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ABSTRACT

We consider off-policy evaluation (OPE) of deterministic target policies for rein-
forcement learning (RL) in environments with continuous action spaces. While
it is common to use importance sampling for OPE, it suffers from high variance
when the behavior policy deviates significantly from the target policy. In order to
address this issue, some recent works on OPE proposed in-sample learning with
importance resampling. Yet, these approaches are not applicable to deterministic
target policies for continuous action spaces. To address this limitation, we propose
to relax the deterministic target policy using a kernel and learn the kernel metrics
that minimize the overall mean squared error of the estimated temporal difference
update vector of an action value function, where the action value function is used
for policy evaluation. We derive the bias and variance of the estimation error due
to this relaxation and provide analytic solutions for the optimal kernel metric. In
empirical studies using various test domains, we show that the OPE with in-sample
learning using the kernel with optimized metric achieves significantly improved
accuracy than other baselines.

1 INTRODUCTION

Off-policy evaluation (OPE) aims to assess the performance of a target policy by using offline data
sampled from a separate behavior policy, without the target policy interacting with the environment
(Su et al., 2020; Fujimoto et al., 2021). OPE has gained considerable significance due to the potential
costs and risks associated with a reinforcement learning (RL) agent interacting with real-world
environments when evaluating a policy in domains such as healthcare (Zhao et al., 2009; Murphy
et al., 2001), education (Mandel et al., 2014), robotics (Yu et al., 2020), and recommendation systems
(Swaminathan et al., 2017). In the context of offline RL, OPE plays a vital role since the RL agent
lacks access to the environment. Moreover, OPE can be leveraged to evaluate policies prior to their
deployment in real-world settings and policy selection (Konyushova et al., 2021).

While OPE has been actively studied, OPE regarding deterministic target policies has not been
extensively studied, and existing OPE algorithms either do not work or show low performance on
evaluating deterministic policies (Schlegel et al., 2019; Fujimoto et al., 2021). However, there are
many cases where deterministic policies are required. For example, safety-critical systems such
as industrial robot control and drug prescription require precise and consistent control of action
sequences without introducing variability (Silver et al., 2014; Kallus & Zhou, 2018). Therefore, the
need for OPE of deterministic policies emerges. In this paper, we consider evaluating a deterministic
policy with offline data.

Most of the recent works on off-policy evaluation (OPE) use marginalized importance sampling
(MIS) approach (Xie et al., 2019; Nachum et al., 2019; Zhang et al., 2020). This approach learns
stationary distribution correction ratios of states and actions, which are then utilized to reweight
the rewards in the data. Since MIS methods use a single correction ratio, they have relatively lower
variance than vanilla importance sampling (IS) methods, which use products of IS ratios of actions
in trajectories (Precup et al., 2001; Levine et al., 2020). However, these methods are vulnerable to
training instability due to optimizing the minimax objective. SR-DICE (Fujimoto et al., 2021) avoided
optimizing the minimax objective by adopting a successor representation learning scheme. However,
SR-DICE may use out-of-distribution samples in learning successor representation and thus may
suffer from an extrapolation error.
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In-sample learning methods learn Q-functions using only the samples in the data, avoiding extrapola-
tion error (Schlegel et al., 2019; Zhang et al., 2023). The methods employ an IS ratio to correct the
distribution of an action used for querying the Q-value in a temporal difference (TD) target to learn
the Q-function. Since a single IS ratio is used, the method has lower variance than the traditional IS
approaches (Levine et al., 2020; Precup et al., 2001). However, a limitation of these methods is their
inapplicability to deterministic target policies, as the IS ratios of actions are almost surely zeros. To
overcome this limitation, we aim to extend the use of IR to learn the Q-function in FQE (Voloshin
et al., 2019; Le et al., 2019) style specifically tailored for deterministic target policies.

In this study, we introduce Kernel Metric learning for In-sample Fitted Q Evaluation (KMIFQE),
a novel approach that enables in-sample FQE using offline data. Our contribution is twofold: 1)
enabling in-sample OPE of deterministic policies by kernel relaxation and metric learning that has
not been used in MDP settings (Kallus & Zhou, 2018; Lee et al., 2022), 2) providing the theoretical
guarantee of the proposed method. In theoretical studies, we first derive the MSE of our estimator
with kernel relaxation applied on a target policy to avoid having zero IS ratios. From the MSE, we
derive the optimal metric scale, referred to as bandwidth, which balances between bias and variance
of the estimation and reduces the derived MSE. Then, we derive the optimal metric shape, referred to
as metric, which minimizes the bias induced by the relaxation. Lastly, we show the error bound of the
estimated Q-function compared to the true Q-function of a target policy. For empirical studies, we
evaluate KMIFQE using a modified classic control domain sourced from OpenAI Gym (Brockman
et al., 2016). This evaluation serves to verify that the metrics and bandwidths are learned as intended.
Furthermore, we conduct experiments on a more complex MuJoCo domain (Todorov et al., 2012).
The experimental results demonstrate the effectiveness of our metric learning approach.

2 RELATED WORK

Marginalized importance sampling for OPE in RL Marginalized importance sampling (MIS) OPE
method was first introduced by Liu et al. (2018). They pointed out that the importance sampling (IS)
OPE estimation in RL suffers from the "curse of horizon" due to products of IS ratios used for the
IS. They avoided the problem by learning a correction ratio for the marginalized state distribution,
which corrects the marginalized state distribution induced by a behavior policy to that of a target
policy. Their work was limited in that it required a known behavior policy. Subsequent studies in
MIS learned marginalized state-action distribution correction ratios and estimated policy values in a
behavior-agnostic manner (Nachum et al., 2019; Zhang et al., 2020; Yang et al., 2020). However, the
methods required optimization of minimax learning objectives, which caused instability in learning.
SR-DICE (Fujimoto et al., 2021) avoided the minimax learning objective by using the concept of
successor representation and made the learning process more stable. However, their result showed
that FQE (Voloshin et al., 2019; Le et al., 2019) outperforms all MIS methods in a MuJoCo domain
(Todorov et al., 2012) when the target policy is deterministic.

In-sample learning for OPE in RL In-sample learning methods (Schlegel et al., 2019; Zhang
et al., 2023) learn a Q-function of a target policy by using the semi-gradients from expected SARSA
temporal-difference (TD) learning loss computed on samples in the data. With importance resampling
(IR), the methods correct the distribution of TD update vectors before updating the Q-function rather
than reweighting the TD update vectors with IS ratios. They show that IR estimation of the TD update
vector has a lower variance than the IS reweighted TD update vectors, resulting in more accurate
Q-function estimation. However, these methods cannot be applied to the case where the target policy
is deterministic since the IS ratios are zeros almost surely.

Kernel metric learning for OPE in contextual bandits The work of Kallus & Zhou (2018) first
enabled IS to estimate the expected rewards for a deterministic target policy. They derived the MSE of
the IS estimation when a kernel relaxes the target policy distribution. Then, they derived the optimal
bandwidth (scale of the kernel metric) that minimizes it. Subsequent work by Lee et al. (2022) learned
a shape of the kernel as a Mahalanobis distance metric (Mahalanobis, 1936; De Maesschalck et al.,
2000) that further reduces MSE by reducing the bias of the estimate. These works cannot be directly
applied to OPE in RL since that would result in IS estimations using products of IS ratios to correct
the distributions of action sequences in trajectories sampled by a behavior policy. As the episode
length becomes longer, more IS ratios are multiplied, and this causes the curse of horizon problem
(Liu et al., 2018).
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3 BACKGROUND

We seek to evaluate a deterministic target policy that operates in continuous action spaces given
offline data sampled with a separate behavior policy. Specifically, we consider the MDP withM =
⟨S,A, P,R, p0, γ⟩ composed of a set of states S ∈ Rq, set of actions S ∈ Rd, reward function
R : S ×A → R, state transition probability P : S ×A → ∆(S), initial state distribution p0 ∈ ∆(S),
and a discount factor γ ∈ [0, 1). We assume that the offline data D = {(si,ai, ri, s′i,a′i)}

n
i=1 is

sampled from the MDPM by using a stochastic policy µ : S → ∆(A). And D is used to evaluate
the deterministic target policy π̃ : S → A. The distribution of the target policy is denoted as
π : S → ∆(A). The goal is to evaluate the target policy using the offline data D in a normalized
discounted return V (π) = (1 − γ)Eπ [

∑∞
t=0 γ

tR (st,at)], where Eπ[·] is the expectation using
the data sampled fromM with π. The target policy value can be represented with an Q-function
V (π) = (1−γ)Es0∼p0(s0),a0∼π(a0 | s0) [Q

π (s0,a0)], where the Q-function is defined as Qπ(s,a) :=

Eπ [
∑∞

t=0 γ
tR (st,at) | s0 = s,a0 = a]. This work estimates a Q-function to evaluate the target

policy value.

