
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TERMINAL VELOCITY MATCHING

Anonymous authors
Paper under double-blind review

Figure 1: Left shows a conceptual comparison of our method to prior methods. We guide our one-step model
via terminal velocity rather than initial velocity. Right shows our 1-NFE samples on ImageNet-256×256.

ABSTRACT

We propose Terminal Velocity Matching (TVM), a generalization of flow match-
ing that enables high-fidelity one- and few-step generative modeling. TVM mod-
els the transition between any two diffusion timesteps and regularizes its behavior
at its terminal time rather than at the initial time. We prove that TVM provides an
upper bound on the 2-Wasserstein distance between data and model distributions
when the model is Lipschitz continuous. However, since Diffusion Transformers
lack this property, we introduce minimal architectural changes that achieve stable,
single-stage training. To make TVM efficient in practice, we develop a fused at-
tention kernel that supports backward passes on Jacobian-Vector Products, which
scale well with transformer architectures. On ImageNet-256×256, TVM achieves
3.30 FID with a single function evaluation, representing state-of-the-art perfor-
mance for one-step diffusion models. TVM also establishes a new Pareto frontier
for performance versus inference compute in the few-step regime.

1 INTRODUCTION

Can we build generative models that simultaneously deliver high-quality samples, fast inference, and
scalability to high-dimensional data, all from a single training stage? This is the central challenge
that continues to drive research in generative models. While Diffusion Models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020) and Flow Matching (Liu et al., 2022; Lipman et al., 2022)
have become the dominant paradigms for generating images (Rombach et al., 2022; Podell et al.,
2023; Esser et al., 2024) and videos (OpenAI, 2024; Wan et al., 2025), they typically require many
sampling steps (e.g., 50) to produce high-quality outputs. This multi-step nature makes generation
computationally expensive, especially for high-dimensional data like videos.

In pursuing a single-stage training for few-step inference, recent methods have focused on directly
learning integrated trajectories rather than relying on ODE solvers. Consistency-based approaches
(CT (Song et al., 2023), CTM (Kim et al., 2023), sCT (Lu & Song, 2024)) and trajectory matching
methods like MeanFlow (Geng et al., 2025) learn to predict or match trajectory derivatives. How-
ever, these methods lack explicit connections to distribution matching, a fundamental measure of
generative model quality. While Inductive Moment Matching (IMM) (Zhou et al., 2025) addresses
this gap by providing distribution-level guarantees through Maximum Mean Discrepancy, it requires
multiple particles per training step, limiting scalability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We propose Terminal Velocity Matching (TVM), a new framework for learning ground-truth tra-
jectories of flow-based models in a single training stage. Instead of matching time derivatives at
the initial time, TVM matches them at the terminal time of trajectories. This conceptually simple
shift yields powerful theoretical guarantees. We prove that our training objective upper bounds the
2-Wasserstein distance between data and model distributions. Unlike IMM, our method provides
distribution-level guarantees without requiring multiple particles. Our analysis also reveals a critical
architectural limitation: current diffusion transformers (Peebles & Xie, 2023) lack Lipschitz conti-
nuity, which destabilizes TVM training. We address this with minimal architectural modifications,
including RMSNorm-based QK-normalization and time embedding normalization.

To make TVM practical at scale, we develop an efficient Flash Attention kernel that supports back-
ward passes on Jacobian-Vector Products (JVP), crucial for our terminal velocity computation. Our
implementation achieves up to 65% speedup and significant memory reduction compared to stan-
dard PyTorch operations. We introduce a scaled parameterization where the network output natu-
rally scales with the CFG weight w, allowing the model to handle varying guidance strengths more
effectively. During training, we randomly sample CFG weights and directly incorporate them into
our objective function with appropriate weighting (1/w2) to prevent gradient explosion. This ap-
proach enables stable training across diverse guidance scales without requiring curriculum learning
or specialized loss modifications, making TVM straightforward to implement and scale.

TVM achieves state-of-the-art results on ImageNet-256×256, with 3.30 FID in single-step genera-
tion and establishing a new Pareto frontier for performance versus inference compute in the few-step
regime for the same model (e.g., 2.49 FID at 2-NFE, 2.44 FID at 4-NFE) while matching Mean-
Flow’s (Geng et al., 2025) 1-NFE performance, which achieves 2.93 2-NFE FID with the same
model. Our method naturally interpolates between one-step and multi-step sampling without re-
training, requires no training curriculum or loss modifications, and maintains stability with simple
architectures. Our construction provides new insights into building scalable one/few-step generative
models with distributional guarantees, demonstrating that principled theoretical design can lead to
practical improvements in both training stability and generation quality.

2 PRELIMINARIES: FLOW MATCHING

For a given data distribution p0(x0) and prior distribution p1(x1), Flow Matching (FM) (Lipman
et al., 2022; Liu et al., 2022) constructs a time-augmented linear interpolation xt between data
x0 ∈ RD and prior x1 ∈ RD such that xt = (1 − t)x0 + tx1

1. For each path xt conditioned on a
(x0,x1) pair, there exists a conditional velocity vt = x1 − x0 for each xt. Under this definition, a
ground-truth velocity field u : RD × [0, 1] → RD marginal over all data and prior exists but is not
known in analytical form. Therefore, a neural network uθ(xt, t) is used as approximation via loss

LFM(θ) = Ext,vt,t[∥uθ(xt, t)− vt∥22] (1)
for all t ∈ [0, 1] and xt ∼ pt(xt) where pt(xt) denotes the marginal distribution over all data and
prior. It can be shown that the minimizer θmin implies uθmin(xt, t) = u(xt, t) which can be used
during inference to transport prior to data distribution by solving an ODE d

dtxt = u(xt, t).

For each ground-truth u(xt, t), there exists a corresponding displacement map ψ : RD × [0, 1] ×
[0, 1]→ RD (i.e. flow map (Boffi et al., 2024)) from any start time t ∈ [0, 1] to an end time s ∈ [0, 1].
It is defined as the ODE integral following u(xr, r) for all r ∈ [s, t], i.e.

ψ(xt, t, s) = xt +

∫ s

t

u(xr, r)dr. (2)

Empirically, uθ(xt, t) is used with classical ODE integration techniques such as the Euler method
to produce samples.

3 TERMINAL VELOCITY MATCHING

We propose Terminal Velocity Matching (TVM), a single-stage objective that directly learns the
ODE integral in Eq. 2. By learning the transition between any two timesteps, TVM can generate
high quality solutions in one step or few steps, while enjoying inference-time scaling.

1See Lipman et al. (2022); Albergo et al. (2023) for general path constructions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: An illustration of Terminal Velocity Matching. Left shows the ground-truth displacement map by
integrating the true velocity. Right shows our model path directly jumping between points on the ground-truth
path in one step. In our method, the one-step generation x0 from xt coincides with ground-truth x0 if the
terminal velocity of model d

ds
f(xt, t, s) coincides with ground-truth velocity u(xs, s) for all s ∈ [0, t] along

the true flow path (see Eq. (7)). The terminal velocity condition is jointly satisfied with the boundary case when
model displacement is 0, where matching d

ds
f(xt, t, s)|s=t with u(xt, t) reduces to Flow Matching.

Let f(xt, t, s) := ψ(xt, t, s)− xt denote the net displacement of the velocity field. We observe that
it must satisfy the following two conditions:

1 f(xt, t, s) =

∫ s

t

u(xr, r)dr , 2
d

ds
f(xt, t, s)

∣∣∣
s=t

= u(xt, t). (3)

The first condition is the definition of net displacement and the second condition is true by differenti-
ating both sides of the first condition w.r.t. s evaluated at s = t. It explicitly relates the displacement
map (with large time jump) to the marginal velocity field (with infinitesimal time jump), allowing
us to interpolate between one-step sampling and ODE-like infinite-step sampling.

