration maintains visual quality and view con-
sistency while significantly reducing processing time. In some cases, Hash3D outperforms the base-
line, such as the clearer “dragon wing boundaries” in row 1 and the more distinct “train taillights”

1https://github.com/threestudio-project/threestudio
2https://huggingface.co/stabilityai/stable-diffusion-2-1
3https://huggingface.co/stabilityai/stable-zero123
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Zero-123 + Hash3D (6 min) Zero-123 (20 min)

Figure 5: Qualitative Results using Hash3D along with Zero123 for image-to-3D generation. We
mark the visual dissimilarity in yellow.

Table 1: Speed and performance comparison when integrated image-to-3D models with Hash3D.
We report the original running time in their paper.

Method Time↓ Speed↑ MACs↓ PSNR↑ SSIM↑ LPIPS↓ CLIP-G/14↑

DreamGaussian 2m - 168.78G 16.202±2.501 0.772±0.102 0.225±0.111 0.693±0.105
+ Hash3D 30s 4.0× 154.76G 16.356±2.533 0.776±0.103 0.223±0.113 0.694±0.104

Zero-123(NeRF) 20m - 168.78G 17.773±3.074 0.787±0.101 0.198±0.097 0.662±0.0107
+ Hash3D 7m 3.3× 154.76G 17.961±3.034 0.789±0.095 0.196±0.0971 0.665±0.104

Zero-123(GS) 6m - 168.78G 18.409±2.615 0.789±0.100 0.204±0.101 0.643±0.105
+ Hash3D 3m 2.0× 154.76G 18.616±2.898 0.793±0.099 0.204±0.099 0.632±0.106

Magic123 120m - 847.38G 18.718±2.446 0.803±0.093 0.169±0.092 0.718±0.099
+ Hash3D 74m 1.6× 776.97G 18.631±2.726 0.803±0.091 0.174±0.093 0.715±0.107

in row 4. Similar visual fidelity is seen in Figure 1, where Hash3D is used with DreamGaussian,
demonstrating effective quality maintenance and improved efficiency.

Image-to-3D Quantitative Results. Table 1 presents a detailed numerical analysis of novel view
synthesis, including CLIP scores and running times for all four baseline methods. Notably, Our
method achieves a 4× speedup on DreamGaussian and 3× on Zero-123 (NeRF), due to Hash3D’s
efficient feature retrieval and reuse. This not only accelerates processing but also slightly improves
CLIP score performance by sharing features across views, reducing inconsistencies, and producing
smoother 3D models.

Text-to-3D Qualitative Results. In Figure 6, we present the results generated by our Hash3D, on
top of DreamFusion Poole et al. (2023), SDS+GS, and Fantasia3D Chen et al. (2023a). It demon-
strates that Hash3D maintains comparable visual quality to these established methods.

Text-to-3D Quantitative Results. Table 2 presents a quantitative evaluation of Hash3D. Hash3D
significantly reduces processing times across various methods while maintaining visual quality, with
minimal impact on CLIP scores. For methods like GaussianDreamer, it even slightly improves visual
fidelity, indicating the benefit of leveraging relationships between nearby camera views.

0 20 40 60 80 100

Preference [%]

   Zero-123  
(+ Hash3D)

Gaussian-Dreamer
(+ Hash3D)    

Zero-123

Gaussian-Dreamer

Figure 7: User preference study for Hash3D.

User preference study. As shown
in Figure 7, Hash3D received an av-
erage preference score of 52.33/100
and 56.29/100 when compared to
Zero-123 (NeRF) and Gaussian-
Dreamer. These scores are consistent
with previous results, indicating that
Hash3D slightly enhances the visual quality of the generated objects.
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a zoomed out DSLR photo of 
a baby bunny sitting on top 

of a stack of pancakes

A oil and small 
monster that is 

playing with guitar
a delicious hamburger an astronaut riding a horse

DreamFusion
1 h

+ Hash3D
40 min (1.5×)

SDS + 3DGS
1.3 h

+ Hash3D
40 min (1.9×)

a zoomed out DSLR photo of 
a baby bunny sitting on top 

of a stack of pancakes

A oil and small 
monster that is 

playing with guitar
a delicious hamburger an astronaut riding a horse

Fantasia3d
2 h

+ Hash3D
1.2 h (1.7×)

a DSLR photo of an ice 
cream sundae batman The leaning tower of 

Pisa
a teddy bear with christmas

hat and leather boot

Figure 6: Visual comparison for text-to-3D task, when applying Hash3D to DreamFusion Poole
et al. (2023), SDS+GS and Fantasia3D Chen et al. (2023a).

