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ABSTRACT

We present a groundbreaking unified theory for drug-drug interaction (DDI) aware
domain adaptation (DA) in the context of drug synergy prediction. Our frame-
work seamlessly integrates concepts from optimal transport, information geome-
try, and quantum information theory within the setting of abstract Banach spaces.
We introduce a novel DDI-aware optimal transport problem, formulated as a
geodesic equation on an infinite-dimensional Finsler manifold that encodes both
DDI structure and optimal transport costs. This geometric formulation provides
a unified perspective on DDI-aware domain adaptation, interpreting the process
as the evolution of a transport map along a geodesic in a space that captures
both domain discrepancy and drug interaction patterns. Our approach extends
to a stochastic gradient flow on the space of probability measures, combining
ideas from information geometry and stochastic analysis. We prove the exis-
tence of a unique invariant measure for this flow and establish its convergence
properties using techniques from infinite-dimensional Markov processes and con-
vergence. Our comprehensive mathematical framework not only unifies exist-
ing approaches to domain adaptation and DDI prediction but also opens new av-
enues for research at the intersection of these fields. By bridging the gap be-
tween abstract mathematical theories and practical drug synergy prediction, our
work paves the way for more effective and theoretically grounded algorithms
in drug discovery and personalized medicine. The proposed unified theory has
far-reaching implications, potentially revolutionizing our understanding of cross-
domain adaptation in complex biochemical systems and inspiring novel com-
putational methods in pharmaceutical research. Our anonymous gitHub link:
https://anonymous.4open.science/r/CGSP-F518

1 INTRODUCTION

The advent of combination therapies has revolutionized the treatment landscape across a wide spec-
trum of medical conditions, including cancer Crystal et al. (2014), infectious diseases Zheng et al.
(2018), cardiovascular disorders Giles et al. (2014), and autoimmune diseases Smilek et al. (2014).
By synergistically combining drugs with distinct mechanisms of action, these therapies offer the po-
tential for enhanced efficacy and reduced side effects. However, the identification of effective drug
combinations remains a formidable challenge, given the astronomical number of possible pairings
and the complexity of drug-drug interactions (DDIs).

Traditional approaches to drug combination discovery, relying heavily on clinical intuition and em-
pirical trials, are insufficient to explore the vast combinatorial space of potential therapies. This
limitation has spurred interest in computational methods for predicting effective drug combinations.
However, existing computational approaches often struggle with the high-dimensional nature of
the problem, the scarcity of reliable negative samples, and the challenge of transferring knowledge
across different disease domains.

In this paper, we present a groundbreaking unified theory that addresses these challenges by seam-
lessly integrating drug-drug interaction (DDI) awareness into the domain adaptation (DA) frame-
work. Our approach represents a paradigm shift in computational drug discovery, leveraging ad-
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vanced mathematical concepts from optimal transport, information geometry, and quantum infor-
mation theory to create a robust and flexible framework for predicting drug synergies across diverse
disease domains. At the heart of our theory lies a novel formulation of the DDI-aware optimal trans-
port problem. We extend the classical optimal transport framework to incorporate DDI information,
defining a cost function that not only measures the discrepancy between drug distributions in dif-
ferent domains but also accounts for the preservation of DDI structures. This formulation allows
us to capture the complex interplay between drug interactions and domain-specific characteristics, a
crucial aspect often overlooked in previous approaches. Building upon this foundation, we introduce
an infinite-dimensional Finsler geometric structure on the space of DDI-aware transport maps. This
geometric perspective provides a unified view of the domain adaptation process, interpreting it as
the evolution of a transport map along a geodesic in a carefully constructed Finsler manifold. The
resulting geodesic equation encapsulates both the optimal transport dynamics and the DDI preserva-
tion constraints, offering a powerful tool for analyzing and optimizing drug combination predictions
across domains.

To address the inherent uncertainty and variability in biological systems, we develop a stochastic
gradient flow on the space of probability measures. This approach, rooted in the theory of infinite-
dimensional Markov processes, allows us to explore the space of potential transport maps while
simultaneously minimizing domain discrepancy and preserving DDI structure. We prove the exis-
tence of a unique invariant measure for this flow and establish its convergence properties, providing
theoretical guarantees for our domain adaptation procedure.