3.1 IN-SAMPLE TD LEARNING

Temporal difference (TD) learning can be used for estimating Qπ (Zhang et al., 2023). FQE learns a
Q-function by minimizing the following TD loss LTD(θ) (Voloshin et al., 2019; Le et al., 2019):

LTD(θ) = E(s,a,s′)∼pµ

[(
R(s,a) + γEa′∼π(a′|s′)

[
Qθ̄

(
s′,a′)]−Qθ(s,a)

)2]
, (1)

where Qθ is Q-function parameterized by θ, Qθ̄ is a frozen target network, a transition data sam-
pling distribution is defined as pµ := dµ(s)µ(a | s)P (s′ | s,a)p(r| s,a)µ(a′ | s′), and the stationary
distribution of state induced by µ is:

dµ(s) := (1− γ)

∞∑
t=0

γtp (st = s | s0 ∼ p0 (s0) , st ∼ P (st | st−1,at−1) ,at ∼ π (at | st)) . (2)

In Eq. (1), Qθ is trained only on (s,a) ∼ dµ(s)µ(a | s) while Qθ̄ needs to be evaluated on out-of-
distribution (OOD) samples (s′,a′) ∼ dµ(s′)π(a′ | s′) to compute the loss. Therefore, it may suffer
from distributional shift and may produce inaccurate Q-values (Levine et al., 2020).

To avoid using OOD samples while computing the update vector for Qθ, gradient of LTD(θ) w.r.t. θ,
or the TD update vector ∆TD, can be represented with an IS ratio w(s,a) := π(a | s)

µ(a | s) :

∆TD = Ex∼pµ

[
w
(
s′,a′) (R(s,a) + γQθ̄

(
s′,a′)−Qθ(s,a)

)
∇θQθ(s,a)︸ ︷︷ ︸

=:∆(x)

]
, (3)

where a transition in the data is x := {s,a, r, s′,a′}, ∆(x) is the semi-gradient of the transition x.
By the importance ratio w, the data sampling distribution of pµ is corrected to the distribution of
pπ := dµ(s)µ(a | s)P (s′ | s,a)p(r| s,a)π(a′ | s′).

In-sample TD learning (Schlegel et al., 2019; Zhang et al., 2023) uses IR to estimate ∆TD as ∆̂IR:

∆̂IR =
w̄

k

k∑
j=1

∆(x̄j) , x̄j
ρ∼ {x1, . . . , xn} with probability ρj =

w
(
s′j ,a

′
j

)∑n
i=1 w (s′i,a

′
i)
, (4)

where w̄ := 1
n

∑n
i=1 w(s

′
i,a

′
i) is the bias correction term that corrects the bias induced by resampling

from a finite data D with size n.

3.2 KERNEL METRIC LEARNING

As the IS ratios used for in-sample learning (Schlegel et al., 2019; Zhang et al., 2023) are almost
surely zeros for a deterministic policy, it cannot be directly applied to the evaluation of a deterministic
target policy. In this work, we enable in-sample learning to evaluate a deterministic target policy by
relaxing the density of the target policy in an IS ratio, which can be seen as a Dirac delta function
π(a | s) = δ(a−π̃(s)), by a Gaussian kernel (Eq. (5)). We assume that the support of µ(a | s) covers
the support of 1

hdK
(

L(s)⊤(a−π̃(s))
h

)
so the value of IS ratio is bounded. We seek to minimize the
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MSE between the estimated TD update vector and the true TD update vector ∆TD in Eq. (3) by
learning Mahalanobis metrics A(s)

h2 in their scales (hereafter referred to as bandwidths) h and metrics
in their shapes (hereafter referred to as metrics) A(s) (Mahalanobis, 1936; De Maesschalck et al.,
2000), which is locally learned at each state s (Eq. (6)). The metrics are locally learned at each state s
to reflect the Q-value landscape of the target policy near the target actions π̃(s).

w(s,a) =
δ(a−π̃(s))

µ(a | s) ≈ 1

hdµ(a | s)K
(
L(s)⊤ (a−π̃(s))

h

)
, (5)

1

hd
K

(
L(s)⊤(a−π̃(s))

h

)
=

1

hd(2π)
d
2

exp

(
− (a−π̃(s))⊤A(s)(a−π̃(s))

h2

)
, (6)

where we assume that |A(s)| = 1, A(s) ≻ 0, A(s)⊤ = A(s). Applying Mahalanobis metric
(A(s) = L(s)L(s)⊤) to a Gaussian kernels can be viewed as linearly transforming the inputs with
the transformation matrix L(s) as in Eq. (6) (Noh et al., 2010; 2017).

4 KERNEL METRIC LEARNING FOR IN-SAMPLE TD LEARNING

Our work enables the in-sample estimation of TD update vector ∆̂K
IR with kernel relaxation and

metric learning for estimating Qπ which is used to evaluate a deterministic target policy. The in-
sample estimation is enabled by relaxing the density of a deterministic target policy in an importance
sampling (IS) ratio in Eq. (4) by a Gaussian kernel as in Eq. (5).

∆̂K
IR =

w̄K

k

k∑
j=1

∆(x̄j) , x̄j
ρK∼ x1, . . . , xn with probability ρKj =

wK(s′j ,a
′
j)∑n

i=1 w
K(s′i,a

′
i)
, (7)

where wK(s′i,a
′
i) :=

1
hdµ(a′

i | s′i)
K

(
L(s′i)

⊤(a′
i −π̃(s′i))
h

)
, and the bias correction term with the kernel

relaxation is denoted as w̄K := 1
n

∑n
i=1 w

K(s′i,a
′
i). The relaxation reduces variance but increases

bias. Next, we analyze the bias and variance that together compose MSE of the proposed estimate
and aim to find kernel bandwidths and metrics that best balance the bias and the variance to minimize
the MSE of a TD update vector estimation.

4.1 MSE DERIVATION

To derive the MSE of the estimated TD update vector ∆̂K
IR while assuming an isotropic kernel

(A(s′) = L(s′) = I) is used, The bias and variance of ∆̂K
IR are derived.

Assumption 1. Support of the behavior policy µ(a | s) contains the actions determined by the target

policy π̃(s) and the support of its kernel relaxation 1
hdK

(
L(s)⊤(a−π̃(s))

h

)
.

Assumption 2. The target Q network Qθ̄(s,a) is twice differentiable w.r.t. an action a.

Theorem 1. Under Assumption 1-2, the bias and variance of ∆̂K
IR are:

Bias[∆̂K
IR] = h2 γ

2
ED∼pµ

[
∇2

a′Qθ̄(s
′,a′)|a′=π̃(s′)∇θQθ(s,a)

]
︸ ︷︷ ︸

=:b

+O(h4), (8)

Var[∆̂K
IR] =

1

nhd
C(K)Epµ

[
(r + γQθ̄ (s

′, π̃ (s′))−Qθ(s,a))
2 ∥∇θQθ(s,a)∥22

µ (π̃ (s′) | s′)

]
︸ ︷︷ ︸

=:v

+O
(

1

nhd−2

)
, (9)

where ∇2
a′ is a Laplacian operator w.r.t. a′, Var[z] := tr[Cov(z, z)] for a vector z, b is the bias

constant vector, v is the variance constant, C(K) :=
∫
K(z)2dz, h2 b is the leading-order bias, and

v
nhd is the leading-order variance.

In Theorem 1, as the bandwidth h increases, the leading-order bias increases, and the leading-order
variance decreases as a bias-variance trade-off. For the leading-order variance, it increases when the
L2 norm of the TD update vector (∆(x) in Eq. (9) with x = {s,a, r, s′, π̃(s′)}) is large, and this
is understandable since the variance of a random variable (estimated TD update vector) would be
increased if the scale of the random variable is increased. The leading-order bias increases when the
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second-order derivative of Q-function is large. This is reasonable since the estimation bias would
increase when the difference between Qθ̄(s

′,a′) and Qθ̄(s
′, π̃(s′)) grows.

The bias and variance of the TD update vector estimation ∆̂K
IR are derived by applying the law of

total expectation and variance since the samples used for estimating ∆̂K
IR are first sampled with pµ

and then resampled with ρK . Taylor expansion is also used for the derivation on µ(a′ | s′) and target
network Qθ̄(s

′,a′) at a′ = π̃(s′) and the odd terms of Taylor expansion are canceled out due to the
symmetric property of K (proof in Appendix A.1).

