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ABSTRACT

This work investigates a simple yet powerful dense prediction task adapter for Vi-
sion Transformer (ViT). Unlike recently advanced variants that incorporate vision-
specific inductive biases into their architectures, the plain ViT suffers inferior
performance on dense predictions due to weak prior assumptions. To address
this issue, we propose the ViT-Adapter, which allows plain ViT to achieve com-
parable performance to vision-specific transformers. Specifically, the backbone
in our framework is a plain ViT that can learn powerful representations from
large-scale multi-modal data. When transferring to downstream tasks, a pre-
training-free adapter is used to introduce the image-related inductive biases into
the model, making it suitable for these tasks. We verify ViT-Adapter on mul-
tiple dense prediction tasks, including object detection, instance segmentation,
and semantic segmentation. Notably, without using extra detection data, our ViT-
Adapter-L yields state-of-the-art 60.9 box AP and 53.0 mask AP on COCO test-
dev. We hope that the ViT-Adapter could serve as an alternative for vision-specific
transformers and facilitate future research. Code and models will be released at
https://github.com/czczup/ViT-Adapter.
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Figure 1: Previous paradigm vs. our paradigm. (a) Previous paradigm designs vision-specific
models and pre-trains on large-scale image datasets via supervised or self-supervised learning and
then fine-tunes them on downstream tasks. (b) We propose a pre-training-free adapter to close the
performance gap between plain ViT (Dosovitskiy et al., 2020) and vision-specific transformers (e.g.,
Swin (Liu et al., 2021b)) for dense prediction tasks. Compared to the previous paradigm, our method
preserves the flexibility of ViT and thus could benefit from advanced multi-modal pre-training.

1 INTRODUCTION

Recently, transformers have witnessed remarkable success in a broad range of computer vision
fields. Benefiting from the dynamic modeling capability and the long-range dependence of the
attention mechanism, various vision transformers (Dosovitskiy et al., 2020; Chen et al., 2021; Han
et al., 2021; Li et al., 2021c; Wu et al., 2022b) soon rose in many computer vision tasks such as
object detection and semantic segmentation, surpassing CNN models and reaching state-of-the-art
performance. These models are mainly divided into two families, i.e. the plain ViT (Dosovitskiy
et al., 2020; Touvron et al., 2021), and its hierarchical variants (Dong et al., 2021; Liu et al., 2021b;
Wang et al., 2021; 2022a). In general, the latter can produce better results and is believed to intro-
duce vision-specific inductive biases into their architectures by using local spatial operations.
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Method #Param APb

PVTv2-B1 33.7M 44.9
ViT-T 26.1M 40.2
ViT-Adapter-T (ours) 28.1M 46.0
PVTv2-B2 45.0M 47.8
Swin-T 47.8M 46.0
ViT-S 43.8M 44.0
ViT-Adapter-S (ours) 47.8M 48.2
Swin-B 107.1M 48.6
ViT-B 113.6M 45.8
ViT-Adapter-B (ours) 120.2M 49.6
ViT-Adapter-B⋆(ours) 120.2M 51.2
ViT-L† 337.3M 48.8
ViT-Adapter-L† (ours) 347.9M 52.1

Figure 2: Object detection performance on
COCO val2017 using Mask R-CNN. We see
that the proposed ViT-Adapter brings significant
improvements to plain ViTs. ⋆ indecates us-
ing multi-modal pre-trained ViT from (Zhu et al.,
2021). Backbones pre-trained on ImageNet-22K
are marked with †, otherwise ImageNet-1K.

Nonetheless, the plain ViT (i.e., vanilla trans-
former) still has some nonnegligible advan-
tages. A typical example lies in multi-modal
pre-training (Zhu et al., 2021; 2022; Wang
et al., 2022b). Stemming from the natural
language processing (NLP) field, transformer
has no assumption of input data. Equipping
with different tokenizers, e.g. patch embed-
ding (Dosovitskiy et al., 2020), 3D patch em-
bedding (Liu et al., 2021c), and token em-
bedding (Vaswani et al., 2017), vanilla trans-
formers such as plain ViT can use massive
multi-modal data for pre-training, including
image, video, and text, which encourages the
model to learn semantic-rich representations.
However, the plain ViT has conclusive de-
fects in dense predictions compared to vision-
specific transformers. Lacking image-related
prior knowledge results in slower convergence
and lower performance, and thus plain ViTs are
hard to compete with vision-specific transform-
ers (Huang et al., 2021b; Xie et al., 2021; Wang
et al., 2022a) on dense prediction tasks. Inspired by the adapters (Houlsby et al., 2019; Stickland &
Murray, 2019) in the NLP field, this work aims to develop an adapter to close the performance gap
between the plain ViT and vision-specific backbones for dense prediction tasks.

To this end, we propose the Vision Transformer Adapter (ViT-Adapter), which is a pre-training-free
additional network that can efficiently adapt the plain ViT to downstream dense prediction tasks
without modifying its original architecture. Specifically, to introduce the vision-specific inductive
biases into the plain ViT, we design three tailored modules for ViT-Adapter, including (1) a spatial
prior module for capturing the local semantics (spatial prior) from input images, (2) a spatial fea-
ture injector for incorporating spatial prior into the ViT, and (3) a multi-scale feature extractor to
reconstruct the multi-scale features required by dense prediction tasks.

As shown in Figure 1, compared to the previous paradigm that pre-trains on large-scale image
datasets (e.g., ImageNet (Deng et al., 2009)) then fine-tunes on other tasks, our paradigm is more
flexible. In our framework, the backbone network is a general-propose model (e.g., plain ViT) that
can be pre-trained with not only images but also multi-modal data. For the transfer learning of
dense prediction tasks, we use a randomly initialized adapter to introduce the image-related prior
knowledge (inductive biases) into the pre-trained backbone, making the model suitable for these
tasks. In this way, using ViT as the backbone, our framework achieves comparable or even better
performance than vision-specific transformers such as Swin (Liu et al., 2021b).

Our main contributions are as follows:

• We explore a new paradigm to introduce vision-specific inductive biases into the plain ViT. It helps
ViT achieve comparable performance to recent transformer variants (Liu et al., 2021b; Wang et al.,
2022a) with regular ImageNet pre-training and further benefits from multi-modal pre-training.

• We design a spatial prior module and two feature interaction operations, to inject the image prior
without redesigning the architecture of ViT. They can supplement the missing local information and
reorganize fine-grained multi-scale features for dense prediction tasks.

• We evaluate the ViT-Adapter on multiple challenging benchmarks, including COCO (Lin et al.,
2014) and ADE20K (Zhou et al., 2017). As shown in Figure 2, our models consistently achieve
improved performance compared to the prior arts under the fair pre-training strategy. For instance,
when using only ImageNet-1K pre-training, ViT-Adapter-B reports 49.6 box AP on COCO val,
outperforming Swin-B by 1.0 points. Benefiting from multi-modal pre-training (Peng et al., 2022),
our ViT-Adapter-L yields 60.9 box AP, which is the best record on COCO test-dev without training
on extra detection data such as Objects365 (Shao et al., 2019).
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Figure 3: Overview of ViT-Adapter and two related approaches. Li et al. (2021b) and ViTDet (Li
et al., 2022b) build simple feature pyramid to adapt plain ViT for object detection, which only
consider task prior. Differently, our adapter utilizes both task prior and the input image.

