
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CABS: CONFLICT-AWARE AND BALANCED SPARSIFI-
CATION FOR ENHANCING MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging based on task vectors, i.e., the parameter differences between
fine-tuned models and a shared base model, provides an efficient way to integrate
multiple models without retraining. This approach can be used to combine task-
specific models into a multitask model, improve generalization, or address model
deficiencies. One of the significant challenges faced by model merging is the con-
flicts between task vectors. Existing works aim to mitigate these conflicts through
sparsification; however, two issues observed in our experiments significantly limit
their performance: high parameter overlap and unbalanced weight distribution.
To address these issues, we propose a simple yet effective framework called CABS
(Conflict-Aware and Balanced Sparsification), consisting of Conflict-Aware Spar-
sification (CA) and Balanced Sparsification (BS). CA can reduce parameter over-
lap by applying masks during sequential pruning, ensuring that each task vector
retains distinct, non-overlapping parameters. BS leverages n:m pruning to pre-
serve critical weights while maintaining an even distribution across layers. Our
comprehensive experiments demonstrate that CABS outperforms state-of-the-art
methods across a range of diverse tasks and model sizes. Notably, in experiments
with 7B-parameter language models, CABS surpasses the average performance
of an “ideal” model, a virtual model that selects the highest score from individual
fine-tuned models for each task (CABS: 76.50 vs. Ideal Model: 76.30 vs. Base-
line: 76.02 vs. Fine-tuned Model: 75.86). Our results highlight the importance
of addressing both high parameter overlap and unbalanced weight distribution to
achieve robust and high-performance model merging.

1 INTRODUCTION

Model merging has gained increasing attention in the deep learning community, particularly in the
context of using task vectors for model merging in large language models (LLMs) (Ilharco et al.,
2022; Li et al., 2023; Wortsman et al., 2022; Jin et al., 2022; Matena & Raffel, 2022; Singh & Jaggi,
2020; Akiba et al., 2024). This technique has become especially popular for merging homologous
models—those fine-tuned from the same base models—to create better-performing models. Many
top-performing models on the LLM leaderboard (Beeching et al., 2023) are built by fine-tuning base
models and subsequently merging them to optimize task-specific performance. Additionally, major
enterprises have employed model merging techniques in the development of pretraining models,
such as LLaMA3 (Dubey et al., 2024) and Qwen2 (Yang et al., 2024; Lu et al., 2024), to enhance
generalization capabilities and improve performance across a range of tasks.

Recent studies have further shown that sparsifying task vectors before merging can mitigate pa-
rameter conflicts between different task vectors, leading to measurable improvements in merging
performance (Yu et al., 2024; Yadav et al., 2024; Davari & Belilovsky, 2023; He et al., 2024). These
conflicts can be categorized into two types: (a) conflicts due to redundant parameters, where pa-
rameters that contribute little to performance are unnecessarily retained, and (b) conflicts due to
overlapping parameters, where task vectors retain parameters that overlap, potentially with signifi-
cantly different magnitudes or signs. These overlaps make the merging process less efficient.

Sparsifying can be achieved by selectively or randomly dropping part of a task vector. This process
is similar to one-shot pruning, with the former aiming to reduce conflicts in model merging and
the latter targeting model compression. Magnitude-based pruning (Liang et al., 2021) is one of the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Merging task vectors with magnitude-based pruning (MP)

:overlap

:sign confilict

Task vector A(τA) τA with MP

Task vector B(τB)

Merged Task
vector with MP

Magnitude
Pruning

Magnitude
Pruning

 τB with MP

Unused MaskτA with CABS Remaining τB τB with CABSTask vector A(τA) Task vector B(τB)MaskA

invertmaskingBS = BS
element-wise

product

☉

CA

(a) Pruning task vectors with CABS

(b) Merging task vectors with and without CABS

Merging task vectors with CABS

Task vector A(τA) τA with CABS

Task vector B(τB) τB with CABS

Merged Task
vector with CABS

CABS

CABS

Figure 1: Illustration of the CABS framework, which enhances model merging by addressing pa-
rameter overlap and weight imbalance. By integrating Conflict-Aware Sparsification (CA) and Bal-
anced Sparsification (BS), CABS delivers more effective merging compared to standard merging
with magnitude-based pruning (MP), leading to improved model performance.

mainstream pruning techniques, which can efficiently estimate the importance of weights and selec-
tively preserve the essential weights, thus rightfully superior to random pruning. Inspired by pruning
techniques, recent model merging studies (Yadav et al., 2024) applied magnitude-based pruning for
sparsifying task vectors with the important weights retained. However, as pointed out by DARE (Yu
et al., 2024), the results are counterintuitive —magnitude-based pruning underperforms compared
to random weight-dropping methods. This unexpected phenomenon contradicts the observations
of widely studied pruning techniques, which demonstrate that retaining important weights helps
preserve model performance.

Our research explores the reasons behind this discrepancy, especially in a setting where magnitude-
based pruning is expected to perform well. Addressing these issues is key to advancing model
merging and developing high-performance merged models. Specifically, by analyzing the weight
distribution and overlap in task vectors produced by DARE and magnitude-based pruning, we iden-
tified two key factors contributing to the underperformance of magnitude-based pruning:

High Parameter Overlap: After magnitude-based pruning, the retained weights of different task
vectors often exhibit significant overlap, particularly compared to random methods like DARE. This
leads to increased conflicts between task vectors during model merging, ultimately affecting the
resulting model performance.

Unbalanced Weight Distribution: Magnitude-based pruning tends to distribute retained weights
unevenly across the model’s weight matrices, with some regions retaining significantly more weights
than others. After pruning, the model merging process applies a uniform rescaling factor globally
across the model to restore performance. However, this process amplifies the existing imbalance,
ultimately leading to suboptimal performance. In contrast, random pruning methods like DARE can
avoid this problem, which maintain better balance across the model by distributing weights more
uniformly.

To address the issues uncovered above, we propose a novel framework: Conflict-Aware and Bal-
anced Sparsification (CABS). As illustrated in Figure 1, CABS distinguishes itself from existing
methods by introducing two key strategies:

Conflict-Aware (CA) Sparsification: CA addresses conflicts between task vectors by employing
a sequential pruning approach, ensuring no overlap between the retained weights of different task
vectors. As shown in Figure 1 (a), CA first applies pruning to task vector A (blue, τA), and then
masks the overlapping weights when pruning task vector B (yellow, τB). This masking technique

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

minimizes conflicts during the merging process by removing shared weights, allowing for more
effective task vector merging and improving the final model performance.

Balanced Sparsification (BS): BS addresses the issue of unbalanced weight distribution by apply-
ing n:m pruning, which selectively retains n weights out of every m consecutive weights based on
magnitude (Zhou et al., 2021). As demonstrated in Figure 1 (a), BS is applied first to τA, followed
by another application to Remaining τB after CA has eliminated overlapping weights. This en-
sures a more uniform distribution of weights across layers, reducing the adverse effects of weight
concentration in certain regions.

These strategies are straightforward, yet highly effective. Our extensive experiments on both
decoder-based Mistral-7B (Jiang et al., 2023) and encoder-based RoBERTa-Base (Liu, 2019) mod-
els, spanning tasks from the LLM leaderboard and the GLUE (Wang et al., 2018) dataset respec-
tively, demonstrate that CABS effectively addresses the issues associated with magnitude-based
pruning. In Mistral-7B experiments, CABS achieved an average performance of 76.50, outperform-
ing the “ideal” virtual model (76.30), which is a hypothetical model that picks the highest score from
each fine-tuned model for every task. with previous SOTA methods scoring 76.02 and fine-tuned
models at 75.86. In RoBERTa-Base experiments, CABS improved task performance to 81.49, out-
performing previous SOTA method (80.65) and the baseline task-arithmetic score (80.15). While
absolute improvements may appear small, they consistently confirm CABS’s superiority across dif-
ferent architectures. Furthermore, an ablation study verifies the validity of each strategy.

Our contributions are as follows:

• We identify two key issues encountered by magnitude-based pruning in the context of task
vector sparsification, i.e., high parameter overlap and unbalanced weight distribution.

• We propose the CABS framework, consisting of conflict-aware sparsification and balanced
sparsification strategies, which can effectively address the two identified issues.

• We conduct comprehensive experiments across a variety of tasks and model sizes, showing
that CABS outperforms state-of-the-art methods.

• We are the first to introduce an “ideal” yet rigorous baseline for evaluation, where CABS
outperforms this virtual baseline while all existing methods fall short.

Resources and implementation details of our approach are available at https://anonymous.
4open.science/r/CABS-027B.

2 RELATED WORK

Model merging has become a vital strategy for combining multiple fine-tuned models into a single
multitask model without requiring additional training. Fine-tuned models from the same pre-trained
model often share part of the optimization trajectory, making them suitable for merging. This pro-
cess can enhance performance on target tasks, improve out-of-domain generalization, and support
applications such as federated learning, model compression, and continual learning.