One of our key insights is that we can use a single two-time conditioned neural network Fθ(xt, t, s)
to learn both the one-step displacement sampler from t to s and the instantaneous velocity field. For
simplicity, we let our model with learnable parameters θ be

fθ(xt, t, s) = (s− t)Fθ(xt, t, s), uθ(xt, t) :=
d

ds
fθ(xt, t, s)

∣∣∣
s=t

= Fθ(xt, t, t) (4)

where the scaling (s − t) is chosen to satisfy integral boundary condition when t = s2. Condition
2 can be easily enforced by FM loss (in Eq. (1)) and condition 1 can be naı̈vely enforced via the

displacement error

Lt
displ(θ) := Ext

[∥∥∥∥fθ(xt, t, 0)−
∫ 0

t

u(xr, r)dr

∥∥∥∥2
2

]
. (5)

Once the above error is minimized to zero, one can obtain one-step samples by calling xt +
fθ(xt, t, 0) for any xt ∼ pt(xt) at t ∈ [0, 1]. However, this objective is infeasible because it re-
quires ODE integration for each starting point xt. We address this challenge by proposing a simple
sufficient condition to the network that bypasses explicit training-time ODE simulation.

Terminal Velocity Condition. Explicit integration can be bypassed via differentiating w.r.t. integral
boundaries. For the ground-truth net displacement f(xt, t, s) in condition 1 , differentiating w.r.t. s
gives rise to the following condition on terminal velocity, i.e.

d

ds
f(xt, t, s) = u(ψ(xt, t, s), s). (6)

This condition is true for any ground-truth net displacement f , and we show in Appendix A.2 that
given t ∈ [0, 1] and our parameterized map fθ(xt, t, s),

Lt
displ(θ) ≤

∫ t

0

Ext

[∥∥∥∥ d

ds
fθ(xt, t, s)− u(ψ(xt, t, s), s)

∥∥∥∥2
2

]
ds. (7)

This result shows that the terminal velocity error on the right hand side upper bounds the displace-
ment error, and so zero terminal velocity error implies that displacement from t to 0 matches exactly.

2This is similar to CTM (Kim et al., 2023). See Appendix A.1 for conditions on general scaling factors.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Moreover, it is easy to see that the terminal velocity error reduces to the marginal FM loss as t→ s
(see Appendix A.3). FM can thus be understood as matching a trajectory’s terminal velocity when
the net displacement is 0. An illustration of our framework is shown in Figure 2. Despite the sim-
plicity and generality, in practice, fulfilling this condition is still difficult due to the requirement of
ψ and u. Fortunately, this issue can be effectively addressed using learned network as proxies.

Learned networks as proxies. Specifically, we propose the following approximation

u(ψ(xt, t, s), s) ≈ uθ(xt + fθ(xt, t, s), s) (8)

as proxies for the ground-truths. To properly guide the terminal velocity, uθ(xs, s) needs to first
approximate the ground-truth u(xs, s) for any xs and s. Therefore, the proxy terminal velocity error
can be jointly optimized with Flow Matching, which, as noted above, is a special boundary case of
the terminal velocity error when displacement is 0. We use the term “Terminal Velocity Matching”
for this joint minimization of general and boundary-case velocity error, where the objective is

Lt,s
TVM(θ) = Ext,xs,vs

[∥∥∥∥ d

ds
fθ(xt, t, s)− uθ(xt + fθ(xt, t, s), s)

∥∥∥∥2
2︸ ︷︷ ︸

satisfies 1

+
∥∥∥uθ(xs, s)− vs

∥∥∥2
2︸ ︷︷ ︸

satisfies 2

]
(9)

for each time t ∈ [0, 1] and s ∈ [0, t]. Intuitively, this objective leverages a single network to
parameterize both the instantaneous velocity field and the displacement map, the former of which is
learned from data to guide the learning of the latter. To provide further theoretical justification, in
the following theorem, we formally establish a weighted integral of our objective as a proper upper
bound on the 2-Wasserstein distance between the data distribution p0(x0) and our model distribution
fθt→0#pt(xt) pushforward from pt(xt) via our parameterized flow map.
Theorem 1 (Connection to the 2-Wasserstein distance). Given t ∈ [0, 1], let fθt→0#pt(xt) be the
distribution pushforward from pt(xt) via fθ(xt, t, 0), and assume uθ(·, s) is Lipschitz-continuous
for all s ∈ [0, t] with Lipschitz constants L(s), with additional mild regularity conditions,

W 2
2 (f

θ
t→0#pt, p0) ≤

∫ t

0

λ[L](s)Lt,s
TVM(θ)ds+ C, (10)

where W2(·, ·) is 2-Wasserstein distance, λ[·] is a functional of L(·), and C is a non-optimizable
constant.

Training objective. The theorem relates our per-time objective to distribution divergence. How-
ever, for practicality, we avoid computation of the above weighting function and instead choose to
randomly sample both t and s via distribution p(s, t) such that

LTVM(θ) = Et,s

[
Lt,s

TVM(θ)
]

(11)

where notably LTVM(θ) reduces to Flow Matching objective when t = s (see Appendix A.5). In
practice, we employ a biased estimate of the above objective by using exponentially averaged (EMA)
weights and stop-gradient for our proxy networks (Li et al., 2023). The biased per-time objective
L̂t,s

TVM(θ) is

Ext,xs,vs

[∥∥∥∥ d

ds
fθ(xt, t, s)− uθ∗

sg
(xt + fθsg(xt, t, s), s)

∥∥∥∥2
2

1t̸=s +
∥∥∥uθ(xs, s)− vs

∥∥∥2
2

]
(12)

where θsg and θ∗sg are the stop-grad weight and stop-grad EMA weight of θ, and 1t̸=s is 0 when t = s
and 1 otherwise to ensure the constraint to reduce to FM loss when t = s.

Classifier-free guidance (CFG). In the case of class-conditional generation. The ground-truth ve-
locity field is replaced by a linear combination of class-conditional velocity u(xr, r, c) and uncon-
ditional velocity u(xr, r) (Ho & Salimans, 2022), such that the new displacement map is

ψw(xt, t, s, c) = xt +

∫ s

t

[wu(xr, r, c) + (1− w)u(xr, r)] dr, (13)

where w is the CFG weight, c is class and ∅ denotes empty label. To train with CFG, we ad-
ditionally condition the network on w and c, and our class-conditional map is fθ(xt, t, s, c, w) =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(s− t)Fθ(xt, t, s, c, w) where the additional w scale is chosen due to linear scaling in magnitude for
marginal velocity w.r.t.w. The instantaneous velocity uθ(xs, s, c, w) is regressed against conditional
velocity wvt + (1 − w)u(xr, r) where we can approximate u(xr, r) with our own network (Chen
et al., 2025). The per-time and per-class Flow Matching term can be modified as

L̂s,c,w
FM (θ) = Exs,vs

[∥∥∥uθ(xs, s, c, w)−
[
wvs + (1− w)uθ∗

sg
(xs, s,∅, 1))

]∥∥∥2
2

]
, (14)

where θ∗sg denotes EMA weights. We show in Appendix A.6 that the minimizer of this objective
coincides with the ground-truth CFG velocity in Eq. (13). Our class-conditional objective L̂t,s,w

TVM (θ)
can be modified as

1

w2
Ext,c

[∥∥∥∥ d

ds
fθ(xt, t, s, c, w)− uθ∗

sg
(xt + fθsg(xt, t, s, c, w), s, c, w)

∥∥∥∥2
2

1t ̸=s + L̂s,c,w
FM (θ)

]
. (15)

The weighting 1/w2 is to prevent exploding gradients because the magnitude of ground-truth ve-
locity scales linearly with w. Final objective simply samples each of t, s, w under some distribution
p(t, s)p(w) and computes the above loss in expectation. We randomly set c = ∅ with some proba-
bility (e.g. 10%) and for each c = ∅ we set w = 1. Our training algorithm is shown in Appendix D.

def sampling(net, x, n, c, w):

ts = torch.linspace(1, 0, n+1)

for t,s in zip(ts[:1],ts[1:]):

x = x + (s−t) * net(x, t, s, c, w)
return x

Figure 3: PyTorch-style sampling code.

Sampling. Our construction can naturally
interpolate between one-step and n-step
sampling. See Figure 3 for PyTorch-style
sampling code.

4 PRACTICAL CHALLENGES

We note and address several challenges to
practically implement our objective.

Semi-Lipschitz control. Theorem 1 makes the crucial assumption that uθ(xs, s) is Lipschitz con-
tinuous. However, modern transformers with scaled dot-product attention (SDPA) and LayerNorm
(LN, Ba et al. (2016)) are not Lipschitz continuous (Kim et al., 2021; Qi et al., 2023; Castin et al.,
2023). This issue similarly applies to diffusion transformers (DiT) (Peebles & Xie, 2023). Our
insight is to make minimal and non-restrictive changes to the architecture for Lipschitz control.

