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Figure 1: Left shows a conceptual comparison of our method to prior methods. We guide our one-step model
via terminal velocity rather than initial velocity. Right shows our 1-NFE samples on ImageNet-256x256.

ABSTRACT

We propose Terminal Velocity Matching (TVM), a generalization of flow match-
ing that enables high-fidelity one- and few-step generative modeling. TVM mod-
els the transition between any two diffusion timesteps and regularizes its behavior
at its terminal time rather than at the initial time. We prove that TVM provides an
upper bound on the 2-Wasserstein distance between data and model distributions
when the model is Lipschitz continuous. However, since Diffusion Transformers
lack this property, we introduce minimal architectural changes that achieve stable,
single-stage training. To make TVM efficient in practice, we develop a fused at-
tention kernel that supports backward passes on Jacobian-Vector Products, which
scale well with transformer architectures. On ImageNet-256 x 256, TVM achieves
3.30 FID with a single function evaluation, representing state-of-the-art perfor-
mance for one-step diffusion models. TVM also establishes a new Pareto frontier
for performance versus inference compute in the few-step regime.

1 INTRODUCTION

Can we build generative models that simultaneously deliver high-quality samples, fast inference, and
scalability to high-dimensional data, all from a single training stage? This is the central challenge
that continues to drive research in generative models. While Diffusion Models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020) and Flow Matching (Liu et al., 2022; Lipman et al., 2022)
have become the dominant paradigms for generating images (Rombach et al., 2022; Podell et al.,
2023; Esser et al., 2024) and videos (OpenAl, 2024; Wan et al., 2025), they typically require many
sampling steps (e.g., 50) to produce high-quality outputs. This multi-step nature makes generation
computationally expensive, especially for high-dimensional data like videos.

In pursuing a single-stage training for few-step inference, recent methods have focused on directly
learning integrated trajectories rather than relying on ODE solvers. Consistency-based approaches
(CT (Song et al., 2023), CTM (Kim et al., 2023), sCT (Lu & Song, 2024)) and trajectory matching
methods like MeanFlow (Geng et al., 2025) learn to predict or match trajectory derivatives. How-
ever, these methods lack explicit connections to distribution matching, a fundamental measure of
generative model quality. While Inductive Moment Matching (IMM) (Zhou et al., 2025) addresses
this gap by providing distribution-level guarantees through Maximum Mean Discrepancy, it requires
multiple particles per training step, limiting scalability.
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We propose Terminal Velocity Matching (TVM), a new framework for learning ground-truth tra-
jectories of flow-based models in a single training stage. Instead of matching time derivatives at
the initial time, TVM matches them at the ferminal time of trajectories. This conceptually simple
shift yields powerful theoretical guarantees. We prove that our training objective upper bounds the
2-Wasserstein distance between data and model distributions. Unlike IMM, our method provides
distribution-level guarantees without requiring multiple particles. Our analysis also reveals a critical
architectural limitation: current diffusion transformers (Peebles & Xie, 2023) lack Lipschitz conti-
nuity, which destabilizes TVM training. We address this with minimal architectural modifications,
including RMSNorm-based QK-normalization and time embedding normalization.

To make TVM practical at scale, we develop an efficient Flash Attention kernel that supports back-
ward passes on Jacobian-Vector Products (JVP), crucial for our terminal velocity computation. Our
implementation achieves up to 65% speedup and significant memory reduction compared to stan-
dard PyTorch operations. We introduce a scaled parameterization where the network output natu-
rally scales with the CFG weight w, allowing the model to handle varying guidance strengths more
effectively. During training, we randomly sample CFG weights and directly incorporate them into
our objective function with appropriate weighting (1/w?) to prevent gradient explosion. This ap-
proach enables stable training across diverse guidance scales without requiring curriculum learning
or specialized loss modifications, making TVM straightforward to implement and scale.

TVM achieves state-of-the-art results on ImageNet-256x256, with 3.30 FID in single-step genera-
tion and establishing a new Pareto frontier for performance versus inference compute in the few-step
regime for the same model (e.g., 2.49 FID at 2-NFE, 2.44 FID at 4-NFE) while matching Mean-
Flow’s (Geng et al., 2025) 1-NFE performance, which achieves 2.93 2-NFE FID with the same
model. Our method naturally interpolates between one-step and multi-step sampling without re-
training, requires no training curriculum or loss modifications, and maintains stability with simple
architectures. Our construction provides new insights into building scalable one/few-step generative
models with distributional guarantees, demonstrating that principled theoretical design can lead to
practical improvements in both training stability and generation quality.

2 PRELIMINARIES: FLOW MATCHING

For a given data distribution po(x) and prior distribution p;(x1 ), Flow Matching (FM) (Lipman
et al., 2022; Liu et al., 2022) constructs a time-augmented linear interpolation x; between data
xo € RP and prior x; € RP such that x; = (1 — t)xo + tx;'. For each path x; conditioned on a
(%0, x1) pair, there exists a conditional velocity v; = x; — xg for each x;. Under this definition, a
ground-truth velocity field u : RP x [0,1] — R” marginal over all data and prior exists but is not
known in analytical form. Therefore, a neural network ug(x;, t) is used as approximation via loss

Lo (0) = Ex, v el (xe,t) = v 3] )
forall t € [0,1] and x; ~ p:(x:) where p;(x;) denotes the marginal distribution over all data and
prior. It can be shown that the minimizer 0, implies ug,, (x¢,t) = u(xs,t) which can be used
during inference to transport prior to data distribution by solving an ODE %xt = u(xy,t).

For each ground-truth u(x;, t), there exists a corresponding displacement map 1 : RP x [0,1] x
[0,1] — RP (i.e. flow map (Boffi et al., 2024)) from any start time ¢ € [0, 1] to an end time s € [0, 1].
It is defined as the ODE integral following u(x,., ) for all r € [s, t], i.e.

Y(xy,t,8) = x4 + /S u(x,,r)dr. 2)
t

Empirically, ug(xy, t) is used with classical ODE integration techniques such as the Euler method
to produce samples.

3 TERMINAL VELOCITY MATCHING

We propose Terminal Velocity Matching (TVM), a single-stage objective that directly learns the
ODE integral in Eq. 2. By learning the transition between any two timesteps, TVM can generate
high quality solutions in one step or few steps, while enjoying inference-time scaling.

'See Lipman et al. (2022); Albergo et al. (2023) for general path constructions.
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Figure 2: An illustration of Terminal Velocity Matching. Left shows the ground-truth displacement map by
integrating the true velocity. Right shows our model path directly jumping between points on the ground-truth
path in one step. In our method, the one-step generation x( from x; coincides with ground-truth xo if the
terminal velocity of model <-f(xy, ¢, s) coincides with ground-truth velocity u(xs, s) for all s € [0, ¢] along
the true flow path (see Eq. (7)). The terminal velocity condition is jointly satisfied with the boundary case when
model displacement is 0, where matching - f(x¢, ¢, s)|s—¢ with u(x, ¢) reduces to Flow Matching.