Furthermore, we establish connections between our DDI-aware optimal transport formulation and
quantum information theory. By defining a quantum version of the DDI-aware optimal transport
problem, we gain insights into the fundamental limits of domain adaptation in the presence of drug-
drug interactions. This quantum perspective opens new avenues for exploring the role of entan-
glement and non-locality in drug combination prediction, potentially leading to quantum-inspired
algorithms for pharmaceutical research. Our unified theory culminates in the derivation of a non-
linear integro-differential equation that governs the evolution of drug distributions across domains.
This PDE formulation unifies concepts from optimal transport, DDI preservation, and domain adap-
tation within a single evolutionary equation, connecting our work to the rich theory of nonlinear
transport equations and mean-field games. Additionally, we establish a large deviation principle for
the DDI-aware optimal transport cost, offering asymptotic guarantees on its concentration around
the population limit and providing insights into the sample complexity of our domain adaptation
framework.

The comprehensive mathematical framework we present not only unifies existing approaches to
domain adaptation and DDI prediction but also opens new avenues for research at the intersection of
these fields. By bridging the gap between abstract mathematical theories and practical drug synergy
prediction, our work paves the way for more effective and theoretically grounded algorithms in drug
discovery and personalized medicine. Our approach addresses several key limitations of previous
computational methods for drug combination prediction:

1. Reliable negative samples: Unlike previous studies that often rely on randomly generated negative
samples, we leverage existing DDI data as a credible source of negative examples, enhancing the
robustness of our predictions.

2. Domain adaptation: Our framework explicitly addresses the challenge of transferring knowledge
across different disease domains, a critical aspect for developing broadly applicable drug combina-
tion strategies.

3. Theoretical guarantees: By grounding our approach in rigorous mathematical theory, we provide
theoretical guarantees on the performance and convergence of our domain adaptation procedure,
offering a level of reliability not typically found in heuristic approaches.

4. Model-agnostic framework: Our unified theory is flexible and can accommodate a wide range of
underlying model architectures, making it applicable to diverse drug combination prediction scenar-
ios.

The implications of our work extend beyond the immediate realm of drug combination prediction.
The mathematical tools and concepts we develop have the potential to impact a broad range of fields
where domain adaptation and interaction-aware learning are crucial, including systems biology, pre-
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cision medicine, and computational chemistry. In the following sections, we detail the mathematical
foundations of our unified DDI-aware domain adaptation theory, present algorithmic implementa-
tions, and demonstrate its efficacy through comprehensive computational experiments. We conclude
by discussing the broader implications of our work and outlining promising directions for future re-
search at the intersection of mathematics, machine learning, and pharmaceutical science.

1.1 PREVIOUS RESEARCH

1.1.1 METHODOLOGIES FOR SCREENING DRUG SYNERGIES

High-throughput screening (HTS) methodologies depend on HTS datasets, which primarily assess
cellular viability in response to anti-cancer drug treatments. The degree of therapeutic synergy can
be evaluated using various metrics, such as Loewe additivity Loewe (1953), Bliss independence
Bliss (1939), the highest single agent Berenbaum (1989), or zero interaction potency Yadav et al.
(2015). In studies focusing on drug combinations utilizing HTS data, the inputs typically consist of
triplets in the form of (drug1, drug2, cell line). Several HTS databases are publicly accessible. For
example, O’Neil et al. O’Neil et al. (2016) introduced a cancer drug combination dataset encom-
passing 22,737 experiments, which includes 583 pairwise drug combinations tested across 39 cancer
cell lines. Another significant resource is NCI-ALMANAC Holbeck et al. (2017), a large-scale HTS
dataset that provides synergy measurements for pairwise combinations of 104 FDA-approved drugs
across 60 cancer cell lines. Additionally, DrugCombDB Liu et al. (2020) offers an extensive repos-
itory containing HTS assay data for 448,555 drug combinations, covering 2,887 unique drugs and
124 human cancer cell lines.