0k 50k 100k 150k 200k 250k

Training Steps
0

1

2

3

4

5

Ad
aL

N
Ac

t N
or

m w/o Lipschitz
w/ Lipschitz

Figure 4: Activation norm of last time
embedding layer. Same trends follow
for all other layers.

As shown in Figure 4, the original DiT experiences training
instability leading to steep jump in network activations. As
a solution, we adopt RMSNorm as QK-Norm, which coin-
sides with the proposed L2 QK-Norm (Qi et al., 2023) with
learnable scaling and is provably Lipschitz continuous. We
also substitute all LN with RMSNorm (without learnable pa-
rameters, denoted as RMSNorm−(·)), whose Lipschitzness we
show in Appendix B.1. In addition, DiT introduces Adap-
tive LayerNorm (AdaLN) where the output of RMSNorm is
modulated by MLP outputs of time embeddings denoted as
RMSNorm−(x)⊙ a(t) + b(t) where x is the input feature and
a(t), b(t) are scale and shift respectively. However, the Lips-
chitz constant of this layer depends on the magnitude of a(t)
which can grow unbounded and is subject to instability. We therefore employ RMSNorm−(·) again
on all modulation parameters for

AdaLN(x, t) = RMSNorm−(x)⊙ RMSNorm−(a(t)) + RMSNorm−(b(t)). (16)

Figure 4 also shows the activation with our proposed changes. Activations stay smooth after our
fixes. Finally, we follow Qi et al. (2023) and use Lipschitz initialization for all linear layers except
for time embedding layers. Note that these modifications do not explicitly constrain the Lipschitz
constants of all but the key layers where instability can arise. We find such partial control of the
Lipschitzness is sufficient for empirical success.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Flash Attention JVP with backward pass. The training objective involves the time derivative of
our map fθ(xt, t, s), which can be derived as

d

ds
fθ(xt, t, s) = Fθ(xt, t, s) + (s− t)∂sFθ(xt, t, s) (17)

where the last term involves differentiating through the network with Jacobian-Vector Product
(JVP). This poses significant challenge for transformers because automatic differentiation pack-
ages, e.g. PyTorch, often do not efficiently handle JVP of SDPA. Open-source Flash Attention (Dao
et al., 2022) also has limited support for JVP. Crucially, different from prior works (Lu & Song,
2024; Geng et al., 2025; Sabour et al., 2025), gradient is also propagated through the JVP term
∂sFθ(xt, t, s). To tackle these challenges, we propose an efficient Flash Attention kernel that (i)
fuses JVP with forward pass, (ii) uses significantly less memory than naı̈ve PyTorch attention, and
(iii) supports backward pass on JVP results. We detail the implementation in Appendix C.

0k 50k 100k 150k 200k 250k

Training Steps
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

df ds
 L

os
s

2 = 0.999
2 = 0.95

Figure 5: Smoother terminal velocity er-
ror with β2 = 0.95.

Optimizer parameter change. Due to higher-order gradi-
ent through JVP, our loss can be subject to fluctuation with
the default AdamW β2 = 0.999. We take inspiration from
language models (Touvron et al., 2023) for mitigation and
use β2 = 0.95 to speed up update of the gradient second
moment. As show in Figure 5, the terminal velocity error
fluctuates significantly less after β2 change.

Scaled parameterization. The ground-truth CFG velocity
scales linearly in magnitude with w, so using neural net-
works to directly predict the velocity may be suboptimal. We
therefore additionally investigate a simple scaled alternative
as fθ(xt, t, s, c, w) = (s− t)wFθ(xt, t, s, c, w) so that uθ(xs, s, c, w) = wFθ(xs, s, s, c, w) which
scales with w by design. We study the effect of this parameterization in experiments.

5 CONNECTION TO PRIOR WORKS

MeanFlow. MeanFlow (Geng et al., 2025) minimizes loss Ext,t,s

[
∥Fθ(xt, t, s)− Ftgt∥22

]
where

Ftgt = u(xt, t) + (s− t)
[
u(xt, t) · ∇xt

Fθsg(xt, t, s) + ∂tFθsg(xt, t, s)
]

(18)

This loss can be equivalently rewritten asExt,t,s

[∥∥ d
dt fθ(xt, t, s) + u(xt, t)

∥∥2
2

]
where fθ(xt, t, s) =

(s−t)Fθ(xt, t, s) and loss is minimized if and only if d
dt fθ(xt, t, s) = −u(xt, t) (see Appendix E.1).

This exhibits duality with our proposed method in that we enforce a differential condition w.r.t. s
while MeanFlow differentiates w.r.t. t which requires u(xt, t) to be propagated through JVP. In
practice, u(xt, t) is replaced with vt, which introduces additional variance during training and can
cause fluctuation in gradient, especially under random CFG during training (see Section 7.2). Ad-
ditionally, the relationship between the loss and distribution divergence remains elusive with the
introduction of vt. In contrast, we show our loss upper bounds 2-Wasserstein distance up to some
constant, and our theory provides the unique insight of enforcing the Lipschitzness of our network,
which stablizes training.

Physics Informed Distillation (PID). PID (Tee et al., 2024) as inspired by Physics Informed Neural
Networks (Raissi et al., 2019; Cuomo et al., 2022) distills pretrained diffusion models uϕ(xt, t) into
one-step samplers. It parameterizes the one-step net displacement as fθ(x1, s) = (s − 1)uθ(x1, s)
where x1 ∼ p1(x1) and trains via distillation loss

Ex1,s

[∥∥∥∥ d

ds
fθ(x1, s)− uϕ(x1 + fθsg(x1, s), s)

∥∥∥∥2
2

]
(19)

Our method generalizes the setting by introducing the starting time t in addition to the terminal time
s. Under this view, PID sets t = 1 and can only generate one-step samples. We additionally show
in Section 7.3 that naı̈ve combination of PID and FM loss suffers from optimization instability and
a continuous distribution on t is necessary for empirical success.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 RELATED WORKS

Diffusion and Flow Matching. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020) learn generative models by reversing stochastic processes, while Flow Matching (Liu
et al., 2022; Lipman et al., 2022) generalizes this to arbitrary priors with simplified training. Both
approaches ultimately solve ODEs with neural networks during sampling.

One-Step and Few-Step Models from Scratch. To address slow inference from ODE simulation,
recent methods aim for few-step generation in a single training stage. Consistency models (Song
et al., 2023; Lu & Song, 2024) parameterize networks to represent ODE integrals but cannot jump
between arbitrary timesteps without injecting additional noise, which can limit multi-step perfor-
mance. Two-time conditioned approaches enable arbitrary timestep transitions: IMM (Zhou et al.,
2025) provides distribution consistency via Maximum Mean Discrepancy but requires multiple par-
ticles; MeanFlow (Geng et al., 2025) and Flow Map Matching (Boffi et al., 2024) match trajec-
tory derivatives but lack distributional guarantees. Other variants bypass differentiation via Monte
Carlo (Liu & Yue, 2025) or combine distillation with FM (Frans et al., 2024; Boffi et al., 2025).

Unlike these methods, TVM regularizes path behavior at the terminal time rather than initial time
and provides explicit 2-Wasserstein bounds. While sCT and MeanFlow only compute forward JVP,
TVM uniquely supports backward passes through the JVP computation, enabling full gradient flow
for the terminal velocity objective. These innovations drive both our theoretical insights and archi-
tectural improvements.

7 EXPERIMENTS

We investigate how well TVM can generate natural images (Section 7.1), discuss its advantages
compared to previous methods (Section 7.2), and ablate various practical choices (Section 7.3).
Additional details can be referred to Appendix F.

7.1 IMAGE GENERATION

Shown in Table 1 are the FID results for ImageNet-256×256. Our method noticeably achieves
state-of-the-art 1-NFE FID among methods trained from scratch, outperforming MeanFlow (Geng
et al., 2025) and IMM (Zhou et al., 2025). For the two versions reported (which differ in their time
sampling strategies discussed in Section 7.3), both can match and exceed MeanFlow in 1-NFE while
achieving noticeable gap in 2-NFE quality, i.e. 2.93 for MeanFlow and 2.49 for TVM. Our objective
can thus more optimally leverage the network capacity. In addition, TVM also exhibits efficient
inference-time scaling properties, where lower FID is achieved for each additional NFE. Our 4-NFE
outperforms 8-NFE IMM. As shown in Figure 6, our method achieves state-of-the-art Pareto frontier
among all recently proposed single-stage few-step methods.