The simplest merging technique involves directly averaging the model parameters (Izmailov et al.,
2018; Wortsman et al., 2022). However, this naive approach often fails to account for task-specific
variations, leading to suboptimal performance. A more refined approach, Task Arithmetic (Ilharco
et al., 2022), was introduced as a pioneering method in the realm of task vector-based merging. In
Task Arithmetic, task vectors—computed as the difference between fine-tuned model parameters
and their initial pre-trained values—are combined using weighted sums to create a multitask model.
However, it struggle with issues such as parameter redundancy and sign conflicts.

To address some of these issues, TIES-Merging (Yadav et al., 2024) introduces a more sophisticated
approach that operates in two key ways: first, by pruning parameters that are not significantly im-
pactful, thereby reducing the influence of redundant parameters; and second, by resolving sign con-
flicts during the merging process. This dual approach minimizes interference between task vectors
and ensures that the most critical parameters are preserved and properly aligned during the merge.
DARE (Yu et al., 2024), a technique inspired by Dropout (Srivastava et al., 2014), reveals the high
redundancy in task vectors by randomly dropping 90% of the parameters and rescaling the remaining

3

https://anonymous.4open.science/r/CABS-027B
https://anonymous.4open.science/r/CABS-027B

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ones. Using random pruning, DARE has been shown to outperform magnitude-based pruning meth-
ods in model merging. However, DARE does not fully explain the reasons for this improvement.
Our analysis suggests that DARE helps mitigate some of the overlap and imbalance. Nevertheless,
the random nature of the approach may potentially sacrifice precision. Other categories approaches,
such as Evolutionary Model Merge(Akiba et al., 2024) and Pack of LLMs(Mavromatis et al.,
2024), are detailed in the AppendixA.17.

Network pruning techniques, particularly magnitude pruning (Zhu & Gupta, 2018), have been
extensively studied for their role in optimizing model performance and reducing computational
costs (Liu et al., 2019; Frankle & Carbin, 2018; Gale et al., 2019; Zhu & Gupta, 2018). Magni-
tude pruning retains parameters based on their magnitude, assuming that larger magnitudes corre-
spond to more critical information (Kovaleva et al., 2021; Puccetti et al., 2022; Yin et al., 2023).
However, when applied in the context of model merging, this approach can lead to an unbalanced
distribution of retained weights, which exacerbates conflicts during the merging process and results
in suboptimal performance.

To address this issue, while n:m pruning (Zhou et al., 2021; Xia et al., 2022)was originally de-
signed for structured pruning and inference acceleration, we discovered that it can be repurposed
to control the balance of sparsified task vectors in model merging. Although n:m pruning may not
perform as well as unstructured pruning in traditional scenarios, our findings demonstrate that it
effectively mitigates weight imbalance, leading to improved performance in merged models. This
insight forms a key contribution of our work, highlighting the potential of n:m pruning in enhancing
model merging outcomes.

Our proposed CABS method builds upon prior works by introducing CA, a novel approach designed
to eliminate parameter overlap during model merging. Additionally, it repurposes the existing n:m
pruning technique to mitigate unbalanced weight distribution. Together, CABS effectively enhances
the stability and performance of model merging.

3 ISSUES IN TASK VECTOR SPARSIFICATION FOR MODEL MERGING

In model merging, particularly when using sparse task vectors to combine models fine-tuned for
different tasks, an unexpected phenomenon has emerged: magnitude-based pruning, which typi-
cally retains weights with larger absolute values, often underperforms compared to random pruning
methods like DARE (Yu et al., 2024). This result contradicts the intuition that preserving critical
knowledge, rather than randomly retaining information, within the task vectors should enhance the
performance of the merged model. Our investigation into this phenomenon reveals two key issues:
the overlap between retained weights and their unbalanced distribution within each task vector.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity Ratio

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ov
er

la
p

Ra
te

Magnitude Pruning Overlap Rate
Random Pruning Overlap Rate

Figure 2: The trend of overlap rate along the spar-
sity ratio shows that the overlap rate achieved by
magnitude-based pruning decreases more slowly
than that of random pruning, with the gap widen-
ing progressively.

High Parameter Overlap. By comparing the
overlap rate between magnitude-based and ran-
dom pruning methods, our analysis demon-
strates that magnitude-based pruning results in
a significantly higher parameter overlap be-
tween task vectors compared to random prun-
ing methods. As shown in Figure 2, although
the overlap rate of magnitude-pruned task vec-
tors decreases gradually with increasing spar-
sity, it remains significantly higher than that of
randomly pruned vectors, especially at higher
sparsity levels. This disparity highlights the
key issue with magnitude-based pruning, where
high overlap persists even as the model be-
comes sparser.

This elevated overlap in magnitude-pruned vec-
tors introduces conflicts during model merg-
ing, as overlapping parameters may have sig-
nificantly different magnitudes or signs between task vectors. These conflicts reduce the efficiency
of the merging process and hinder the model’s ability to perform optimally on individual tasks,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ultimately leading to suboptimal task-specific performance. The performance implications of these
overlapping parameters are explored in detail in 5.4. For details on how the overlap rate is calculated,
please refer to Appendix A.1.

0 50 100 150 200 250
Block Columns

0

50

100

150

200

250

Bl
oc

k
Ro

ws

Magnitude Pruning

0 50 100 150 200 250
Block Columns

0

50

100

150

200

250

Bl
oc

k
Ro

ws

Random Pruning

20

40

60

80

100

120

140

160

180

No
n-

ze
ro

 w
ei

gh
ts

 p
er

 3
2x

32
 b

lo
ck

100

110

120

130

140

150

160

No
n-

ze
ro

 w
ei

gh
ts

 p
er

 3
2x

32
 b

lo
ck

Figure 3: Magnitude pruning results in a
more concentrated and unbalanced distribution of
weights compare to random pruning.

Unbalanced Weight Distribution. By visual-
izing the weight distribution shown in Figure 3,
we identified another critical issue: the unbal-
anced distribution of retained weights caused
by magnitude-based pruning. Magnitude prun-
ing often leads to weight concentration in spe-
cific regions of the model’s weights. This im-
balance is further exacerbated by the rescaling
process, where certain weights gain dispropor-
tionate influence over the model’s output, of-
ten resulting in suboptimal performance. This
uneven distribution is particularly detrimental
after sparsification, as it hampers the merged
model’s ability to generalize effectively. The
performance implications of these unbalanced weights are discussed in detail in 5.4.

To comprehensively analyze this issue, we further examined the weight distributions across different
layers of the model, including the query-key-value (QKV) projection and MLP layers, at various
sparsity levels (e.g., 50%, 75%, and 90%). These experimental results are provided in Appendix A.2,
demonstrating the pervasive nature of the imbalance across different layers and sparsity levels.

4 METHODOLOGY

4.1 OVERVIEW OF CABS FRAMEWORK

To address the aforementioned issues, we propose the CABS (Conflict-Aware and Balanced Spar-
sification) framework. As illustrated in Figure 1, CABS resolves parameter conflicts and ensures
balanced weight distribution so as to enhance the performance of the merged model. The framework
integrates two core strategies: Conflict-Aware Sparsification (CA) and Balanced Sparsification (BS),
which will be detailed in the following sections. Algorithm 1 demonstrates how these strategies are
implemented in CABS.

Algorithm 1 CABS

Input: Task vectors τA, τB , base model Wbase, sparsity level n , m, rescale factors λA , λB

Output: Parameters of the merged model Wfinal
1: Apply n:m pruning to τA and compute maskA // include BS
2: τB remaining = τB ⊙ (1− maskA) to eliminate overlap with τA // core step of CA
3: Apply n:m pruning to τB remaining to compute maskB // include BS
4: Merge the pruned vectors with the base model:

Wfinal = Wbase + λA × maskA ⊙ τA + λB × maskB ⊙ τB

5: return Wfinal

4.2 CONFLICT-AWARE SPARSIFICATION (CA)

Motivation. During model merging, overlapping task vectors can lead to performance degradation
of the merged model because different task vectors may update the same parameters inconsistently,
often with differing magnitudes or signs.By minimizing these overlaps, it is expected to enhance the
stability and performance of the merged model.

Sequential Pruning and Mask Application. CA aims to eliminate parameter overlap during model
merging by employing a sequential pruning strategy. The process begins with the first vector τA
being pruned, producing a mask maskA that marks the positions of the retained weights. This mask
is then used to guide the pruning of the second task vector τB , ensuring that there is no overlap
between the parameters of τA and τB .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For the second task vector τB , the prior mask maskA is applied in an inverted form to determine the
remaining weights that do not overlap with the first pruned task vector. Specifically, the remaining
weights of τB are calculated as:

τB remaining = τB ⊙ (1− maskA).

This ensures that only the non-overlapping weights in τB are retained in the subsequent pruning
process. Afterward, a second round of pruning is performed on τB remaining, generating a new sparse
mask maskB , which can then be merged with the prior pruned task vector without any parameter
overlap.