Our derivation of bias and variance differs from the kernel metric learning methods for OPE in
contextual bandits (Kallus & Zhou, 2018; Lee et al., 2022) in that it is the bias and variance of
the update vector of the OPE estimate rather than the bias and variance of the OPE estimate. The
derivation also differs from the derivations in previous in-sample learning methods (Schlegel et al.,
2019; Zhang et al., 2023) in that we derive the bias in terms of h, n, d to analyze the bias and variance
w.r.t. these variables while the derivations in the previous methods are made to mainly compare bias
and variance of IR and IS estimates.

From the bias and variance in Theorem 1, MSE can be derived (proof in Appendix A.2).

Corollary 1. Under Assumption 1-2, MSE between the TD update vector estimate ∆̂K
IR and the

on-policy TD update vector ∆TD is:

MSE(h, n, k, d) = h4∥b ∥22 +
v

nhd︸ ︷︷ ︸
=:LOMSE(h,n,d)

+O
(
h6)+O

(
1

nhd−2

)
, (10)

where LOMSE (h, n, d) is the leading-order MSE.

4.2 OPTIMAL BANDWIDTH AND METRIC

This section derives the optimal bandwidth and metric from the leading order MSE (LOMSE) in
Eq. (10). The optimal bandwidth should minimize the LOMSE by balancing the bias-variance
trade-off.
Proposition 1. The optimal bandwidth h∗ that minimizes the LOMSE(h, n, d) is:

h∗ =

(
vd

4n∥b ∥22

) 1
d+4

. (11)

The optimal bandwidth h∗ is derived by taking the derivative on LOMSE(h, n, d) w.r.t. the bandwidth
h similarly to the work of Kallus & Zhou (2018) since LOMSE(h, n, d) is convex w.r.t. h when
h > 0 (derivation in Appendix A). In Eq. (11), notice that the optimal bandwidth h∗ → 0 as n→∞
and LOMSE becomes dominant in MSE. Furthermore, the h∗ increases when the variance constant v
is large, and the L2 norm of the bias constant vector b is small, and vice versa, to balance between
bias and variance and minimize LOMSE (derivation in Appendix A.3).

Next, we analyze how the LOMSE is affected by d when h∗ is applied to our algorithm.
Proposition 2. Given optimal bandwidth h∗ (Eq. (11)), in high-dimensional action space, the squared
L2-norm of leading-order bias h4∥b ∥22 dominates over the leading-order variance v

nhd in LOMSE
(Eq. (10)). Furthermore, LOMSE(h∗, n,D) approximates to ∥b ∥22.

The proof involves plugging in the optimal bandwidth h∗ in Eq. (11) to the LOMSE in Eq. (10)
and taking the limit d → ∞ (derivation in Appendix A.4). Proposition 2 suggests that the MSE
of the estimate ∆̂K

IR is dominated by the bias in high-dimensional action space when the optimal
bandwidth h∗ is applied. Therefore, in a high-dimensional action space, a significant amount of MSE
can be reduced by reducing the bias. We seek to further minimize the bias that dominates the MSE in
high-dimensional action space with metric learning.

Since applying the Mahalanobis metric A(s) = L(s)L(s)⊤ to a kernel is equivalent to linearly
transforming the kernel inputs with the linear transformation matrix L(s) (Section 3.2), we analyze
the effect of the kernel metric on the bias constant vector b with the linearly transformed kernel
inputs. The squared L2-norm of the bias constant vector with kernel metric is:

∥bA∥22 =
γ2

4
∥ED∼pµ

[
tr
[
A(s′)−1 Ha′ Qθ̄(s

′,a′)|a′=π̃(s′)

]
∇θQ(s,a)

]
∥22, (12)
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where Ha′ is the Hessian operator w.r.t. a′. The derivation involves a change-of-variable on condi-
tional distribution and derivatives (derivation in Appendix A.5).

Minimizing Eq. (12) is challenging as it necessitates a comprehensive examination of the collec-
tive impact exerted by every metric matrix A(s′) inside the expectation. Therefore, an alternative
approach is adopted wherein the focus shifts towards minimizing the subsequent upper bound U(A)
in Eq. (13). This alternative strategy enables the derivation of a closed-form metric matrix for each
state, employing a nonparametric methodology while being bandwidth-agnostic.

min
A: A(s′)≻0,

A(s′)=A(s′)⊤,

|A(s′)|=1 ∀s′

U(A) =
γ2

4
ED∼pµ

[
tr
(
A(s′)−1 Ha′ Qθ̄(s

′,a′)
∣∣
a′=π̃(s′)

)2
∥∇θQ(s,a)∥22

]
. (13)

Proposition 3. Under Assumption 2, define Λ+(s
′) ∈ Rd+(s′)×d+(s′) and Λ−(s

′) ∈ Rd−(s′)×d−(s′)

as diagonal matrices of positive and negative eigenvalues from the Hessian Ha′Qθ̄(s
′,a′)|a′=π̃(s′),

and define U+(s
′) and U−(s

′) as the matrices of eigenvectors corresponding to Λ+(s
′) and Λ−(s

′)
respectively. Then the U(A) minimizing metric A∗(s′) is:

A∗(s′) = α(s′)
[
U+(s

′)U−(s
′)
]( d+(s

′)Λ+(s
′) 0

0 −d−(s
′)Λ−(s

′)

)
︸ ︷︷ ︸

=:M(s′)

[
U+(s

′)U−(s
′)
]⊤

, (14)

where α(s′) := |M(s′)|−1/(d+(s′)+d−(s′)).
The proof entails solving Eq. (13) for A(s′) for each s′ (thus locally learn metrics for each s′) by
means of the Lagrangian equation. The closed-form solution to the minimization objective involving
squared trace term of two matrix products in Eq. (13) is reported in the work of Noh et al. (2010)
that learns kernel metric for kernel regression, and the solution had been used in the context of
kernel metric learning for OPE in contextual bandits (Lee et al., 2022). We use the same solution for
acquiring kernel metrics that minimize the squared trace term.

Notice that when the Hessian Ha′ Qθ̄(s
′,a′)|a′=π̃(s′) contains both positive and negative eigenvalues,

the trace in Eq. (13) becomes zero. The optimal metric A∗(s′) regards the next action a′ in data is
similar to the next target action π̃(s′) when the eigenvalue of the Hessian in that direction is small,
and decreases the Mahalanobis distance between a′ and π̃(s′). Consequently, as the Mahalanobis
distance decreases, kernel value in the IS ratio wK(s′,a′) increases. Finally, the associated resampling
probability increases, leading to a higher resampling probability.

Utilizing the derived optimal bandwidth h∗ and optimal metric A∗, the TD update vector for Qθ can
be estimated in an in-sample learning manner by using importance resampling (IR). The estimated
TD update vector is then used for learning Qθ. As Qθ is learned by bootstrapping, the actual
algorithm iterates between learning h∗, A∗, and learning Qθ. Finally, when Qθ converges, it is used
for evaluating the deterministic target policy. The detailed procedure is in Algorithm 1 in Appendix B.
Although we assumed a known behavior policy, our method can be applied to offline data that is
sampled from unknown multiple behavior policies by estimating a behavior policy by maximum
likelihood estimation. The work by Hanna et al. (2019) shows that the IS estimation of a target policy
value is more accurate when an MLE behavior policy is used instead of the true behavior policy.

4.3 ERROR BOUND ANALYSIS

In this section, we analyze the error bound of the estimated Q-function with KMIFQE. The difference
between the on-policy TD update vector ∆TD and the KMIFQE estimated TD update vector ∆̂K

IR

is that ∆̂K
IR is obtained from the TD loss in Eq. (1) with K instead of π. In other words, updating

θ using ∆̂K
IR can be understood as evaluating the stochastic target policy relaxed by the bandwidth

h and the matric A. We will show the evaluation gap resulting from using the relaxed stochastic
policy instead of a deterministic policy. To this end, we first define Bellman operators T and TK for
the deterministic target policy π̃ and the stochastic target policy πK(a | s) = 1

hdK
(

L(s)⊤(a−π̃(s))
h

)
respectively.