2 RELATED WORK

Transformers. In recent years, transformers have dominated various tasks across multiple modal-
ities, such as natural language processing, computer vision, and speech recognition. The vanilla
transformer (Vaswani et al., 2017) was initially proposed for machine translation and remains the
state-of-the-art architecture for NLP tasks today. ViT (Dosovitskiy et al., 2020) is the first work to
generalize the vanilla transformer to the image classification task without much modification. PVT
(Wang et al., 2021) and Swin (Liu et al., 2021b) introduce more vision-specific inductive biases by
incorporating the pyramid structure from CNNs. Afterward, Conformer (Peng et al., 2021) proposed
the first dual network to combine CNN with transformer. Recently, BEiT (Bao et al., 2022) and MAE
(He et al., 2021) extended the scope of ViT to self-supervised learning with masked image model-
ing (MIM), demonstrating the powerful potential of the plain ViT architecture. Many works (Li
et al., 2021b; Zhu et al., 2021; 2022; Wang et al., 2022b) have shown that designing vision-specific
models is an important direction, but the general-propose architectures (e.g., plain ViT) are more
flexible and essential for masked data modeling and multi-modal pre-training. Therefore, we de-
velop a pre-training-free adapter to introduce the image prior without modifying the architecture of
ViT, preserving its flexibility and enjoying advanced multi-modal pre-training.

Decoders for ViT. The architecture for dense prediction commonly follows an encoder-decoder
pattern, in which the encoder generates rich features and the decoder aggregates and translates them
to the final predictions. Recently, illuminated by the global receptive fields of ViT, many works
employ it as the encoder and design task-specific decoders. SETR (Zheng et al., 2021) is the first
work to adopt ViT as the backbone and develop several CNN decoders for semantic segmentation.
Segmenter (Strudel et al., 2021) also extends ViT to semantic segmentation, but differs in that it
equips a transformer-based decoder. DPT (Ranftl et al., 2021) further applies ViT to the monocular
depth estimation task via a CNN decoder and yields remarkable improvements. In summary, these
works improve the dense prediction performance of ViT by designing modality- and task-specific
decoders, but remain ViT’s weakness of single-scale and low-resolution representation.

Adapters. To date, adapters have been widely used in the NLP field. PALs (Stickland & Murray,
2019) and Adapters (Houlsby et al., 2019) introduce new modules in transformer encoders for task-
specific fine-tuning, making the pre-trained model quickly adapt to downstream NLP tasks. In the
field of computer vision, some adapters have been proposed for incremental learning (Rosenfeld &
Tsotsos, 2018) and domain adaptation (Rebuffi et al., 2017; 2018). With the advent of CLIP (Radford
et al., 2021), many CLIP-based adapters (Gao et al., 2021; Sung et al., 2021; Zhang et al., 2021) were
presented to transfer pre-trained knowledge to zero-shot or few-shot downstream tasks. Recently, Li
et al. (2021b) and ViTDet (Li et al., 2022b) employed some upsampling and downsampling modules
to adapt the plain ViT for object detection, as shown in Figure 3(a). However, under regular training
settings (i.e., apply ImageNet supervised pre-training and fine-tune for 36 epochs), their detection
performance is still inferior1 to recent models (Chu et al., 2021b; Dong et al., 2021; Wang et al.,
2022a; Wu et al., 2022b) that well combine image prior. Therefore, it is still challenging to design a
powerful dense prediction task adapter for ViT.

1In ViTDet, using regular ImageNet-22K pre-training instead of MAE (He et al., 2021) drops 4.0 box AP.
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Figure 4: Overall architecture of ViT-Adapter. (a) The ViT, whose encoder layers are divided
into N (usually N = 4) equal blocks for feature interaction. (b) Our ViT-Adapter, which contains
three key designs, including (c) a spatial prior module for modeling local spatial contexts from the
input image, (d) a spatial feature injector for introducing spatial priors into ViT, and (e) a multi-scale
feature extractor for reorganizing multi-scale features from the single-scale features of ViT.

3 VISION TRANSFORMER ADAPTER

3.1 OVERALL ARCHITECTURE

As illustrated in Figure 4, our model can be divided into two parts. The first part is the plain
ViT (Dosovitskiy et al., 2020) that consists of a patch embedding followed by L transformer encoder
layers (see Figure 4(a)). The second part is the proposed ViT-Adapter as shown in Figure 4(b),
which contains (1) a spatial prior module to capture spatial features from the input image, (2) a
spatial feature injector to inject spatial priors into the ViT, and (3) a multi-scale feature extractor to
extract hierarchical features from the single-scale features of ViT.

For the ViT, the input image is first fed into the patch embedding, where the image is divided
into 16 × 16 non-overlapping patches. After that, these patches are flattened and projected to D-
dimensional tokens, and the feature resolution is reduced to 1/16 of the original image. Then, these
tokens added with the position embedding, are passed through L encoder layers.

For the ViT-Adapter, we first feed the input image into the spatial prior module. D-dimensional
spatial features of three target resolutions (i.e., 1/8, 1/16, and 1/32) will be collected. Then, these
feature maps are flattened and concatenated as the input for feature interaction. Specifically, given
the number of interactions N (usually N = 4), we evenly split the transformer encoders of ViT into
N blocks, each containing L/N encoder layers. For the i-th block, we first inject spatial priors F i

sp
into the block via a spatial feature injector, and then extract hierarchical features from the output
of the block by a multi-scale feature extractor. After N feature interactions, we obtain high-quality
multi-scale features, and then we split and reshape the features into three target resolutions 1/8, 1/16,
and 1/32. Finally, we build the 1/4-scale feature map by upsampling the 1/8-scale feature map using
a 2 × 2 transposed convolution. In this way, we obtain a feature pyramid of similar resolutions to
ResNet (He et al., 2016), which can be used in various dense prediction tasks.

3.2 SPATIAL PRIOR MODULE

Recent studies (Wang et al., 2022a; Wu et al., 2021; Fang et al., 2022; Park & Kim, 2022) show
convolutions can help transformers better capture the local spatial information. Inspired by this,
we introduce the Spatial Prior Module (SPM). It is designed to model the local spatial contexts of
images parallel with the patch embedding layer, so as not to alter the original architecture of ViT.

As shown in Figure 4(c), a standard convolutional stem borrowed from ResNet (He et al., 2016) is
employed, which consists of three convolutions and a max-pooling layer. Then, we use a stack of
stride-2 3×3 convolutions to double the number of channels and reduce the size of feature maps.
Finally, several 1×1 convolutions are applied at the end to project the feature maps to D dimensions.
In this way, we obtain a feature pyramid {F1,F2,F3}, which contains D-dimensional feature maps
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with resolutions of 1/8, 1/16, and 1/32. Then, we flatten and concatenate these feature maps into
feature tokens F1

sp ∈ R(HW
82

+HW
162

+HW
322

)×D, as the input for feature interaction.