Minimizing Overlap When Sparsity Limits are Exceeded. When the sum of the sparsity levels
across all task vectors exceeds 1 (e.g., when each vector retains 75% of its parameters), it becomes
impossible to achieve zero overlap. In such cases, the objective shifts from eliminating overlap to
minimizing it as much as possible. Additional pruning steps are applied selectively to reduce the
extent of overlap between task vectors. For the detailed implementation of this process, please refer
to Appendix A.3.

4.3 BALANCED SPARSIFICATION (BS)

Motivation. While CA can effectively reduce overlap, it does not address the imbalance in weight
distribution that can arise within task vectors. These imbalances often lead to suboptimal perfor-
mance in the merged model, affecting both its stability and efficiency. To mitigate this problem, we
propose the Balanced Sparsification (BS) strategy, which enhances CA by addressing these imbal-
ances and further improving the model’s overall performance.

Balanced Sparsification. In BS, the weight matrix is divided into disjoint blocks of m consecutive
weights, and within each block, the n weights with the largest absolute magnitude are retained,
while the rest are pruned. This strategy is applied uniformly across all layers to ensure a more
even weight distribution within each task vector. Minimizing imbalances prevents performance
degradation of the merged models. For a more detailed discussion about the differences between
Balanced Sparsification (BS) and n:m pruning, please refer to Appendix A.4.

We also discuss the flexibility and efficiency of the CABS framework in Appendix A.5. CABS can
be integrated with other model merging techniques, where CA and BS can be applied independently
or combined with other approaches to further enhance model merging. Additionally, our analysis
of computational cost shows that CABS introduces virtually no additional overhead compared to
standard merging methods, making it an efficient and adaptable solution for various model merging
scenarios.

5 EXPERIMENTS

We conducted extensive experiments to evaluate the effectiveness of CABS in model merging. Our
goal was to demonstrate that CABS can enhance both performance and stability across models of
various scales, covering a diverse range of tasks.

5.1 EXPERIMENTAL SETUP

Datasets and Models for Decoder-based Language Model Experiments. For large-scale model
evaluation, we utilized the LLM Leaderboard benchmark, encompassing six key tasks: AI2 Rea-
soning Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2020), TruthfulQA (Lin et al., 2022), Winogrande (Sakaguchi et al., 2021), and GSM8K (Cobbe
et al., 2021). These tasks were assessed using the Eleuther AI Language Model Evaluation Har-
ness (Gao et al., 2024), a standardized framework designed to test generative language models across
various tasks. The decoder-based models used in our experiments were based on the Mistral-7b-v0.1
backbone and included fine-tuned variants such as WildMarcoroni-Variant1-7B and WestSeverus-
7B-DPO-v2. For more detailed information on these datasets and models, please refer to Ap-
pendix A.6.

Datasets and Models for Encoder-based Language Model Experiments. For evaluating small-
scale models, we utilized the GLUE benchmark, which includes a diverse set of tasks that can

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

be broadly categorized into four types: (1) acceptability judgments (e.g., CoLA (Warstadt et al.,
2019)), (2) sentiment analysis (e.g., SST-2 (Socher et al., 2013)), (3) paraphrase detection (e.g.,
MRPC (Dolan & Brockett, 2005)), and (4) natural language inference (e.g., RTE (Dagan et al.,
2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009)). Each of these tasks
was chosen to represent a distinct aspect of natural language understanding for our model merging
experiments. Due to the unavailability of test labels for GLUE, we utilized the original validation
sets as test sets in our experiments. The models used for these tasks were pre-trained and fine-tuned
versions of RoBERTa, obtained from Hugging Face. Further details regarding the models and tasks
are provided in Appendix A.7.

Evaluation Metrics. Performance was evaluated primarily using accuracy for GLUE tasks, includ-
ing CoLA, where MCC is typically recommended. This choice was made to maintain consistency
across the GLUE benchmark and simplify averaging across tasks. For tasks from the LLM Leader-
board, we used task-specific metrics, such as success rates and accuracy, depending on the default
evaluation metric for each task. Detailed explanations of the evaluation metrics and the rationale
behind these choices can be found in Appendix A.8.

Baselines. We compared CABS against several baseline methods in two main categories: conflict
handling and sparsification strategies. For conflict handling, we used Task Arithmetic (averaging
task vectors) (Ilharco et al., 2022), TIES-Merging (pruning low-magnitude deltas and resolving sign
conflicts) (Yadav et al., 2024), and our Conflict-Aware (CA) method, which sequentially prunes
and masks overlapping weights. For sparsification, we compared DARE (random weight dropping
with rescaling) (Yu et al., 2024), Magnitude Pruning (retaining highest-magnitude weights) (Zhu &
Gupta, 2018), and our Balanced Sparsification (BS) method, which applies n:m pruning to balance
weight distribution.

Grid Search of Rescale Factor λ. For small-scale tasks, we performed a fine-grained λ parameter
search with an interval of 0.01 (compared to the 0.1 used in previous works) to ensure fair compar-
isons across methods. In contrast, because of the high computational cost of large-scale experiments
(e.g., with 7B models), we followed prior work by adopting a coarser grid interval of 0.1, with equal
λ values for all vectors. The impact of lambda grid intervals is discussed in Appendix A.9, showing
how coarser intervals may lead to unfair comparisons by missing optimal values. Detailed steps for
our grid search strategy are outlined in Appendix A.10.

Implementation Details. The model evaluations were performed on A100-40GB GPUs. For small-
scale and discriminative tasks in GLUE, we conducted a single evaluation per model, as minimal
variance was observed across repeated runs. In contrast, for generative tasks involving large models,
where results can be more variable, inference was implemented via the lm-evaluation-harness v0.4.0.
To ensure consistency and robustness, we performed three evaluations and reported the average
outcome. As for the hyperparameters of generative LMs, we set the maximum generation token
limit to 256, the temperature to 1.0 for sampling, and the maximum context length to 2048 tokens.

5.2 PERFORMANCE OF CABS ON ENCODER-BASED LMS

This experiment validates the effectiveness of CABS in merging small-scale encoder-based models,
such as RoBERTa, on tasks from the GLUE benchmark. For example, we merge two models fine-
tuned on RTE and MRPC tasks, respectively, using CABS and baseline methods.

Table 1 presents the accuracy achieved by each method. Among the baselines, “Task Arithmetic”
serves as a vanilla approach without any pruning, while the other four baselines incorporate prun-
ing. We observe that all the pruning-enhanced baselines outperform the vanilla version, with an
improvement of up to 0.50 achieved by “TIES-Merging + DARE”, highlighting the effectiveness of
the pruning technique in model merging. Furthermore, the baselines enhanced by random pruning
(i.e., “+ DARE”) surpass those enhanced by magnitude pruning (i.e., “+ Magnitude” and “TIES-
Merging”), indicating that magnitude pruning underperforms random pruning due to the issues we
have identified (refer to Section 3). By addressing these issues, CABS achieves a significant perfor-
mance improvement over all baselines.

CABS achieves a performance gain of 1.34 over “Task Arithmetic”, which is 168% greater than
the improvement of 0.50 achieved by the SOTA baseline “TIES-Merging + DARE” Additionally, in
normalized accuracy (shown in column “AVG-N”), CABS showed a relative improvement of 202%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

over the best-performing enhanced baseline (+1.57 vs. +0.52). For similar results on the CoLA and
SST-2 tasks, please refer to Table 8 in the appendix A.11.

Table 1: Performance comparison on RTE-MRPC task pair using different methods (sparsity=0.9).

METHOD RTE MRPC AVG RTE-N MRPC-N AVG-N
Fine-tuned model on RTE 79.42 25.98 52.70 100.00 28.51 64.26
Fine-tuned model on MRPC 47.29 91.18 69.24 59.54 100.00 79.77

Task Arithmetic 73.29 87.01 80.15 92.23 95.42 93.82
Task Arithmetic + Magnitude 74.73 86.03 80.38(+0.23) 94.12 94.35 94.24(+0.42)
Task Arithmetic + DARE 72.92 88.24 80.58(+0.43) 91.82 96.78 94.30(+0.48)
TIES-Merging 74.37 86.03 80.20(+0.05) 93.64 94.35 94.00(+0.18)
TIES-Merging + DARE 72.56 88.73 80.65(+0.50) 91.36 97.31 94.34(+0.52)

CABS (Ours) 74.01 88.97 81.49(+1.34) 93.20 97.58 95.39(+1.57)

5.3 PERFORMANCE OF CABS ON DECODER-BASED LMS

The “AVG” columns in Tables 2 and 3 present the average performance of each method across six
tasks, demonstrating that CABS outperforms all baselines on generative LMs. Table 2 shows the
results at a sparsity level of 0.25, where CABS can minimize the overlap, reaching an accuracy of
76.48%. In Table 3, at a sparsity level of 0.75, where CABS can eliminate overlap entirely, resulting
in a performance improvement compared to the 0.25 sparsity level (76.50 vs. 76.48).