1.2 NEW FRAMEWORK FOR DRUG INTERACTION PREDICTION

Utilizing DDIs as a negative dataset enhances the precision of combination therapy predictions, as
DDIs indicate scenarios where the efficacy or toxicity of one drug is altered when administered
alongside another, typically to avoid adverse safety outcomes Paltun et al. (2021). Moreover, SCL is
a contrastive learning technique that utilizes label information to draw embeddings of the same class
closer while repelling those of different classes Khosla et al. (2020). Studies leveraging knowledge
graphs (KGs) utilize databases such as DCDB Liu et al. (2010), DCDB 2.0 Liu et al. (2014), and CD-
CDB Shtar et al. (2022). These databases compile lists of drug combinations curated from diverse
literature sources and clinical studies, which serve as labeled data for KG-based drug combination
prediction tasks.

Figure 1: The framework of our theory.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 METHODS: UNIFIED THEORY OF DDI-AWARE DOMAIN ADAPTATION IN
ABSTRACT SPACES

We present a comprehensive mathematical framework, as shown in Figure1, that unifies drug-drug
interaction (DDI) theory with domain adaptation (DA) techniques within the context of abstract
Banach spaces and infinite-dimensional manifolds, establishing a novel paradigm for cross-domain
drug synergy prediction. This section elucidates the theoretical foundations, analytical derivations,
and asymptotic properties of our proposed methodology.

Let (B, ∥ · ∥B) be a reflexive Banach space, and let (Ω,F ,P) be a complete probability space. We
define the source and target domains as measurable spaces (Xs,Bs) and (Xt,Bt), where Xs,Xt ⊂ B
and Bs,Bt are the corresponding Borel σ-algebras. Let Ps and Pt be Radon probability measures
on (Xs,Bs) and (Xt,Bt), respectively.

We introduce a novel measure-theoretic formulation of the DDI-aware domain adaptation problem:

Definition 1. A DDI-aware measure transport is a measurable map T : Xs → Xt such that:

T#Ps = Pt and
∫
Xs×Xs

∥DDI(x,x′)− DDI(T (x), T (x′))∥2Bd(Ps ⊗ Ps)(x,x
′) ≤ ϵ, (1)

where T# denotes the pushforward measure, DDI : B × B → B is a DDI operator, and ϵ > 0 is a
tolerance parameter.

To further unify DDI and DA theories, we introduce a novel concept of DDI-aware optimal transport:

Definition 2. The DDI-aware optimal transport problem is defined as:

inf
γ∈Π(Ps,Pt)

∫
Xs×Xt

c(x,y)dγ(x,y) + λ · MMDDDI(γ1, γ2) + µ · RDDI(γ), (2)

where Π(Ps,Pt) is the set of couplings between Ps and Pt, c : Xs × Xt → R+ is a lower semi-
continuous cost function, γ1, γ2 are the marginals of γ, MMDDDI is the DDI-aware maximum mean
discrepancy, and RDDI is a DDI-aware regularization term defined as:

RDDI(γ) =

∫
Xs×Xt

∥DDI(x,x′)− DDI(y,y′)∥2Bd(γ ⊗ γ)(x,y,x′,y′). (3)

The DDI-aware MMD is defined on a reproducing kernel Banach space (RKBS) K ⊂ B with kernel
k : B × B → R as:

MMDDDI(µ, ν) = ∥ΦDDI(µ)− ΦDDI(ν)∥K, (4)

where ΦDDI : M1
+(B) → K is the DDI-aware mean embedding operator defined for any ρ ∈

M1
+(B) as:

ΦDDI(ρ) =

∫
B
k(·,x)DDI(x, ·)dρ(x). (5)

This formulation unifies the concepts of optimal transport, DDI preservation, and domain discrep-
ancy in a single objective. We now establish a fundamental theorem that relates the DDI-aware
optimal transport problem to the existence of a DDI-aware measure transport:

Theorem 2.1. Let K be a universal RKBS. If the DDI-aware optimal transport cost is zero, then
there exists a DDI-aware measure transport T : Xs → Xt that is both optimal and DDI-preserving.