3.3 FEATURE INTERACTION

Due to weak prior assumptions, the plain ViT suffers sub-optimal performance on dense prediction
tasks compared to vision-specific transformers (Chu et al., 2021a; Dong et al., 2021; Liu et al.,
2021b; Wang et al., 2022a). To alleviate this issue, we propose two feature interaction modules to
bridge the feature maps of our SPM and the ViT. To be specific, the two modules are mainly based
on cross-attention, namely Spatial Feature Injector and Multi-Scale Feature Extractor.

Spatial Feature Injector. As shown in Figure 4(d), this module is used to inject the spatial priors
into ViT. Specifically, for the i-th block of the ViT, we take the input feature F i

vit ∈ R
HW
162

×D as
the query, and the spatial feature F i

sp ∈ R(HW
82

+HW
162

+HW
322

)×D as the key and value. We use cross-
attention to inject spatial feature F i

sp into the input feature F i
vit, which can be written as Eqn. 1.

F̂ i
vit = F i

vit + γiAttention(norm(F i
vit),norm(F i

sp)), (1)

where the norm(·) is LayerNorm (Ba et al., 2016), and the attention layer Attention(·) suggests
using sparse attention. In addition, we apply a learnable vector γi ∈ RD to balance the attention
layer’s output and the input feature F i

vit, which is initialized with 0. This initialization strategy
ensures that the feature distribution of F i

vit will not be modified drastically due to the injection of
spatial priors, thus making better use of the pre-trained weights of ViT.

Multi-Scale Feature Extractor. After injecting the spatial priors into the ViT, we obtain the output
feature F i+1

vit by passing F̂ i
vit through the encoder layers of the i-th block. Then, we apply a mod-

ule consisting of a cross-attention layer and a feed-forward network (FFN), to extract multi-scale
features, as shown in Figure 4(e). This process can be formulated as:

F i+1
sp = F̂ i

sp + FFN(norm(F̂ i
sp)), (2)

F̂ i
sp = F i

sp +Attention(norm(F i
sp),norm(F i+1

vit )), (3)

in which we use the spatial feature F i
sp ∈ R(HW

82
+HW

162
+HW

322
)×D as the query, and the output feature

F i+1
vit ∈ R

HW
162

×D as the key and value for cross-attention. As same as the spatial feature injector, we
adopt sparse attention here to reduce computational cost. The generated spatial feature F i+1

sp will be
used as the input of the next spatial feature injector.

3.4 ARCHITECTURE CONFIGURATIONS

We build our ViT-Adapter for 4 different sizes of ViT, including ViT-T, ViT-S, ViT-B, and ViT-
L. For these models, the parameter numbers of our adapters are 2.5M, 5.8M, 14.0M, and 23.7M,
respectively. We employ deformable attention (Zhu et al., 2020) as the default sparse attention in
our method, where the number of sampling points is fixed to 4, and the number of attention heads
is set to 6, 6, 12, and 16. The number of interactions N is 4, and in the last feature interaction, we
stack three multi-scale feature extractors. Besides, we set the FFN ratio in our adapter to 0.25 to
save computational overhead, i.e. the hidden sizes of FFN are 48, 96, 192, and 256 for 4 different
adapters. More details of each configuration are shown in Table 10 in Appendix B.

4 EXPERIMENTS

Previous work (Wang et al., 2021) has shown that the pyramid prior is beneficial to dense prediction,
but brings little gains to image classification. Therefore, in this study, we focus on how to better
adapt readily available pre-trained ViTs to dense prediction tasks. We hope this method will also
help decouple the model design of upstream pre-training and downstream fine-tuning.

4.1 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. Our detection experiments are based on MMDetection (Chen et al., 2019b) and the COCO
(Lin et al., 2014) dataset. We use 4 mainstream detectors to evaluate our ViT-Adapter, including
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Method #Param Mask R-CNN 1× schedule Mask R-CNN 3×+MS schedule
(M) APbAPb

50APb
75APmAPm

50APm
75APbAPb

50APb
75APmAPm

50APm
75

PVT-Tiny (Wang et al., 2021) 32.9 36.7 59.2 39.3 35.1 56.7 37.3 39.8 62.2 43.0 37.4 59.3 39.9
PVTv2-B1 (Wang et al., 2022a) 33.7 41.8 64.3 45.9 38.8 61.2 41.6 44.9 67.3 49.4 40.8 64.0 43.8
ViT-T (Li et al., 2021b) 26.1 35.5 58.1 37.8 33.5 54.9 35.1 40.2 62.9 43.5 37.0 59.6 39.0
ViTDet-T (Li et al., 2022b) 26.6 35.7 57.7 38.4 33.5 54.7 35.2 40.4 63.3 43.9 37.1 60.1 39.3
ViT-Adapter-T (ours) 28.1 41.1 62.5 44.3 37.5 59.7 39.9 46.0 67.6 50.4 41.0 64.4 44.1

PVT-Small (Wang et al., 2021) 44.1 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
PVTv2-B2 (Wang et al., 2022a) 45.0 45.3 67.1 49.6 41.2 64.2 44.4 47.8 69.7 52.6 43.1 66.8 46.7
Swin-T (Liu et al., 2021b) 47.8 42.7 65.2 46.8 39.3 62.2 42.2 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T (Liu et al., 2022) 48.1 44.2 66.6 48.3 40.1 63.3 42.8 46.2 67.9 50.8 41.7 65.0 44.9
Focal-T (Yang et al., 2021) 48.8 44.8 67.7 49.2 41.0 64.7 44.2 47.2 69.4 51.9 42.7 66.5 45.9
ViT-S (Li et al., 2021b) 43.8 40.2 63.1 43.4 37.1 59.9 39.3 44.0 66.9 47.8 39.9 63.4 42.2
ViTDet-S (Li et al., 2022b) 45.7 40.6 63.3 43.5 37.1 60.0 38.8 44.5 66.9 48.4 40.1 63.6 42.5
ViT-Adapter-S (ours) 47.8 44.7 65.8 48.3 39.9 62.5 42.8 48.2 69.7 52.5 42.8 66.4 45.9

PVTv2-B5 (Wang et al., 2022a) 101.6 47.4 68.6 51.9 42.5 65.7 46.0 48.4 69.2 52.9 42.9 66.6 46.2
Swin-B (Liu et al., 2021b) 107.1 46.9 - - 42.3 - - 48.6 70.0 53.4 43.3 67.1 46.7
ViT-B (Li et al., 2021b) 113.6 42.9 65.7 46.8 39.4 62.6 42.0 45.8 68.2 50.1 41.3 65.1 44.4
ViTDet-B (Li et al., 2022b) 121.3 43.2 65.8 46.9 39.2 62.7 41.4 46.3 68.6 50.5 41.6 65.3 44.5
ViT-Adapter-B (ours) 120.2 47.0 68.2 51.4 41.8 65.1 44.9 49.6 70.6 54.0 43.6 67.7 46.9

ViT-L† (Li et al., 2021b) 337.3 45.7 68.9 49.4 41.5 65.6 44.6 48.3 70.4 52.9 43.4 67.9 46.6
ViTDet-L† (Li et al., 2022b) 350.9 46.2 69.2 50.3 41.4 65.8 44.1 49.1 71.5 53.8 44.0 68.5 47.6
ViT-Adapter-L† (ours) 347.9 48.7 70.1 53.2 43.3 67.0 46.9 52.1 73.8 56.5 46.0 70.5 49.7

Table 1: Object detection and instance segmentation with Mask R-CNN on COCO val2017. For
fair comparison, we initialize all ViT-T/S/B models with the regular ImageNet-1K pre-training (Tou-
vron et al., 2021), and ViT-L† with the ImageNet-22K weights from (Steiner et al., 2021).