7.2 DISCUSSION ON TRAINING ADVANTAGES

Single sample objective. Unlike IMM (Zhou et al., 2025) which uses more than 4 samples to cal-
culate its loss, we use a single sample to for loss calculation without losing a distribution-matching
interpretation. This also allows the objective to be scaled to large models and high-dimensional
datasets where batch size on each GPU is constrained to be 1.

Training with random CFG. Our construction allows us to randomly sample CFG scale during
training without collapse. We attribute this stability to our JVP being only calculated w.r.t. s which
is invariant to starting position xt and time t. In contrast, continuous-time Consistency Models (Song
et al., 2023; Lu & Song, 2024) and MeanFlow (Geng et al., 2025) require velocity u(xt, t) to be
used in the JVP calculation. In the case of random CFG, this velocity can vary widely in magnitude
which, if propagated through JVP, can cause wide fluctuation in gradient norm (see left two in
Figure 7) and degrades performance. Our method, as shown on the right of Figure 7, successfully
converges even in the presence of random CFG. We note that random sampling of CFG does not
give optimal results as some CFG scales experience degradation in FID during training, and constant
CFG performs better in comparison. We postulate that the under-performance of random CFG is due
to limited capacity of the network and the weighting function 1/w2 that down weights high CFG.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

NFE FID # Params.

Diffusion/Flow

DiT-XL/2 (Peebles & Xie, 2023) 250 2.27 675M
SiT-XL/2 (Ma et al., 2024) 250 2.15 675M

One/Few-Step from Scratch

iCT-XL/2 (Song & Dhariwal, 2023) 1 34.24 675M
2 20.3 675M

Shortcut-XL/2 (Frans et al., 2024) 1 10.60 675M
IMM-XL/2 (Zhou et al., 2025) 1× 2 8.05 675M

2× 2 3.99 675M
2× 4 2.51 675M

MeanFlow-XL/2 (reported) (Geng et al., 2025) 1 3.43 676M
2 2.93 676M

MeanFlow-XL/2 (retrained3) (Geng et al., 2025) 1 3.43 676M
2 4.26 676M
4 4.62 676M

TVM-XL/2 (Ours) (clamp) 1 3.30 678M
2 2.80 678M

TVM-XL/2 (Ours) (gap) 1 3.44 678M
2 2.49 678M
4 2.44 678M

Table 1: FID results on ImageNet-256×256.

102 103 104

GFLOPs

2.5

3.0

3.5

4.0

4.5

5.0

5.5

FI
D

10-NFE

20-NFE

40-NFE80-NFE

4-NFE

8-NFE

1-NFE

2-NFE

1-NFE

2-NFE

4-NFE

1-NFE

2-NFE

1-NFE

2-NFE 4-NFE

SiT-XL/2
IMM-XL/2
MeanFlow-XL/2
(reported)

MeanFlow-XL/2
(retrained)
TVM-XL/2 (clamp)
TVM-XL/2 (gap)

Figure 6: Our method exhibits state-of-
the-art Pareto frontier for inference-time
scaling, achieving superior FID with equal
number of NFE compared to baselines.

0k 2k 4k 6k 8k

Training Steps
0

1

2

3

M
ea

nF
lo

w
Gr

ad
 N

or
m 1e1

0k 2k 4k 6k 8k

Training Steps
0

1

2

3

4

5

6

M
ea

nF
lo

w
u t

 N
or

m 1e2

50k 100k 150k 200k 250k 300k 350k 400k

Training Steps

5

10

15

20

TV
M

 F
ID

rand. w=1.5
rand. w=2
rand. w=2.5
rand. w=3
const. w=2

Figure 7: (Left) MeanFlow is subject to wide variation in gradient norm if CFG scales (i.e., κ and ω) are
randomly sampled during training (see Appendix F.2 for details). (Middle) The gradient norm variation with
random CFG is strongly correlated with the fluctuation of ∥u(xt, t)∥ norm. (Right) Our method converges with
random CFG at training time, although tradeoff exists between different CFG in FID. Constantly sampled CFG
works best.

This phenoemenon is similarly observed in CFG-conditioned FM training (see Appendix F.3) and
we leave any improved design to future work.

No schedules and loss modification. We do not rely on training curriculum such as warmup sched-
ules in sCT. For each CFG scale, we use the guidance-scaled velocity for all t, s, while MeanFlow
relies on additional hyperparameters to turn on CFG only when t is within a predetermined range.
We also strictly adhere to the simple L2 loss without any adaptive weighting as proposed by Mean-
Flow. We believe the simplicity in our design allows for more scalability.

7.3 ABLATION STUDIES

We ablate various implementation decisions and discuss insights from different parameter choices.
Results are presented with XL/2 architecture trained for 200K steps.

Time sampling. Similar to Flow Matching, different time sampling schemes can greatly affect
performance. We explore 4 different kinds of sampling schemes.

• Truncated sampling (trunc). Let (µt, σt), (µs, σs) denote t being sampled from logit-
normal distribution with mean and standard deviation (µt, σt) and s beinsg sampled from trun-
cated logit-normal distribution with parameters (µs, σs) such that s ≤ t.

• Clamped independent sampling (clamp). Let (µt, σt), (µs, σs) denote t and s being inde-
pendently sampled from logit-normal distributions with mean and standard deviation (µt, σt)
and (µs, σs), and set s = t if s > t.

• Truncated gap sampling (gap). Let (µg, σg), (µs, σs) denote the gap g = t−s being sampled
from logit-normal distribution with mean and standard deviation (µg, σg), and s sampled from
logit-normal with parameters (µs, σs) truncated at 1− g. Then set t = s+ g.

In Table 2 we show comparison within each sampling scheme and conclude that better results are
obtained when t is biased towards 1 and s biased towards 0 so that the model learns to take longer
strides. However, biasing too much, e.g. µt = 2.0, σt = 2.0, leads to worse results. For gap,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

trunc (µt, σt), (µs, σs) FID

(−0.4, 1.0), (−0.4, 1.0) 4.59

(2.0, 1.0), (−0.4, 1.0) 4.00

(2.0, 2.0), (−0.4, 1.0) 4.01

(2.0, 2.0), (−0.6, 1.0) 7.88

(1.0, 1.0), (−0.4, 1.0) 3.70

clamp (µt, σt), (µs, σs) FID

(2.0, 2.0), (−0.4, 1.0) 3.88

(2.0, 1.0), (−0.4, 1.0) 4.11

(2.0, 1.0), (−0.6, 1.0) 4.00

(1.0, 1.0), (−0.4, 1.0) 3.66
(1.0, 2.0), (−0.4, 1.0) 3.83

gap (µg, σg), (µs, σs) FID

(−0.4, 1.0), (−0.4, 1.0) 5.12

(−0.8, 1.0), (−0.4, 1.0) 3.72
(−0.8, 1.4), (−0.4, 1.0) 3.95

(−1.0, 1.2), (−0.4, 1.0) 3.82

(−1.0, 1.4), (−0.4, 1.0) 3.94

Table 2: Ablation studies on different time sampling schemes, evaluated by
1-NFE FID.

100k 150k 200k 250k 300k

Training Steps

3.6

3.8

4.0

4.2

4.4

4.6

4.8

FI
D

trunc
clamp
gap

Figure 8: FID trend on the
sampling schemes.

p(w) 1-NFE

rand., w = 1.5 9.37

rand., w = 2 5.14

const., w = 1.5 6.66

const., w = 2 4.81

(a) Random vs. constant
CFG sampling evaluated
at example w’s.

EMA rate γ 1-NFE

γ = 0 10.24

γ = 0.9 5.08

γ = 0.99 4.90
γ = 0.999 6.04

(b) EMA of pseudo-
target θ∗sg.

Scaled Param. 1-NFE 2-NFE

yes, w = 2 3.72 3.35

no, w = 2 3.82 3.27

yes, w = 1.5 6.04 4.60
no, w = 1.5 9.32 7.02

(c) With vs. without scaled pa-
rameterization.

% t=s 1-NFE 2-NFE

0 3.72 3.35

10% 3.91 3.18

20% 3.88 2.97
30% 3.97 3.07

(d) Prob. for t = s dur-
ing training.