Let f(x¢,t,8) := 1(xy, t, s) — x4 denote the ner displacement of the velocity field. We observe that
it must satisfy the following two conditions:

s
d
@O f(xy,t,s) = / u(x,,r)dr, ©) d—f(xt,t,s) = u(xy,t). 3)
t S s=t

The first condition is the definition of net displacement and the second condition is true by differenti-
ating both sides of the first condition w.r.t. s evaluated at s = £. It explicitly relates the displacement
map (with large time jump) to the marginal velocity field (with infinitesimal time jump), allowing
us to interpolate between one-step sampling and ODE-like infinite-step sampling.

One of our key insights is that we can use a single two-time conditioned neural network Fy(x¢,t, s)
to learn both the one-step displacement sampler from ¢ to s and the instantaneous velocity field. For
simplicity, we let our model with learnable parameters 6 be

d
fo(x¢,t,8) = (s — t)Fo(x4, t, 5), up(x¢,t) 1= gfg(xt,t, s)
where the scaling (s — t) is chosen to satisfy integral boundary condition when ¢ = s>. Condition
) can be easily enforced by FM loss (in Eq. (1)) and condition (1) can be naively enforced via the
displacement error
2
1 . &)
2

Once the above error is minimized to zero, one can obtain one-step samples by calling x; +
fo(x¢,t,0) for any x; ~ p(x:) at ¢ € [0,1]. However, this objective is infeasible because it re-
quires ODE integration for each starting point x;. We address this challenge by proposing a simple
sufficient condition to the network that bypasses explicit training-time ODE simulation.

= FG(Xt7t7t) (4)

s=t

0
ﬁfiispl(o) = ]Ext [ fg(Xt,t,O) - / ll(Xr,T)d’/'
t

Terminal Velocity Condition. Explicit integration can be bypassed via differentiating w.r.t. integral
boundaries. For the ground-truth net displacement f(x;, ¢, s) in condition (1), differentiating w.r.t. s
gives rise to the following condition on terminal velocity, i.e.

d
&f(xtvtas) = u(w(xtvtas)’s)' (6)

This condition is true for any ground-truth net displacement f, and we show in Appendix A.2 that
given t € [0, 1] and our parameterized map £y (x:, ¢, s),

t
d
‘céispl(e) < /O Ext [“dsfa(xt7tvs) - u(w(xtvtas)as)

2
] ds. 7

2

This result shows that the terminal velocity error on the right hand side upper bounds the displace-
ment error, and so zero terminal velocity error implies that displacement from ¢ to 0 matches exactly.

2This is similar to CTM (Kim et al., 2023). See Appendix A.1 for conditions on general scaling factors.
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Moreover, it is easy to see that the terminal velocity error reduces to the marginal FM loss as ¢ — s
(see Appendix A.3). FM can thus be understood as matching a trajectory’s terminal velocity when
the net displacement is 0. An illustration of our framework is shown in Figure 2. Despite the sim-
plicity and generality, in practice, fulfilling this condition is still difficult due to the requirement of
1) and u. Fortunately, this issue can be effectively addressed using learned network as proxies.

Learned networks as proxies. Specifically, we propose the following approximation
U(Q/’(Xtvtvs)»s) %ua(xt'i_f@(xtatvs)vs) (8)

as proxies for the ground-truths. To properly guide the terminal velocity, ug(xs, s) needs to first
approximate the ground-truth u(xs, s) for any x, and s. Therefore, the proxy terminal velocity error
can be jointly optimized with Flow Matching, which, as noted above, is a special boundary case of
the terminal velocity error when displacement is 0. We use the term “Terminal Velocity Matching”
for this joint minimization of general and boundary-case velocity error, where the objective is

2
2 9

for each time ¢ € [0,1] and s € [0,¢]. Intuitively, this objective leverages a single network to
parameterize both the instantaneous velocity field and the displacement map, the former of which is
learned from data to guide the learning of the latter. To provide further theoretical justification, in
the following theorem, we formally establish a weighted integral of our objective as a proper upper
bound on the 2-Wasserstein distance between the data distribution pg(x) and our model distribution
£Y o #p:(x;) pushforward from p;(x;) via our parameterized flow map.

Theorem 1 (Connection to the 2-Wasserstein distance). Given t € [0, 1], let £7, #p;(x;) be the
distribution pushforward from py(x;) via f9(x¢,t,0), and assume g(-, s) is Lipschitz-continuous
Sor all s € [0,t] with Lipschitz constants L(s), with additional mild regularity conditions,

2
£’?€M (0) = Ext7x57vs [ + Hug (XS’ 8) — Vs
2

d
]dst@(xt,t, 8) —wg(xc + £ (1, . 5), )

satisfies (1) satisfies Q)

t
W2(E0 o #prpo) < / ALL(5) 45 (0)ds + C, (10)

where Wa(-, ) is 2-Wasserstein distance, A[-] is a functional of L(-), and C' is a non-optimizable
constant.

Training objective. The theorem relates our per-time objective to distribution divergence. How-
ever, for practicality, we avoid computation of the above weighting function and instead choose to
randomly sample both ¢ and s via distribution p(s, t) such that

Lrvm(0) = Ev s [Lryn(0)] (11)

where notably Ltym(#) reduces to Flow Matching objective when ¢ = s (see Appendix A.5). In
practice, we employ a biased estimate of the above objective by using exponentially averaged (EMA)
weights and stop-gradient for our proxy networks (Li et al., 2023). The biased per-time objective

[:tT\S}M(a) is

d
‘dsfg(xt, t,s) —ugs (x¢ + fo, (x4, 2, 5), 5)

2 2
II':‘:xt,xs,vs [ 1t7£s + Hue(Xs, 5) — Vg ] (12)
2 2

where 0, and 6, are the stop-grad weight and stop-grad EMA weight of 6, and 1, is 0 when ¢ = s
and 1 otherwise to ensure the constraint to reduce to FM loss when ¢ = s.

Classifier-free guidance (CFG). In the case of class-conditional generation. The ground-truth ve-
locity field is replaced by a linear combination of class-conditional velocity u(x,., r, ¢) and uncon-
ditional velocity u(x,, ) (Ho & Salimans, 2022), such that the new displacement map is

7/1“,()(15, tv 576) =X+ /S [wu(XTvrv C) + (1 - w)u(XT?T)] d’l”7 (13)
t

where w is the CFG weight, c is class and & denotes empty label. To train with CFG, we ad-
ditionally condition the network on w and ¢, and our class-conditional map is fp(x¢, ¢, s, ¢, w) =
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(s —t)Fo(x4,t, s, c,w) where the additional w scale is chosen due to linear scaling in magnitude for
marginal velocity w.r.t. w. The instantaneous velocity ug(Xs, s, ¢, w) is regressed against conditional
velocity wv; + (1 — w)u(x,,r) where we can approximate u(x,,r) with our own network (Chen
et al., 2025). The per-time and per-class Flow Matching term can be modified as

~ 2
L3587 (0) = Ex v, [Hue(xs,s,c, w) = [wv + (1 = w)ug, (x,,5,2,1))] M .4

where 607, denotes EMA weights. We show in Appendix A.6 that the minimizer of this objective

t,s,w

coincides with the ground-truth CFG velocity in Eq. (13). Our class-conditional objective ﬁTVM 0)
can be modified as

1 2 R
lt#s + 'C;i\?w (9>
2

d
EEXDC U‘dsf‘g(xt,t,s,c,w) - uG;‘g(Xt + o, (x4, 1,8, c,w), 5, ¢, w) . (15)

The weighting 1/w? is to prevent exploding gradients because the magnitude of ground-truth ve-
locity scales linearly with w. Final objective simply samples each of ¢, s, w under some distribution
p(t, s)p(w) and computes the above loss in expectation. We randomly set ¢ = & with some proba-
bility (e.g. 10%) and for each ¢ = & we set w = 1. Our training algorithm is shown in Appendix D.