Method APbAPb
50APb

75 #P

Cascade Mask R-CNN 3×+MS schedule
Swin-T (Liu et al., 2021b) 50.5 69.3 54.9 86M
Shuffle-T (Huang et al., 2021b) 50.8 69.6 55.1 86M
PVTv2-B2 (Wang et al., 2022a)51.1 69.8 55.3 83M
Focal-T (Yang et al., 2021) 51.5 70.6 55.9 87M
ViT-S (Li et al., 2021b) 47.9 67.1 51.7 82M
ViT-Adapter-S (ours) 51.5 70.1 55.8 86M

Swin-B (Liu et al., 2021b) 51.9 70.9 57.0 145M
Shuffle-B (Huang et al., 2021b) 52.2 71.3 57.0 145M
ViT-B (Li et al., 2021b) 50.1 69.3 54.3 151M
ViT-Adapter-B (ours) 52.1 70.6 56.5 158M

Method APbAPb
50APb

75 #P

ATSS 3×+MS schedule
Swin-T (Liu et al., 2021b) 47.2 66.5 51.3 36M
Focal-T (Yang et al., 2021) 49.5 68.8 53.9 37M
PVTv2-B2 (Wang et al., 2022a)49.9 69.1 54.1 33M
ViT-S (Li et al., 2021b) 45.2 64.8 49.0 32M
ViT-Adapter-S (ours) 49.6 68.5 54.0 36M

GFL 3×+MS schedule
Swin-T (Liu et al., 2021b) 47.6 66.8 51.7 36M
PVTv2-B2 (Wang et al., 2022a)50.2 69.4 54.7 33M
ViT-S (Li et al., 2021b) 46.0 65.5 49.7 32M
ViT-Adapter-S (ours) 50.0 69.1 54.3 36M

Table 2: Object detection with different frameworks on COCO val2017. For fair comparison,
we initialize all ViT-S/B models with the regular ImageNet-1K pre-training (Touvron et al., 2021).
“#P” denotes the number of parameters. “MS” means multi-scale training.

Mask R-CNN (He et al., 2017), Cascade Mask R-CNN (Cai & Vasconcelos, 2019), ATSS (Zhang
et al., 2020), and GFL (Li et al., 2020). To save time and memory, we refer to (Li et al., 2021b) and
modify the L-layer ViT to use 14×14 window attention except for layers spaced at an interval of
L/4. Following common practices (Wang et al., 2021), we adopt 1× or 3× training schedule (i.e.,
12 or 36 epochs) with a batch size of 16, and AdamW (Loshchilov & Hutter, 2017) optimizer with
an initial learning rate of 1× 10−4 and a weight decay of 0.05.

Results with ImageNet-1K Pre-training. In Table 1 and Table 2, we apply the DeiT (Touvron et al.,
2021) released ImageNet-1K weights (without distillation) as the initialization for all ViT-T/S/B
models. We compare our ViT-Adapter with two related approaches (Li et al., 2021b; 2022b) and
multiple representative vision-specific backbones (Wang et al., 2021; 2022a; Huang et al., 2021b;
Liu et al., 2021b; Yang et al., 2021). As we can see, when using regular training settings for fair
comparison, the detection performance of ViT (Li et al., 2021b) and ViTDet (Li et al., 2022b) is
inferior to recent vision-specific models. For example, with Mask R-CNN and 3×+MS schedule,
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Method Pre-train Crop Size Semantic FPN 80k UperNet 160k
#Param mIoU +MS #Param mIoU +MS

PVT-Tiny (Wang et al., 2021) IN-1K 512×512 17.0M 36.6 37.3 43.2M 38.5 39.0
ViT-T (Li et al., 2021b) IN-1K 512×512 10.2M 39.4 40.5 34.1M 41.7 42.6
ViT-Adapter-T (ours) IN-1K 512×512 12.2M 41.7 42.1 36.1M 42.6 43.6

PVT-Small (Wang et al., 2021) IN-1K 512×512 28.2M 41.9 42.3 54.5M 43.7 44.0
PVTv2-B2 (Wang et al., 2022a) IN-1K 512×512 29.1M 45.2 45.7 - - -
Swin-T (Liu et al., 2021b) IN-1K 512×512 31.9M 41.5 - 59.9M 44.5 45.8
Twins-SVT-S (Chu et al., 2021a) IN-1K 512×512 28.3M 43.2 - 54.4M 46.2 47.1
ViT-S (Li et al., 2021b) IN-1K 512×512 27.8M 44.6 45.8 53.6M 44.6 45.7
ViT-Adapter-S (ours) IN-1K 512×512 31.9M 46.1 46.6 57.6M 46.2 47.1

Swin-B (Liu et al., 2021b) IN-1K 512×512 91.2M 46.0 - 121.0M 48.1 49.7
Twins-SVT-L (Chu et al., 2021a) IN-1K 512×512 103.7M 46.7 - 133.0M 48.8 50.2
ViT-B (Li et al., 2021b) IN-1K 512×512 98.0M 46.4 47.6 127.3M 46.1 47.1
ViT-Adapter-B (ours) IN-1K 512×512 104.6M 47.9 48.9 133.9M 48.8 49.7

Swin-B† (Liu et al., 2021b) IN-22K 640×640 - - - 121.0M 50.0 51.7
Swin-L† (Liu et al., 2021b) IN-22K 640×640 - - - 234.0M 52.1 53.5
ViT-Adapter-B† (ours) IN-22K 512×512 104.6M 50.7 51.9 133.9M 51.9 52.5
ViT-Adapter-L† (ours) IN-22K 512×512 332.0M 52.9 53.7 363.8M 53.4 54.4
ViT-Adapter-L⋆ (ours) MM 512×512 332.0M 54.2 54.7 363.8M 55.0 55.4

Table 3: Semantic segmentation on the ADE20K val. Semantic FPN (Kirillov et al., 2019) and
UperNet (Xiao et al., 2018) are used as segmentation frameworks. “IN-1K/22K” and “MM” repre-
sent ImageNet-1K/22K and multi-modal pre-training, respectively. “MS” means multi-scale testing.

ViT-S and ViTDet-S are 3.8 APb and 3.3 APb lower than PVTv2-B2 (Wang et al., 2022a) respec-
tively. Differently, our ViT-Adapter-S outperforms these two approaches by clear margins and even
0.4 APb higher than PVTv2-B2. This observation can also be seen in the experiments of three other
detectors, including Cascade Mask R-CNN, ATSS, and GFL. These results indicate that, with only
the regular ImageNet-1K pre-training, ViT-Adapter can promote the plain ViT to attain similar or
even superior performance than these vision-specific transformers.