Table 3: FID ablation on various sampling/parameterization decisions.

sampling t − s with lower mean is preferrable to higher mean. As compared in Figure 8, we ob-
serve trunc’s performance degrades and clamp plateaus faster than gap. We therefore use gap
sampling by default.

We also find sampling t from a sparse discrete set (for few-step inference) during training causes
significant instability, which we postulate is caused by insufficient training for t ≈ s and the model
cannot extrapolate to large strides immediately. Therefore, we conclude that a continuous distribu-
tion on t is necessary.

CFG sampling. As described in the previous section, due to limited capacity of the model, we
observe tradeoff in performance when CFG is randomly sampled during training. This is reflected
in Table 3a. We note that constant CFG always outperforms random CFG, and for constant CFG
sampling we find w = 2 converging faster than the default w = 1.5 for Flow Matching.

EMA target rate γ. The target EMA weight θ∗ plays a significant role in accelerating convergence
of the model. Shown in Table 3b, non-EMA target, i.e. γ = 0, noticeably lags behind γ > 0
alternatives. However, too large of a γ, e.g. 0.9999, also causes instability because of the overly
slow target update. A sweet spot exists around γ = 0.99 which we use as default.

Scaled parameterization. In Table 3c, we show that scaled parameterization is beneficial in most
cases. It achieves greater improvements in FID for lower CFG scales, i.e. w = 1.5.

Probability for t = s. We also investigate the effect of setting a percentage of t to s to focus
on pure FM training. We find that > 0% degrades 1-NFE performance while it improves 2-NFE
performance, which may suggest a practical tradeoff when training our few-step model.

8 CONCLUSION

We present Terminal Velocity Matching, a framework for training one/few-step generative model
from scratch. Different from prior works, we match the terminal velocity of a flow trajectory instead
of the initial velocity, and we show our objective can explicitly upper bound 2-Wasserstein distance
up to a constant. Our method simultaneously achieves state-of-the-art one-step result and Pareto
frontier for performance scaling at inference time. We hope TVM can provide new insights into
making scalable and performant one/few-step generative paradigms to come.

3Since XL/2 checkpoint is not released, we make our best effort to retrain in PyTorch and select based on
the best 1-NFE result.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. Flow map matching. arXiv preprint
arXiv:2406.07507, 2, 2024.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. How to build a consistency model:
Learning flow maps via self-distillation. arXiv preprint arXiv:2505.18825, 2025.

Valérie Castin, Pierre Ablin, and Gabriel Peyré. How smooth is attention? arXiv preprint
arXiv:2312.14820, 2023.

Huayu Chen, Kai Jiang, Kaiwen Zheng, Jianfei Chen, Hang Su, and Jun Zhu. Visual generation
without guidance. arXiv preprint arXiv:2501.15420, 2025.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention. In
International Conference on Machine Learning, pp. 5562–5571. PMLR, 2021.

Lingxiao Li, Samuel Hurault, and Justin M Solomon. Self-consistent velocity matching of proba-
bility flows. Advances in Neural Information Processing Systems, 36:57038–57057, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Wenze Liu and Xiangyu Yue. Learning to integrate diffusion odes by averaging the derivatives.
arXiv preprint arXiv:2505.14502, 2025.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. CoRR,
abs/1805.02867, 2018. URL http://arxiv.org/abs/1805.02867.

OpenAI. Video generation models as world simulators. https://openai.com/sora/, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing lips-
chitz continuity to vision transformers. arXiv preprint arXiv:2304.09856, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
flow map distillation. arXiv preprint arXiv:2506.14603, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo
Kim, and Chang D Yoo. Physics informed distillation for diffusion models. arXiv preprint
arXiv:2411.08378, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In Forty-second
International Conference on Machine Learning, 2025.

11

http://arxiv.org/abs/1805.02867
https://openai.com/sora/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THEOREMS AND DERIVATIONS

A.1 GENERAL NETWORK PARAMETERIZATION

In general, we can parameterize our net displacement as

fθ(xt, t, s) = γ(t, s)Fθ(xt, t, s) (20)

for some γ(t, s) that satisfies γ(t, t) = 0 for boundary condition. And for the velocity condition, we
let

uθ(xt, t) :=
d

ds
fθ(xt, t, s)

∣∣∣
s=t

= γ̄(t)Fθ(xt, t, t) (21)

where γ̄(t) = ∂sγ(t, s)|s=t.

We derive d
ds fθ(xt, t, s)|s=t below for clarity.

d

ds
fθ(xt, t, s)

∣∣∣
s=t

= ∂sγ(t, s)Fθ(xt, t, s) + γ(t, s)∂sFθ(xt, t, s)
∣∣∣
s=t

(22)

= ∂sγ(t, s)|s=tFθ(xt, t, t) + γ(t, t)
[
∂sFθ(xt, t, s)

∣∣∣
s=t

]
(23)

= ∂sγ(t, s)|s=tFθ(xt, t, t) (24)
= γ̄(t)Fθ(xt, t, t) (25)

A.2 TERMINAL VELOCITY ERROR UPPER BOUNDS DISPLACEMENT ERROR

Lemma 1. Under mild regularity assumptions, the following inequality holds,

Lt
displ(θ) ≤

∫ t

0

Ext

[∥∥∥∥ d

ds
fθ(xt, t, s)− u(ψ(xt, t, s), s)

∥∥∥∥2
2

]
ds (26)

where pt(xt) is marginal distributions for initial points xt.

Proof. We assume both displacement maps are Riemann-integrable, then

Lt
displ(θ) = Ext∼pt(xt)

[∥∥∥∥fθ(xt, t, 0)−
∫ 0

t

u(xs, s)ds

∥∥∥∥2
2

]
(27)

= Ext∼pt(xt)

[∥∥∥∥∫ t

0

d

ds
fθ(xt, t, s)ds−

∫ t

0

u(ψ(xt, t, s), s)ds

∥∥∥∥2
2

]
(28)

(∗)
≤
∫ t

0

Ext∼pt(xt)

[∥∥∥∥ d

ds
fθ(xt, t, s)− u(ψ(xt, t, s), s)

∥∥∥∥2
2

]
ds (29)

where (∗) uses triangle inequality and regularity assumption.

A.3 TERMINAL VELOCITY ERROR REDUCES TO FM

Consider the terminal velocity error for each time s as

Ext

[∥∥∥∥ d

ds
fθ(xt, t, s)− u(ψ(xt, t, s), s)

∥∥∥∥2
2

]
(30)

Expand the inner term

d

ds
fθ(xt, t, s) = Fθ(xt, t, s) + (s− t)∂sFθ(xt, t, s) (31)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

and for the inner norm term its limit exists as t→ s:

lim
t→s

[
d

ds
fθ(xt, t, s)− u(ψ(xt, t, s), s)

]
(32)

= lim
t→s

[Fθ(xt, t, s) + (s− t)∂sFθ(xt, t, s)− u(ψ(xt, t, s), s)] (33)

= Fθ(xs, s, s)− u(xs, s) (34)
Thus, the limit of its expected L2-norm exists (assuming this norm is bounded) and is equal to
L2-norm of its limit, which is

Exs

[
∥Fθ(xs, s, s)− u(xs, s)∥22

]
(35)

and this is the original FM loss, which is equivalent (up to a constant) to conditional Flow Matching
loss used in practice in Eq. (1).

A.4 MAIN THEOREM

Theorem 1 (Connection to the 2-Wasserstein distance). Given t ∈ [0, 1], let fθt→0#pt(xt) be the
distribution pushforward from pt(xt) via fθ(xt, t, 0), and assume uθ(·, s) is Lipschitz-continuous
for all s ∈ [0, t] with Lipschitz constants L(s), with additional mild regularity conditions,

W 2
2 (f

θ
t→0#pt, p0) ≤

∫ t

0

λ[L](s)Lt,s
TVM(θ)ds+ C, (10)

where W2(·, ·) is 2-Wasserstein distance, λ[·] is a functional of L(·), and C is a non-optimizable
constant.

Proof. Note that the ground-truth flow map ψ is invertible and that ψ(ψ(xt, t, 0), 0, t) = xt and
ψ(ψ(x0, 0, t), t, 0) = x0.