Sampling. Our construction can naturally
interpolate between one-step and n-step
sampling. See Figure 3 for PyTorch-style
sampling code.

def sampling(net, x, n, c, w):
ts = torch.linspace(l, 0, n+1)
for t,s in zip(ts[:1],ts[1:]):
X = X + (s—t) * net(x, t, s, c, w)
return x

4 PRACTICAL CHALLENGES Figure 3: PyTorch-style sampling code.

We note and address several challenges to
practically implement our objective.

Semi-Lipschitz control. Theorem 1 makes the crucial assumption that ug(xs, s) is Lipschitz con-
tinuous. However, modern transformers with scaled dot-product attention (SDPA) and LayerNorm
(LN, Ba et al. (2016)) are not Lipschitz continuous (Kim et al., 2021; Qi et al., 2023; Castin et al.,
2023). This issue similarly applies to diffusion transformers (DiT) (Peebles & Xie, 2023). Our
insight is to make minimal and non-restrictive changes to the architecture for Lipschitz control.

As shown in Figure 4, the original DiT experiences training
instability leading to steep jump in network activations. As
a solution, we adopt RMSNorm as QK-Norm, which coin-
sides with the proposed Lo QK-Norm (Qi et al., 2023) with
learnable scaling and is provably Lipschitz continuous. We
also substitute all LN with RMSNorm (without learnable pa-
rameters, denoted as RMSNorm™ (+)), whose Lipschitzness we e e o o
show in Appendix B.1. In addition, DiT introduces Adap- Training Steps

tive LayerNorm (AdaLN) where the output of RMSNorm is Fi ) . .

. . igure 4: Activation norm of last time
modulated Py MLP outputs of time er.nbed(ﬁngs denoted as embedding layer. Same trends follow
RMSNorm™ (z) © a(t) 4- b(t) where x is the input feature and o 411 other layers.
a(t),b(t) are scale and shift respectively. However, the Lips-
chitz constant of this layer depends on the magnitude of a(t)
which can grow unbounded and is subject to instability. We therefore employ RMSNorm™ (-) again
on all modulation parameters for

w

—— wJ/o Lipschitz
w/ Lipschitz

IS

w

~

-

AdaLN Act Norm

~—

o

AdaLN(z,t) = RMSNorm™ (z) ® RMSNorm™ (a(t)) + RMSNorm™ (b(t)). (16)

Figure 4 also shows the activation with our proposed changes. Activations stay smooth after our
fixes. Finally, we follow Qi et al. (2023) and use Lipschitz initialization for all linear layers except
for time embedding layers. Note that these modifications do not explicitly constrain the Lipschitz
constants of all but the key layers where instability can arise. We find such partial control of the
Lipschitzness is sufficient for empirical success.
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Flash Attention JVP with backward pass. The training objective involves the time derivative of
our map fy(x;, ¢, s), which can be derived as

%fe(xtv t, 3) = F@(Xta t, S) + (S - t)ang(Xt, t, S) (17)
where the last term involves differentiating through the network with Jacobian-Vector Product
(JVP). This poses significant challenge for transformers because automatic differentiation pack-
ages, e.g. PyTorch, often do not efficiently handle JVP of SDPA. Open-source Flash Attention (Dao
et al., 2022) also has limited support for JVP. Crucially, different from prior works (Lu & Song,
2024; Geng et al., 2025; Sabour et al., 2025), gradient is also propagated through the JVP term
0sFg(x¢,t,s). To tackle these challenges, we propose an efficient Flash Attention kernel that (i)
fuses JVP with forward pass, (ii) uses significantly less memory than naive PyTorch attention, and
(iii) supports backward pass on JVP results. We detail the implementation in Appendix C.

Optimizer parameter change. Due to higher-order gradi- 0.050
ent through JVP, our loss can be subject to fluctuation with il | — ﬁzfg'Z:Q
the default AdamW (> = 0.999. We take inspiration from v .. ‘ p=o:

language models (Touvron et al., 2023) for mitigation and S oo (

use B2 = 0.95 to speed up update of the gradient second I8 o
moment. As show in Figure 5, the terminal velocity error boss “MWMAMMWMMWLJUM
fluctuates significantly less after S5 change. 0010

0Ok 50k 100k 150k 200k 250k
T . Training Steps
Scaled parameterization. The ground-truth CFG velocity g=tep

scales linearly in magnitude with w, so using neural net- Figure 5: Smoother terminal velocity er-
works to directly predict the velocity may be suboptimal. We ~ 1or with f2 = 0.95.

therefore additionally investigate a simple scaled alternative

as fp(xy, t, s, c,w) = (s — t)wFg(xy, t, s, ¢, w) so that ug(Xs, s, ¢, w) = wFy(Xs, s, 8, ¢, w) which
scales with w by design. We study the effect of this parameterization in experiments.

5 CONNECTION TO PRIOR WORKS
MeanFlow. MeanFlow (Geng et al., 2025) minimizes loss Ex, ¢ s {HF@(xt, t,s) — thlﬂg} where
Fg =u(xy,t) + (s —t) [u(xt7 t) - Vi, Fo,(x¢,t,8) + 0tFo, (x4, , s)] (18)

This loss can be equivalently rewritten as Ex, ¢ s [H %f(;(xt, t,s) +u(xe,t) Hﬂ where fp(x¢,t,8) =

(s—t)Fy(x¢,t, s) and loss is minimized if and only if %fg (x4, t,8) = —u(xy,t) (see Appendix E.1).
This exhibits duality with our proposed method in that we enforce a differential condition w.r.t. s
while MeanFlow differentiates w.r.t. ¢ which requires u(x¢,t) to be propagated through JVP. In
practice, u(xy, t) is replaced with v;, which introduces additional variance during training and can
cause fluctuation in gradient, especially under random CFG during training (see Section 7.2). Ad-
ditionally, the relationship between the loss and distribution divergence remains elusive with the
introduction of v;. In contrast, we show our loss upper bounds 2-Wasserstein distance up to some
constant, and our theory provides the unique insight of enforcing the Lipschitzness of our network,
which stablizes training.

Physics Informed Distillation (PID). PID (Tee et al., 2024) as inspired by Physics Informed Neural
Networks (Raissi et al., 2019; Cuomo et al., 2022) distills pretrained diffusion models uy (x¢,t) into
one-step samplers. It parameterizes the one-step net displacement as f5(x1,s) = (s — 1)ugp(xy, )
where x; ~ p1(x1) and trains via distillation loss

2

] (19)

2

d
Ex, s U‘dsfe(xl’s) —ug(x1 + fo, (x1,5), )

Our method generalizes the setting by introducing the starting time ¢ in addition to the terminal time
s. Under this view, PID sets ¢ = 1 and can only generate one-step samples. We additionally show
in Section 7.3 that naive combination of PID and FM loss suffers from optimization instability and
a continuous distribution on ¢ is necessary for empirical success.
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6 RELATED WORKS

Diffusion and Flow Matching. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020) learn generative models by reversing stochastic processes, while Flow Matching (Liu
et al., 2022; Lipman et al., 2022) generalizes this to arbitrary priors with simplified training. Both
approaches ultimately solve ODEs with neural networks during sampling.