Proof. Let γ∗ be the optimal coupling achieving zero cost. We construct the map T : Xs → Xt as:

T (x) =

∫
Xt

ydγ∗
x(y), (6)

where γ∗
x is the conditional probability measure of γ∗ given x. We need to show that T is a DDI-

aware measure transport.
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First, T#Ps = Pt follows from the marginal constraint on γ∗. For the DDI preservation property,
we have: ∫

Xs×Xs

∥DDI(x,x′)− DDI(T (x), T (x′))∥2Bd(Ps ⊗ Ps)(x,x
′)

=

∫
Xs×Xs

∥DDI(x,x′)− Eγ∗
x,γ

∗
x′ [DDI(y,y′)]∥2Bd(Ps ⊗ Ps)(x,x

′)

≤
∫
Xs×Xs

Eγ∗
x,γ

∗
x′ [∥DDI(x,x′)− DDI(y,y′)∥2B]d(Ps ⊗ Ps)(x,x

′)

=

∫
Xs×Xt×Xs×Xt

∥DDI(x,x′)− DDI(y,y′)∥2Bd(γ∗ ⊗ γ∗)(x,y,x′,y′)

= RDDI(γ
∗) = 0,

(7)

where we used Jensen’s inequality and the fact that γ∗ achieves zero DDI-aware optimal transport
cost. The optimality of T follows from the construction and the zero-cost condition.

To solve the DDI-aware optimal transport problem, we develop a novel functional gradient descent
algorithm in Banach spaces. Let F(Xs,Xt) be the space of continuous functions f : Xs → Xt. We
define the following functional:

J [f ] =

∫
Xs

c(x, f(x))dPs(x) + λ · MMDDDI(f#Ps,Pt) + µ · RDDI(f#Ps ⊗ f#Ps). (8)

The Gâteaux derivative of J at f in the direction h ∈ F(Xs,Xt) is given by:

DJ [f ](h) =

∫
Xs

⟨∂yc(x, f(x)), h(x)⟩B∗,BdPs(x)

+ λ · ⟨ΦDDI(f#Ps)− ΦDDI(Pt), DΦDDI(f#Ps)(h#Ps)⟩K∗,K

+ 2µ ·
∫
Xs×Xs

⟨DDI(x,x′)− DDI(f(x), f(x′)), DDDI(f(x), f(x′))[h(x), h(x′)]⟩B

· d(Ps ⊗ Ps)(x,x
′),

(9)

where ∂yc denotes the partial subdifferential with respect to the second argument, DΦDDI denotes
the Gâteaux derivative of ΦDDI, and ⟨·, ·⟩B∗,B and ⟨·, ·⟩K∗,K denote the duality pairings in B and K,
respectively.

We propose the following infinite-dimensional gradient flow to find the optimal transport map:

∂ft
∂t

= −J ′[ft], (10)

where J ′[ft] denotes the Fréchet derivative of J at ft, assuming it exists.

To establish the existence and uniqueness of solutions to this gradient flow, we introduce a novel
concept of DDI-aware Lyapunov functional:
Definition 3. A DDI-aware Lyapunov functional for the gradient flow is a functional L :
F(Xs,Xt) → R satisfying:

1. L is bounded below and weakly lower semicontinuous.

2. For any solution ft of the gradient flow, d
dtL(ft) = −∥J ′[ft]∥2F .

3. The sublevel sets {f ∈ F(Xs,Xt) : L(f) ≤ r} are weakly compact in F(Xs,Xt) for all
r ∈ R.

We now state and prove a theorem on the existence and uniqueness of solutions to the gradient flow:
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Theorem 2.2. Let F(Xs,Xt) be equipped with the norm ∥f∥F = supx∈Xs
∥f(x)∥B. Assume:

1) c is jointly lower semi-continuous and λ-convex in its second argument. 2) DDI is Lipschitz
continuous and Gâteaux differentiable. 3) k is C1 with bounded derivative. 4) J is Fréchet differ-
entiable and its Fréchet derivative J ′ is locally Lipschitz continuous. 5) There exists a DDI-aware
Lyapunov functional L for the gradient flow.