W 2
2 (f

θ
t→0#pt, p0)

(i)

≤
∫
p0(x0)∥fθ(ψ(x0, 0, t), t, 0)− x0∥22dx0 (36)

=

∫
p0(x0)∥xt + fθ(ψ(x0, 0, t), t, 0)− ψ(ψ(x0, 0, t), t, 0)∥22dx0 (37)

=

∫
pt(xt)∥xt + fθ(xt, t, 0)− ψ(xt, t, 0)∥22dxt (38)

=

∫
pt(xt)

∥∥∥∥∫ 0

t

d

ds
fθ(xt, t, s)ds−

∫ 0

t

u(xs, s)ds

∥∥∥∥2
2

dxt (39)

(ii)

≤
∫
pt(xt)

∫ t

0

∥∥∥∥ d

ds
fθ(xt, t, s)− u(ψ(xt, t, s), s)

∥∥∥∥2
2︸ ︷︷ ︸

ε(xt,t,s)

dsdxt (40)

where (i) is due to Wasserstein distance being the infimum of all couplings, and we choose a par-
ticular coupling of the two distribution by inverting x0 with ψ and remapping with respective flow
maps. And (ii) is due to Lemma 1. Now, we inspect ε(xt, t, s) specifically by noticing that

ε(xt, t, s)

= ∥ d
ds

fθ(xt, t, s)− u(ψ(xt, t, s), s) + uθ(ψ(xt, t, s), s)− uθ(ψ(xt, t, s), s)

+ uθ(fθ(xt, t, s), s)− uθ(fθ(xt, t, s), s)∥2 (41)
(i)

≤
∥∥∥∥ d

ds
fθ(xt, t, s)− uθ(fθ(xt, t, s), s)

∥∥∥∥2
2

+ ∥uθ(ψ(xt, t, s), s)− u(ψ(xt, t, s), s)∥22︸ ︷︷ ︸
δ(xt,t,s)

+ ∥uθ(fθ(xt, t, s), s)− uθ(ψ(xt, t, s), s)∥22 (42)
(ii)

≤ δ(xt, t, s) + L(s)

∫ t

s

∥∥∥∥ d

ds
fθ(xt, t, u)− u(ψ(xt, t, u), u)

∥∥∥∥2
2︸ ︷︷ ︸

ε(xt,t,u)

du (43)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where (i) is due to triangle inequality and (ii) is due to Lipschitz-continuous assumption. We further
notice that right-hand-side contains a term that is the integral of the left-hand-side. For simplicity,
we hold xt and t constant and let

y(s) =

∫ t

s

ε(xt, t, u)du , ẏ(s) = −ε(xt, t, s)

and we arrive at the following inequality,

−ẏ(s) ≤ δ(xt, t, s) + L(s)y(s) (44)
−δ(xt, t, s) ≤ ẏ(s) + L(s)y(s) (45)

−e
∫ r
t
L(u)duδ(xt, t, r) ≤

d

dr

(
e
∫ r
t
L(u)duy(r)

)
(46)

−
∫ t

s

e
∫ r
t
L(u)duδ(xt, t, r)dr ≤

[
e
∫ r
t
L(u)duy(r)

]t
s

(47)

−
∫ t

s

e
∫ r
t
L(u)duδ(xt, t, r)dr ≤�

��>
0

y(t)− e
∫ s
t
L(u)duy(s) (48)

e
∫ s
t
L(u)duy(s) ≤

∫ t

s

e
∫ r
t
L(u)duδ(xt, t, r)dr (49)

y(s) ≤
∫ t

s

e
∫ r
t
L(u)du−

∫ s
t
L(u)duδ(xt, t, r)dr (50)

y(s) ≤
∫ t

s

e
∫ r
s
L(u)duδ(xt, t, r)dr (51)

Therefore, setting s = 0 we have∫ t

0

ε(xt, t, u)du ≤
∫ t

0

e
∫ r
0
L(u)du︸ ︷︷ ︸

λ[L](r)

δ(xt, t, u)du (52)

where the left-hand side is the inner term of Eq. (40). Then,

Eq. (40) ≤
∫
pt(xt)

∫ t

0

λ[L](s) · δ(xt, t, s)dsdxt (53)

=

∫ t

0

λ[L](s) · Ext

[
∥fθ(xt, t, s)− uθ(fθ(xt, t, s), s)∥22

+ ∥uθ(ψ(xt, t, s), s)− u(ψ(xt, t, s), s)∥22
]
ds (54)

=

∫ t

0

λ[L](s) ·

[
Ext

[
∥fθ(xt, t, s)− uθ(fθ(xt, t, s), s)∥22

+ Ext

[
∥uθ(ψ(xt, t, s), s)− u(ψ(xt, t, s), s)∥22

]]
ds (55)

=

∫ t

0

λ[L](s) ·

[
Ext

[
∥fθ(xt, t, s)− uθ(fθ(xt, t, s), s)∥22

+ Exs

[
∥uθ(xs, s)− u(xs, s)∥22

]
︸ ︷︷ ︸

(a)

]
ds (56)

where (a) can be rewritten as

(a) = Exs,vs

[
∥uθ(xs, s)− vs∥22

]
+ C̃ (57)

where C̃ is some non-optimizable constant (Lipman et al., 2022). This is also a classical result
connecting score matching and denoising score matching (Vincent, 2011).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now, after substitution, we notice that our bound in Eq. (56) becomes∫ t

0

λ[L](s)Lt,s
TVM(θ)ds+ C (58)

where C is some other constant, which completes the proof.

A.5 REDUCTION TO FLOW MATCHING

When t = s, we show that LTVM(θ) reduces to Flow Matching loss.

Lt,t
TVM(θ) = Ext,xs,vs

[∥∥∥∥ d

ds
fθ(xt, t, s)− uθ(fθ(xt, t, s), s)

∥∥∥∥2
2

+
∥∥∥uθ(xs, s)− vs

∥∥∥2] ∣∣∣∣∣
s=t

(59)

= Ext,vt

[
(((((((((((
∥uθ(xt, t)− uθ(xt, t)∥22 +

∥∥∥uθ(xt, t)− vt

∥∥∥2] (60)

A.6 DERIVATION FOR CLASS-CONDITIONAL TRAINING TARGET

In Eq. (14), we introduced the CFG training target as

wvt + (1− w)u1
θ∗

sg
(xs, s,∅)

We derive below that the minimizer of Eq. (14) is the CFG velocity wu(xs, s, c)+ (1−w)u(xs, s).

Proof. Consider the training objective (without weighting for simplicity)

Exs,vs,s,c,w

[∥∥∥uw
θ (xs, s, c)−

[
wvt + (1− w)u1

θsg
(xs, s,∅))

]∥∥∥2
2

]
(61)

when c = ∅, w = 1, then it reduces to

Exs,vs,s

[∥∥u1
θ(xs, s,∅)− vt

∥∥2
2

]
(62)

with the minimizer θmin satisfying u1
θmin

(xs, s,∅) = u(xs, s).

At minimum of the loss for other w and c, it must satisfy

uw
θmin

(xs, s, c) = Evs

[
wvs + (1− w)u1

θmin
(xs, s,∅) | xs, s, c, w

]
(63)

= wEvs
[vs | xs, s, c] + (1− w)u1

θmin
(xs, s,∅) (64)

= wu(xs, s, c) + (1− w)u(xs, s) (65)

B ADDITIONAL DETAILS ON PRACTICAL CHALLENGES

B.1 LIPSCHITZNESS OF RMSNORM

Recall the definition of RMSNorm, for input x ∈ Rd and a small constant ϵ > 0

RMSNorm(x) =
x

RMS(x)
, where RMS(x) =

√√√√1

d

d∑
i=1

xi + ϵ (66)

And its Jacobian can be calculated as
d

dxj
RMSNorm(xi) =

d

dxj

(
xi

RMS(x)

)
(67)

=
δijRMS(x)− xixj/RMS(x)/d

RMS(x)2
(68)

=
δij

RMS(x)
− xixj
d · RMS(x)3

(69)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

def get f and dfds(net, xt, t, s, c, w):

def model wrapper(x , t , s): # we use t−s for second time condition
return net(x , t , (t − s), c, w)

F, dFds = torch.func.jvp(model wrapper , (xt, t, s), (0, 0, 1))

f ts = xt + (s − t) * F
dfds = (F + (s − t) * dFds)
return f ts , dfds

Figure 9: PyTorch-style JVP code.