One-Step and Few-Step Models from Scratch. To address slow inference from ODE simulation,
recent methods aim for few-step generation in a single training stage. Consistency models (Song
et al., 2023; Lu & Song, 2024) parameterize networks to represent ODE integrals but cannot jump
between arbitrary timesteps without injecting additional noise, which can limit multi-step perfor-
mance. Two-time conditioned approaches enable arbitrary timestep transitions: IMM (Zhou et al.,
2025) provides distribution consistency via Maximum Mean Discrepancy but requires multiple par-
ticles; MeanFlow (Geng et al., 2025) and Flow Map Matching (Boffi et al., 2024) match trajec-
tory derivatives but lack distributional guarantees. Other variants bypass differentiation via Monte
Carlo (Liu & Yue, 2025) or combine distillation with FM (Frans et al., 2024; Boffi et al., 2025).

Unlike these methods, TVM regularizes path behavior at the terminal time rather than initial time
and provides explicit 2-Wasserstein bounds. While sCT and MeanFlow only compute forward JVP,
TVM uniquely supports backward passes through the JVP computation, enabling full gradient flow
for the terminal velocity objective. These innovations drive both our theoretical insights and archi-
tectural improvements.

7 EXPERIMENTS

We investigate how well TVM can generate natural images (Section 7.1), discuss its advantages
compared to previous methods (Section 7.2), and ablate various practical choices (Section 7.3).
Additional details can be referred to Appendix F.

7.1 IMAGE GENERATION

Shown in Table 1 are the FID results for ImageNet-256x256. Our method noticeably achieves
state-of-the-art 1-NFE FID among methods trained from scratch, outperforming MeanFlow (Geng
et al., 2025) and IMM (Zhou et al., 2025). For the two versions reported (which differ in their time
sampling strategies discussed in Section 7.3), both can match and exceed MeanFlow in 1-NFE while
achieving noticeable gap in 2-NFE quality, i.e. 2.93 for MeanFlow and 2.49 for TVM. Our objective
can thus more optimally leverage the network capacity. In addition, TVM also exhibits efficient
inference-time scaling properties, where lower FID is achieved for each additional NFE. Our 4-NFE
outperforms 8-NFE IMM. As shown in Figure 6, our method achieves state-of-the-art Pareto frontier
among all recently proposed single-stage few-step methods.

7.2 DISCUSSION ON TRAINING ADVANTAGES

Single sample objective. Unlike IMM (Zhou et al., 2025) which uses more than 4 samples to cal-
culate its loss, we use a single sample to for loss calculation without losing a distribution-matching
interpretation. This also allows the objective to be scaled to large models and high-dimensional
datasets where batch size on each GPU is constrained to be 1.

Training with random CFG. Our construction allows us to randomly sample CFG scale during
training without collapse. We attribute this stability to our JVP being only calculated w.r.t. s which
is invariant to starting position x; and time ¢. In contrast, continuous-time Consistency Models (Song
et al., 2023; Lu & Song, 2024) and MeanFlow (Geng et al., 2025) require velocity u(x¢,t) to be
used in the JVP calculation. In the case of random CFG, this velocity can vary widely in magnitude
which, if propagated through JVP, can cause wide fluctuation in gradient norm (see left two in
Figure 7) and degrades performance. Our method, as shown on the right of Figure 7, successfully
converges even in the presence of random CFG. We note that random sampling of CFG does not
give optimal results as some CFG scales experience degradation in FID during training, and constant
CFG performs better in comparison. We postulate that the under-performance of random CFG is due
to limited capacity of the network and the weighting function 1/w? that down weights high CFG.
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NFE FID  # Params. STXL2 x:ﬁ—g?&g;xuz
Diffusion/Flow —o— IMM-XL/2
—e— TVM-XL/2 (clamp)
DiT-XL/2 (Peebles & Xie, 2023) 250 227 675M —_— f"rgggft'ggv)'xuz TVM-XL/2 (gap)
SiT-XL/2 (Ma et al., 2024) 250 2.15 675M
One/Few-Step from Scratch 5.5
iCT-XL/2 (Song & Dhariwal, 2023) 1 3424 675M 5.0
2 20.3 675M
Shortcut-XL/2 (Frans et al., 2024) 1 1060  675M 45
IMM-XL/2 (Zhou et al., 2025) 1x2 805 675M Q40
2x2 399 675M w
2x4 251 675M 35
MeanFlow-XL/2 (reported) (Geng et al., 2025) 1 343 676M 30
2 2.93 676M ’
MeanFlow-XL/2 (retrained®) (Geng et al., 2025) 1 343 676M 2.5
2 4.26 676M
4 4.62 676M 10? 10° 10*
TVM-XL/2 (Ours) (clamp) 1 3.30 678M GFLOPs
2 280  678M ) .
TVM-XL/2 (Ours) (gap) 1 3.44 678M Figure 6: Our method exhibits state-of-
2249 618M  the-art Pareto frontier for inference-time
4 2.44 678M . L. . .
scaling, achieving superior FID with equal
Table 1: FID results on ImageNet-256x256. number of NFE compared to baselines.
L1 .
g § of —e— rand. w=15
= 2 5 20 —e— rand. w=2
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Figure 7: (Left) MeanFlow is subject to wide variation in gradient norm if CFG scales (i.e., x and w) are
randomly sampled during training (see Appendix F.2 for details). (Middle) The gradient norm variation with
random CFG is strongly correlated with the fluctuation of |[u(x¢, t)|| norm. (Right) Our method converges with
random CFG at training time, although tradeoff exists between different CFG in FID. Constantly sampled CFG
works best.

This phenoemenon is similarly observed in CFG-conditioned FM training (see Appendix F.3) and
we leave any improved design to future work.

No schedules and loss modification. We do not rely on training curriculum such as warmup sched-
ules in sCT. For each CFG scale, we use the guidance-scaled velocity for all ¢, s, while MeanFlow
relies on additional hyperparameters to turn on CFG only when ¢ is within a predetermined range.
We also strictly adhere to the simple L5 loss without any adaptive weighting as proposed by Mean-
Flow. We believe the simplicity in our design allows for more scalability.

7.3 ABLATION STUDIES

We ablate various implementation decisions and discuss insights from different parameter choices.
Results are presented with XL/2 architecture trained for 200K steps.

Time sampling. Similar to Flow Matching, different time sampling schemes can greatly affect
performance. We explore 4 different kinds of sampling schemes.

 Truncated sampling (t runc). Let (u,0y), (4s,0s) denote ¢t being sampled from logit-
normal distribution with mean and standard deviation (¢, 0¢) and s beinsg sampled from trun-
cated logit-normal distribution with parameters (us, o) such that s < ¢t.

* Clamped independent sampling (clamp). Let (u,0:), (is,05) denote ¢ and s being inde-
pendently sampled from logit-normal distributions with mean and standard deviation (¢, o)
and (ps,05), and set s = tif s > ¢.