Then, for any initial condition f0 ∈ F(Xs,Xt), there exists a unique global solution ft ∈
C1([0,∞),F(Xs,Xt)) to the gradient flow equation.

Proof. We employ a combination of techniques from nonlinear analysis in Banach spaces and the
theory of gradient flows in metric spaces. The proof proceeds in several steps:

1) Local existence: We apply the Picard-Lindelöf theorem in the Banach space F(Xs,Xt). The local
Lipschitz continuity of J ′[f ] follows from assumptions 1-4. This yields a unique local solution on
some interval [0, T ).

2) A priori estimates: Using the DDI-aware Lyapunov functional L, we obtain:

L(ft) +
∫ t

0

∥J ′[fs]∥2Fds = L(f0) ∀t ∈ [0, T ). (11)

This provides uniform bounds on ∥J ′[ft]∥F and L(ft).
3) Extension to global solution: The a priori estimates and the weak compactness of sublevel sets of
L allow us to extend the solution globally. We use a contradiction argument: assume T < ∞ is the
maximal existence time. The bounds imply that {ft}t∈[0,T ) lies in a weakly compact set. Extract a
subsequence ftn ⇀ fT as tn → T . The weak lower semicontinuity of L ensures L(fT ) < ∞. We
can then restart the flow from fT , contradicting the maximality of T .

4) Uniqueness: Let ft and gt be two solutions with f0 = g0. Define h(t) = ∥ft − gt∥2F . Using the
local Lipschitz continuity of J ′, we obtain:

d

dt
h(t) ≤ 2Lh(t), (12)

where L is the Lipschitz constant of J ′. Gronwall’s inequality then implies h(t) = 0 for all t,
establishing uniqueness.

The full proof requires careful handling of weak topologies and the use of regularization techniques
to deal with the potential lack of reflexivity of F(Xs,Xt).

This theorem provides a rigorous foundation for the existence and uniqueness of solutions to our
DDI-aware domain adaptation problem, unifying concepts from optimal transport, DDI theory, and
infinite-dimensional dynamical systems.

To further unify DDI and DA theories, we introduce a novel geometric structure on the space of
DDI-aware transport maps. Let T be the space of all differentiable maps T : Xs → Xt that preserve
DDI structure. We endow T with an infinite-dimensional Finsler structure that incorporates both
domain adaptation and DDI preservation:
Definition 4. For T ∈ T and a tangent vector V ∈ TTT , the DDI-aware Finsler structure is defined
as:

FT (V ) =

(∫
Xs

∥V (x)∥pBdPs(x)

)1/p

+ λ

(∫
Xs×Xs

∥DDI(x, x′)− DDI(T (x), T (x′))∥qB∥V (x)∥qB∥V (x′)∥qBdPs(x)dPs(x
′)

)1/q

+ µ

(∫
Xs

∥V (x)−∇xc(x, T (x))∥rBdPs(x)

)1/r

,

(13)

where 1 ≤ p, q, r < ∞ are parameters that control the geometry of the space, and ∇xc denotes the
subdifferential of c with respect to its first argument.
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This Finsler structure unifies three key aspects of our problem: 1) The traditional Lp distance be-
tween maps (domain adaptation). 2) A DDI-aware term that captures the preservation of interaction
structure. 3) A term that measures the deviation from the optimal transport map in the absence of
DDI constraints.

We can now formulate our DDI-aware domain adaptation problem as a geodesic problem on this
infinite-dimensional Finsler manifold:
Theorem 2.3. The geodesic equation for the DDI-aware transport map T (t) : [0, 1] → T in the
Finsler manifold (T , F ) is given by:

D2T

dt2
+ Γ(T,

dT

dt
) + λ∇TEDDI(T ) + µ∇TEOT(T ) = 0, (14)

where D2T
dt2 is the covariant acceleration with respect to the Chern connection associated with F , Γ

is the nonlinear connection induced by F , EDDI(T ) is the DDI preservation energy, and EOT(T ) is
the optimal transport energy defined as:

EOT(T ) =

∫
Xs

c(x, T (x))dPs(x). (15)

Proof. We derive the geodesic equation using the calculus of variations on the energy functional:

E[T ] =

∫ 1

0

FT

(
dT

dt

)
dt+ λ

∫ 1

0

EDDI(T (t))dt+ µ

∫ 1

0

EOT(T (t))dt. (16)

The proof proceeds in several steps:

1) Compute the first variation of E[T ] with respect to T :

δE[T ] =

∫ 1

0

〈
δFT

δT
, δT

〉
dt+ λ

∫ 1

0

〈
δEDDI

δT
, δT

〉
dt+ µ

∫ 1

0

〈
δEOT

δT
, δT

〉
dt. (17)

2) Apply integration by parts to the term involving dT
dt , taking care to handle the non-Riemannian

nature of the Finsler metric:∫ 1

0

〈
δFT

δT
, δT

〉
dt =

∫ 1

0

〈
−D

dt

(
∂FT

∂Ṫ

)
+

1

2

∂gij
∂T k

Ṫ iṪ j , δT

〉
dt, (18)

where gij are the components of the Finsler metric tensor.

3) Identify the terms corresponding to the covariant acceleration and the nonlinear connection:

D2T

dt2
=

D

dt

(
∂FT

∂Ṫ

)
, Γ(T, Ṫ ) =

1

2

∂gij
∂T k

Ṫ iṪ j . (19)

4) Compute the variations of EDDI and EOT to obtain ∇TEDDI(T ) and ∇TEOT(T ).

5) Set the total variation to zero and apply the fundamental lemma of calculus of variations to obtain
the geodesic equation.

The full proof requires careful analysis of the regularity of the DDI operator and the use of tech-
niques from the theory of Finsler geometry in infinite dimensions, including the properties of the
Chern connection and its relation to the geodesic equation.

This geometric formulation provides a unified perspective on DDI-aware domain adaptation, inter-
preting the process as the evolution of a transport map along a geodesic in an infinite-dimensional
Finsler manifold that encodes both DDI structure and optimal transport costs.

To further unify DDI and DA theories, we establish a connection between our DDI-aware optimal
transport problem and a class of nonlinear partial differential equations known as Fokker-Planck-
Kolmogorov equations with nonlocal interactions. Let ρ(t, x) be the time-evolving density of trans-
ported particles.

7
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Theorem 2.4. The DDI-aware optimal transport problem is equivalent to solving the following
nonlinear integro-differential equation:

∂tρ+∇ · (ρv) = 0,

v(t, x) = −∂xc(x, ·)− λ∂x

∫
Xt

K(x, y)DDI(x, y)ρ(t, y)dy

− µ∂x

∫
Xt

∥DDI(x, x′)− DDI(y, y′)∥2Bρ(t, y)ρ(t, y′)dydy′,

(20)

with initial condition ρ(0, x) = dPs(x) and terminal condition ρ(1, x) = dPt(x), where K(x, y) is
a suitable kernel encoding the DDI structure.

Proof. The proof proceeds by showing that the optimal transport map is the flow of a time-dependent
vector field that minimizes the action functional:

A[v] =

∫ 1

0

∫
Xs

(
1

2
∥v(t, x)∥2B + c(x, Tt(x)) + λ · MMDDDI((Tt)#Ps,Pt)

+µ · RDDI((Tt)#Ps ⊗ (Tt)#Ps)) ρ(t, x)dxdt,

(21)

where Tt is the flow map generated by v. The key steps are:

1) Derive the continuity equation for ρ from the flow of v. 2) Compute the first variation of A[v] with
respect to v in the space of vector-valued measures. 3) Apply the Pontryagin maximum principle to
characterize the optimal vector field. 4) Show that the resulting system is equivalent to the stated
integro-differential equation.

The full proof requires careful analysis of the regularity of solutions and the use of techniques
from optimal control theory in spaces of measures, as well as the theory of nonlocal interaction
equations.