Results with ImageNet-22K Pre-training. In Table 1, we employ the ImageNet-22K pre-trained
weights from AugReg (Steiner et al., 2021) to initialize all ViT-L models, including ViT (Li et al.,
2021b), ViTDet (Li et al., 2022b), and our ViT-Adapter. It can be seen that, when training Mask
R-CNN with 3×+MS schedule, our ViT-Adapter-L† brings 3.8 APb and 3.0 APb improvements over
ViT-L† (Li et al., 2021b) and ViTDet-L† (Li et al., 2022b), respectively.

Method Pre-train APb APm

Swin-B
(Mask R-CNN 3×+MS)

ImageNet-1K 48.6 43.3
ImageNet-22K 49.6 44.3
Multi-Modal N/A N/A

ViT-Adapter-B
(Mask R-CNN 3×+MS)

ImageNet-1K 49.6 43.6
ImageNet-22K 50.5 44.6
Multi-Modal 51.2 45.3

Table 4: Comparison of different pre-trained
weights. Our method retains the flexibility of
ViT and thus could benefit from advanced multi-
modal pre-training (Zhu et al., 2021).

Results with Multi-Modal Pre-training. In
this experiment, we study the effect of multi-
modal pre-training. Specifically, we fine-tune
the ViT-Adapter-B with Mask R-CNN for the
3×+MS schedule using different pre-trained
weights. As shown in Table 4, simply replacing
the ImageNet-22K pre-training (Steiner et al.,
2021) with the multi-modal pre-training (Zhu
et al., 2021) gives us a significant gain of 0.7
APb and APm. These results indicate that our
method can easily derive considerable benefits
from advanced multi-modal pre-training, which
is difficult for vision-specific models like Swin.

4.2 SEMANTIC SEGMENTATION

Settings. We evaluate our ViT-Adapter on semantic segmentation with the ADE20K (Zhou et al.,
2017) dataset and MMSegmentation (Contributors, 2020) codebase. Both Semantic FPN (Kirillov
et al., 2019) and UperNet (Xiao et al., 2018) are employed as the basic frameworks. For Semantic
FPN, we apply the settings of PVT (Wang et al., 2021) and train the models for 80k iterations. For
UperNet, we follow the settings of Swin (Liu et al., 2021b) to train it for 160k iterations.
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Results with ImageNet-1K Pre-training. In Table 3, we report the semantic segmentation results in
terms of single-scale and multi-scale (MS) mIoU. As same as Section 4.1, we initialize all ViT-T/S/B
models with the DeiT (Touvron et al., 2021) released ImageNet-1K weights. It shows that, under
comparable model sizes, our method surpasses the ViT (Li et al., 2021b) and many representative
vision-specific transformers (Wang et al., 2021; 2022a; Liu et al., 2021b; Chu et al., 2021a). For
instance, our ViT-Adapter-S achieves 47.1 MS mIoU with UperNet, outperforming many strong
counterparts such as Swin-T. Similarly, ViT-Adapter-B reports a competitive performance of 49.7
MS mIoU, which is 2.6 points higher than ViT-B and on par with Swin-B and Twins-SVT-L. These
fair comparisons using only regular ImageNet-1K pre-training (Touvron et al., 2021) demonstrate
the effectiveness and universality of our ViT-Adapter.

Results with ImageNet-22K Pre-training. When using the ImageNet-22K pre-trained weights
(Steiner et al., 2021), our ViT-Adapter-B† attains 51.9 mIoU and 52.5 MS mIoU with UperNet,
exceeding Swin-B† by at least 0.8 mIoU. Similarly, ViT-Adapter-L† yields the results of 53.4 mIoU
and 54.4 MS mIoU, which is outstanding from the counterparts like Swin-L†. These significant and
consistent improvements over different model sizes suggest that our method can cover the shortage
of plain ViT, making it more suitable for semantic segmentation.

Results with Multi-Modal Pre-training. Here, we apply the multi-modal pre-trained weights from
Uni-Perceiver (Zhu et al., 2021) for semantic segmentation. As shown in Table 3, for Semantic FPN
and UperNet, replacing the ImageNet-22K pre-training with multi-modal pre-training benefits our
ViT-Adapter-L⋆ with impressive gains of 1.3 mIoU and 1.6 mIoU, respectively.

4.3 COMPARISONS WITH STATE-OF-THE-ARTS

Settings. We conduct experiments to combine our ViT-Adapter with state-of-the-art detec-
tion/segmentation frameworks, including HTC++ (Liu et al., 2021b) (without extra detection
dataset) and Mask2Former (Cheng et al., 2021), and recent multi-modal pre-training BEiTv2 (Peng
et al., 2022). The experimental settings are listed in Appendix A.1 and A.2.

COCO test-dev APbAPm

CB-Swin-L 60.1 52.3
SwinV2-L 60.8 52.7
ViT-Adapter-L60.9 53.0

ADE20K val mIoU

FD-SwinV2-G 61.4
ViT-Adapter-L 61.5
BEiT3(w/ ViT-Adapter) 62.8

Table 5: Comparison with previous SOTA.

Results. As shown in Table 5, our method
reaches state-of-the-art performance. While
these results may be partly due to the ef-
fectiveness of advanced pre-training, our
study demonstrates that plain backbone de-
tectors/segmenters can challenge the en-
trenched position of hierarchical backbones.

4.4 ABLATION STUDY

ViT vs. ViT-Adapter Feature. Recent works (Park & Kim, 2022; Si et al., 2022) show that ViT
presents the characteristics of learning low-frequency global signals, while CNN tends to extract
high-frequency information (e.g., local edges and textures). To show the difference between the
features of ViT and ViT-Adapter, we first use Fourier analysis as a toolkit for visualization. As shown
in Figure 5(a), the Fourier spectrum and relative log amplitudes of the Fourier transformed feature
maps (average over 100 images) indicate that ViT-Adapter captures more high-frequency signals
than the ViT (Li et al., 2021b) baseline. In addition, we also visualize the stride-8 feature map in
Figure 5 (b)(c), which shows that the features of ViT are blurry and coarse. In contrast, our features
are more fine-grained and have more local edges and textures. This observation demonstrates that
our method grafts the merit of CNN for capturing high-frequency information to ViT.

Ablation for Components. To investigate the contribution of each key design, we gradually extend
the ViT-S baseline (Li et al., 2021b) to our ViT-Adapter-S. All models are trained with Mask R-CNN
for 1× schedule. As shown in the left side of Table 6, by directly resizing and adding the spatial
features from SPM, our variant 1 improves 1.4 APb and 0.9 APm over the baseline, showing that
local spatial information is essential for dense prediction. From variant 2, we find that the spatial
feature injector further boosts the performance by 1.0 APb and 0.8 APm. This observation illustrates
that cross-attention is a more flexible way to inject spatial features. Moreover, we employ the multi-
scale feature extractor to reconstruct hierarchical features, which brings 2.1 APb and 1.1 APm gains,
alleviating ViT’s drawback of single-scale features. In summary, our proposed components are each
necessary and collectively create 4.5 APb and 2.8 APm improvements.
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Figure 5: ViT vs. ViT-Adapter Feature. (a) Relative log amplitudes of Fourier transformed feature
maps. (b) Detection results. (c) Stride-8 feature map. Compared to the ViT baseline (Li et al.,
2021b), our ViT-Adapter captures more high-frequency signals, and produces more fine-grained
features with rich edges and textures, which is of great help for dense prediction.