TQ(s,a) := R(s,a) + γEs′∼P (s′|s,a)
[
Q
(
s′, π̃

(
s′
))]

, (15)

TKQ(s,a) := R(s,a) + γEs′∼P (s′|s,a),a′∼πK(a′ | s′)
[
Q
(
s′,a′)] . (16)

We then analyze the difference in fixed points for each Bellman operator.
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Assumption 3. For all {s,a} ∈ S × A, assume that the second-order derivatives of an arbitrary
Q(s,a) w.r.t. actions are bounded.
Theorem 2. Under Assumption 3, denoting m iterative applications of T and TK to an arbitrary Q
as TmQ and Tm

K Q respectively, and h and A(s′) as an arbitrary bandwidth and metric respectively,
the following holds:

∥Qπ − lim
m→∞

Tm
K Q∥∞ ≤ γξ

1− γ
, (17)

ξ := max
m,{s,a}∈S×A

h2

2
Es′∼P (s′ | s,a)

[∣∣tr (A(s′)−1 Ha′ Tm
K Q(s′,a′)|a′=π̃(s′)

)∣∣]+ |O(h4)|. (18)

The proof involves deriving ξ that upperbounds ∥TQ − TKQ∥∞/γ by using Taylor expansion at
a′ = π̃(s′), and showing ∥T∞Q − T∞

K Q∥∞ ≤
∑∞

i=1 γ
iξ using mathematical induction (proof in

Appendix A.6).

Theorem 2 shows that the evaluation gap is bounded by the degree of stochastic relaxation h and
metric metric A(s′). It is noteworthy that for any given h, we can always reduce the gap by applying
optimal metric A∗(s′) in Proposition 3, which will also be shown empirically in the experiments
(Figure 1b). While h = 0 seems to be always preferred in Theorem 2, it is because it only considers
the exact policy evaluation without any estimation error by using finite samples. When we update Q
using finite samples, the bias-variance trade-off by choice of h should be considered, as shown in
Theorem 1.

5 EXPERIMENTS

In this section, we empirically validate the theoretical findings related to the learned metrics and
bandwidths in Section 4.2 and compare the performance of KMIFQE with the baselines. The baselines
include SR-DICE (Fujimoto et al., 2021) and FQE (Voloshin et al., 2019), which are state-of-the-art
model-free OPE algorithms for evaluating deterministic target policies (Fujimoto et al., 2021) but
vulnerable to extrapolation errors due to the usage of OOD samples. KMIFQE is evaluated on three
test domains. First, we evaluate KMIFQE on OpenAI gym Pendulum-v0 environment (Brockman
et al., 2016) with dummy action dimensions to see if the metrics and bandwidths are learned as
intended. Then, we compare KMIFQE with the baselines on more complex MuJoCo environments
(Todorov et al., 2012). Lastly, KMIFQE and baselines are evaluated on D4RL (Fu et al., 2020) datasets
sampled from unknown multiple behavior policies since the baselines assume unknown multiple
behavior policies. To apply KMIFQE, which assumes a known behavior policy, on the D4RL datasets,
maximum likelihood estimated (MLE) behavior policies are used. For the hyperparameters in the
baselines, we used the hyperparameters in the work of Fujimoto et al. (2021) as our test data is the
same or similar to theirs. For KMIFQE, we used the same hyperparameter settings to the baselines for
those overlap and IS ratio clipping in the range of [1e-3, 2] selected by grid search (see Appnedix C).

5.1 PENDULUM WITH DUMMY ACTION DIMENSIONS

Pendulum-v0 environment (Brockman et al., 2016) is modified by adding dummy action dimensions
that are unrelated to the estimation of target policy values for imposing large OPE estimation bias
when an OPE algorithm fails to ignore the dummy action dimensions. The domain is prepared to
observe if the KMIFQE metrics are learned to reduce the bias of ∆̂K

IR as intended in Proposition 3,
leading to less error in the estimation of Qπ as stated in Theorem 2. For the dataset, actions in the
dummy action dimensions are uniformly sampled from the original action range [−amax, amax], and the
original action is sampled from the mixture of 20% uniform random distribution and 80% Gaussian
density of N(µ̃1(s), (0.5amax)

2) where µ̃1 is a TD3 policy showing medium-level performance. The
target policy π̃(s) outputs action of π̃1(s) for the original action dimension and zeros for the dummy
action dimensions. π̃1(s) is a TD3 policy showing expert-level performance. The dataset contains 0.5
million transitions (more details in Appendix C).

We examine if our theoretical analysis made in Section 4.2 is supported by empirical results.
Due to the unavailability of the ground truth TD update vectors, we analyze the impact of
metric and bandwidth learning on the MSE of the estimated target policy values instead of
evaluating its effect on the estimated TD update vector. We hypothesize that an estimation
error in the TD update vector would lead to an estimation error in the target policy values.
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Figure 1: (a) Empirical bias and variance of the
KMIFQE with and without metric learning as the
number of dummy action dimensions increases.
(b) Performance of KMIFQE with and without
metric learning under various given bandwidths.
The bandwidths learned by KMIFQE are plotted
as vertical lines along with makers indicating the
MSEs. The shaded area is the region within one
standard error. All experiments are repeated for 10
trials.

Firstly, Proposition 2 is empirically validated in
Figure 1a. In the figure, empirical bias becomes
much larger than the variance with KMIFQE
learned bandwidth as the number of dummy
action dimensions increases. Furthermore, the
bias is reduced by the KMIFQE learned met-
rics (Proposition 3). Secondly, in Figure 1b, we
show that the learned metrics reduce biases in
all bandwidths as claimed in Proposition 3. Fur-
thermore, the "U" shaped curve shows the bias-
variance trade-off on varying bandwidths. No-
tably, the learned bandwidth balances between
bias and variance as intended in Proposition 1.
Finally, KMIFQE learned metrics and Q-value
landscapes are presented in Figure 2 showing
that the metrics are learned to ignore the dummy
action dimensions and the estimated Q-value
landscape changes a little along the dummy ac-
tion dimension compared to the one estimated
by FQE. Moreover, the KMIFQE correctly esti-
mates high Q-values for target actions that are
optimal, while FQE estimates low Q-values for
the actions.
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Figure 2: Visualization of Qπ estimated by KMIFQE and FQE, along with the kernel metrics learned
by KMIFQE in the modified Pendulum-v0 domain with one dummy action dimension. The original
action dimension is a1, and the dummy action dimension is a2. The leftmost column illustrates
the given states. The center column shows the Q-landscapes and metrics (black crosses) learned by
KMIFQE. The rightmost column shows the Q-landscapes learned by FQE. The target actions at the
given states are presented in yellow circles.

The performance of KMIFQE with learned metric and bandwidth, as well as baselines on the
pendulum with one dummy action dimension are reported as root mean squared errors (RMSEs) in
the first row of Table 1. KMIFQE outperforms the baselines that use OOD samples, and when metric
learning is applied, the RMSEs are further reduced. The result supports the statement in Theorem 2
that the metric learning reduces the error bound.
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Table 1: RMSEs of Baselines and KMIFQE with learned metric and bandwidth with one standard
error on 10 seeds. Note that m-e=medium-expert, m-r=medium-replay.

Dataset known µ KMIFQE KMIFQE w/o Metric SR-DICE FQE
Pendulum with dummy dim O 0.115 ± 0.018 0.250 ± 0.032 1.641 ± 0.426 8.126 ± 2.962

Hopper-v2 O 0.023 ± 0.006 0.034 ± 0.009 0.129 ± 0.023 0.083 ± 0.011
HalfCheetah-v2 O 2.080 ± 0.010 2.549 ± 0.017 2.784 ± 0.030 1.637 ± 0.051
Walker2d-v2 O 0.032 ± 0.008 0.048 ± 0.009 0.273 ± 0.054 241.319 ± 49.248
Ant-v2 O 1.800 ± 0.013 2.255 ± 0.014 1.996 ± 0.030 3.219 ± 0.736
Humanoid-v2 O 0.246 ± 0.010 0.293 ± 0.021 1.285 ± 0.050 8.860 ± 8.196

hopper-m-e-v2 X 0.019 ± 0.003 0.020 ± 0.005 0.045 ± 0.007 0.033 ± 0.010
halfcheetah-m-e-v2 X 0.418 ± 0.016 0.457 ± 0.007 0.239 ± 0.025 0.080 ± 0.007
walker2d-m-e-v2 X 0.036 ± 0.006 0.038 ± 0.006 0.115 ± 0.017 1.051 ± 0.633
hopper-m-r-v2 X 0.536 ± 0.099 0.517 ± 0.120 0.849 ± 0.052 0.561 ± 0.118
halfcheetah-m-r-v2 X 4.698 ± 0.044 4.765 ± 0.026 5.048 ± 0.090 6.394 ± 1.769
walker2d-m-r-v2 X 1.364 ± 0.052 1.360 ± 0.025 1.523 ± 0.061 86.315 ± 29.206

5.2 CONTINUOUS CONTROL TASKS WITH A KNOWN BEHAVIOR POLICY

We compare the performance of KMIFQE with baselines on more complex continuous control tasks
of MuJoCo (Todorov et al., 2012) with a known behavior policy. Deterministic target policies are
trained by TD3 Fujimoto et al. (2018). For behavior policies, deterministic policies µ̃ are trained
with TD3 to achieve 70% ∼ 80% performance (in undiscounted returns) of the target policy and are
used for making the stochastic behavior policies µ(a | s) = N(a; µ̃(s), (0.3amax)

2I). One million
transitions are collected with the behavior policy as the dataset for each environment.