It is worth mentioning that, to figure out how far current model merging methods are from the ex-
pectation of the research field, we introduce an “ideal model” as a strict and meaningful baseline.
The ideal model represents a hypothetical scenario where the merged model achieves optimal perfor-
mance for each task, which is “constructed” by selecting the best-performing individual task-specific
model for each task.

Table 2: Performance comparison on LLM Leaderboard using different methods (sparsity=0.25).

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
ideal model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
Task Arithmetic + Magnitude 71.67 89.15 63.42 74.05 84.37 73.53 76.03(-0.27)
Task Arithmetic + DARE 72.30 88.77 63.84 72.08 84.40 74.40 75.96(-0.34)
TIES-Merging 72.41 89.34 63.40 74.03 83.64 73.69 76.09(-0.21)
TIES-Merging + DARE 72.30 88.63 63.76 72.16 85.06 74.37 76.05(-0.25)

TIES-Merging + CABS 72.97 89.20 63.46 74.00 85.16 74.50 76.44(+0.14)
CABS (Ours) 72.75 89.17 63.48 74.08 84.66 74.73 76.48(+0.18)

In the “AVG” columns of Tables 2 and 3, the numbers in parentheses indicate the difference be-
tween the method’s average accuracy and that of the ideal model. On the one hand, the outcome
highlights a significant advantage of model merging: the enhancement of generalization. While
the merged model may not surpass the ideal model on every individual task, it often achieves su-
perior performance on specific tasks due to improved generalization capabilities. For example, in
the TruthfulQA task (see column “TQA” in Table 3), the fine-tuned models scored 72.72 and 70.07,
whereas the vanilla baseline reached 74.00, and CABS further boosted the score to 74.41. On the
other hand, we can see, CABS achieved an average performance of 76.50, exceeding the ideal vir-
tual model’s performance of 76.30. In comparison, the highest-performing baseline scored 76.09,
with a drop of 0.21 compared to the ideal model. The results demonstrate the effectiveness of CABS
in enhancing model generalization and robustness. This success underscores the value of CABS for
model merging in large-scale models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison on LLM Leaderboard using different methods (sparsity=0.75).

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
ideal model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
Task Arithmetic + Magnitude 71.93 89.32 63.18 73.85 84.12 72.22 75.77(-0.53)
Task Arithmetic + DARE 72.64 88.86 63.54 72.82 84.03 73.44 75.89(-0.41)
TIES-Merging 71.42 89.17 63.16 73.82 84.74 73.01 75.89(-0.41)
TIES-Merging + DARE 71.87 88.95 63.56 72.87 84.61 73.21 75.85(-0.46)

CABS (Ours) 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)

5.4 ABLATION STUDIES AND DISCUSSION

Within the CABS framework, we first analyze the independent contributions of CA and BS by
examining the impact of parameter overlap and unbalanced weight distribution on model merging.
Next, we perform ablation studies to isolate the contributions of CA and BS, demonstrating the
importance of both strategies for achieving optimal results.

Performance Impact of Overlap Rate. We examined the impact of varying overlap rates on final
model performance to validate the importance of CA. The experiment was conducted on two task
pairs (RTE-MRPC and CoLA-SST2) with a fixed sparsity level of 0.50, using random pruning for
fair comparison. We first pruned one task vector, then adjusted the pruning of second vector by
controlling the ratio of retained weights in the overlapping and non-overlapping regions to achieve
target overlap rate, ranging from 0% (no overlap, CA) to 100% (full overlap).

0 20 40 60 80 100

Overlap Rate (%)
0.874

0.875

0.876

0.877

0.878

0.879

0.880

AV
G.

AC
C

wi
th

 C
oL

A-
SS

T2

No Overlap, CA

DARE

Full Overlap

AVG.ACC with CoLA-SST2
AVG.ACC with RTE-MRPC

0.800

0.801

0.802

0.803

0.804

0.805

0.806

AV
G.

AC
C

wi
th

 R
TE

-M
RP

C

No Overlap, CA

DARE

Full Overlap

Figure 4: Merged model performance
decreases as overlap rate increases, un-
derscoring the importance of CA in re-
ducing conflicts.

Figure 4 shows that lower overlap generally leads to bet-
ter performance, underscoring the importance of reduc-
ing parameter overlap, as achieved through CA. The 50%
overlap point, which corresponds to the expected overlap
rate of DARE, is noteworthy but does not perform as well
as the no overlap condition (CA). This, along with the
0% and 100% overlap points, has been specifically high-
lighted in the figure for clarity.

CA becomes particularly critical at lower sparsity levels.
For example, at 0.5 sparsity, the number and rate of over-
lapping parameters are much higher than at 0.9 sparsity.
This makes CA especially valuable at lower sparsity lev-
els, where task vectors retain more parameters and are
thus more likely to result in significant overlap.

Performance Impact of Balanced Sparsification. Next, we evaluated BS’s effectiveness by com-
paring different sparsity strategies, including layer-wise magnitude pruning, row-wise magnitude
pruning, and n:m magnitude pruning. Table 4 presents the results at a sparsity level of 0.9, demon-
strating that n:m magnitude pruning outperforms other methods, as it maintains balanced weight
distribution and in turn improves model stability. BS proves most effective at a high sparsity level,
such as 0.9, where the risk of unbalanced pruning is much higher. By ensuring that retained weights
are distributed evenly across blocks, BS mitigates the potential for performance degradation due
to concentrated weight distributions. As shown in Table 4, BS achieves an average performance
of 81.30, outperforming layer-wise pruning (80.38) and row-wise pruning (80.61), and delivering
a significant improvement over the base task-arithmetic score of 80.15. This highlights the crucial
role of BS in enhancing model performance at high sparsity levels.

Combined Effect of CA and BS. To further explore the combined effect of CA and BS within
CABS, we compared the full implementation of CABS with configurations that included only CA
or BS. The results in Table 5 show that while CA and BS independently contribute to performance

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Comparison of sparsity strategies: layer-magnitude, row-magnitude, and BS (sparsity=0.9).
“TA” means “Task Arithmetic”.

METHOD RTE MRPC AVG RTE-N MRPC-N AVG-N
Fine-tuned model on RTE 79.42 25.98 52.70 100.00 28.51 64.26
Fine-tuned model on MRPC 47.29 91.18 69.24 59.54 100.00 79.77

Task Arithmetic(Dense) 73.29 87.01 80.15 92.23 95.42 93.82
TA + Magnitude(layer-wise) 74.73 86.03 80.38(+0.23) 94.12 94.35 94.24(+0.42)
TA + Magnitude(row-wise) 74.06 87.05 80.61(+0.46) 93.25 95.47 94.36(+0.54)

TA + BS (Ours) 74.37 88.23 81.30(+1.08) 93.64 96.76 95.20(+1.38)

improvements, their combination within CABS achieves the highest accuracy and stability across
different sparsity levels.

Table 5: Ablation study of CABS across different sparsity levels.

Sparsity Level Method Overlap Rate Avg Accuracy
0% Task Arithmetic 100.00 76.02

TA-magnitude 80.69 76.03
25% CA Only 66.67 76.29

BS Only 80.97 76.33
CABS 66.67 76.48

TA-magnitude 71.42 75.77
75% CA Only 0.00 76.21

BS Only 58.63 76.24
CABS 0.00 76.50

In conclusion, our ablation studies confirm the necessity of reducing overlap rates and maintaining
balanced weight distribution for optimal model merging. They validate the crucial roles of CA and
BS, showing that combining both strategies achieves the best performance across various tasks and
sparsity settings.

Additionally, we performed a series of analyses on the impact of different sparse sequences, and
varying n:m ratios. These results, which further elucidate the robustness of the CABS framework,
are provided in the Appendix A.12 and A.13. We also conducted rescaling experiments and found
that applying rescaling to magnitude-pruned task vectors can restore performance to levels compara-
ble to the original models, similar to what has been observed with DARE’s random pruning method.
Detailed results of these rescale experiments are included in Appendix A.14.

6 CONCLUSION

In this work, we identified the issues of high parameter overlap and unbalanced weight distribution
in task vector sparsification. We then proposed the CABS framework to address these challenges in
model merging. CABS effectively reduces overlap and ensures a more balanced distribution of re-
tained weights, resulting in improved performance across various tasks and model sizes. The CABS
framework can be integrated into existing model merging techniques. Extensive experiments on both
small- and large-scale models demonstrated CABS’s effectiveness in improving model performance
and maintaining model generalization. We also conducted a detailed analysis of CABS’s compo-
nents, providing insights into its robust handling of sparsification challenges in model merging. For
a discussion on limitations and future work, see Appendix A.15.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. In Proceedings of
the second PASCAL challenges workshop on recognising textual entailment, volume 1. Citeseer,
2006.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Ra-
jani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard, 2023.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pp. 177–190. Springer, 2005.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. arXiv preprint arXiv:2312.06795, 2023.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 07 2024.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal rec-
ognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1–9, 2007.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
merging via sparse task arithmetic. arXiv preprint arXiv:2408.13656, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2020.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference
on Learning Representations, 2022.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In 34th Conference on Un-
certainty in Artificial Intelligence 2018, UAI 2018, pp. 876–885. Association For Uncertainty in
Artificial Intelligence (AUAI), 2018.