* Truncated gap sampling (gap). Let (1g, 04), (s, 05) denote the gap g = ¢t — s being sampled
from logit-normal distribution with mean and standard deviation (ug, 04), and s sampled from
logit-normal with parameters (i, 0) truncated at 1 — g. Then sett = s + g.

In Table 2 we show comparison within each sampling scheme and conclude that better results are
obtained when ¢ is biased towards 1 and s biased towards O so that the model learns to take longer
strides. However, biasing too much, e.g. u; = 2.0,0; = 2.0, leads to worse results. For gap,
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trunc (p1¢, 04), (s, 05)  FID clamp (¢, 04), (11s,05)  FID 2ap (pig,0g), (fs, 0s) FID :z
(—04,1.0), (—04,1.0) 459 (2.0,20),(—04,1.0) 388  (—04,1.0),(-0.4,1.0) 5.12 e
(20,1.0),(<04,1.0) 400  (20,10),(—04,1.0) 411 (-08,1.0),(-0.4,10) 372 2 .
(2.0,2.0),(~04,1.0) 401  (20,1.0),(-0.6,1.0) 400 (—08,14),(—04,1.0) 395 »
(20,20),(—06,1.0) 788  (1.0,1.0),(—0.4,1.0) 3.66  (-1.0,12),(-0.4,1.0) 382 *
(10,1.0),(—04,1.0) 370 (1.0,2.0),(—041.0) 383  (-1.0,14),(—04,1.0) 3.94 00c 130 ook ok o0k

Training Steps
Table 2: Ablation studies on different time sampling schemes, evaluated by . .
1.NFE FID. Figure 8: FID trend on the

sampling schemes.

p(w) 1-NFE EMArate v 1-NFE Scaled Param. 1-NFE 2-NFE % t=s 1-NFE 2-NFE
rand., w = 1.5 9.37 v=0 10.24 yes, w = 2 3.72 3.35 0 3.72 3.35
rand., w = 2 5.14 v=09 5.08 no, w = 2 3.82 3.27 10% 391 3.18
const., w =15  6.66 ~=0.99 4.90 yes, w = 1.5 6.04 4.60 20% 3.88 2.97
const., w = 2 4.81 v = 0.999 6.04 no, w = 1.5 9.32 7.02 30% 3.97 3.07

(a) Random vs. constant (b) EMA of pseudo- (c) With vs. without scaled pa- (d) Prob. for t = s dur-
CFG sampling evaluated target 0g,. rameterization. ing training.
at example w’s.

Table 3: FID ablation on various sampling/parameterization decisions.

sampling ¢ — s with lower mean is preferrable to higher mean. As compared in Figure 8, we ob-
serve t runc’s performance degrades and clamp plateaus faster than gap. We therefore use gap
sampling by default.

We also find sampling ¢ from a sparse discrete set (for few-step inference) during training causes
significant instability, which we postulate is caused by insufficient training for ¢ ~ s and the model
cannot extrapolate to large strides immediately. Therefore, we conclude that a continuous distribu-
tion on ¢ is necessary.

CFG sampling. As described in the previous section, due to limited capacity of the model, we
observe tradeoff in performance when CFG is randomly sampled during training. This is reflected
in Table 3a. We note that constant CFG always outperforms random CFG, and for constant CFG
sampling we find w = 2 converging faster than the default w = 1.5 for Flow Matching.

EMA target rate . The target EMA weight 6* plays a significant role in accelerating convergence
of the model. Shown in Table 3b, non-EMA target, i.e. v = 0, noticeably lags behind v > 0
alternatives. However, too large of a v, e.g. 0.9999, also causes instability because of the overly
slow target update. A sweet spot exists around v = 0.99 which we use as default.

Scaled parameterization. In Table 3c, we show that scaled parameterization is beneficial in most
cases. It achieves greater improvements in FID for lower CFG scales, i.e. w = 1.5.

Probability for ¢ = s. We also investigate the effect of setting a percentage of ¢ to s to focus
on pure FM training. We find that > 0% degrades 1-NFE performance while it improves 2-NFE
performance, which may suggest a practical tradeoff when training our few-step model.

8 CONCLUSION

We present Terminal Velocity Matching, a framework for training one/few-step generative model
from scratch. Different from prior works, we match the terminal velocity of a flow trajectory instead
of the initial velocity, and we show our objective can explicitly upper bound 2-Wasserstein distance
up to a constant. Our method simultaneously achieves state-of-the-art one-step result and Pareto
frontier for performance scaling at inference time. We hope TVM can provide new insights into
making scalable and performant one/few-step generative paradigms to come.

3Since XL/2 checkpoint is not released, we make our best effort to retrain in PyTorch and select based on
the best 1-NFE result.
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A THEOREMS AND DERIVATIONS

A.1 GENERAL NETWORK PARAMETERIZATION

In general, we can parameterize our net displacement as

f9 (xt7 t? S) = 7(t7 S)Fa (Xt7 ta 5)

(20)

for some ~y(¢, s) that satisfies v(¢, ¢) = 0 for boundary condition. And for the velocity condition, we

let

d
ug(x¢,t) = gfg(xt,t,s) =3(t)Fo(x4,t,1)

s=t
where ¥(t) = 057(t, 8)|s=t-

We derive %fg (xt,t, 5)|s=¢ below for clarity.

d
&fG(XD t7 S) _t = 857(t7 S)FG(Xt> t7 S) + 7(t7 s)aSFG(Xta t7 S)

s=t
— 94yt 8)|smeFo (%0, 1, 1) + (L, 1) [8SF9(xt,t, 5)
= aLS/Y(t7 S) |8:tF9 (Xt, tu t)

- ’7(t)F9 (Xt7 ta t)

-

A.2 TERMINAL VELOCITY ERROR UPPER BOUNDS DISPLACEMENT ERROR
Lemma 1. Under mild regularity assumptions, the following inequality holds,

2
ds
2

’CdlYpl( xt U‘ Xtat s u(¢(Xt,taS)aS)

where p;(x:) is marginal distributions for initial points X;.

Proof. We assume both displacement maps are Riemann-integrable, then

2

2‘|
t

= Ex,mpi(x:) H/ —fg (x4, t, 8 dsf/o u(t(xy, t,s), s)ds

2
ds
2

0
fG(Xtvtvo) - / u(XS,S)dS
t

‘C'dlspl( ) - ]Extwpt(x,,) [

2

2‘|

) [t d

< / Extrvpt(xt) ["MfQ(Xt7tas)_u(w(xtat75)75)
0

where (x) uses triangle inequality and regularity assumption.

A.3 TERMINAL VELOCITY ERROR REDUCES TO FM

Consider the terminal velocity error for each time s as

if@(xt,t, 8) - u(¢(xt,t, 8)7 S)

Ex
t Hds

j

d
£f9(xt,t, s) =Fo(xy,t,5) + (s —£)0sFo(xy, t, 5)

Expand the inner term

12

2L

(22)

(23)

(24)
(25)

(26)

27)

(28)

(29)

(30)

3D
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and for the inner norm term its limit exists as ¢ — s:

d
%E}% |:de0(Xt7t75) - u(w(xhtas)as)] (32)
= lim [Fo(x, 1, 5) + (s — )0:Fo(xe,t,5) — u(t(xt, 1, 5), )] (33)
=Fy(xs,,5) —u(xs, s) (34)

Thus, the limit of its expected Lo-norm exists (assuming this norm is bounded) and is equal to
Lo-norm of its limit, which is

Ex. [[Fo(xs,5,5) = ulx,,s)l] (35)

and this is the original FM loss, which is equivalent (up to a constant) to conditional Flow Matching
loss used in practice in Eq. (1).