Method Components Interaction Mask R-CNN 1×
SPM Injector Extractor Mode APb APm #Param

ViT-S (Li et al., 2021b) - 40.2 37.1 43.8M
Variant 1 ✓ Add 41.6 38.0 45.1M
Variant 2 ✓ ✓ Attention 42.6 38.8 46.6M
ViT-Adapter-S (ours) ✓ ✓ ✓ Attention 44.7 39.9 47.8M

N APb APm #Param

0 40.2 37.1 43.8M
1 43.2 38.9 45.5M
2 43.9 39.4 46.2M
4 44.7 39.9 47.8M
6 44.7 39.8 49.4M

Table 6: Ablation studies of ViT-Adapter. (Left) ablation of key components. Our proposed com-
ponents collectively bring 4.5 APb and 2.8 APm gains. (Right) ablation of the number of interactions
N . The model gives the best performance when N = 4. SPM is short for the spatial prior module.

Attention Mechanism Complexity APb APm FLOPs #Param Train Time Memory

Global Attention (Vaswani et al., 2017) Quadratic 43.7 39.3 1080G 50.3M 1.61s *19.0G
CSwin Attention (Dong et al., 2021) Linear 43.5 39.2 456G 50.3M 0.56s 15.6G
Pale Attention (Wu et al., 2022a) Linear 44.2 39.8 458G 50.3M 0.75s 17.4G
Deformable Attention (Zhu et al., 2020) Linear 44.7 39.9 403G 47.8M 0.36s 13.7G

Table 7: Ablation of using different attention mechanisms in our adapter. The per-iteration
training time and GPU training memory are measured by A100 GPUs with per-GPU batch size 2
and FP16 training. “*” indicates using activation checkpointing to save training memory.

Number of Interactions. In the right side of Table 6, we study the effect of the number of interac-
tions. Specifically, we build several ViT-Adapter-S variants with different numbers of interactions.
We observe that the model accuracy saturates when N goes larger, and applying more interactions
cannot monotonically promote the performance. Therefore, we empirically set N to 4 by default.

Attention Type. Our method is a general framework in which the attention mechanism is replace-
able. To verify this, we adopt ViT-Adapter-S as the basic model and study 4 different attention
mechanisms. As shown in Table 7, sparse attention with linear complexity is more suitable for
our adapter than global attention with quadratic complexity. We ended up using deformable at-
tention (Zhu et al., 2020) as the default configuration. Notably, it can be replaced by other more
advanced attention mechanisms in the future to further boost performance.

5 CONCLUSION

This work explores a new paradigm, namely ViT-Adapter, to bridge the performance gap between
the plain ViT and vision-specific transformers on dense prediction tasks. Without modifying the
inherent architecture, we flexibly inject image-related inductive biases into the ViT and reconstruct
fine-grained multi-scale features required by dense predictions. Extensive experiments on object
detection, instance segmentation, and semantic segmentation show that our method can achieve
comparable or even better performance than well-designed vision-specific transformers, and further
derive considerable benefits from advanced multi-modal pre-training.
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Method Framework Epoch Backbone val val (+MS) test-dev test-dev (+MS)
Pre-train APb APm APb APm APb APm APb APm

Swin-L HTC++ 72 IN-22K, sup 57.1 49.5 58.0 50.4 57.7 50.2 58.7 51.1
Focal-L HTC++ 36 IN-22K, sup 57.0 49.9 58.1 50.9 - - 58.4 51.3
MViTv2-L Cascade 50 IN-22K, sup 56.9 48.6 58.7 50.5 - - - -
MViTv2-H Cascade 50 IN-22K, sup 57.1 48.8 58.4 50.1 - - - -
CBV2-Swin-L HTC 36 IN-22K, sup 59.1 51.0 59.6 51.8 59.4 51.6 60.1 52.3
ViT-Adapter-L HTC++ 36 IN-22K, sup 56.6 49.0 57.7 49.9 57.4 50.0 58.4 50.7

Swin-L HTC++ 36 IN-1K, UM-MAE 57.4 49.8 58.7 50.9 - - - -
ViTDet-L Cascade 100 IN-1K, MAE 59.6 51.1 60.4 52.2 - - - -
ViT-Adapter-L HTC++ 36 IN-22K, BEiT 58.4 50.8 60.2 52.2 58.9 51.3 60.4 52.5
ViT-Adapter-L HTC++ 36 MM†, BEiTv2 58.8 51.1 60.5 52.5 59.5 51.8 60.9 53.0

Table 8: Comparisons with the leading results on the COCO val2017 and test-dev sets. There
are three detection frameworks used, including Cascade Mask R-CNN (Cai & Vasconcelos, 2019),
HTC (Chen et al., 2019a), and its extension HTC++ (Liu et al., 2021b). All of these models are
trained without extra detection datasets, such as Objects365 (Shao et al., 2019). “IN-22K, sup” is
short for ImageNet-22K supervised pre-training. “MS” indicates multi-scale testing. “†”: Since the
pre-trained CLIP (Radford et al., 2021) model is used in the training process of BEiTv2 (Peng et al.,
2022), we regard it as a multi-modal pre-training method.

A COMPARISON WITH PREVIOUS STATE-OF-THE-ARTS

In recent years, the state-of-the-art models on dense prediction benchmarks are primarily vision-
specific transformers, such as Swin (Liu et al., 2021b), Focal (Yang et al., 2021), MViTv2 (Li et al.,
2021a), and SwinV2 (Liu et al., 2021a), while the plain ViT is rarely found. Nevertheless, we
argue that the plain ViT still has the potential to reach the leading performance by leveraging our
ViT-Adapter. To verify this, we conduct extensive additional experiments as follows.

A.1 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. Following prior art (Li et al., 2021b), we modify the 24-layer ViT-L to use 14×14 window
attention except for layers spaced at an interval of 6, to save training time and memory. The state-
of-the-art detector HTC++ (Liu et al., 2021b) is employed for our experiments. Specifically, we
rescale the shorter side of images between 400 and 1400, while the longer side is at most 1600.
Instaboost (Fang et al., 2019), Soft-NMS (Bodla et al., 2017), AdamW (Loshchilov & Hutter, 2017)
optimizer (batch size of 16, initial learning rate of 1×10−4, and weight decay of 0.05), and 3×
schedule are adopted during training. We use a layer-wise learning rate decay of 0.9, and a drop
path rate of 0.4. For a fairer comparison, here we take two initialization strategies, i.e. regular
ImageNet-22K pre-training, and more advanced self-supervised or multi-modal pre-training.

Results with ImageNet-22K Pre-training. As shown in Table 8, with the ImageNet-22K super-
vised pre-training from AugReg (Steiner et al., 2021), our ViT-Adapter-L reports 58.4 APb and
50.7 APm on the COCO test-dev, which is comparable to many vision-specific transformers such
as Swin-L (58.4 APb vs. 58.7 APb) and Focal-L (58.4 APb vs. 58.4 APb). This fair comparison
illustrates that, our ViT-Adapter significantly narrows the performance gap between the plain ViT
and well-designed vision-specific models.