Myeongjun Jang, Dohyung Kim, Deuk Sin Kwon, and Eric Davis. Kobest: Korean balanced evalu-
ation of significant tasks. In Proceedings of the 29th International Conference on Computational
Linguistics, pp. 3697–3708, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2022.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier di-
mensions that disrupt transformers. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 3392–3405, 2021.

Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey. arXiv preprint arXiv:2309.15698, 2023.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey. Neurocomputing, 461:370–403, 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214–3252, 2022.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2019.

Keming Lu, Bowen Yu, Fei Huang, Yang Fan, Runji Lin, and Chang Zhou. Online merging opti-
mizers for boosting rewards and mitigating tax in alignment. arXiv preprint arXiv:2405.17931,
2024.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at test-time
via perplexity optimization. arXiv preprint arXiv:2404.11531, 2024.

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and Felice Dell’Orletta. Outliers dimensions
that disrupt transformers are driven by frequency. In Findings of EMNLP 2022. Association for
Computational Linguistics, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Infor-
mation Processing Systems, 33:22045–22055, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Anke Tang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Fusionbench: A comprehensive
benchmark of deep model fusion. arXiv preprint arXiv:2406.03280, 2024.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl a 00290.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022, pp.
1513–1528. Association for Computational Linguistics (ACL), 2022.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 techncal report. arXiv preprint
arXiv:2407.10671, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR
JAISWAL, Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A
missing secret sauce for pruning llms to high sparsity. In Forty-first International Conference on
Machine Learning, 2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In Interna-
tional Conference on Learning Representations, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net,
2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 OVERLAP RATE CALCULATION

The overlap rate between two task vectors is a metric used to quantify the extent to which the
same parameters are retained after pruning. This metric is particularly useful in understanding how
pruning strategies impact the sharing of model parameters across different tasks, which can lead to
conflicts during model merging.

The overlap rate is calculated as follows: Given two task vectors τA and τB , the overlap rate is
defined as the ratio of the number of shared non-zero parameters to the total number of non-zero
parameters in the first task vector τA. Mathematically, this can be expressed as:

Overlap Rate =
|τA ∩ τB |

|τA|

where |τA∩τB | represents the count of non-zero parameters that are common to both vectors τA and
τB , and |τA| denotes the total count of non-zero parameters in vector τA. This calculation shows the
extent of overlap between two task vectors. A higher overlap rate means more shared parameters,
increasing the potential for conflicts during model merging.

A.2 WEIGHT DISTRIBUTION ANALYSIS ACROSS LAYERS AND SPARSITY RATIOS

This section provides a comprehensive analysis of the heatmaps illustrating weight distribu-
tions across different layers of the model and various sparsity ratios. Figures 5-7 show
the weight distribution for four representative layers: self attn.k proj.weight (layer
6), self attn.q proj.weight (layer 12), self attn.v proj.weight (layer 24), and
mlp.up proj.weight (layer 18) at sparsity ratios of 25%, 50%, 75%, and 90%.

These heatmaps demonstrate how increasing sparsity causes magnitude-based pruning to concen-
trate weights in localized regions of the parameter space. As the sparsity level increases, this clus-
tering becomes more pronounced, especially at 75% and 90% sparsity levels, leading to potential
imbalances that can degrade model performance.

The recurring pattern across all layers further highlights the significance of strategies like Balanced
Sparsification (BS), which aim to distribute weights more evenly across the model. By ensuring a
more uniform distribution of the retained weights, BS helps to maintain model stability and perfor-
mance after sparsification.

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 25%

700

720

740

760

780

800

820

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 50%

400

425

450

475

500

525

550

575

600

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 75%

175

200

225

250

275

300

325

350

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 90%

40

60

80

100

120

140

160

180

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

Figure 5: Heatmaps of weight distribution in model.layers.6.self attn.k proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125
Block Columns

0

20

40

60

80

100

120

Bl
oc

k
Ro

ws

Sparsity Ratio: 25%

450

500

550

600

650

700

750

800

850

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 25 50 75 100 125
Block Columns

0

20

40

60

80

100

120

Bl
oc

k
Ro

ws

Sparsity Ratio: 50%

100

200

300

400

500

600

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 25 50 75 100 125
Block Columns

0

20

40

60

80

100

120

Bl
oc

k
Ro

ws

Sparsity Ratio: 75%

50

100

150

200

250

300

350

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 25 50 75 100 125
Block Columns

0

20

40

60

80

100

120

Bl
oc

k
Ro

ws

Sparsity Ratio: 90%

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

Figure 6: Heatmaps of weight distribution in model.layers.12.self attn.q proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 25%

700

720

740

760

780

800

820

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 50%

400

425

450

475

500

525

550

575

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 75%

175

200

225

250

275

300

325

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 20 40 60 80 100 120
Block Columns

0

5

10

15

20

25

30

Bl
oc

k
Ro

ws

Sparsity Ratio: 90%

60

80

100

120

140

160

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

Figure 7: Heatmaps of weight distribution in model.layers.18.mlp.up proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125
Block Columns

0

50

100

150

200

250

300

350

400

Bl
oc

k
Ro

ws

Sparsity Ratio: 25%

700

720

740

760

780

800

820

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 25 50 75 100 125
Block Columns

0

50

100

150

200

250

300

350

400

Bl
oc

k
Ro

ws

Sparsity Ratio: 50%

420

440

460

480

500

520

540

560

580

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 25 50 75 100 125
Block Columns

0

50

100

150

200

250

300

350

400

Bl
oc

k
Ro

ws

Sparsity Ratio: 75%

180

200

220

240

260

280

300

320

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

0 25 50 75 100 125
Block Columns

0

50

100

150

200

250

300

350

400

Bl
oc

k
Ro

ws

Sparsity Ratio: 90%

60

80

100

120

140

160

Nu
m

be
r o

f N
on

-Z
er

o
W

ei
gh

ts

Figure 8: Heatmaps of weight distribution in model.layers.24.self attn.v proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).

A.3 ALGORITHM OF LOW-OVERLAP SPARSITY

In this section, we provide the detailed algorithm for Low-Overlap Sparsity in Algorithm 2, designed
to minimize direct conflicts during the model merging process. The algorithm sequentially applies
sparsification to task vectors, ensuring that the non-overlapping portions of the task vectors are
prioritized, thereby reducing coupling and conflict between different tasks in the final merged model.

Algorithm 2 CABS Implementation:minimize overlap rate

Input: Task vectors τA, τB , base model Wbase, sparsity level n , m, rescale factors λA , λB

Output: Merged model parameters Wfinal
1: Apply n:m pruning to τA and compute maskA // include BS
2: Compute initial maskB = 1− maskA, retaining non-overlapping regions of τB
3: If initial maskB retains less than n ÷ m of weights, update maskB by including additional

weights from the overlapping region maskA ⊙ τB until the target sparsity n÷m is reached
4: Merge the pruned vectors with the base model:

Wfinal = Wbase + λA × maskA ⊙ τA + λB × maskB ⊙ τB

5: return Wfinal

A.4 COMPARISON OF N:M PRUNING AND BS

Although both n:m pruning and BS employ the same operation—selecting the top n values out of
m consecutive weights based on magnitude—their goals and use cases differ:

- Goal: The primary goal of n:m pruning is to achieve model compression and acceleration by
reducing computational and memory costs. In contrast, BS is designed to maintain a balanced
distribution of task vectors while minimizing conflicts between them during merging, not to merely
discard unimportant weights.

- Result: n:m pruning is typically used for structured pruning in models, aiming to reduce inference
time and memory usage. On the other hand, BS is applied specifically to task vectors. After the task
vectors are merged with a base model, the resulting model remains dense, meaning that the practical
computation and memory savings are not realized, but the model gains improved capacity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

- Sparsity Ratios: n:m pruning often uses configurations like 2:4 or 4:8, where the sparsity level is
generally around 50%. In contrast, the sparsification of task vectors under BS can involve much
higher sparsity levels, as can be seen in Table 11 (Appendix A.13), with configurations such as
64:256 at 75% sparsity.

- Effectiveness: Typically, n:m pruning yields lower performance compared to magnitude pruning
in compression tasks, as the more strict uniform distribution of sparsity across blocks (e.g., every
4 weights) tends to hurt performance. However, in model merging, n:m sparsity can outperform
row-wise or layer-wise magnitude pruning due to its more balanced distribution.