A.4 MAIN THEOREM

Theorem 1 (Connection to the 2-Wasserstein distance). Given t € [0, 1], let 7, #p:(x;) be the
distribution pushforward from p(x:) via fp(x¢,t,0), and assume vy (-, s) is Lipschitz-continuous
forall s € [0,t] with Lipschitz constants L(s), with additional mild regularity conditions,

¢
WHEotpron) < | MENS)Lyng(6)ds + C. (10)
0
where Wa(-, ) is 2-Wasserstein distance, \|-] is a functional of L(-), and C' is a non-optimizable

constant.

Proof. Note that the ground-truth flow map ¢ is invertible and that ¥ (v(x¢,¢,0),0,t) = x; and
’l/)(’(ﬁ(Xo, O7 t), t, 0) = Xq.

(@)

W2(E0 0% po) < / po(30)||fo (1 (x0, 0, ), £, 0) — x| 2dxo (36)

= /pO(XO)HXt + f@(w(x(h 07 t)7 t7 0) - ¢<¢(X07 07 t)7 t7 0)”§dx0 (37)

= [ il + £ £.0) — s £, 0) s (38)
0 4q 0 2

:/pt(xt) / —fg(xt,t,s)ds—/ u(xs, s)ds|| dx; (39)
. ds ‘ 5

(47) g 2

S /pf(Xf) / gfg(xt,t, S) — u(d)(xt,t, S), S) deXt (40)
0 2

e(x¢,t,s)
where () is due to Wasserstein distance being the infimum of all couplings, and we choose a par-

ticular coupling of the two distribution by inverting xy with ¢/ and remapping with respective flow
maps. And (i4) is due to Lemma 1. Now, we inspect e(x, t, s) specifically by noticing that

€(Xt7 ta S)

= ||%f9(xt7ta 5) - u(’l/)(xtvta S)ﬂ S) + llg(?/J(Xt,t, S)? S) - u9(¢(xtat7 5)7 5)

+ up(fy(xy, t,s),s) 7U9(f9(xt,t,5),5)”2 41)
@ d 2
S ‘dsfe(xta ta 8) - ub‘(fe(xta ta S), 8) + ||110(1/J(Xt7 ta S)’ S) - u(¢(xta ta 8)7 3)”3
2
§(x¢,t,s)
+ ||119(f9(Xt,t7S)7S) _u9(w(xt7ta3)’3)”§ (42)
(21) i d 2
< Sxisti) + L(s) [ || S0t — u(wx b)) | @3)
s 2

e(xt,t,u)

13



Under review as a conference paper at ICLR 2026

where () is due to triangle inequality and (4¢) is due to Lipschitz-continuous assumption. We further
notice that right-hand-side contains a term that is the integral of the left-hand-side. For simplicity,

we hold x; and ¢ constant and let

y(s) = / e(xt, t,u)du , y(s) = —e(xy,t, 8)

and we arrive at the following inequality,

t r r t

S

t 0
—/ eftTL(")d“(S(xt, t,r)dr < M— elt L(“)d“y(s)

S

S

t
oI L(“)duy(s) < / eli L(u)dué(xm t,r)dr

S

t
y(S) < / eftr L(u)du_fts L(u)du(s(xt’ t, ’I")d?"
St )
y(s) < / el Bwdus(x, ¢ r)dr
Therefore, setting s = 0 we have

¢ t
/ e(x¢, t,u)du < / elo L(w)du §(x¢, t,u)du
0 BT

where the left-hand side is the inner term of Eq. (40). Then,
t
Eq. (40) < /pt(xt)/ AL)(s) - 6(x¢, t, s)dsdx,
0

= [ ML) B 18011, 5) = B 5). )

g (9, 5), 5) = u(th(x0,t,9), 9)]13 | ds

= [ ML) - (B . 5) o 1. .9, 91

+ ]Ext :”u(’(w(xtv L, S)a S) - Ll('l/J(Xt, L, 8)7 S)||§}‘| ds

= [ MBI - (B [t 5) o 9,51

+Eth@&@—m&smﬂ}u

(a)

where (a) can be rewritten as

(@) = B, [l (xs,5) = Vi3] + €

(44)
(45)

(40)

(47)

(48)

(49)

(50)

61V

(52)

(53)

(54)

(55)

(56)

(57)

where C' is some non-optimizable constant (Lipman et al., 2022). This is also a classical result

connecting score matching and denoising score matching (Vincent, 2011).

14
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Now, after substitution, we notice that our bound in Eq. (56) becomes
t
/ ALL)(3) Lty (0)ds + C (58)
0
where C' is some other constant, which completes the proof. O

A.5 REDUCTION TO FLOW MATCHING

When ¢t = s, we show that Ltym(0) reduces to Flow Matching loss.

d 2
E'tlz\t/M(e) = Ext7xs:vs ["mfe(xt7t78) - U.@(f.g(Xt,t’S),S) + HUQ(XS7S) — Vs
2

2
~ B, oty A + i) ve| | (60)

A.6 DERIVATION FOR CLASS-CONDITIONAL TRAINING TARGET

In Eq. (14), we introduced the CFG training target as
wvy + (1 — w)uéfg(xs, 8, )

We derive below that the minimizer of Eq. (14) is the CFG velocity wu(xs, s, ¢) + (1 — w)u(xs, s).
Proof. Consider the training objective (without weighting for simplicity)

Ex. v..s.cow [Huéu(xs, s,¢) — [wvt +(1- w)uégg(xs, S, @))} Hz} (61)
when ¢ = &, w = 1, then it reduces to
Ex. v..s [Hu;(xs, 5,0) — thj} (62)
with the minimizer Oy satisfying uj (X, s, @) = u(x,, s).

At minimum of the loss for other w and c, it must satisfy

uy (xg,8,¢) =Ey, [wvs +(1- w)uémi“ (xs,8,9) | x5, 8, ¢, w} (63)
= wEy, [vs | Xs,8,¢] + (1 — w)uémm(xs7 s, 9) (64)

= wu(xs, s,¢) + (1 —w)u(xs, s) (65)

O

B ADDITIONAL DETAILS ON PRACTICAL CHALLENGES

B.1 LIPSCHITZNESS OF RMSNORM

Recall the definition of RMSNorm, for input 2 € R? and a small constant € > 0

T

RM = — h RM =
SNorm(z) RMS(2)’ where S(x) (66)
And its Jacobian can be calculated as
d d Z;
—RMSN )= o= 67
dz; orm(z;) dz; (RMS(x)) (©7)
RMS(x)?
(Sij TiTj (69)

"~ RMS(z) d-RMS(z)3
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def get_f_and_dfds(net, xt, t, s, c, w):
def model_wrapper(x_, t_, s.): # we use t—s for second time condition
return net(x_, t_, (t_ — s.), c, w)
F, dFds = torch. func. jvp(model_wrapper, (xt, t, s), (0, 0, 1))
f_ts = xt + (s —t) % F
dfds = (F + (s — t) * dFds)
return f_ts, dfds

Figure 9: PyTorch-style JVP code.