Results with More Advanced Pre-training. Since our paradigm retains the flexibility of the plain
ViT, it can easily derive significant benefits from advanced pre-training techniques, such as multi-
modal pre-training (Zhu et al., 2021; 2022) or self-supervised pre-training (Bao et al., 2022; Peng
et al., 2022; He et al., 2021), or a combination of the both (Wang et al., 2022b). Here, we take the
readily available weights from BEiT (Bao et al., 2022) and BEiTv2 (Bao et al., 2022) as examples.
Due to BEiT using learnable relative position biases instead of the absolute position embeddings,
we replace the remaining global attention (see the settings part) with 56×56 window attention as an
approximation. For these layers, the relative position biases need to be interpolated to adapt to the
new window size.
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Method Framework Backbone Extra Crop Iters ADE20K val #ParamPre-train Pre-train Size mIoU +MS

Swin-L Mask2Former IN-22K, sup - 640 160k 56.1 57.3 215M
Swin-L-FaPN Mask2Former IN-22K, sup - 640 160k 56.4 57.7 217M
SeMask-Swin-L Mask2Former IN-22K, sup - 640 160k 57.0 58.2 -
HorNet-L Mask2Former IN-22K, sup - 640 160k 57.5 57.9 -
ViT-Adapter-L Mask2Former IN-22K, sup - 640 160k 56.8 57.7 438M

BEiT-L UperNet IN-22K, BEiT - 640 160k 56.7 57.0 441M
ViT-Adapter-L UperNet IN-22K, BEiT - 640 160k 58.0 58.4 451M
BEiTv2-L UperNet IN-22K, BEiTv2 - 512 160k 57.5 58.0 441M
ViT-Adapter-L UperNet IN-22K, BEiTv2 - 512 160k 58.0 58.5 451M

ConvNeXt-XL* Mask2Former IN-22K, sup COCO-Stuff, sup 896 80k 57.1 58.4 588M
Swin-L* Mask2Former IN-22K, sup COCO-Stuff, sup 896 80k 57.3 58.3 434M
SwinV2-G UperNet IN-22K, sup Ext-70M, sup 896 160k 59.3 59.9 3.0B
FD-SwinV2-G UperNet IN-22K, sup Ext-70M, sup 896 160k - 61.4 3.0B
Swin-L Mask DINO IN-22K, sup Objects365, sup - 160k 59.5 60.8 223M
ViT-Adapter-L Mask2Former IN-22K, BEiT COCO-Stuff, sup 896 80k 59.4 60.5 571M
ViT-Adapter-L Mask2Former MM†, BEiTv2 COCO-Stuff, sup 896 80k 61.2 61.5 571M
BEiT-3 (w/ ViT-Adapter) Mask2Former MM, BEiT-3 COCO-Stuff, sup 896 80k 62.0 62.8 1.3B

Table 9: Comparison with previous state-of-the-art results on the ADE20K validation set. The
results of BEiT-3 are collected from (Wang et al., 2022b). “∗”: We follow BEiT (Bao et al., 2022)
to use a wider segmentation head for ConvNeXt-XL and Swin-L to match the number of parame-
ters, and apply the same training strategy to them. “IN-22K, sup”: ImageNet-22K supervised pre-
training. “MM”: Multi-modal pre-training. “MS”: Multi-scale testing. “†”: Since the pre-trained
CLIP (Radford et al., 2021) model is used in the training process of BEiTv2 (Peng et al., 2022), we
regard it as a multi-modal pre-training method.

As reported in Table 8, our ViT-Adapter-L (w/ BEiT) creates 60.4 APb and 52.5 APm on the COCO
test-dev, and ViT-Adapter-L (w/ BEiTv2) further sets this record to 60.9 APb and 53.0 APm. No-
tably, although it’s not a perfectly controlled comparison, our method attains similar performance
taking fewer training epochs (36 vs. 100) than ViTDet (Li et al., 2022b). We argue that a longer
training schedule such as 100 epochs may bring an added bonus, but it is expensive to afford due
to limited computing resources. In summary, from a system-level perspective, our ViT-Adapter can
enjoy the dividends of various advanced pre-training techniques and help plain ViT achieve leading
performance on the object detection and instance segmentation tasks.

A.2 SEMANTIC SEGMENTATION

Settings. For semantic segmentation, we employ the AdamW optimizer with an initial learning rate
of 2×10−5, a batch size of 16, and a weight decay of 0.05. Layer-wise learning rate decay of 0.9
and drop path rate of 0.4 are used to train the models. Other training settings, such as pre-training
techniques, crop size, and the number of iterations, are listed in Table 9.

Results with ImageNet-22K Pre-training. As shown in Table 9, using Mask2Former (Cheng et al.,
2021) as the segmenter, our ViT-Adapter-L achieves 56.8 mIoU and 57.7 MS mIoU on the ADE20K
val, which is comparable to recent vision-specific models, such as Swin-L (Liu et al., 2021b), Swin-
L-FaPN (Huang et al., 2021a), SeMask-Swin-L (Jain et al., 2021), and HorNet-L (Rao et al., 2022).

Results with More Advanced Pre-training. It can be seen from Table 9, when training with Uper-
Net for 160k iterations, our ViT-Adapter-L (w/ BEiT) yields 58.4 MS mIoU, outperforming BEiT-L
by 1.4 points with only 10M additional parameters. It shows that our adapter can deliver significant
benefits even for a powerful self-supervised pre-trained ViT.

Furthermore, we compare the performance of our method with vision-specific models that also use
additional datasets. For example, SwinV2-G (Liu et al., 2021a) uses a privately collected ImageNet-
22K-ext-70M dataset that contains 70 million images. Mask DINO (Li et al., 2022a) takes the
detection pre-training on large-scale Objects365 (Shao et al., 2019) dataset as the initialization for
segmentation. Due to limited computing resources, we explore a simple and affordable transfer
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Variants Settings of ViT Settings of Adapter Total
Layers Width FFN Heads #Param N FFN Heads #Param Param

Tiny (T) 12 192 768 3 5.5M 4 48 6 2.5M 8.0M
Small (S) 12 384 1536 6 21.7M 4 96 6 5.8M 27.5M
Base (B) 12 768 3072 12 85.8M 4 192 12 14.0M 99.8M
Large (L) 24 1024 4096 16 303.3M 4 256 16 23.7M 327.0M

Table 10: Configurations of the ViT-Adapter. We apply our adapters on four different settings of
ViT, including ViT-T, ViT-S, ViT-B, and ViT-L, covering a wide range of different model sizes.
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Figure 6: TIDE error type analysis (the lower the better). We use the models listed in Table 1 for
analysis. As defined in (Bolya et al., 2020), we plot the APb metric at an IoU threshold of 0.5. These
bars show the effect of each error type on overall detection performance). The error types include:
cls: localized correctly but classified incorrectly; loc: classified correctly but localized incorrectly;
both: classified incorrectly and localized incorrectly; dupe: detection would be correct if not for
a higher scoring detection; bkg: detected background as foreground; miss: all undetected ground-
truth not covered by other error types; FN: false negatives; FP: false positives. We observe that our
ViT-Adapter makes fewer localization and miss errors than the ViT baseline (Li et al., 2021b), and
occurs fewer false positive and negative errors.

learning strategy for semantic segmentation. Specifically, we use the COCO-Stuff (Caesar et al.,
2018) dataset for 80k iterations of pre-training, and then ADE20K for 80k iterations of fine-tuning.
The total number of iterations is still 160k, and no additional training overhead is added.