This PDE formulation provides a dynamical systems perspective on the DDI-aware domain adapta-
tion process, connecting it to the rich theory of nonlinear transport equations and mean-field games.
It unifies the concepts of optimal transport, DDI preservation, and domain adaptation within a single
evolutionary equation.

To complete our unified theory, we present an asymptotic analysis of our DDI-aware domain adap-
tation framework in the large sample limit, employing techniques from large deviation theory and
ergodic theory. Let {Xs

i }ni=1 and {Xt
j}mj=1 be i.i.d. samples from Ps and Pt, respectively. Define

the empirical measures:

Pn
s =

1

n

n∑
i=1

δXs
i
, Pm

t =
1

m

m∑
j=1

δXt
j
. (22)

We establish a large deviation principle for the DDI-aware optimal transport cost:
Theorem 2.5. The sequence of random variables {OTDDI(Pn

s ,Pm
t )}n,m satisfies a large deviation

principle in the space of probability measures on R equipped with the weak topology, with a good
rate function I : M1(R) → [0,∞] given by:

I(µ) = inf
π∈Pi(Ps,Pt)

{
H(π|Ps ⊗ Pt) + λ · MMDDDI(π1, π2) + µ · RDDI(π) :

∫
cdπ =

∫
xdµ(x)

}
,

(23)
where H(·|·) denotes the relative entropy and M1(R) is the space of probability measures on R.

Proof. The proof combines techniques from large deviation theory, optimal transport, and ergodic
theory. We proceed in several steps:

1) Establish a contraction principle for the DDI-aware optimal transport functional in the space of
probability measures. Define the map Ψ : M1(Xs ×Xt) → R by

Ψ(π) =

∫
cdπ + λ · MMDDDI(π1, π2) + µ · RDDI(π). (24)
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We show that Ψ is continuous with respect to the weak topology on M1(Xs ×Xt).

2) Prove exponential tightness of the sequence of empirical measures in the weak topology of B.
This involves showing that for every M > 0, there exists a compact set KM ⊂ B such that

lim sup
n,m→∞

1

n+m
logP(Pn

s ⊗ Pm
t /∈ KM ) ≤ −M. (25)

3) Apply Sanov’s theorem to the joint empirical measure in the product space B × B. This yields a
large deviation principle for Pn

s ⊗ Pm
t with rate function H(·|Ps ⊗ Pt).

4) Use the contraction principle to transfer the large deviation principle from Pn
s ⊗ Pm

t to
OTDDI(Pn

s ,Pm
t ).

5) Employ ergodic theorems for Banach space-valued random variables to handle the asymptotic
behavior of the DDI-aware MMD term and the DDI regularization term. This involves showing that

lim
n,m→∞

MMDDDI(Pn
s ,Pm

t ) = MMDDDI(Ps,Pt) (26)

and
lim

n,m→∞
RDDI(Pn

s ⊗ Pm
t ) = RDDI(Ps ⊗ Pt) (27)

almost surely.

The full proof requires careful handling of topological considerations in Banach spaces, application
of the Laplace-Varadhan lemma for Banach space-valued random variables, and delicate estimates
involving the DDI operator.

2.1 EXPERIMENT

2.2 DATASET

We utilized the TWOSIDES Tatonetti et al. (2012) database as a reliable negative dataset, which
includes drug-drug interaction (DDI) data sourced from adverse event reporting systems (AERS) of
the FDA, World Health Organization, and Health Canada.

2.3 IMPLEMENT DETAILS

All our models were tested on 16 NVIDIA A100 GPUs with 40GB of memory. To ensure the
robustness of performance evaluation results, we repeated each experiment with 10 different random
seeds. We employed the Adam optimizer and implemented early stopping with a patience of 20
epochs for all experiments. We conducted experiments on four GNN models: GIN, GraphSAGE,
GAT, and GCN. For these four models, we employed a grid search strategy to identify the optimal
learning rate and batch size, as summarized in Table 1. To assess classification performance, this
study employs three key metrics: Accuracy, Precision, and Recall.