The performance of OPE methods on five MuJoCo environments reported in Table 1 shows that
KMIFQE outperforms other baselines in all environments except HalfCheetah-v2 where FQE per-
forms the best. Since HalfCheetah-v2 does not have an episode termination condition, the Qπ that is
being estimated may be relatively slowly changing w.r.t. changes in actions compared to the other
environments, inducing low extrapolation error on the TD targets of FQE with OOD samples.

5.3 CONTINUOUS CONTROL TASKS WITH UNKNOWN MULTIPLE BEHAVIOR POLICIES

KMIFQE can be applied to a dataset sampled with unknown multiple behavior policies with a
maximum likelihood estimated behavior policy. We evaluate KMIFQE on a D4RL (1) medium-expert
dataset sampled from medium and expert level performance policies, and (2) medium-replay dataset
collected from a single policy while it is being trained to achieve medium-level performance (Fu et al.,
2020). The behavior policies used by KMIFQE are estimated as tanh-squashed mixture-of-Gaussians.
For target policies, we use the means of stochastic expert policies provided by D4RL.

The last six rows of Table 1 show that KMIFQE outperforms the baselines except in halfcheetah-
medium-expert-v2. The dataset may induce small extrapolation errors for the OPE methods that
use OOD samples. First, half of the dataset is sampled with a stochastic expert policy, in which the
mean value is the action selected by the target policy. Secondly, as discussed in Section 5.2, the Qπ

being estimated in the halfcheetah environment may vary slowly w.r.t. changes in actions, making the
extrapolation error due to using OOD samples small for FQE and SR-DICE.

6 CONCLUSION

We presented KMIFQE, an off-policy evaluation (OPE) algorithm for deterministic reinforcement
learning policies in continuous action spaces. KMIFQE learns the Q-function of a deterministic target
policy for OPE in an in-sample manner through importance resampling (IR)-based Q-function update
vector estimation, avoiding extrapolation error from OOD samples. IR is enabled by kernel-relaxing
the deterministic target policy, and the estimation error from the relaxation is minimized by kernel
metric learning. To learn the kernel metric, we first derived the MSE of an update vector estimation.
Then, to we derived an optimal bandwidth that minimizes the MSE. Upon our observation that the
bias is dominant in the MSE for a high-dimensional action space, the bandwidth-agnostic optimal
metric matrix for bias reduction was derived as a closed-form solution. The optimal metric matrix
is computed with the Hessian of the learned Q-function. Lastly, we analyzed the error bound of the
learned Q-function by KMIFQE. Empirical studies show our KMIFQE outperforms baselines on the
offline data sampled with known or unknown behavior policies.
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A DERIVATIONS AND PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. Under Assumption 1-2, the bias and variance of ∆̂K
IR are:

Bias[∆̂K
IR] = h2 γ

2
ED∼pµ

[
∇2

a′Qθ̄(s
′,a′)|a′=π̃(s′)∇θQθ(s,a)

]
︸ ︷︷ ︸

=:b

+O(h4), (19)

Var[∆̂K
IR] =

1

nhd
C(K)Epµ

[
(r + γQθ̄ (s

′, π̃ (s′))−Qθ(s,a))
2 ∥∇θQθ(s,a)∥22

µ (π̃ (s′) | s′)

]
︸ ︷︷ ︸

=:v

+O
(

1

nhd−2

)
,

(20)

where Var[z] := tr[Cov(z, z)] for a vector z, b is the bias constant vector, v is the variance constant,
h2 b is the leading-order bias, v

nhd is the leading-order variance, and C(K) :=
∫
K(z)2dz.

Proof. With Assumptions 1-2,

Derivation of the bias in Eq. (8):

Bias[∆̂K
IR]

= ED∼pµ

[
w̄KEx̄∼ρK

[
1

k

k∑
i=1

∆(x̄i)

∣∣∣∣∣D
]]

− Ex∼pπ [∆(x)] (21)

= ED∼pµ

[
w̄K

n∑
j=1

wK(s′j ,a
′
j)∑n

i=1 w
K(s′i,a

′
i)
∆(x)

]
− Ex∼pπ [∆(x)] (22)

= ED∼pµ

[
1

n

n∑
j=1

wK(s′j ,a
′
j)∆(x)

]
− Ex∼pπ [∆(x)] (23)

= ED∼pµ

[
wK(s′,a′)∆(x)

]
− Ex∼pπ [∆(x)] (24)

= E(s,a,r,s′)∼pµ

[∫
1

hd
K

(
a′ −π̃(s′)

h

)(
r + γQθ̄(s

′,a′)−Qθ(s,a)
)
∇θQθ(s,a)da

′
]

(25)

− Ex∼pπ [∆(x)],

= E(s,a,r,s′)∼pµ

[(
r + γ

{
Qθ̄(s

′, π̃(s′)) +
h2

2

∫
K(z′)(z′)⊤ Ha′ Qθ̄(s

′,a′)|a′=π̃(s′)z
′dz′

}
(26)

−Qθ(s,a)

)
∇θQθ(s,a)

]
+O(h4)− Ex∼pπ [∆(x)]

= E(s,a,r,s′)∼pµ

[(
r + γ

{
Qθ̄(s

′, π̃(s′)) +
h2

2
tr

[∫
K(z′)z′(z′)⊤dz′ Ha′ Qθ̄(s

′,a′)|a′=π̃(s′)

]}
(27)

−Qθ(s,a)

)
∇θQθ(s,a)

]
+O(h4)− Ex∼pπ [∆(x)]

=
γh2

2
E(s,a,r,s′)∼pµ

[
∇2

a′Qθ̄(s
′,a′)|a′=π̃(s′)∇θQθ(s,a)

]
+O(h4), (28)

where ∇2
a′ and Ha′ are the Laplacian and Hessian operator w.r.t. the next action a′ respectively,

equality on Eq. (26) is obtained by applying Taylor expansion in Eq. (25), and change-of-variable
z′ = a′−π̃(s′)

h . The Taylor expansion is applied on Qθ̄(s
′,a′) at a′ = π̃(s′). The odd terms of the

Taylor expansion are canceled out due to the symmetric property of the Gaussian kernel. For the
equality in Eq. (28), we used the property of a Gaussian kernel

∫
K(z′)z′ (z′)

⊤
dz′ = I .
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Derivation of the variance in Eq. (9):

Var[∆̂K
IR] = ED∼pµ

[
Varx̄∼ρK [∆̂K

IR | D]
]

︸ ︷︷ ︸
=:A

+VarD∼pµ

[
Ex̄∼ρK [∆̂K

IR | D]
]

︸ ︷︷ ︸
=:B

, (29)

A = ED∼pµ

[
(w̄K)2 Varx̄∼ρK

[
1

k

k∑
j=1

∆(x̄j) | D

]]
(30)

= ED∼pµ

[(
w̄K
)2

k
Varx̄∼ρK [∆(x̄)|D]

]
(31)

= ED∼pµ

[(
w̄K
)2

k

{
Ex̄∼ρK

[
∥∆(x̄)∥22|D

]
− ∥Ex̄∼pµ [∆(x̄)|D] ∥22

}]
(32)

=
1

n2k
ED∼pµ

[(
n∑

i=1

wK(s′i,a
′
i)

)
�2 n∑
j=1

(
wK(s′j ,a

′
j)

(((((((∑n
i=1 w

K(s′i,a
′
i)

)
∥∆(xj)∥22 (33)

−
��������
(

n∑
i=1

wK(s′i,a
′
i)

)2∥∥∥ n∑
j=1

wK(s′j ,a
′
j)

(((((((∑n
i=1 w

K(s′i,a
′
i)
∆(xj)

∥∥∥2
2

]

=
1

n2k
ED∼pµ


�����������n∑
j=1

(wK(s′j ,a
′
j))

2∥∆(xj)∥22 +
n,n∑
i ̸=j

wK(s′i,a
′
i)w

K(s′j ,a
′
j)∥∆(xj)∥22 (34)

−


�����������n∑
j=1

(wK(s′j ,a
′
j))

2∥∆(xj)∥22 +
n,n∑
i ̸=j

wK(s′i,a
′
i)w

K(s′j ,a
′
j)∆(xi)

⊤∆(xj)


=

n2 − n

n2k

{
��������
Ex∼pµ

[
wK(s′,a′)

]
Ex∼pµ

[
wK(s′,a′)∥∆(x)∥22

]
(35)