Table 2: Speed and performance comparison between various text-to-3D baseline when integrated
with Hash3D.

Method Time↓ Speed↑ MACs↓ CLIP-G/14↑ CLIP-L/14↑ CLIP-B/32↑

Dreamfusion 1h 00m - 678.60G 0.407± 0.088 0.267±0.058 0.314 ±0.049
+ Hash3D 40m 1.5× 622.21G 0.411±0.070 0.266± 0.050 0.312±0.044
Latent-NeRF 30m - 678.60G 0.406±0.033 0.254±0.039 0.306±0.037
+ Hash3D 17m 1.8× 622.21G 0.406±0.038 0.258±0.045 0.305±0.038
SDS+GS 1h 18m - 678.60G 0.413±0.048 0.263±0.034 0.313±0.036
+ Hash3D 40m 1.9× 622.21G 0.402±0.062 0.252±0.041 0.306±0.036
Magic3D 1h 30m - 678.60G 0.399±0.012 0.257±0.064 0.303±0.059
+ Hash3D 1h 1.5× 622.21G 0.393±0.011 0.250±0.054 0.304±0.052

GaussianDreamer 15m - 678.60G 0.412±0.049 0.267±0.035 0.312±0.038
+ Hash3D 10m 1.5× 622.21G 0.416±0.057 0.271±0.036 0.312±0.037

4.3 ABLATION STUDY AND ANALYSIS

In this section, we study several key components in our Hash3D framework.

Ablation 1: Hashing vs. Storing All Features. We compare hashing features with storing all past
features and retrieving them by similarity. As shown in Table 3, hashing is more effective. On
efficiency side, storing all feature even causes an OOM error in Dreamfusion. Hashing requires only
constant space. Additionally, our grid-based hashing leverages geometric information to improve
sample quality. More visual results are available in the appendix.

Table 3: Comparison of feature retrieval with and without hashing.
Name Time↓ GPU Mem.↓ CLIP-G/14↑

Hash3D+Zero-123 (NeRF) w/o hashing 11m 8G 0.661±0.096
Hash3D+Zero-123 (NeRF) 7m 6G 0.665±0.104
Hash3D+DreamFusion w/o hashing - OOM -
Hash3D+DreamFusion 40m 8G 0.411±0.070

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

𝜂 = 0 (No Hash) 𝜂 = 0.01 𝜂 = 0.1 𝜂 = 0.3 𝜂 = 0.5 𝜂 = 0.7

Figure 8: Qualitative comparison with different hash probability η.
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Figure 9: Ablation study with different
hash probability η.

Method Time CLIP-G/14

Zero-123 (NeRF) + Hash3D w/n 6 min 0.631±0.090

Zero-123 (NeRF) + Hash3D 7 min 0.665±0.104

Zero-123 (GS) + Hash3D w/n 3 min 0.622±0.083

Zero-123 (GS) + Hash3D 3 min 0.632±1.06

Figure 10: Comparison between Hashing Features vs.
Hashing Noise, applied to Zero-123.

Ablation 2: Hashing Features vs. Hashing Noise. In Hash3D, we hash intermediate features
within the diffusion U-Net. Alternatively, we developed Hash3D with noise (Hash3D w/n), which
hashes and reuses the denoising prediction directly. We tested both methods on the image-to-3D task
using Zero123, with results shown in Table 10. Interestingly, while Hash3D w/n reduced processing
time, it significantly lowered CLIP scores. This highlights that hashing features is more effective
than hashing noise predictions.

Ablation 3: Influence of Hash Probability η. A key parameter in Hash3D is the feature retrieval
probability η. We tested η ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.7} using Dreamfusion. As shown in Fig-
ure 9, runtime decreases as η increases. Generated objects are visualized in Figure 8. For η < 0.3,
Hash3D also improved the visual quality of 3D models by enabling smoother noise predictions
through feature sharing. However, for η > 0.3, the runtime gains were minimal. This balance of
performance and efficiency led us to choose η = 0.1 for our main experiments.