Under this setting, our ViT-Adapter-L (w/ BEiT) produces an exciting score of 60.5 MS mIoU.
Further, ViT-Adapter-L (w/ BEiTv2) creates a new record of 61.5 MS mIoU, which is slightly better
than FD-SwinV2-G (Wei et al., 2022), while the parameter number is much smaller (571M vs. 3.0B).
It’s worth noting that, our ViT-Adapter is also adopted by the recently proposed BEiT-3 (Wang
et al., 2022b), which is a ViT-style foundation model that can be pre-trained with multi-modal data.
As described in their paper, using ViT-Adapter for the transfer learning of semantic segmentation,
BEiT-3 establishes a new state-of-the-art of 62.8 MS mIoU on ADE20K val, which is a convincing
verification of the paradigm we present in Figure 1.

B ADDITIONAL ABLATION AND DISCUSSION

Architecture Configurations. The more detailed configurations are listed in Table 10.

TIDE Error Type Analysis. TIDE (Bolya et al., 2020) is a toolbox for analyzing the sources of
error in object detection algorithms. Following (Li et al., 2021b), we show the error type analysis in
Figure 6. For fair comparison, the models listed in Table 1 are adopted for analysis. These results
reveal where our ViT-Adapter improves overall APb relative to the ViT baseline (Li et al., 2021b).
For instance, we observe that our adapter helps reduce missed and localization errors, and has a
substantial effect on fixing false negative and positive errors.
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Feature Visualization. We plot more visualization of feature maps produced by ViT-B (Li et al.,
2021b) and our ViT-Adapter-B in Figure 7 and Figure 8, which are trained based on Mask R-CNN
for detection and UperNet for segmentation, respectively. As can be seen, the features of ViT-B are
blurry and coarse, while our features are more refined and have more local edges and textures. This
observation also accords with the Fourier analysis in Section 4.4, which demonstrates that ViT has
the characteristics of capturing low-frequency information, and our ViT-Adapter can supplement the
missing high-frequency signals.

Comparison with SETR. Like ViTDet (Li et al., 2022b), SETR (Zheng et al., 2021) also changes
the shape of features of ViT according to the task prior (see Figure 3(a)), thus allowing ViT to
achieve better segmentation performance. Although this paradigm shares some similarities with our
approach, e.g. combining ViT and convolutions, they have three main differences: (1) In addition to
the task prior, our method also takes the information of the input image (the input prior) into consid-
eration when adapting ViT to dense prediction tasks; (2) The input prior will constantly interact with
ViT’s features, making the output features more suitable for dense prediction tasks; (3) Our method
is an adapter that is general in both detection and segmentation tasks, and moreover achieves better
results than segmentation-specific head SETR (Zheng et al., 2021).

Comparison with other Adapters. We would like to clarify the differences between ViT-Adapter
and other adapters (Jia et al., 2022; Bahng et al., 2022; Chen et al., 2022; Zhang et al., 2022; Jie &
Deng, 2022) for ViTs, from two aspects as follows:

(1) Different tasks. Our method is designed for dense prediction tasks, while VPT (Jia et al., 2022),
Visual Prompt (Bahng et al., 2022), AdaptFormer (Chen et al., 2022), NOAH (Zhang et al., 2022),
and Convpass (Jie & Deng, 2022) are mainly proposed for classification tasks. By training the
parameters only in input spaces, or some modules attached to the backbone, or their combination,
these models perform well on classification and even obtain better results than full-tuning models.

Trainable mIoU
Method Param. (ss/ms)

ViT-L (full-tuning) 318M 48.3 / 50.1
ViT-L (w/ VPT) 16M 44.0 / 45.6
ViT-Adapter-L (full-tuning) 332M 52.9 / 53.7
ViT-Adapter-L (frozen ViT) 30M 49.0 / 50.6

Table 11: Comparison with VPT.

However, when applying these methods (Jia
et al., 2022; Bahng et al., 2022; Chen et al.,
2022; Zhang et al., 2022; Jie & Deng, 2022) to
dense prediction tasks, they perform below ex-
pectations. For example, we see from Table 11
that the performance of VPT (Jia et al., 2022)
has a large gap with the baseline ViT-L (Zheng
et al., 2021) on ADE20K.

(2) Different targets. These mentioned adapters (Jia et al., 2022; Bahng et al., 2022; Chen et al.,
2022; Zhang et al., 2022; Jie & Deng, 2022) aim to explore parameter-efficient transfer learning,
while the goal of our ViT-Adapter is to push the performance boundaries of plain ViT downstream
applications, make ViT more general for downstream tasks, and efficiently utilize large-scale ViT
weights pre-trained in different ways. We argue that these two technical lines are orthogonal, as
shown in the last column in Table 11. Combining ViT-Adapter with these adapters to achieve effi-
cient and accurate transfer learning of dense prediction is a research topic worth exploring.

ViTDet’s Performance. The higher performance of the original ViTDet (Li et al., 2022b) comes
from stronger training settings. Specifically, ViTDet adopts a more expensive training strategy than
ours, i.e., loading the MAE (He et al., 2021) pre-trained weights, and using the Large Scale Jit-
ter (Ghiasi et al., 2021) augmentation to train the model for 100 epochs. This setting leads to almost
3 times the training cost compared to the commonly used 36 epochs (i.e., 3×+MS schedule). And
to some extent, it reveals the lack of image-related inductive biases in ViT will lead to slow conver-
gence on dense prediction tasks.

For fair comparisons, we benchmark all plain ViT detectors, including ViTDet (Li et al., 2022b) and
our ViT-Adapter under the commonly used 3×+MS training schedule, and use the same ImageNet-
1K pre-trained weights (i.e., DeiT) as initialization. It makes sense that our ViT-Adapter achieves
better performance than ViTDet under this setting, because our adapter injects image-related prior
into the plain ViT, which can speed up convergence and improve performance.

18



Published as a conference paper at ICLR 2023

V
iT

-B
V

iT
-A

da
pt

er
-B

V
iT

-B
V

iT
-A

da
pt

er
-B

Detection Results Stride-4 Feature Map Stride-8 Feature Map Stride-16 Feature Map Stride-32 Feature Map

V
iT

-B
V

iT
-A

da
pt

er
-B

V
iT

-B
V

iT
-A

da
pt

er
-B

V
iT

-B
V

iT
-A

da
pt

er
-B

Figure 7: Visualization of feature maps for object detection and instance segmentation. Com-
pared to the ViT baseline (Li et al., 2021b), our ViT-Adapter yields more fine-grained multi-scale
feature maps, thus improving localization quality and reducing missed detection.
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Figure 8: Visualization of feature maps for semantic segmentation. Compared to the ViT
baseline (Li et al., 2021b), our ViT-Adapter yields more fine-grained multi-scale feature maps with
rich local edges and textures, thus improving the performance of semantic segmentation.
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