−Ex∼pµ [w
K(s′,a′)∆(x)]⊤Ex∼pµ [w

K(s′,a′)∆(x)]
}

=
n2 − n

n2k

{
Ex∼pµ

[
wK(s′,a′)∥∆(x)∥22

]
(36)

−Ex∼pµ [w
K(s′,a′)∆(x)]⊤Ex∼pµ [w

K(s′,a′)∆(x)]
}

=
n2 − n

n2k
Var

(s,a,r,s′)∼pµ,a′∼ 1
hd K

(
a′−π̃(s′)

h

) [∆(x)] (37)

= O
(
1

k

)
, (38)

B = VarD∼pµ [Ex̄∼ρK [∆̂K
IR|D]] (39)

= VarD∼pµ

w̄KEx̄∼ρK


�
�
��1

k

k∑
j=1

∆(x̄j)

∣∣∣∣∣D
 (40)

= VarD∼pµ

[
1

n
�
���

��n∑
i=1

wK(s′i,a
′
i)

[
n∑

j=1

wK(s′j ,a
′
j)

(((((((∑n
i=1 w

K(s′i,a
′
i)
∆(xj)

]]
(41)

=
1

n
Varx∼pµ

[
wK(s′,a′)∆(x)

]
(42)

=
1

n

Ex∼pµ [(w
K(s′,a′))2∥∆(x)∥22]︸ ︷︷ ︸

=:X

−∥Ex∼pµ [w
K(s′,a′)∆(x)]∥22︸ ︷︷ ︸

=∥Bias[∆̂IR]+∆TD∥22=O(1)

 (43)

=
X

n
+O

(
1

n

)
, (44)
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X = E(s,a,r,s′)∼pµ

[∫
1

h2d
K

(
a′ − π̃(s′)

h

)2
(R(s,a) + γQθ̄(s

′,a′)−Qθ(s,a))
2

µ(a′|s′)︸ ︷︷ ︸
=:g(s,a,r,s′,a′)

∥∇θQθ(s,a)∥22da′

]

(45)

= E(s,a,r,s′)∼pµ

[∫
K(z′)2

h�2d
g(s,a, r, s′, hz′ + π(s′))∥∇θQθ(s,a)∥22��hddz′

]
(46)

=
C(K)

hd
E(s,a,r,s′)∼pµ

[
g(s,a, r, s′, π(s′))∥∇θQθ(s,a)∥22

]
+O

(
1

hd−2

)
, (47)

where C(K) :=
∫
K(z)2dz, the equality in Eq. (46) is made by applying change-of-variable

z′ = a′ −π̃(s′)
h in Eq. (45), and the equality in Eq. (47) is made by applying Taylor expansion on

g(s,a, r, s′,a′) at a′ = π̃(s′) in Eq. (46).

By plugging in Eq. (47) to Eq. (44),

B =
C(K)

nhd
E(s,a,r,s′)∼pµ

[
(R(s,a) + γQθ̄(s

′, π(s′))−Qθ(s,a))
2∥∇θQθ(s,a)∥22

µ(π̃(s′)| s′)

]
+O

(
1

nhd−2

)
.

(48)

By substituting Eq. (38) and Eq. (48) into Eq. (29), and since the mini-batch size k is a constant
multiple of n,

∴ Var[∆̂K
IR] =

C(K)

nhd
Epµ

[
(R(s,a) + γQθ̄(s

′, π̃(s′))−Qθ(s,a))
2∥∇θQθ(s,a)∥22

µ(π̃(s′)| s′)

]
+O

(
1

nhd−2

)
(49)

A.2 PROOF OF COROLLOARY 1

Corollary 1. Under Assumption 1-2, MSE between the TD update vector estimate ∆̂K
IR and the

on-policy TD update vector ∆TD is:

MSE(h, n, k, d) = h4∥b ∥22 +
v

nhd︸ ︷︷ ︸
=:LOMSE(h,n,d)

+O
(
h6)+O

(
1

nhd−2

)
, (50)

where LOMSE (h, n, d) is the leading-order MSE.

Proof.

MSE(h, n, k, d) =
∥∥∥Bias [∆̂K

IR

]∥∥∥2
2
+Var

[
∆̂K

IR

]
(51)

= h4∥b ∥22 +
v

nhd︸ ︷︷ ︸
=:LOMSE(h,n,d)

+O
(
h6

)
+O

(
1

nhd−2

)
. (52)

A.3 PROOF OF PROPOSITION 1

Proposition 1. The optimal bandwidth h∗ that minimizes the LOMSE(h, n, d) is:

h∗ =

(
vd

4n∥b ∥22

) 1
d+4

. (53)
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Proof. The LOMSE(h, n, d) (Eq. (10)) minimizing optimal bandwidth h∗ is:

d

dh
(LOMSE (h, n, d)) = 4h3∥b ∥22 −

vd

nhd+1
, (54)

∴ h∗ =

(
vd

4n∥b ∥22

) 1
d+4

. (55)

A.4 PROOF OF PROPOSITION 2

Proposition 2. Given optimal bandwidth h∗ (Eq. (11)), in high-dimensional action space, the squared
L2-norm of leading-order bias h4∥b ∥22 dominates over the leading-order variance v

nhd in LOMSE
(Eq. (10)). Furthermore, LOMSE(h∗, n, d) approximates to ∥b ∥22.

Proof. LOMSE(h, n, d) in Eq. (10) is composed of leading-order bias LoBias(h) and leading-order
variance LoVar(h, n, d):

LoBias(h) : = h2 b, (56)

LoVar(h, n, d) :=
v

nhd
. (57)

The ratio of ∥LoBias(h∗)∥22 and LoVar(h∗, n, d) with h∗ in Eq. (11) that together compose
LOMSE(h∗, n, d) as d→∞ is:

lim
d→∞

∥LoBias(h∗)∥22
LoVar(h∗, n, d)

= lim
d→∞

d

4
= ∞. (58)

From Eq. (58), it can be observed that the leading-order bias dominates over the leading-order
variance in LOMSE when d≫ 4.

By plugging in h∗ (Eq. (11)) to the LOMSE in Eq. (10), and taking limit d→∞, we derive similar
relation between LOMSE and the bias as in the work of Noh et al. (2017) that learned metric for
kernel regression:

LOMSE(h∗, n, d) = n− 4
d+4

((
d

4

) 4
d+4

+

(
4

d

) d
d+4

)
∥b ∥

2d
d+4 v

4
d+4 , (59)

∴ lim
d→∞

LOMSE(h∗, n, d) = ∥b ∥22. (60)

From Eq. (59) and Eq. (60), it can be observed that for a high-dimensional action space with d≫ 4
and when the optimal bandwidth h∗ is used, the LOMSE can be approximated to ∥b ∥22.
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A.5 DERIVATION OF THE BIAS WITH METRIC

Bias of the update vector estimation (Eq. (25)) with kernel inputs linearly transformed by L(s′)(
i.e., z′ = L(s′)⊤(a′ −π̃(s′))

h

)
is:

Bias[∆̂K
IR]

= E(s,a,r,s′)∼pµ

[∫
1
hdK

(
L(s′)⊤(a′ −π̃(s′))

h

) (
r + γQθ̄(s

′,a′)−Qθ(s,a)
)
∇θQθ(s,a)da

′
]

(61)

− Ex∼pπ [∆(x)],

= E(s,a,r,s′)∼pµ

[(
r + γ

{
Qθ̄(s

′, π̃(s′)) (62)

+ h2

2

∫
K(z′)(z′)⊤L(s′)−1 Ha′ Qθ̄(s

′,a′)|a′=π̃(s′)L(s
′)−⊤z′dz′

}
−Qθ(s,a)

)
∇θQθ(s,a)

]
+O(h4)− Ex∼pπ [∆(x)]

= E(s,a,r,s′)∼pµ

[(
h2γ
2

tr

[
L(s′)−⊤

∫
K(z′)z′(z′)⊤dz′︸ ︷︷ ︸

=I

L(s′)−1 Ha′ Qθ̄(s
′,a′)|a′=π̃(s′)

]
(63)

)
∇θQθ(s,a)

]
+O(h4)

= h2 · γ
2
E(s,a,r,s′)∼pµ

[
tr
[
A(s′)−1 Ha′ Qθ̄(s

′,a′)|a′=π̃(s′)

]
∇θQ(s,a)

]
︸ ︷︷ ︸

=:bA

. (64)

For the second equality in Eq. (62), we used Taylor expansion on Qθ̄(s
′,a′) at a′ = π̃(s′). The odd

terms of the Taylor expansion are canceled out due to the symmetric property of the Gaussian kernel.
For the last equality, we use the relation A(s′) = L(s′)L(s′)⊤.