Ablation 4: Adaptive Grid Size. We introduce AdaptGrid, which dynamically adjusts the grid
size for hashing based on each sample. Compared to using a constant grid size in Dreamfusion,
AdaptGrid performs better as shown in Table 4. Larger grid sizes reduce the visual quality of
3D objects, while smaller grid sizes maintain quality but increase computation time because fewer
features match. AdaptGrid effectively balances visual quality and efficiency by optimizing the grid
size for each sample.

Table 4: Ablation study on the Adaptive v.s. Constant Grid Size.
∆θ,∆ϕ,∆ρ,∆t (10, 10, 0.1, 10) (20, 20, 0.15, 20) (30, 30, 0.2, 30) AdaptGrid (Ours)

CLIP-G/14↑ 0.408±0.033 0.345±0.055 0.287±0.078 0.411±0.070
Time↓ 48m 38m 32m 40m

5 CONCLUSION

In this paper, we present Hash3D, a training-free technique that improves the efficiency of diffusion-
based 3D generative modeling. Hash3D utilizes adaptive grid-based hashing to efficiently retrieve
and reuse features from adjacent camera poses, to minimize redundant computations. As a result,
Hash3D not only speeds up 3D model generation by 1.5 ∼ 4× without the need for additional
training, but it also improves the smoothness and consistency of the generated 3D models.
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A APPENDIX

In this document, we provide additional information and analysis for our proposed Hash3D. We
begin by describing how the feature is extraction from diffusion model in Section B. Following that,
we delve into further analysis for Hash3D, including ablation studies in Section C, and provide visu-
alizations in Section D. More implementation details are disclosed in Section E, which also includes
the pseudo-code for our hash table data structure and the feature hashing process in Section F. For
additional information, please refer to the source code available in the uploaded files.
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Figure 11: Structure of the U-Net and our feature extraction setup.

B DETAILS FOR FEATURE EXTRACTION

As Hash3D involves the extraction of features from U-Net, we here introduce how we define and
indexing those features. As illustrated in Figure 11, we adopt the definition that, the indices for
the downsampling layers are arranged in decreasing order, whereas for the upsampling layers, the
indices follow an increasing order. With in total l up-sample layers and l down-sample layers, the
skip connection merges high-level features from Ui+1 with low-level features from Di, as expressed
by the equation:

v
(U)
i+1 = concat(Di(v

(D)
i−1), Ui+1(v

(U)
i )) (10)

If we would like to reuse the feature v(U)
i from the U-Net, upon retrieval, the model only requires the

forwarding of layers Dl to Di and of Ui+1 to Ul. This approach allows us to bypass all intermediate
computational blocks, enhancing efficiency.

C ANALYSIS AND ABLATION STUDY

C.1 KEY-BASED HASHING & CONTENT-BASED AGGREGATION

In fact, Hash3D utilizes a hierarchical process for feature reuse, involving a key-based hashing stage
and a content-based feature aggregation stage. In the first stage of key-based hashing, Hash3D
computes a hash code corresponding to a bucket according to the camera pose and time step. This
efficiently retrieves a set of candidate features. Subsequently, Hash3D performs a content-based
refinement within the retrieved bucket. Features are aggregated based on the similarity (distance)
between their input latents.

This section investigates the effectiveness of the two-stage hashing.

Experimental setup. To assess the contribution of each hashing stage, we conducted two experi-
ments:

• Ablation 1: Removing Key-based Hashing. In this experiment, we removed the key-
based hashing stage. Instead, the query feature’s latent vector was directly compared
against the entire pre-extracted feature pool (no hashing at all). To achieve this, we es-
tablished a queue with maximum length of 1000 to store all previously extracted features.

• Ablation 2: Removing Content-based Aggregation. Here, we omitted the content-based
aggregation stage. As replacement, within each bucket, only the features with closest hash
key (camera pose and timestep) will be returned.

We test it on Zero-123 (NeRF) and compare the visual fidelity.
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OursInput Image Ours w/o aggregation Ours w/o key hashing

Figure 12: Results with different hashing strategy. “Our w/o aggregation” is short for “Ours without
feature aggregation” and “Ours w/o key hashing” is for “Ours without key hashing”.

Results. Our study presents visualization for various retrieval strategies, as shown in Figure 12. We
refer to our first variation as “Ours without key hashing” and the second as “Ours without feature
aggregation”.