A.5 FLEXIBILITY, INTEGRATION, AND EFFICIENCY

Flexibility and Integration of CABS. The CABS framework offers flexibility in its integration with
existing model merging techniques. CA and BS can be applied independently or in combination
with other approaches. For instance, CA can be combined with other sparsification strategies (e.g.,
DARE, magnitude) to minimize parameter overlap, while BS can implement n:m sparsity using
different importance metrics beyond magnitude. Additionally, at lower sparsity levels, CABS can
be effectively combined with techniques like Ties-merging to solve sign conflict, making it adaptable
to various merging scenarios.

Efficiency and Complexity. Model merging, as implemented in toolkits like MergeKit (Goddard
et al., 2024), inherently has low computational overhead since it bypasses full model retraining. In
CABS, we introduce minimal additional cost to the merging process. The Conflict-Aware (CA)
strategy modifies the pruning process from parallel to sequential, with the addition of a mask inver-
sion and element-wise product to avoid overlap between task vectors. These operations introduce
negligible computational overhead, especially given that most modern sparsification frameworks,
including MergeKit, already adopt a sequential approach.

For Balanced Sparsification (BS), while extreme n:m pruning ratios (e.g., 32:128) may not benefit
from hardware-level acceleration available for smaller ratios like 2:4, BS remains efficient in terms
of time complexity. Here, N represents the total number of parameters in a given layer of the model.
Instead of performing a full sorting operation across the entire layer as in layer-wise magnitude
pruning (which has a time complexity of O(N logN)), BS operates by selecting n weights within
smaller fixed windows of size m. This process involves sorting each window of size m, resulting
in a time complexity of O(N logm), which is more efficient than the global sorting required for
layer-wise pruning.

In conclusion, while CABS introduces additional steps to improve weight distribution and miti-
gate overlap, these steps have minimal impact on the overall computational cost, ensuring that the
merging process remains efficient.

A.6 DETAILS OF DATASETS AND MODELS FOR DECODER-BASED LMS

Tasks The LLM Leaderboard benchmark consists of six primary tasks designed to evaluate the
capabilities of large-scale generative language models across various domains:

• AI2 Reasoning Challenge: A set of grade-school science questions aimed at testing rea-
soning capabilities.

• HellaSwag: A commonsense inference test that is challenging for SOTA models but easy
for humans (95% accuracy).

• MMLU: A multitask accuracy test covering 57 tasks, including elementary mathematics,
US history, computer science, law, and more.

• TruthfulQA: A test measuring a model’s propensity to reproduce falsehoods commonly
found online.

• Winogrande: An adversarial and difficult Winograd schema-based benchmark for com-
monsense reasoning.

• GSM8K: A set of grade school math word problems designed to measure a model’s ability
to solve multi-step mathematical reasoning problems.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Models The decoder-based models used in our evaluations were built upon the Mistral-7b-v0.11

backbone and included several fine-tuned variants: WildMarcoroni-Variant1-7B2,WestSeverus-7B-
DPO-v23

These models were chosen for their ability to perform well across the diverse set of tasks included
in the LLM Leaderboard benchmark and their use in prior research.

A.7 DETAILS OF DATASETS AND MODELS FOR ENCODER-BASED LMS

Tasks The GLUE benchmark includes a variety of tasks designed to evaluate different aspects of
natural language understanding. For our experiments, we selected the following four tasks:

• CoLA (Corpus of Linguistic Acceptability), which evaluates the grammatical acceptabil-
ity of sentences with performance measured using the Matthews Correlation Coefficient
(MCC);

• SST-2 (Stanford Sentiment Treebank), a binary sentiment classification task assessing
whether a sentence expresses a positive or negative sentiment, evaluated using accuracy;

• MRPC (Microsoft Research Paraphrase Corpus), a paraphrase identification task where
models predict whether two sentences have the same meaning, evaluated using both accu-
racy and F1 score;

• RTE (Recognizing Textual Entailment), a natural language inference task where models
determine whether a hypothesis is true based on a given premise, evaluated using accuracy.

Models For each task, we utilized pre-trained and fine-tuned versions of RoBERTa, ob-
tained from Hugging Face. Specifically, we used FacebookAI/roberta-base4 as base model.
textattack/roberta-base-CoLA 5, textattack/roberta-base-SST-26, textattack/roberta-base-MRPC7,
and textattack/roberta-base-RTE8.

A.8 EVALUATION METRICS

For GLUE tasks, accuracy was chosen as the uniform metric to facilitate fair comparison across
tasks. While MCC is recommended for CoLA, we used accuracy to maintain consistency with
other tasks. MCC typically reaches around 0.64 after fine-tuning for CoLA, whereas accuracy for
other tasks often exceeds 0.9. This discrepancy makes it difficult to include MCC in an overall
performance average.

For LLM Leaderboard tasks, the following metrics were used:

• ARC: Success rate (25-shot)

• HellaSwag: Accuracy (10-shot)

• MMLU and Winogrande: Accuracy (5-shot)

• TruthfulQA: Factual accuracy (0-shot)

• GSM8K: Success rate (5-shot)

These metrics provide a consistent and comparable basis for evaluating model performance across
various benchmarks.

1https://huggingface.co/mistral-7b-v0.1
2https://huggingface.co/WildMarcoroni-Variant1-7B
3https://huggingface.co/WestSeverus-7B-DPO-v2
4https://huggingface.co/FacebookAI/roberta-base
5https://huggingface.co/textattack/roberta-base-CoLA
6https://huggingface.co/textattack/roberta-base-SST-2
7https://huggingface.co/textattack/roberta-base-MRPC
8https://huggingface.co/textattack/roberta-base-RTE

18

https://huggingface.co/mistral-7b-v0.1
https://huggingface.co/WildMarcoroni-Variant1-7B
https://huggingface.co/WestSeverus-7B-DPO-v2
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/textattack/roberta-base-CoLA
https://huggingface.co/textattack/roberta-base-SST-2
https://huggingface.co/textattack/roberta-base-MRPC
https://huggingface.co/textattack/roberta-base-RTE

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.9 IMPACT OF LAMBDA SEARCH GRID ON PERFORMANCE

In this section, we analyze the impact of different lambda search grids on the performance of var-
ious model merging methods. Our experiments demonstrate the importance of using fine-grained
grid intervals to fairly compare the effectiveness of these methods. Table 6 provides results across
different grid intervals (0.01, 0.05, and 0.1) for several methods.

For most methods, performance declines as the grid interval increases, underscoring the importance
of finer grids to accurately capture optimal lambda values. Coarser grids often miss these values,
leading to noticeable drops in performance.

Interestingly, the DARE method maintains stable performance even with coarser grids (0.05 and
0.1). This is because the optimal lambda for DARE happens to coincide with a multiple of 0.1,
resulting in no significant performance loss with coarser grids. However, when we exclude such co-
incidental “sweet spot” lambdas, as shown in Table 7, DARE also exhibits a significant performance
drop. This observation reinforces the idea that fine grid intervals are crucial for a fair and thorough
evaluation of all methods. A finer grid ensures that all methods have an equal opportunity to find the
best-performing lambda, though this must be balanced with computational cost

On the other hand, the CABS method demonstrates robust performance across all grid intervals.
It consistently outperforms other methods, and its relative insensitivity to grid coarseness suggests
that CABS is more robust and reliable under varying hyperparameter settings. This robustness,
combined with its superior performance, makes CABS a strong choice for model merging.

Table 6: Performance comparison across different lambda grid intervals.“TA” means “Task Arith-
metic”

Grid Task DARE TA- TIES- TIES- CABS
Interval Arithmetic Magnitude DARE Merging

0.01 80.15 80.58(+0.43) 80.38(+0.23) 80.65(+0.40) 80.20(+0.05) 81.49(+0.91)
0.05 79.85 80.58(+0.73) 79.90(+0.05) 79.91(+0.06) 79.84(-0.01) 81.19(+1.34)
0.10 79.43 80.58(+1.15) 79.66(+0.23) 79.14(-0.29) 79.83(+0.40) 80.82(+1.39)

Table 7: Performance comparison across different lambda grid intervals excluding one pair sweet
spot lambdas in DARE.

Grid Task DARE TA- TIES- TIES- CABS
Interval Arithmetic Magnitude DARE Merging

0.01 80.15 80.58(+0.43) 80.38(+0.23) 80.65(+0.40) 80.20(+0.05) 81.49(+0.91)
0.05 79.85 79.44(-0.41) 79.90(+0.05) 79.91(+0.06) 79.84(-0.01) 81.19(+1.34)
0.10 79.43 78.55(-0.88) 79.66(+0.23) 79.14(-0.29) 79.83(+0.40) 80.82(+1.39)

A.10 GRID SEARCH DETAILS FOR SMALL-SCALE EXPERIMENTS

In our small-scale experiments, we employed a two-step grid search strategy to determine the opti-
mal rescale factor λ that maximizes average performance across multiple tasks.

Grid Search Strategy As the sparsity level increases, the range of potential optimal λ values broad-
ens, and performance typically follows a pattern of increasing and then decreasing with respect to λ.
To address this, we first performed a manual search with a 0.1 interval, identifying the broader re-
gion where the optimal λ is likely to reside. Based on the results of this initial search, we conducted
a more fine-grained search using a 0.01 interval, focusing on the region identified in the first step.