∴ ∥bA∥22 =
γ2

4
∥ED∼pµ

[
tr
[
A(s′)−1 Ha′ Qθ̄(s

′,a′)|a′=π̃(s′)

]
∇θQ(s,a)

]
∥22.
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A.6 PROOF OF THEOREM 2

Theorem 2. Under Assumption 3, denoting m iterative applications of T and TK to an arbitrary Q
as TmQ and Tm

K Q respectively, and h and A(s′) as an arbitrary bandwidth and metric respectively,
the following holds:

∥Qπ − lim
m→∞

Tm
K Q∥∞ ≤ γξ

1− γ
, (65)

ξ := max
m,{s,a}∈S×A

h2

2
Es′∼P (s′ | s,a)

[∣∣tr (A(s′)−1 Ha′ Tm
K Q(s′,a′)|a′=π̃(s′)

)∣∣]+ |O((h)4)|. (66)

Proof. Derive ∥TQ− TKQ∥∞/γ w.r.t. h and A(s′) by using Taylor expansion at a′ = π̃(s′):

∥TQ− TKQ∥∞/γ

= max
{s,a}∈S×A

∣∣∣∣∣Es′∼P (s′ | s,a)

[∫
K

(
L∗

Q(s
′)⊤(a′ −π̃(s′))

h∗
Q

)
Q(s′,a′)da′ −Q(s′, π̃(s′))

]∣∣∣∣∣
= max

{s,a}∈S×A

∣∣∣∣Es′∼P (s′ | s,a)

[∫
K(z′)

(
(h∗

Q)2

2
(z′)⊤L∗

Q(s
′)−1Ha′Q(s′,a′)|a′=π̃(s′)L

∗
Q(s

′)−⊤ z′

+O((h∗
Q)

4)
)
d z′
]∣∣

= max
{s,a}∈S×A

∣∣∣∣Es′∼P (s′ | s,a)

[
(h∗

Q)
2

2
tr
(
A∗

Q(s
′)−1Ha′Q(s′,a′)|a′=π̃(s′)

)
+O((h∗

Q)
4)

]∣∣∣∣
≤ max

{s,a}∈S×A

(h∗
Q)

2

2
Es′∼P (s′ | s,a)

[∣∣tr (A∗
Q(s

′)−1Ha′Q(s′,a′)|a′=π̃(s′)

)∣∣]+ |O((h∗
Q)

4)|︸ ︷︷ ︸
=:ξ

(67)

where we used z′ := L(s′)⊤(a′ −π̃(s′))
h , symmetricity of kernel K(z′) = K(− z′), and∫

K(z′) z′ z′
⊤
d z′ = I .

Next, we conjecture that ∥TmQ− Tm
K Q∥∞ ≤

∑m
i=1 γ

iξ,

(i) For m = 1, the conjecture is true by the definition of ξ in Eq. (67).

(ii) Assuming that the conjecture is true for an arbitrary m = j,

∥T jQ− T j
KQ∥∞ ≤

j∑
i=1

γiξ, (68)

∥T j+1Q− T j+1
K Q∥∞ ≤ ∥(T − TK)T j

KQ∥∞ + ∥T (T jQ− T j
KQ)∥∞ (69)

≤ γξ +

j∑
i=1

γi+1ξ (70)

=

j+1∑
i=1

γiξ (71)

(72)

∴ From (i) and (ii), the conjecture is proved to be true. Using the relation T∞Q = Qπ , Eq.(5) can be
derived. Eq.(6) can be derived similarly.
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B PSEUDO CODE FOR KMIFQE

Algorithm 1 Kernel Metric Learning for In-Sample Fitted Q Evaluation

Input: Offline data D = {si,ai, ri, s′i,a′i}ni=1, stochastic behavior policy µ, deterministic target
policy π̃, Q-function Qθ with parameter θ, target network Qθ̄ parameterized by θ̄, Gaussian
kernel K, initial linear transformation matrix L(si) = I for all i, learning rate α, number of TD
update iterations N , mini-batch size k.

Output: Estimated target policy value V̂ (π).

1: for until convergence do
2: for N steps do

3: Update the bandwidth h =
(

vd
4n∥b ∥2

2

) 1
d+4

(Eq. (11)),

where b :=
γ

2k

k∑
i=1

∇2
a′Qθ̄(s

′
i,a

′)|a′=π̃(s′i)
∇θQθ(si,ai),

v :=
C(K)

k

k∑
i=1

[
(ri + γQθ̄ (s

′
i, π̃ (s′i))−Qθ(si,ai))

2 ∥∇θQθ(si,ai)∥22
µ (π̃ (s′i) | s′i)

]
,

C(K) :=

∫
K(z)2dz.

4: Compute IS ratio for each sample i: wK(s′i,a
′
i) :=

1
hdµ(a′

i | s′i)
K

(
L(s′i)

⊤(a′
i −π̃(s′i))
h

)
5: Compute resampling probability for each sample: ρKi =

wK(s′i,a
′
i)∑n

j=1 wK(s′j ,a
′
j)

6: Sample k transitions with ρK : x̄j
ρK

∼ {x1, . . . , xn}, where xi := {si,ai, ri, s′i,a′i}
7: Compute the estimated expectation of the update vector ∆̂K

IR = w̄K

k

∑k
j=1 ∆(x̄j) in Eq. (7)

8: Update θ

θ ← θ + α∆̂K
IR

9: end for
10: Update θ̄

θ̄ ← θ

11: Update linear transformation matrix L(s′i) (A(s′i) = L(s′i)L(s
′
i)

⊤)) for each sample

L(si) = α(s′i)
1
2 [U+(s

′
i)U−(s

′
i)]

(
d+(s

′
i)Λ+(s

′
i) 0

0 −d−(s′i)Λ−(s
′
i)

) 1
2

,

where α(s′i) :=

∣∣∣∣( d+(s
′
i)Λ+(s

′
i) 0

0 −d−(s′i)Λ−(s
′
i)

)∣∣∣∣−1/(d+(s′i)+d−(s′i))
.

12: end for
13: Estimate V̂ (π) = (1− γ) 1

m

∑m
j=1 Qθ(s0,j , π̃(s0,j)),

where {s0,j}mj=1 is the set of initial states in D.
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C EXPERIMENT DETAILS

C.1 PENDULUM WITH DUMMY ACTION DIMENSIONS

Environment The Pendulum-v0 environment in OpenAI Gym (Brockman et al., 2016) is modified
to have d-dimensional actions. Among the d-dimensional actions, only the first dimension, which is
the original action dimension in the Pendulum-v0 environment, is used for computing the next state
transitions and rewards. The other (d - 1) action dimensions are unrelated to next state transitions
and rewards. All of the dimensions have an action range equal to that of the original action space,
which is [−amax, amax], where amax = 2. The episode length is 200 steps. The discount factor of 0.95
is used.

Target policy We train a TD3 policy π̃1 to be near-optimal on the original Pendulum-v0 environ-
ment which has only one action dimension and use it to make a target policy. The target policy π̃ is
made with π̃1(s):

π̃(s) =


π̃1(s)
0
...
0

 .

The policy value of π0 estimated from the rollout of 1500 episodes is −3.791. Since the dummy
action dimensions do not have an effect on next state transitions and rewards, the policy values of π̃1

and π̃ are the same.

Behavior policy For the behavior policy, a TD3 policy µ̃1 is deliberately trained to be inferior to π̃1
and is used to make a stochastic behavior policy. The behavior policy µ made with µ̃1 is as follows:

µ(a | s) =
{
0.8N(a1|µ̃1(s), (0.5amax)

2) + 0.2U(a1| − amax, amax)
} d∏

i=2

U(ai| − amax, amax), (73)

where a uniform density with a range of [−amax, amax] for ith action dimension is denoted as
U(ai| − amax, amax). For the first action dimension, the mixture of 80% Gaussian density and 20%
uniform density is used. For the other dimensions, actions are sampled from the uniform densities.
The behavior policy is similar to the one used in the work of Fujimoto et al. (2021).

The policy values of µ and µ̃1 are estimated from the rollout of 1500 episodes and reported in Table 3.
Since the dummy action dimensions are unrelated to next state transitions and rewards, the behavior
policy value does not change as the number of dummy action dimensions changes.

Table 2: Policy values

Modified Pendulum-v0

R(µ̃1) -453.392
R(π) -142.553
V (µ̃1) -4.413
V (µ) -5.080
V (π) -3.971

Dataset Half a million transitions are sampled with the behavior policy µ for all experiments using
the modified pendulum environment with dummy action dimensions.