It is observed that our complete solution achieves the highest visual fidelity. Interestingly, the exclu-
sion of feature aggregation leads to the emergence of moiré patterns, exemplified by the eye of
the robot. This phenomenon occurs because multiple hash keys can map to the same cached
feature, resulting in overlapping patterns in the generated images. On the contrary, the omission of
the key-based hashing stage produces images that are overly smooth and lack detail. By first filter-
ing features within a grid and subsequently aggregating them based on latent similarity, our method
ensures clearer boundaries of the generated objects.

C.2 HASHING FEATURE vs. HASHING NOISE

Beyond the quantitative results presented in Table 9 of the main paper, we offer visual comparisons
between hashing features and hashing denoising predictions in Figure 13. We implement Hash3D
on top of Zero-123 (NeRF) and visualize the multiview images of the reconstructed objects.

Hashing noise leads to the generation of saturated 3D objects, occasionally exhibiting mosaic pat-
terns. Although this method proves to be slightly faster, it compromises visual quality, aligning with
our quantitative findings. Consequently, we advocate for the use of feature hashing in our study, as
it maintains higher fidelity in the visual results.

C.3 OPTIMAL LAYER FOR FEATURE EXTRACTION

In caching and retrieving features within diffusion models, a critical question arises: which layer’s
features should be extracted? Ideally, extracting features from deeper layers, closer to the output,
can significantly reduce computational overhead but might result in a slight loss of fidelity in the
predicted images. On the other hand, hashing features from earlier, low-level layers retains higher
performance at the cost of increased inference overhead. This presents a trade-off between compu-
tational efficiency and output quality. We in this section valid our selection.

For example, the Zero123 U-Net contains 10 skip connections, each associated with a down-
sampling layer and a up-sampling layers. We test 10 positions for feature extraction, and show
the results.

Figure 14 illustrates that, generally, a larger layer index i—indicating proximity to the out-
put—results in reduced optimization time but slightly diminished visual quality. However, given

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Hash Feature (Ours) Hash NoiseInput Image

Figure 13: Results when hashing features or hashing the desnoising predictions.
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Figure 14: Impact of feature hashing at various layers on optimization time and visual fidelity. Note
that, larger layer index indicating closer to the output, with smaller computation.

the minimal impact on fidelity, we opt for using i = 10, the layer before the last upsampling, for
feature extraction in our experiments. This choice effectively balances computational efficiency with
the maintenance of high visual quality.

D ADDITIONAL RESULTS

This section presents further visualizations demonstrating the effectiveness of our method. Specifi-
cally, we compare our Hash3D+Zero123 approach with the original Zero-123 method in the context
of image-to-3D reconstruction, as illustrated in Figure 15. Additionally, we evaluate our method
against Gaussian-Dreamer for text-to-3D generation, as shown in Figure 16. Our results showcase
superior visual quality: we achieve this in 7 minutes compared to Zero-123’s 20 minutes, and in 10
minutes against Gaussian-Dreamer’s 15 minutes.
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Figure 15: Qualitative Comparison when applying Hash3D on top of Zero-123.
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E IMPLEMENTATION DETAILS

We use the official implementation for Dream-Gaussian and Gaussian-Dreamer. For all other meth-
ods, we take the threestudio’s implementations, with their default experimental configurations.

Image-to-3D:

• Zero-123 (NeRF): We employ NeRF with hash grid encoding for the 3D representation.
We leverage stable-zero123 as the diffusion model to optimize this representation
using the SDS loss. A classifier-free guidance of 3.0 is used, and the Adam optimizer
updates the parameters for 1,000 steps with learning rate of 0.01. We use a batch size of 1.

• Zero-123 (GS): We employ Gaussian Splatting for the 3D representation. For other
details, we follow the setup for Zero-123 (NeRF). We use the implantation from
threestudio-3dgs 4.

• Dream-Gaussian: We use the official implementation 5. The initial Gaussians consists of
5,000 randomly colored points on a sphere. In the first stage, we update the parameters
for 500 iterations using stable-zero123 model and the SDS loss. The second stage
focuses on refining the mesh for 50 additional steps with the RGB MSE loss. Since this
stage doesn’t require the SDS loss, we employ Deepcache Ma et al. (2023) for accelera-
tion. Deepcache can be considered a simplified version of our Hash3D, focusing solely on
temporal reuse.