Unlike a fixed-range search, this adaptive approach allowed us to zero in on the most effective rescale
factors for each sparsity level, ensuring more precise performance optimization. The performance
values presented in the main text correspond to the optimal λ found through this two-step process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.11 ADDITIONAL EXPERIMENTS ON OTHER TASK PAIRS FOR SMALL-SCALE
EXPERIMENTS

In this section, we present additional results for the CoLA-SST2 task pair to complement the main
text’s findings on RTE and MRPC. These tasks were selected to further validate the robustness and
effectiveness of the proposed CABS method across different types of natural language processing
tasks, particularly focusing on tasks involving linguistic acceptability and sentiment analysis.

Table 8 provides a detailed comparison of various model merging methods on the CoLA and SST2
tasks. The CABS method demonstrates superior performance, achieving the highest average scores
across both tasks. The normalized accuracy scores (COLA-N and SST2-N) further emphasize the
effectiveness of the CABS method, showing consistent improvements over the baseline methods.

The modest gains observed in the CoLA-SST2 experiments, similar to those in the RTE-MRPC pair,
can be attributed to the fine-grained lambda grid search. This search process, which fine-tunes the
sparsification parameters, improves the overall performance across all methods, thereby reducing
the performance gaps. However, CABS still outperforms other methods, indicating its robustness in
handling task-specific nuances during model merging.

Table 8: Performance comparison on COLA-SST2 task pair using different methods.(sparsity=0.9)

METHOD COLA SST2 AVG COLA-N SST2-N AVG-N
Fine-tuned model on COLA 85.04 50.92 67.98 100.00 54.15 77.08
Fine-tuned model on SST2 68.74 94.04 81.39 80.83 100.00 90.32
Task Arithmetic 81.59 92.89 87.24 95.94 98.78 97.36

Task Arithmetic + Magnitude 81.69 93.46 87.58(+0.34) 96.06 99.38 97.72(+0.36)
Task Arithmetic + DARE 81.78 93.46 87.62(+0.38) 96.17 99.38 97.78(+0.42)
TIES-Merging 81.21 93.58 87.40(+0.16) 95.5 99.51 97.51(+0.19)
TIES-Merging + DARE 81.78 93.69 87.74(+0.50) 96.17 99.63 97.90(+0.54)
CABS (Ours) 82.55 93.35 87.95(+0.71) 97.07 99.27 98.17(+0.81)

The results from these additional experiments support the conclusions drawn in the main paper,
highlighting CABS as a robust and effective model merging technique across various tasks and
evaluation metrics.

A.12 PERFORMANCE IMPACT OF SPARSIFICATION SEQUENCE

We analyze how different sparse sequences, referring to the order in which source models (e.g.,
“wild” and “west”) undergo sparsification during the merging process, affect the merged model’s
performance. In this context, “wild-first” and “west-first” indicate which model is sparsified first.
Our findings, summarized in Table 9, suggest that while the order of sparsification has some impact,
the effect remains relatively small.

In our additional experiments merging four models (shown in Table 10), we further analyzed the
effect of different pruning orders (e.g., CSRM, SCMR, RCMS, MRSC). While individual task per-
formance showed slight variations, the overall average remained robust, ranging narrowly from
81.6375 to 81.7. This demonstrates that CABS effectively handles pruning sequence variations
while maintaining high average performance.

Issues caused by pruning order could potentially be addressed by techniques such as using adap-
tive lambda to give greater importance to later models or adopting variable sparsity ratios to better
balance model contributions. However, given the minor impact of pruning order on overall perfor-
mance, we currently consider this less critical for our method’s practical application.

A.13 EFFECT OF DIFFERENT N:M RATIOS AT FIXED SPARSITY LEVELS

This section examines how different n:m ratios impact the performance of the merged model while
keeping the overall sparsity fixed at 75%. The results in Table 11 indicate that while higher n:m

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Performance comparison across different sparse sequences on LLM Leaderboard taskss-
parsity=75%

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
CABS(16:64)-wild-first 72.30 88.87 63.47 74.27 84.77 74.12 76.3(+0.0)
CABS(16:64)-west-first 72.44 89.08 63.11 73.38 84.79 75.11 76.32(+0.02)
CABS(32:128)-wild-first 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)
CABS(32:128)-west-first 72.58 89.19 63.19 74.22 85.16 74.15 76.42(+0.12)
CABS(64:256)-wild-first 72.87 89.02 63.43 74.61 84.37 73.92 76.37(+0.07)
CABS(64:256)-west-first 72.38 89.29 63.15 73.47 85.40 74.65 76.39(+0.09)

Table 10: Performance comparison under different sparsification sequences (sparsity=0.9).

METHOD COLA SST2 RTE MRPC AVG
Task Arithmetic 76.32 90.83 69.68 81.37 79.55
CABS (CSRM) 78.24 92.32 74.37 81.62 81.6375 (+2.09)
CABS (SCMR) 78.52 91.97 73.65 82.60 81.685 (+2.14)
CABS (RCMS) 77.76 92.09 75.09 81.62 81.64 (+2.09)
CABS (MRSC) 76.89 92.09 74.73 83.09 81.7 (+2.15)

ratios (e.g., 64:256) tend to show slight improvements, the overall impact of varying n:m ratios
remains relatively subtle, suggesting that model performance is not highly sensitive to these values.

Table 11: Impact of different n:m ratios at 75% sparsity on LLM Leaderboard tasks

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
CABS(16:64) 72.44 89.08 63.11 73.38 84.79 75.11 76.32(+0.02)
CABS(32:128) 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)
CABS(64:256) 72.38 89.29 63.15 73.47 85.40 74.65 76.39(+0.09)

A.14 RESCALE EXPERIMENTS

In previous research, TIES utilized magnitude pruning to reduce conflicts during task vector merg-
ing but did not include a rescale step. Subsequent work on DARE introduced a two-step process:
random pruning followed by rescaling with a factor of 1

1−p , where p is the sparsity rate. DARE
demonstrated that random pruning, when combined with rescaling, could restore performance to
levels comparable to the original fine-tuned models. However, DARE did not explore the effect of
rescaling on magnitude-pruned task vectors.

In our experiments, we evaluated the impact of rescaling on both magnitude-based and random
pruning methods across different sparsity levels. As shown in Figure 9, rescaling allows magnitude-
pruned task vectors to recover performance similar to that achieved by DARE, suggesting that rescal-
ing is a crucial step for maintaining model performance post-pruning.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.50 0.75 0.90 0.99
Sparse Ratio

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pe
rfo

rm
an

ce
 o

n
m

rp
c

mp
drop
n:m
dare
mpre
n:mre
Base Performance 0.91176

0.50 0.75 0.90 0.99
Sparse Ratio

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pe
rfo

rm
an

ce
 o

n
rte dare

mpre
n:mre
mp
drop
n:m
Base Performance 0.79422

Figure 9: Impact of rescaling on different pruning methods across various sparsity levels. Perfor-
mance is evaluated on RTE and MRPC tasks using RoBERTa. The horizontal axis represents the
sparsity ratio, while the vertical axis indicates the performance of the task vectors after rescaling.

These findings confirm that, with appropriate rescaling, both magnitude-based and random pruning
methods can achieve near-original performance. This insight complements the primary contributions
of our work by showing that magnitude pruning, which traditionally underperformed compared to
random pruning in TIES, can be equally effective when combined with rescaling. Although this
experiment supports the robustness of magnitude pruning under rescale conditions, it is not the main
focus of our study and is therefore detailed here in the appendix.

A.15 LIMITATIONS AND FUTURE WORK

General Limitations. Like other task vector-based methods, our approach is limited to models with
identical architectures due to the element-wise operations used in merging model weights. This con-
straint restricts the generalization of the framework to models with homogeneous structures. Addi-
tionally, the reliance on manual tuning of the parameter λ remains a common challenge, especially
for large language models, requiring trial and error to optimize model performance.

Limitations Specific to CABS. CABS introduces two new hyperparameters—the sparse sequence
and the n:m ratios—unique to its design, as discussed in Appendix A.12 and A.13. While these hy-
perparameters were not particularly sensitive in our experiments, they add complexity and increase
computational cost. Furthermore, while CA and BS improve performance across various tasks, their
effectiveness is reduced in scenarios where task vectors have minimal overlap or where models
exhibit significant weight imbalances prior to sparsification. Additional experiments, especially at
extreme sparsity levels or with heavily imbalanced models, are necessary to better understand these
limitations.

Future Work. Several directions could help overcome these limitations. Expanding model merging
techniques to include heterogeneous architectures or models trained from scratch represents a key
area for future research. Additionally, improving the performance of merged models in multi-task
settings—where current approaches do not yet match the performance of original single-task mod-
els—remains a priority. Automating the search for optimal hyperparameters, particularly λ, would
reduce complexity and improve usability, especially in large-scale applications.