Target policy value evaluation with OPE methods For KMIFQE and FQE, target policy values
are estimated as V̂ (π) = (1−γ) 1

m

∑m
i=1 Qθ(s0,i, π̃(s0,i)), where m is the number of episodes in the

dataset. For SR-DICE, the target policy values are estimated with 10k transitions randomly sampled
from the data.
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Network architecture Our algorithm and FQE use the same architecture of a network of 2 hidden
layers with 256 hidden units. For SR-DICE, we use the network architecture used in the work of
Fujimoto et al. (2021). The encoder network of SR-DICE uses one hidden layer with 256 hidden units
which outputs a feature vector of 256. The decoder network of SR-DICE uses one hidden layer with
256 hidden units for both next state and action decoders and uses a linear function of the feature vector
for the reward decoder. The successor representation network of SR-DICE is composed of 2 hidden
layers with 256 hidden units, and SR-DICE also uses 256 hidden units for the density ratio weights. We
use the SR-DICE and FQE implementations in https://github.com/sfujim/SR-DICE.

Hyperparameters Following the hyperparameter settings used in the work (Fujimoto et al., 2021),
all networks are trained with Adam optimizer (Kingma & Ba, 2014) with the learning rate of 3e− 4.
For mini-batch sizes, the encoder-decoder network, and successor representation network of SR-
DICE, as well as FQE, use a mini-batch size of 256. For the learning of density ratio in SR-DICE and
our algorithm, we use a mini-batch size of 1024. FQE and SR-DICE use update rate τ = 0.005 for
the soft update of the target critic network and target successor representation network respectively.
For our proposed method, target critic network is hard updated every 1000 iterations. We clip the
behavior policy density value at the target action by 1e-5 when the density value is below the clipping
value for numerical stability when evaluating v defined in Eq. (9). The IS ratios are clipped to be in
the range of [0.001, 2] to lower the variance of its estimations (Kallus & Zhou, 2018; Munos et al.,
2016; Han & Sung, 2019). The clipping range is selected by grid search on Hopper-v2 domain from
the cartesian product of minimum IS ratio clip values {1e-5, 1e-3, 1e-1} and maximum IS ratio clip
values {1, 2, 10}.

Computational resources used and KMIFQE train time One i7 CPU with one NVIDIA Titan
Xp GPU runs KMIFQE for two million train steps in 5 hours.

C.2 CONTINUOUS CONTROL TASKS WITH A KNOWN BEHAVIOR POLICY

Environment MuJoCo environments (Todorov et al., 2012) of Hopper-v2 (d=3), HalfCheetah-v2
(d=6), and Walker2D-v2 (d=6), Ant-v2 (d=8), and Humanoid-v2 (d=17) are used. The maximum
episode length of the environments is 1000 steps. HalfCheetah-v2 does not have a termination
condition that terminates an episode before it reaches 1000 steps. But the other two environments may
terminate before reaching the maximum episode length when the agent falls. The discount factor of
0.99 is used. The action range for all environments and for all action dimensions is in [−amax, amax],
where amax = 1 except Humanoid-v2 which is amax = 0.4.

Target policy We train a TD3 policy π to be near-optimal and use it as a target policy. The target
policy values estimated with the rollout of 1000 episodes are presented in Table 3.

Behavior policy For the behavior policy of each environment of HalfCheetah-v2, Hopper-v2, and
Walker2D-v2, a TD3 policies µ̃ are deliberately trained to be inferior to a target policy, to achieve
about 70%∼80% of the undiscounted return (R) of π. Then, µ̃ is used to make the Gaussian behavior
policy µ(a | s) = N(a |µ̃(s), (0.3amax)

2I). The policy values of the behavior policy µ and µ̃ for each
environment are estimated with the rollout of 1000 episodes, and the policy values are reported in
Table 3.

Target policy value evaluation with OPE methods For KMIFQE and FQE, target policy values
are estimated as V̂ (π) = (1−γ) 1

m

∑m
i=1 Qθ(s0,i, π̃(s0,i)), where m is the number of episodes in the

dataset. For SR-DICE, the target policy values are estimated with 10k transitions randomly sampled
from the data.

Dataset One million transitions are sampled with the behavior policy µ for all experiments.

Target policy value evaluation with OPE methods For KMIFQE and FQE, target policy values
are estimated as V̂ (π) = (1− γ) 1

m

∑m
i=1 Q(s0,i, π̃(s0,i)), where m is the number of episodes in the

dataset. For SR-DICE, the target policy values are estimated with 10k transitions randomly sampled
from the data.
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Table 3: Policy values

HalfCheetah-v2 Hopper-v2 Walker2D-v2 Ant-v2 Humnaoid-v2

R(µ̃) 7591.245 2054.226 3032.198 3736.888 3912.369
R(π) 10495.003 2600.161 4172.839 5034.756 5303.486
V (µ̃) 5.716 2.553 2.595 3.439 4.848
V (µ) 4.211 2.506 2.605 1.886 4.396
V (π) 7.267 2.571 2.693 4.396 5.211

Network architecture The network architectures used for the MuJoCo experiment are the same
as that of the architectures used in the experiments on pendulum environment with dummy action
dimensions.

Hyperparameters The hyperparameters used for the MuJoCo experiments are the same as that of
the experiments on the pendulum environment with dummy action dimensions except the mini-batch
size used for the learning of density ratio in SR-DICE and our algorithm is 2048 as in the work of
Fujimoto et al. (2021). For our proposed method, the IS ratios are dimension-wise clipped in the
range of [0.001, 2] to lower the variance of its estimations (Han & Sung, 2019).

Computational resources used and KMIFQE train time One i7 CPU with one NVIDIA Titan
Xp GPU runs KMIFQE for one million train steps in 5 hours.

C.3 CONTINUOUS CONTROL TASKS WITH UNKNOWN MULTIPLE BEHAVIOR POLICIES

Dataset Among the D4RL dataset (Fu et al., 2020) we used halfcheetah-medium-expert-v2, hopper-
medium-expert-v2, walker2d-medium-expert-v2, halfcheetah-medium-replay-v2, hopper-medium-
replay-v2, walker2d-medium-replay-v2. The discount factor of 0.99 is used. The action range for all
environments and for all action dimensions is in [−amax, amax], where amax = 1.

Target policy We use the mean values of the stochastic expert policies provided by D4RL dataset
(Fu et al., 2020) as deterministic target policies.

Target policy value evaluation with OPE methods For KMIFQE and FQE, target policy values
are estimated as V̂ (π) = (1−γ) 1

m

∑m
i=1 Qθ(s0,i, π̃(s0,i)), where m is the number of episodes in the

dataset. For SR-DICE, the target policy values are estimated with 10k transitions randomly sampled
from the data.

Maximum likelihood estimation of behavior policies for KMIFQE Behavior policies are max-
imum likelihood estimated tanh-squashed mixture-of-Gaussian (MoG) models. The MoGs are
squashed by tanh to restrict the support of the behavior policy to the action range of [−amax, amax] for
each action dimension. We fit tanh-squashed MoGs with mixture number of 10, 20, 30, 40 and select
a mixture number by cross-validation for each dataset. The validation set is the 10% of the data, and
rest of the data is used for training. The validation log-likelihood for each mixture number is reported
in Table 4 with one standard error.

Network architecture The network architectures used for the D4RL experiment are the same
as that of the architectures used in the experiments on pendulum environment with dummy action
dimensions.

Hyperparameters The hyperparameters used for the MuJoCo experiments are the same as those of
the experiments on the MuJoCo domain (Todorov et al., 2012) with a known behavior policy except
that since the dimension-wise clipping is not possible, we clip the overall IS ratios. Furthermore, we
clip the behavior policy density value at the target action by 1e-3 when the density value is below the
clipping value for numerical stability when evaluating v.
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Table 4: Validation log-likelihood of estimated behavior policies.

Number of Mixtures
Dataset 10 20 30 40

hopper-m-e 2.089 ± 0.002 2.114 ± 0.002 2.123 ± 0.003 2.125 ± 0.002
halfcheetah-m-e 6.581 ± 0.003 6.591 ± 0.003 6.583 ± 0.003 6.578 ± 0.003
walker2d-m-e 5.610 ± 0.002 5.626 ± 0.005 5.630 ± 0.005 5.629 ± 0.005
hopper-m-r 0.767 ± 0.006 0.787 ± 0.007 0.797 ± 0.006 0.800 ± 0.005
halfcheetah-m-r 5.315 ± 0.012 5.303 ± 0.012 5.281 ± 0.016 5.271 ± 0.014
walker2d-m-r 2.508 ± 0.007 2.492 ± 0.013 2.480 ± 0.016 2.472 ± 0.011

Computational resources used and KMIFQE train time One i7 CPU with one NVIDIA Titan
Xp GPU runs KMIFQE for one million train steps in 5 hours.
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