Since matrix norm (largest singular value) σ(A) of matrix A is upper bounded by its Frobenius
norm, and RMS(x) ≥ ϵ, we have each element d

dxj
RMSNorm(xi) in the Jacobian matrix bounded

via ∣∣∣∣ d

dxj
RMSNorm(xi)

∣∣∣∣2 ≤ ∣∣∣∣ δij
RMS(x)

∣∣∣∣2 + ∣∣∣∣ xixj
d · RMS(x)3

∣∣∣∣2 (70)

=

∣∣∣∣ δij
RMS(x)

∣∣∣∣2 +
(
xi/
√
d

RMS(x)

)2

·

(
xj/
√
d

RMS(x)

)2

· 1

RMS(x)

2

(71)

≤ 1

ϵ
+

1

ϵ
(72)

=
2

ϵ
(73)

Therefore, the Frobenius norm is bounded and hence the matrix norm.

B.2 FULL DESCRIPTION OF NORMALIZATION OF MODULATION

Note that there are 6 modulation parameters in total for each DiT layer, denoted as

a1(t), b1(t), c1(t), a2(t), b2(t), c2(t) = split(AdaLN Modulation(t), 6) (74)

and we pass each of the above parameters through RMSNorm−(·) to obtain

a−1 (t), b
−
1 (t), c

−
1 (t), a

−
2 (t), b

−
2 (t), c

−
2 (t)

(which can be done in parallel) and the new normalized DiT layer is

x = x+ c−1 (t) ∗ ATTN(RMSNorm−(x) ∗ a−1 (t) + b−1 (t))

x = x+ c−2 (t) ∗MLP(RMSNorm−(x) ∗ a−2 (t) + b−2 (t))

C FLASH ATTENTION JVP WITH BACKWARD PASS

In transformer models, scaled dot-product attention (SDPA) is often among the most, if not the most,
computationally expensive operations. The cost stems not only from its high FLOP requirements –
O(MN) in general, and O(N2) in the case of self-attention – but also from the quadratic memory
footprint of the query–key matrix multiplication.

Computing the Jacobian-Vector Product (JVP) of SDPA is even more demanding, typically requiring
about three times the cost of the standard forward pass. Flash attention (Dao et al., 2022) fuses the
matrix multiplication with an online softmax operation (Milakov & Gimelshein, 2018), thereby
eliminating the need to store the intermediate QK⊤ matrix in GPU memory. Subsequent work
has shown that JVP SDPA can also be implemented in a FlashAttention-style manner, where both,
primal SDPA and JVP SDPA are computed jointly to avoid redundant computation (Lu & Song,
2024).

Building on these ideas, we implement efficient JVP SDPA forward and backward kernels in Triton.
We first take inspiration from open-source implementations without backward support4. And the

4https://github.com/Ryu1845/min-sCM/blob/main/standalone_multihead_jvp_
test.py

16

https://github.com/Ryu1845/min-sCM/blob/main/standalone_multihead_jvp_test.py
https://github.com/Ryu1845/min-sCM/blob/main/standalone_multihead_jvp_test.py

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

additional backward pass through the standard (“primal”) SDPA is handled independently using the
open-source implementation from (Dao et al., 2022). To obtain full gradients with respect to Q, K,
and V , we combine the input gradients from both backward passes.

Similar to standard SDPA, the JVP backward pass can leverage online softmax to avoid storing large
intermediate matrices in GPU memory. However, the increased complexity of JVP SDPA requires
additional optimizations to run efficiently on GPUs. Most notably, we found it crucial to split the
backward computation into multiple smaller kernels to reduce register spills caused by the large
number of intermediate tensors.

Background. Recall the attention operation as

ATTN(Q,K, V) = V · softmax
(
QKT

√
dk

)
(75)

and let the query, key, and value blocks be denoted by Q ∈ RM×d, K ∈ RN×d and V ∈ RN×d.
The tangent inputs are denoted as Q̇, K̇, V̇ . We use α = 1√

dk
as the softmax scaling factor, and ℓi

denotes the log-sum-exponential normalization for the i-th row of the attention scores, a short form
for combining the softmax stabilization factor and the normalization.

C.1 MULTI-STEP BACKWARD PASS

For best performance, we decided to split up the backward pass into multiple smaller operations with
shared paths through the graph. Furthermore, the gradients dQ and dQ̇ are computed in row-parallel
order, while dK, dK̇, dV and dV̇ are processed in column-parallel order. In our tests, redundant,
but coalesced computation of the large parts of the backward pass greatly outperformed a single,
fused kernel relying on atomic operations.

We split the operation into 6 steps: 1) preprocess shared intermediates, 2) process dK̇ and first part
of dK, 3) process dQ̇ and first part of dQ, 4) process second part of dK, 5) process second part of
dQ, 6) process dV̇ and dV .

Step 1: Preprocess shared intermediates row-parallel. In the first step, we preprocess two inter-
mediate sums Σ1 ∈ RM and Σ2 ∈ RM used in steps 2-5.

Σ1,i =
∑
j

Pij

(
dȮV ⊤

)
ij

(76)

Σ2,i =
∑
j

Pij

((
dȮV̇ ⊤

)
ij
+
(
dȮV ⊤

)
ij
Nij

)
(77)

where

Pij = exp (αSij − ℓi) , Sij =

dk∑
r=1

QirKjr, Nij = αṠij −
µi

li
(78)

amd

Ṡij =

dk∑
r=1

(
Q̇irKjr +QirK̇jr

)
, µi =

∑
j

Pij

(
αṠij

)
(79)

Step 2: process dK̇ and dK1 column-parallel.

(dK1)j,: = α
∑
i

[((
dȮV ⊤

)
ij
− Σ1,i

)
Pij

]
Q̇i,: (80)

(dK̇)j,: = α
∑
i

[((
dȮV ⊤

)
ij
− Σ1,i

)
Pij

]
Qi,: (81)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Step 3: Process dQ̇ and dQ1 row-parallel.

(dQ1)i,: = α
∑
j

[((
dȮV ⊤

)
ij
− Σ1,i

)
Pij

]
K̇j,: (82)

(dQ̇)i,: = α
∑
j

[((
dȮV ⊤

)
ij
− Σ1,i

)
Pij

]
Kj,: (83)

Step 4: Process dK column-parallel.

(dK)j,: = (dK1)j,: + α
∑
i

{[
α (−Σ1,i) Ṡij +Σ1,i

µi

li

]
Pij

+

[(
dȮV̇ ⊤

)
ij
+
(
dȮV ⊤

)
ij

(
αṠij −

µi

li

)
− Σ2,i

]
Pij

}
Qi,

(84)

Step 5: Process dQ row-parallel.

(dQ)i,: = (dQ1)i,: + α
∑
j

{[
α (−Σ1,i) Ṡij +Σ1,i

µi

li

]
Pij

+

[(
dȮV̇ ⊤

)
ij
+
(
dȮV ⊤

)
ij

(
αṠij −

µi

li

)
− Σ2,i

]
Pij

}
Kj,:

(85)

Step 6: Process dV and dV̇ column-parallel.

(dV̇)j,: =
∑
i

Pij(dȮ)i,: (86)

(dV)j,: =
∑
j

[
Pij

(
αṠij −

µi

li

)]
(dȮ)i,: (87)

Caching softmax statistics. Like previous flash-attention implementations, we cache softmax
statistics from the forward pass to speed up the backward pass, namely the log-sum-exp ℓ, the sums
l and µ for each row of the output O. Thus, the total overhead of the cache is only three values per
row of Q.

C.2 EVALUATION

We built a test bench to evaluate latency and peak memory consumption of our flash JVP SDPA
kernels on different input shapes using an NVIDIA H100 SXM 80GB. Due to the lack of existing
alternatives, we compare against vanilla SDPA, i.e. a SDPA written as explicit math operations,
which currently is the only way to train transformers in PyTorch with JVP enabled.

As our contribution focuses on the backward pass, we limit the latency and peak memory evalu-
ation to the backward pass of a single SDPA operation, combining both paths through the primal
(”normal”) and the tangent (JVP) gradients.