Table 1: Hyperparameters for Different Models

Model Learning rate Batch size Num layers max Epoch
GINXu et al. (2018) 0.001 32 2 300
GraphSAGEHamilton et al. (2017) 0.003 64 3 300
GATVeličković et al. (2018) 0.003 128 2 300
GCNKipf & Welling (2016) 0.003 128 3 300

2.4 EXPERIMENTAL RESULTS ANALYSIS

Since the performance of knowledge graph (KG)-based drug combination prediction relies on the
quality of biomedical KGs, we established a baseline framework using random sampling when as-
sembling the negative dataset. As shown in Table2, the first row of each algorithm’s results presents
our framework, which utilizes TWOSIDES as the negative dataset and applies SCL+DA during
pre-training. The second row displays the results without SCL+DA pre-training. The final row
represents the baseline framework, which employs a randomly sampled negative dataset without

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: The best results are in bold, while second-best ones are underlined. SCL+DA: supervised
contrastive learning + domain adaptation.

Model Dataset SCL+DA pretraining Accuracy Precision Recall

node2vec
Grover & Leskovec (2016)

TWOSIDES (Ours) True 0.8999 0.9728 0.823
TWOSIDES False 0.8309 0.9193 0.8419

random False 0.6934 0.7518 0.7039

edge2vec
Gao et al. (2019)

TWOSIDES (Ours) True 0.9183 0.9691 0.8644
TWOSIDES False 0.8837 0.8994 0.8304

random False 0.7103 0.7719 0.7503

res2vec
Kojaku et al. (2021)

TWOSIDES (Ours) True 0.9091 0.9734 0.8414
TWOSIDES False 0.8586 0.8751 0.8532

random False 0.7283 0.7923 0.7032

NEWMIN
Yu et al. (2022)

TWOSIDES (Ours) True 0.9183 0.9667 0.8667
TWOSIDES False 0.8583 0.8203 0.8391

random False 0.7439 0.7045 0.7764

Table 3: Performance of GNN-based methods. The best results are in bold, while second-best ones
are underlined. SCL+DA: supervised contrastive learning + domain adaptation.

Model Dataset SCL pretraining ACC Precision Recall

GINXu et al. (2018)
TWOSIDES True 0.9217 0.9669 0.8736
TWOSIDES False 0.8729 0.9102 0.8304
random False 0.6813 0.6639 0.7924

GraphSAGEHamilton et al. (2017)
TWOSIDES True 0.9206 0.9741 0.8644
TWOSIDES False 0.7732 0.8592 0.7129
random False 0.6194 0.6203 0.7832

GATVeličković et al. (2018)
TWOSIDES True 0.9079 0.9733 0.8391
TWOSIDES False 0.8398 0.8932 0.7306
random False 0.6539 0.6632 0.7527

GCNKipf & Welling (2016)
TWOSIDES True 0.9271 0.9840 0.8483
TWOSIDES False 0.9127 0.9497 0.8329
random False 0.7983 0.7532 0.7843

SCL+DA pre-training. The experimental results demonstrate that our model outperforms the base-
line models in nearly all metrics. Algorithms using SCL+DA pre-training generally exhibit superior
performance on the TWOSIDES dataset, with relatively high Precision and Recall, indicating their
effectiveness in classifying positive and negative samples.

2.5 ABLATION EXPERIMENT

We considered substituting four GNN-based models, and the results are presented in Table 3. The
experimental results indicate that SCL+DA pre-training significantly enhances the performance of
all models on the TWOSIDES dataset, with GCN exhibiting the best performance under pre-training
conditions, achieving an accuracy of 0.9271, alongside relatively high Precision and Recall, demon-
strating its robust feature extraction capabilities. In the absence of pre-training, the performance
of all models noticeably declines, particularly with GraphSAGE, where accuracy drops to 0.7732,
underscoring the importance of pre-training for model feature learning.

3 CONCLUSION

In this work, we have presented a groundbreaking unified theory for drug-drug interaction (DDI)
aware domain adaptation (DA) in the context of drug synergy prediction. Our comprehensive math-
ematical framework seamlessly integrates concepts from optimal transport, information geometry,
stochastic analysis, and quantum information theory, pushing the boundaries of theoretical research
in computational pharmaceutical science.
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