Since matrix norm (largest singular value) o(A) of matrix A is upper bounded by its Frobenius
norm, and RMS(z) > ¢, we have each element %RMSNorm(xi) in the Jacobian matrix bounded
via

2

2 2

d 0ii LT
—RMSN )l < Y e 70
dz, orm(zs)| < ‘RMS(x) + ’d “RMS(2)° (70)
2 2
|9 2+ i /Vd i /Vd 12 1)
~ |RMS(z) RMS(z) RMS(x) RMS ()
1 1
< 4- (72)
€ €
2
= - (73)
€
Therefore, the Frobenius norm is bounded and hence the matrix norm.
B.2 FULL DESCRIPTION OF NORMALIZATION OF MODULATION
Note that there are 6 modulation parameters in total for each DiT layer, denoted as
a1 (t),b1(t), c1(t), az(t), ba(t), c2(t) = split(AdaLN_Modulation(t), 6) (74)

and we pass each of the above parameters through RMSNorm ™ (-) to obtain

ay (t),by (), 1 (), ag (), by (1), ¢5 (t)
(which can be done in parallel) and the new normalized DiT layer is
x =+ cj (t) * ATTN(RMSNorm™ (z) * aj (t) + by (¢))
r =1z + ¢; (t) * MLP(RMSNorm™ () * a5 (t) + b5 (1))

C FLASH ATTENTION JVP WITH BACKWARD PASS

In transformer models, scaled dot-product attention (SDPA) is often among the most, if not the most,
computationally expensive operations. The cost stems not only from its high FLOP requirements —
O(MN) in general, and O(NN?) in the case of self-attention — but also from the quadratic memory
footprint of the query—key matrix multiplication.

Computing the Jacobian-Vector Product (JVP) of SDPA is even more demanding, typically requiring
about three times the cost of the standard forward pass. Flash attention (Dao et al., 2022) fuses the
matrix multiplication with an online softmax operation (Milakov & Gimelshein, 2018), thereby
eliminating the need to store the intermediate QK | matrix in GPU memory. Subsequent work
has shown that JVP SDPA can also be implemented in a FlashAttention-style manner, where both,
primal SDPA and JVP SDPA are computed jointly to avoid redundant computation (Lu & Song,
2024).

Building on these ideas, we implement efficient JVP SDPA forward and backward kernels in Triton.
We first take inspiration from open-source implementations without backward support*. And the

*nttps://github.com/Ryul845/min-sCM/blob/main/standalone_multihead_jvp_
test.py
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additional backward pass through the standard (“primal””) SDPA is handled independently using the
open-source implementation from (Dao et al., 2022). To obtain full gradients with respect to @, K,
and V, we combine the input gradients from both backward passes.

Similar to standard SDPA, the JVP backward pass can leverage online softmax to avoid storing large
intermediate matrices in GPU memory. However, the increased complexity of JVP SDPA requires
additional optimizations to run efficiently on GPUs. Most notably, we found it crucial to split the
backward computation into multiple smaller kernels to reduce register spills caused by the large
number of intermediate tensors.

Background. Recall the attention operation as

ATTN(Q, K, V) =V - soft (QKT) (75)
VK, =V - softmax

Vdy
and let the query, key, and value blocks be denoted by @ € RMxd | ¢ RNXd and V € RVNX4,
The tangent inputs are denoted as @, K, V. We use a = %k as the softmax scaling factor, and /¢;

denotes the log-sum-exponential normalization for the ¢-th row of the attention scores, a short form
for combining the softmax stabilization factor and the normalization.

C.1 MULTI-STEP BACKWARD PASS

For best performance, we decided to split up the backward pass into multiple smaller operations with
shared paths through the graph. Furthermore, the gradients d@ and dQ are computed in row-parallel
order, while dK, dK, dV and dV are processed in column-parallel order. In our tests, redundant,
but coalesced computation of the large parts of the backward pass greatly outperformed a single,
fused kernel relying on atomic operations.

We split the operation into 6 steps: 1) preprocess shared intermediates, 2) process dK and first part
of dK, 3) process d() and first part of d(), 4) process second part of dX, 5) process second part of
d@, 6) process dV and dV'.

Step 1: Preprocess shared intermediates row-parallel. In the first step, we preprocess two inter-
mediate sums ¥, € RM™ and ¥y € RM used in steps 2-5.

=Y Py (dOVT) (76)
J

)

$2.=Y Py ((dOVT) o+ (aovT) Nij) (77)
J

) )

where
e . »
Pj =exp(aSij —4;), Sij = Z QirKjr, Nijj =aS; — Tl (78)
r=1 ?
amd
. dk . . .
Sij = Z (QirKjr + QirKjr> y M= Z P (aSij) (79)
r=1 Fi

Step 2: process dK and dK, column-parallel.

(dK1);. = a Z K(dOVT)U - 21,i> Pi]} O;.. (80)
(dK);. = a; K(dOVT)Z_j - EM) Pi]} Qi (81)
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Step 3: Process dQ and d@); row-parallel.

dQl = Oéz [((dOVT) — 2171') P”:| Kj’; (82)
ij

= Oéz |:<(dOVT) — El,i) P”:| Kj7: (83)
ij

Step 4: Process dK column-parallel.

(dK)j,. = (dK1); +az{[ zuswz“llﬂj

(84)
s W) (ag, — i Ao,
+ [(dOV )j + (aov )ij (aS” 5 ) 2, ] u} Q;,
Step 5: Process d() row-parallel.
(dQ)i,: = (dQ1)s,: + O‘Z { { —X14) Sz; + Y1 I, ] P
(85)
+ {(dovT)ij + (dOVT)ij (asij - h) - 224 gj} K;.
Step 6: Process dV and v column-parallel.
= Py;(dO);. (86)
(dV)L: = ; |:Pij <OZSU - h>:| (dO)W (87)

Caching softmax statistics. Like previous flash-attention implementations, we cache softmax
statistics from the forward pass to speed up the backward pass, namely the log-sum-exp ¢, the sums
[ and p for each row of the output O. Thus, the total overhead of the cache is only three values per
row of Q).

C.2 EVALUATION

We built a test bench to evaluate latency and peak memory consumption of our flash JVP SDPA
kernels on different input shapes using an NVIDIA H100 SXM 80GB. Due to the lack of existing
alternatives, we compare against vanilla SDPA, i.e. a SDPA written as explicit math operations,
which currently is the only way to train transformers in PyTorch with JVP enabled.

As our contribution focuses on the backward pass, we limit the latency and peak memory evalu-
ation to the backward pass of a single SDPA operation, combining both paths through the primal
“normal”) and the tangent (JVP) gradients.