• Magic-123: Following the configurations from threestudio, we use stable-
diffusion-v1-5 as the text-to-image diffusion model, and stable-zero123 as the
image-to-3D diffusion model. In the first stage, both models work together to optimize
a NeRF as the 3D representation for 10,000 iterations. This NeRF is then converted into
an explicit surface mesh representation Shen et al. (2021) in the second stage, which also
undergoes optimization for another 10,000 iterations. Both stages use the SDS loss, where
the loss weights for text-to-image and image-to-3D diffusion are set to 0.025 and 0.1.

Text-to-3D:

• Dreamfusion: We use the stable-diffusion-2-1-base to optimize the NeRF rep-
resentation with hash encoding, using SDS loss. We apply a classifier-free guidance tech-
nique, setting its scale to 100. For the optimization process, we use the Adam optimizer
with a learning rate of 0.01 and run the process for a total of 10,000 iterations.

• Latent-NeRF: We use the same setup as in above Dreamfusion experiment, except that we
use a vallina NeRF representation.

• SDS+GS: Compared to the Dreamfusion above, the only difference is that we use a 3D
Gaussian Splatting to represent the 3D object. The 3D Gaussians are initialized from
the shap-e Jun & Nichol (2023a) predicted mesh. We use the implementation from
threestudio-3dgs.

• Magic3D: The first stage of Magic3D involves updating an instant-npg like NeRF repre-
sentation for 10,000 iterations, using the stable-diffusion-2-1-base model and
SDS loss. Subsequently, this NeRF is converted into an explicit surface mesh, which is
then optimized for an additional 10,000 iterations.

• GaussianDreamer: We take the official implementation 6 to do the experiments. The
Gaussian points are initialized from shap-e Jun & Nichol (2023a) predicted mesh. Op-
timization is conducted over 1,200 steps using the stable-diffusion-2- 1-base
model with a classifier-free guidance scale of 100, and Adam optimization at a learning
rate of 0.001.

4https://github.com/DSaurus/threestudio-3dgs
5https://github.com/dreamgaussian/dreamgaussian/tree/main
6https://github.com/hustvl/GaussianDreamer

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F PSEUDO-CODE FOR HASH3D

In our paper, we introduce a core mechanism that utilizes a grid-based hashing table to organize
features extracted across various camera poses and time steps. This section provides a detailed
overview, including pseudo-code, for two main components: (1) the data structure and associated
functions of our grid-based hashing, in Listing 1, and (2) the forwarding process of diffusion model
with feature hashing, in Listing 2.

Listing 1: Pseudocode for GridBasedHashTable
1 # GridBasedHashTable Class Definition
2 Class GridBasedHashTable:
3 # Initializes the class with parameters for the hash table configuration
4 Constructor(delta_c: List, delta_t: Float, N: List, max_queue_length: Int,

hash_table_size: Int):
5 # Spatial and temporal grid sizes and constants for hashing
6 Store delta_c, delta_t, and N as tensors
7 # Maximum queue length for each hash table entry and overall size
8 Store max_queue_length and hash_table_size
9 # Initialize hash table as a list of queues, one per hash table entry

10 hash_table ← list of deques, each with maxlen=max_queue_length
11
12 # Computes a raw hash index based on spatial-temporal key
13 def compute_hash_index_raw(key: Tensor) -> Int:
14 # Applies hashing formula to compute index based on key
15 i, j, k = floor(key[:3] / self.delta_c)
16 l = floor(key[3] / self.delta_t)
17 idx = i + self.N[0] * j + self.N[1] * k + self.N[2] * l
18 return idx
19
20 # Modulo operation to ensure index within hash table size
21 def compute_hash_index(key: Tensor) -> Int:
22 # Modulo hash_table_size to find actual index in hash table
23 idx = self.compute_hash_index_raw(key)
24 return idx % self.hash_table_size
25
26 # Appends feature data to the hash table, associated with spatial-temporal key and latent
27 def append(key: Tensor, feature: Tensor):
28 # Finds hash table index for given key
29 idx ← compute_hash_index(key)
30 # Appends the key, meta key, and feature as a tuple to the specified queue
31 hash_table[idx].append((key, feature))
32
33 # Queries the hash table for data matching a spatial-temporal key and meta key
34 def query(key: Tensor, meta_key: Tensor) -> Tensor or None:
35 # Finds hash table index for the query key
36 idx ← compute_hash_index(key)
37 # Retrieves the queue of data at the computed index
38 queue ← hash_table[idx]
39
40 # If the queue is empty, indicates no data for key
41 if queue is empty:
42 return None
43
44 # Extracts noisy latent and features from the queue for comparison
45 Unpack features from queue
46 # Computes distances between the query meta_key and stored meta_keys
47 Compute distances and apply softmax to derive weights
48 # Aggregates features based on weights to get a single output
49 Aggregate features using weights and return as aggregated output