Results. Shown in Table 4, our implementation achieves a significant reduction in peak memory
consumption. Compared to the reference, we save memory not only by reducing the cached variables
between forward and backward pass, but more importantly by avoiding to store N2 intermediate
attention scores. At the same time, our implementation achieves a speedup of up to 65% compared
to the reference.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H S Latency [ms] Peak Memory [MB]

ours vanilla ours vanilla

1 128 1.31 1.51 64.69 64.80
1 1,024 1.38 1.54 69.52 94.02
1 4,096 1.96 1.53 86.06 508.1
1 8,192 3.98 4.33 108.1 1,816
1 16,384 10.06 16.11 152.3 7,024
1 32,768 40.24 63.85 240.5 27,808

24 128 1.40 1.55 80.55 83.17
24 1,024 1.42 2.03 196.4 784.4
24 4,096 15.13 24.52 593.5 10,721
24 8,192 58.70 96.93 1,123 42,115
24 16,384 238.4 - 2,182 -
24 32,768 958.6 - 4,300 -

Table 4: Performance comparison of our flash JVP kernels against vanilla SDPA kernels in PyTorch. H and S
stand for number of heads in multi head attention and sequence length. Vanilla SDPA ran out of memory on a
NVIDIA H100 in the last two tests.

Algorithm 1 TVM Training

Input: initialized model fθ, data p0(x0, c) and prior p1(x1), time distribution p(t, s), guidance
distribution p(w)
Initialize θ∗ ← θ, θ∗∗ ← θ //θ∗, θ∗∗ are EMA with rate λ∗, λ∗∗.
while model not converged do

Sample (x0, c,x1) ∼ p0(x0, c)p1(x1)
Randomly drop c with prob. 10%
Sample (t, s, w) ∼ p(t, s)p(w)
xt ← (1− t)x0 + tx1

xs ← (1− s)x0 + sx1

θ ← optimizer step by minimizing L̂TVM(θ) = Et,s,w

[
L̂t,s,w

TVM (θ)
]

// see Eq. (15)
θ∗ ← EMA update with rate λ∗
θ∗∗ ← EMA update with rate λ∗∗

end while
Output: learned model fθ∗∗

D TRAINING ALGORITHM

We present the training algorithm in Algorithm 1. We additionally show a PyTorch-style pseudo-
code in Figure 9 for calculating fθ(xt, t, s) and d

ds fθ(xt, t, s) together with one JVP pass.

E RELATION TO PRIOR WORKS

E.1 MEANFLOW

Let fθ(xt, t, s) = (s− t)Fθ(xt, t, s), we inspect

d

dt
fθ(xt, t, s) + u(xt, t) (88)

= −Fθ(xt, t, s) + (s− t) d
dt

Fθ(xt, t, s) + u(xt, t) (89)

= −Fθ(xt, t, s) + (s− t)
[
u(xt, t) · ∇xt

Fθ(xt, t, s) + ∂tFθ(xt, t, s)
]
+ u(xt, t) (90)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore,∥∥∥∥ d

dt
fθ(xt, t, s) + u(xt, t)

∥∥∥∥2
2

(91)

=
∥∥∥− Fθ(xt, t, s) + (s− t)

[
u(xt, t) · ∇xtFθ(xt, t, s) + ∂tFθ(xt, t, s)

]
+ u(xt, t)︸ ︷︷ ︸

Ftgt

∥∥∥2 (92)

which is the MeanFlow loss.

F ADDITIONAL EXPERIMENT DETAILS

We provide additional experiment details.

F.1 ARCHITECTURE AND OPTIMIZATION

VAE. We follow Zhou et al. (2025) for the VAE setting, which uses the standard Stable Diffusion
VAE (Rombach et al., 2022) but with a different scale and shift. Please refer to the paper for details.

Architecture. All architecture decisions follow DiT (Peebles & Xie, 2023) except for the changes
described in the main text. For our XL-sized model, we follow DiT-XL and use 1152 hidden size
but use 18 heads instead of 16 heads. This is purely for efficiency reasons because 18 heads under
1152 total hidden size implies head dimension is 64, while the original 16 heads result in head
dimension 72. Flash attention JVP’s runtime is sensitive to redundancy in memory allocations.
As 64 is a power of 2 our kernel can fully allocate appropriately sized CUDA blocks, while 72
leaves significant chunks unused. We observe that the original 16-head decision is ×1.25 slower
than the 18-head variant. In comparing FID of the two versions, we observe they perform similarly
throughout training.

Following Zhou et al. (2025), we use t− s as our second time condition into the architecture rather
than directly injecting s. For injecting w, we follow Chen et al. (2025) and use β = 1/w as our
condition, and if random CFG is used training, we sample β ∼ U(1

wmax
, 1
wmin

) and setw = 1/β. Note
that Chen et al. (2025) uses β ∼ U(0, 1) which amounts to wmin = 1 and wmax =∞, but arbitrarily
large w is never used in practice so wmax can be set to a realistic finite value.

Optimization. Besides setting β2 = 0.95, we follow the default optimizer used by DiT and optimize
with BF16 precision. We de not use any learning rate scheduler.

F.2 DETAILS ON RANDOM CFG WITH MEANFLOW

In MeanFlow (Geng et al., 2025), the authors introduce a mixing scale κ such that the field with
guidance scale w is given by

v(xt, t, c, w) = wvt + κuθ(xt, t, c, w) + (1− w − κ)uθ(xt, t, w) (93)

It specifies that the effective guidance scale is w′ = w
(1−κ) . This is because since uθ(xt, t, c, w) ≈

v(xt, t, c, w), rearranging it to LHS and dividing both sides by (1− κ) gives

(1− κ)v(xt, t, c, w) = wvt + (1− w − κ)uθ(xt, t, w) (94)

v(xt, t, c, w) =
w

(1− κ)
vt + (1− w

(1− κ)
)uθ(xt, t, w) (95)

This constrains κ ∈ [0, 1). However, in the case of random CFG, to make use of uθ(xt, t, c, w), we
try the simple linear mixing (the default CFG reweighting)

v(xt, t, c, w + κ) = wvt + κuθ(xt, t, c, 1) + (1− w − κ)uθ(xt, t, 1) (96)

where w and κ are both randomly sampled with finite boundaries. In this case uθ(xt, t, c, 1) ̸≈
v(xt, t, c, w+κ) and thus κ is not constrained to be smaller than 1. Whenw = 0, it becomes regular
CFG with network approximation of the CFG velocity, and when κ = 0 it becomes MeanFlow CFG
with vt approximation of the CFG velocity. This construction subsumes both implementation cases.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In our experiments, we use κ ∼ U(0, cmax), w ∼ U(1, cmax) for some constant cmax. However,
we acknowledge that this observed training fluctuation may depend on exact training settings and
environments, and may be fixable via empirical tricks such as adjusting AdamW parameters or
gradient clipping, etc. We present the training in the simplest settings without such tricks to best
illustrate our point.

F.3 CFG-CONDITIONED FLOW MATCHING

50k 100k 150k 200k 250k

Training Steps

5

10

15

20

25

FI
D

w=1.5
w=2

Figure 10: w-conditioned FM training
experiences tradeoff.

As in our method, we similarly observe tradeoff in FID if
FM is trained to condition on CFG scale w with randomly
sampled w during training (Chen et al., 2025). During in-
ference time, w is injected into the network so that the CFG
velocity field can be approximated by a single forward call.
We inject w using positional embedding just like the diffu-
sion time, and during training we sample β ∼ U(0, 1) and
set w = 1/β, following Chen et al. (2025). We show in Fig-
ure 10 that as the model trains, the FID of w = 1.5 decreases
but w = 2 increases for later training steps. This tradeoff is
similarly observed in our method as presented in the main
text.

F.4 ADDITIONAL VISUAL SAMPLES

Figure 11: Additional ImageNet-256×256 samples from 1-NFE TVM model.

21

	Introduction
	Preliminaries: Flow Matching
	Terminal Velocity Matching
	Practical Challenges
	Connection to Prior Works
	Related Works
	Experiments
	Image Generation
	Discussion on Training Advantages
	Ablation Studies

	Conclusion
	Theorems and Derivations
	General Network Parameterization
	Terminal Velocity Error Upper Bounds Displacement Error
	Terminal Velocity Error Reduces to FM
	Main Theorem
	Reduction to Flow Matching
	Derivation for class-conditional training target

	Additional Details on Practical Challenges
	Lipschitzness of RMSNorm
	Full Description of Normalization of Modulation

	Flash Attention JVP with Backward Pass
	Multi-step backward pass
	Evaluation

	Training Algorithm
	Relation to Prior Works
	MeanFlow

	Additional Experiment Details
	Architecture and Optimization
	Details on Random CFG with MeanFlow
	CFG-Conditioned Flow Matching
	Additional Visual Samples