Results. Shown in Table 4, our implementation achieves a significant reduction in peak memory
consumption. Compared to the reference, we save memory not only by reducing the cached variables
between forward and backward pass, but more importantly by avoiding to store N2 intermediate
attention scores. At the same time, our implementation achieves a speedup of up to 65% compared
to the reference.
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H S Latency [ms] Peak Memory [MB]

ours vanilla ours vanilla

1 128 1.31 1.51 64.69 64.80
1 1,024 1.38 1.54  69.52 94.02
1 4,096 1.96 1.53  86.06 508.1
1
1

8,192 398 4.33 108.1 1,816
16,384 10.06 16.11 1523 7,024
1 32,768 4024 63.85 2405 27,808
24 128 1.40 1.55  80.55 83.17
24 1,024 142 2.03 196.4 784.4
24 4,096 15.13 2452 5935 10,721
24 8,192 58.70 9693 1,123 42,115
24 16,384 238.4 - 2,182 -
24 327768 958.6 - 4,300 -

Table 4: Performance comparison of our flash JVP kernels against vanilla SDPA kernels in PyTorch. H and S
stand for number of heads in multi head attention and sequence length. Vanilla SDPA ran out of memory on a
NVIDIA H100 in the last two tests.

Algorithm 1 TVM Training

Input: initialized model £9, data po(xo, c) and prior p; (x1), time distribution p(t, s), guidance
distribution p(w)
Initialize 6* < 0,0** + 6 116*, 0** are EMA with rate \*, \**,
while model not converged do
Sample (%o, ¢, X1) ~ po(X0, ¢)p1(x1)
Randomly drop ¢ with prob. 10%
Sample (t, s, w) ~ p(t, s)p(w)
x¢ — (1 —t)xo + tx1
x5 + (1 —8)x0 + sx1
0 <+ optimizer step by minimizing ﬁTVM(O) =E; 50 [ﬁ#{jﬁ(&)} // see Eq. (15)
0* < EMA update with rate \*
0** < EMA update with rate A**

end while .
Output: learned model f¢

D TRAINING ALGORITHM

We present the training algorithm in Algorithm 1. We additionally show a PyTorch-style pseudo-
code in Figure 9 for calculating fy(x;, ¢, s) and -fs(x;,, s) together with one JVP pass.

E RELATION TO PRIOR WORKS

E.1 MEANFLOW

Let fy(x,t,s) = (s — t)Fo(x4, 1, s), we inspect
d
afg(xt, t,s) + u(xe,t) (88)

d
= —Fo(x4,t,5) + (s — t)aFg(xt,t, s) + u(xy,t) (89)

- _F9 (Xta t7 8) + (S - t) u(xt7 t) : vxf, F@ (Xta tv S) + atFQ (Xta t) S) + u(Xt; t) (90)
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Therefore,

2

deg(xt,t,s) +u(xnt) 1)

dt

2

_ H ~Fy(xs,1,8) + (s — 1) [u(xt,t) Vi Fo(xi, 1, 8) + 0, Fo(xs, 1, s)} +u(xy, ) H2 92)

tht

which is the MeanFlow loss.

F ADDITIONAL EXPERIMENT DETAILS
We provide additional experiment details.

F.1 ARCHITECTURE AND OPTIMIZATION

VAE. We follow Zhou et al. (2025) for the VAE setting, which uses the standard Stable Diffusion
VAE (Rombach et al., 2022) but with a different scale and shift. Please refer to the paper for details.

Architecture. All architecture decisions follow DiT (Peebles & Xie, 2023) except for the changes
described in the main text. For our XL-sized model, we follow DiT-XL and use 1152 hidden size
but use 18 heads instead of 16 heads. This is purely for efficiency reasons because 18 heads under
1152 total hidden size implies head dimension is 64, while the original 16 heads result in head
dimension 72. Flash attention JVP’s runtime is sensitive to redundancy in memory allocations.
As 64 is a power of 2 our kernel can fully allocate appropriately sized CUDA blocks, while 72
leaves significant chunks unused. We observe that the original 16-head decision is x1.25 slower
than the 18-head variant. In comparing FID of the two versions, we observe they perform similarly
throughout training.

Following Zhou et al. (2025), we use t — s as our second time condition into the architecture rather
than directly injecting s. For injecting w, we follow Chen et al. (2025) and use 8 = 1/w as our
condition, and if random CFG is used training, we sample 3 ~ U/ (——, —1-) and set w = 1/3. Note

Wmax * Wnin

that Chen et al. (2025) uses 8 ~ U(0, 1) which amounts to wpi, = 1 and wy.x = 00, but arbitrarily
large w is never used in practice so wp,x can be set to a realistic finite value.

Optimization. Besides setting 5> = 0.95, we follow the default optimizer used by DiT and optimize
with BF16 precision. We de not use any learning rate scheduler.

F.2 DETAILS ON RANDOM CFG WITH MEANFLOW

In MeanFlow (Geng et al., 2025), the authors introduce a mixing scale « such that the field with
guidance scale w is given by

V(X t, ¢, w) = wvy + Kug(xe, t,c,w) + (1 — w — K)ug(xe, t,w) (93)

It specifies that the effective guidance scale is w’ = ﬁ This is because since ug(xy, t, ¢, w) =~
v(x¢, t, ¢, w), rearranging it to LHS and dividing both sides by (1 — &) gives

(1 = r)V(xs, t,c,w) = wve + (1 —w — K)ug(Xe, t, w) (94)

m m)ug(xt, t,w) (95)

This constrains « € [0, 1). However, in the case of random CFG, to make use of ug(xy, t, c,w), we
try the simple linear mixing (the default CFG reweighting)

v(x¢, t,c,w) = vi+ (1 -

Vv(xe, b, e, w + k) = wvy + kug(xe, t,e,1) + (1 —w — K)ug (X, £, 1) (96)

where w and k are both randomly sampled with finite boundaries. In this case ug(xy,t,¢, 1) %
v(x¢,t, ¢, w+ k) and thus & is not constrained to be smaller than 1. When w = 0, it becomes regular
CFG with network approximation of the CFG velocity, and when x = 0 it becomes MeanFlow CFG
with v; approximation of the CFG velocity. This construction subsumes both implementation cases.

20



Under review as a conference paper at ICLR 2026

In our experiments, we use £ ~ U(0, cpax), w ~ U(1, cmax) for some constant c¢p,. However,
we acknowledge that this observed training fluctuation may depend on exact training settings and
environments, and may be fixable via empirical tricks such as adjusting AdamW parameters or
gradient clipping, etc. We present the training in the simplest settings without such tricks to best

illustrate our point.

F.3 CFG-CONDITIONED FLOW MATCHING

As in our method, we similarly observe tradeoff in FID if
FM is trained to condition on CFG scale w with randomly
sampled w during training (Chen et al., 2025). During in-
ference time, w is injected into the network so that the CFG
velocity field can be approximated by a single forward call.
We inject w using positional embedding just like the diffu-
sion time, and during training we sample 8 ~ (0, 1) and
set w = 1/, following Chen et al. (2025). We show in Fig-
ure 10 that as the model trains, the FID of w = 1.5 decreases
but w = 2 increases for later training steps. This tradeoff is
similarly observed in our method as presented in the main
text.

F.4 ADDITIONAL VISUAL SAMPLES

—— w=15
w=2

5 “\‘\'—.
50k 100k 150k 200k 250k

Training Steps

Figure 10: w-conditioned FM training
experiences tradeoff.
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