Listing 2: Pseudocode for U-Net Inference with Feature Hashing
1 # function for U-Net forward pass with Feature Hashing (Example for Zero-123)
2 def forward_unet(xin, vaeemb, t, tin, ccemb, polar, azimuth, radius, cache, cachelayer id,

cacheblock id):
3 Initialize prv features to None
4 # Create a key tensor for caching based on stacking input parameters
5 keys← [t[:batch size], polar, azimuth, radius]
6
7 # Conditionally update cache based on a predefined probability
8 if random.random() < cache probability:
9 # Query the cache for each item in the batch

10 for each item k in keys:
11 prv feature← query hash table with key k
12
13 # Store retrieved hashed features
14 Update prv features with hashed features
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15
16 # Determine if new features need to be cached
17 append← prv features is None
18
19 # Perform U-Net prediction with potential use of cached features
20 (noise pred, prv features) ← unet(prv features, other inputs...)
21
22 # Update cache with new features if necessary
23 if append:
24 for each item f in prv features:
25 Cache new features f in the hash table
26
27 return noise pred

G RELATED WORK

3D Generation Model. The development of 3D generative models has become a focal point in
the computer vision. Typically, these models are trained to produce the parameters that define 3D
representations. This approach has been successfully applied across several larger-scale models
using extensive and diverse datasets for generating voxel representation Wu et al. (2016), point
cloud Achlioptas et al. (2018); Nichol et al. (2022), implicit function Jun & Nichol (2023a), tri-
plane Shue et al. (2023); Xu et al. (2024). Despite these advances, scalability continues to be
a formidable challenge, primarily due to data volume and computational resource constraints. A
promising solution to this issue lies in leveraging 2D generative models to enhance and optimize
3D representations. Recently, diffusion-based models, particularly those involving score distillation
into 3D representations Poole et al. (2023), represent significant progress. However, these methods
are often constrained by lengthy optimization processes.

Efficient Diffusion Model. Diffusion models, known for their iterative denoising process for image
generation, are pivotal yet time-intensive. There has been a substantial body of work aimed at ac-
celerating these models. This acceleration can be approached from two angles: firstly, by reducing
the sampling steps through advanced sampling mechanisms Song et al. (2021); Bao et al. (2022);
Liu et al. (2022); Lu et al. (2022) or timestep distillation Salimans & Ho (2022); Song et al. (2023),
which decreases the number of required sampling steps. The second approach focuses on mini-
mizing the computational demands of each model inference. This can be achieved by developing
smaller diffusion models Kim et al. (2023); Yang et al. (2023); Fang et al. (2023) or reusing fea-
tures from adjacent steps Ma et al. (2023); Li et al. (2023b), thereby enhancing efficiency without
compromising effectiveness. However, the application of these techniques to 3D generative tasks
remains largely unexplored.

Hashing Techniques. Hashing, pivotal in computational and storage efficiency, involves converting
variable-sized inputs into fixed-size hash code via hash functions. These code index a hash table,
enabling fast and consistent data access. Widely used in file systems, hashing has proven effective
in a variety of applications, like 3D representation Nießner et al. (2013); Müller et al. (2022); Girish
et al. (2023); Xie et al. (2023), neural network compression Chen et al. (2015); Kitaev et al. (2020),
using hashing as a components in deep network Roller et al. (2021) and neural network-based hash
function development Lai et al. (2015); Zhu et al. (2016); Cao et al. (2017); Li et al. (2017). Our
study explores the application of hashing to retrieve features from 3D generation. By adopting this
technique, we aim to reduce computational overhead for repeated diffusion sampling and speed up
the creation of realistic 3D objects.
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