A.16 IMPACT OF LAMBDA ON PERFORMANCE

Figure 10 provides the average performance as a function of λ. It can be observed that within a
certain range, the performance is relatively insensitive to variations in λ. This result corresponds to
the performance of the CABS framework on the RTE-MRPC task. For visualization purposes, the
same λ values were used across the tasks rather than the task-specific λ values reported in the paper.
The λ values range from 1 to 3, with a step size of 0.01, resulting in a total of 200 samples.

A.17 DETAILED DESCRIPTIONS OF ADDITIONAL MODEL MERGING APPROACHES

Evolutionary Model Merge (Akiba et al., 2024): This approach inspired by evolutionary algorithms
that aims to improve large language models (LLMs) by simulating natural selection. It treats model

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
 values

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

pe
rfo

rm
an

ce

Average performance

Figure 10: Average performance vs.lambda

merging as weight crossover and fine-tuning as weight mutation, iteratively refining models to cre-
ate a single superior LLM. While EvoMerge has the potential to surpass traditional fine-tuning, it
requires significant computational resources and incurs high merging overhead, limiting its practi-
cality in resource-constrained settings.

Pack of LLMs (Mavromatis et al., 2024): Inspired by ensemble learning, this method combines
multiple large language models into a unified framework, It assigns weights to LLMs based on per-
plexity scores, with two main approaches: a simple perplexity-weighted ensemble (PackLLMsim)
and a more advanced greedy optimization method (PackLLMopt). While PackLLM is flexible and
avoids additional training, it requires parallel storage and inference of multiple models, which can
be resource-intensive and less suitable for latency-sensitive applications.

A.18 EXTENDED EXPERIMENTS: MERGING MULTIPLE TASK VECTORS

To evaluate the method’s ability to merge multiple task vectors (¿3), we conducted additional exper-
iments merging four models at 90% sparsity. The same λ value was used for each task vector, with
a search interval of 0.01. This unified λ approach simplifies the process and mitigates the computa-
tional burden of searching for optimal λ combinations, which grows exponentially as the number of
models k increases.

As shown in Table 12, our method, CABS, achieves the highest average score of 81.7, with a +2.15
improvement compared to the baseline task-arithmetic method. It also outperforms other methods,
such as TIES-DARE, which achieves 79.8825 (+0.33), the best result among comparison methods.

The results highlight the scalability and effectiveness of CABS in merging multiple task vectors.
CABS resolves conflicts and maintains balanced sparsity, achieving superior performance even un-
der a unified λ setting, which simplifies the merging process without compromising results.

A.19 BALANCED SPARSITY (BS): UNIQUE ADVANTAGES IN MODEL MERGING

Balanced Sparsity (BS) distinguishes itself from other advanced pruning techniques through its pri-
mary objective: maintaining a balanced distribution of task vectors to minimize conflicts during
model merging. In contrast, traditional pruning methods, such as SparseGPT (Frantar & Alistarh,
2023) and WANDA (Sun et al., 2023), focus on identifying and removing ”unimportant” weights to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 12: Performance comparison of merging four task vectors at 90% sparsity.

METHOD COLA SST2 RTE MRPC AVG
Fine-tuned on COLA 85.04 50.92 45.85 67.40 62.30
Fine-tuned on SST2 68.74 94.04 46.93 68.38 69.52
Fine-tuned on RTE 31.83 51.15 79.42 25.98 47.10
Fine-tuned on MRPC 49.47 51.15 47.29 91.18 59.77
Task Arithmetic 76.32 90.83 69.68 81.37 79.55

DARE 76.99 90.14 70.76 81.13 79.76(+0.21)
TIES-DARE 77.66 90.94 69.31 81.62 79.88(+0.33)
Magnitude 82.07 87.04 65.34 79.66 78.53(-1.02)
TIES-Magnitude 82.36 86.93 61.01 79.41 77.43(-2.12)
CABS (Ours) 76.89 92.09 74.73 83.09 81.70(+2.15)

reduce redundancy. Ironically, these methods, while effective in preserving task-specific knowledge,
often exacerbate conflicts during model merging by amplifying task vector interference.

Our experiments confirm that BS outperforms traditional pruning techniques in model merging
tasks, as shown in Table 13. For instance, while SparseGPT and WANDA yield comparable per-
formance to magnitude pruning, they fail to address the critical need for balanced task vector alloca-
tion. BS achieves an average score of 81.30 (+1.15 over Task Arithmetic with magnitude pruning),
significantly outperforming SparseGPT (80.34) and WANDA (80.40). Furthermore, our method,
CABS, which builds on BS, further improves the average performance to 81.49 (+1.34).

The fundamental difference lies in the purpose of task vector sparsification. Traditional pruning
methods aim to optimize task-specific knowledge retention and often perform better under relaxed
sparsity constraints (e.g., layer-wise 50% sparsity). However, in model merging, stricter sparsity
requirements are beneficial, as demonstrated in Table 4. For example, layer-wise sparsification
performs worse than row-wise sparsification, which is further outperformed by BS. This underscores
the unique advantage of BS in prioritizing balance over redundancy reduction, a critical factor for
merging performance.

Additionally, as discussed in Appendix A.14, task vector knowledge is inherently distributed across
substructures, making it less sensitive to weight removal. Even random sparsification achieves near-
full recovery of fine-tuning performance on target datasets, while random pruning fails entirely in
traditional one-shot pruning scenarios. This highlights the robustness of task vector sparsification in
preserving knowledge for merging tasks.

In conclusion, BS provides a unique solution to the challenges of task vector sparsification by main-
taining balance and minimizing conflicts during merging. While traditional pruning techniques excel
in redundancy reduction for single-task scenarios, they are less suited for the complexities of multi-
task model merging. BS, tailored specifically for this purpose, delivers superior results and is critical
to the success of our proposed method.

Table 13: Performance comparison of different pruning methods in model merging tasks.

Method RTE MRPC Avg
Task Arithmetic (Dense) 73.29 87.01 80.15
TA + Magnitude 74.73 86.03 80.38 (+0.23)
TA + SparseGPT 72.92 87.75 80.34 (+0.19)
TA + WANDA 73.29 87.50 80.40 (+0.25)
TA + BS (Ours) 74.37 88.23 81.30 (+1.15)
CABS (Ours) 74.01 88.97 81.49 (+1.34)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.20 ADDITIONAL EXPERIMENTS ON GPT-2-BASED MODELS

Following your suggestion, we have extended our experiments to include other architectures, specifi-
cally GPT-2-based models (Radford et al., 2019). The results, summarized in Table 14, highlight the
performance of CABS and other methods on tasks derived from FusionBench (Tang et al., 2024).

Table 14: Performance comparison on GPT-2-based models.

Method CoLA MRPC AVG
Fine-tuned on CoLA 76.80 68.40 72.60
Fine-tuned on MRPC 30.80 80.39 55.60
Ideal Model 76.80 80.39 78.60
Task Arithmetic (Dense) 75.55 77.45 76.50 (-2.10)
TA + DARE 76.70 77.21 76.95 (-1.65)
TA + Magnitude 76.61 79.66 78.13 (-0.47)
TIES + DARE 77.09 76.72 76.91 (-1.69)
TIES + Magnitude 76.89 77.94 77.42 (-1.18)
CABS (Ours) 76.41 80.88 78.65 (+0.05)

The results demonstrate that CABS outperforms all other methods and is the only method to surpass
the Ideal Model. Although the improvement margin is relatively smaller due to the upper-bound
constraint imposed by the Ideal Model, CABS consistently proves its effectiveness across tasks.

Interestingly, magnitude pruning shows unexpectedly strong results on GPT-2-based models, sur-
passing DARE by a significant margin. This contrasts with previous experiments on other architec-
tures, suggesting a potential architecture-specific behavior in existing pruning methods. Neverthe-
less, CABS maintains its advantages across different architectures, showcasing its robustness and
adaptability.

These findings underscore the versatility of CABS and its potential for diverse architectures.

A.21 MULTILINGUAL APPLICABILITY OF CABS

While our primary experiments focused on English tasks to maintain comparability with prior
work, we extended our evaluation to include two Korean language tasks, kobest copa and
kobest boolq (Jang et al., 2022), to investigate the multilingual applicability of our method. These
additional experiments provide insight into the performance of CABS across diverse linguistic con-
texts. The results are summarized in Table 15.

Table 15: Performance comparison on multilingual tasks, including Korean language benchmarks.

Model ARC Hella. MMLU TQA Wino. GSM8K Kcopa Kboolq Avg
Mistral-7B-v0.1 59.98 83.31 64.16 42.15 78.37 37.83 59.00 62.61 60.93
WestSeverus 71.30 88.26 63.92 72.72 83.69 74.27 63.30 81.91 74.92
WildMarcoroni 73.63 88.67 63.96 70.07 84.34 74.48 64.80 82.08 75.25
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 64.80 82.08 75.59

TA (Dense) 72.52 89.25 63.39 74.00 83.46 73.38 65.60 72.58 74.27 (-1.32)
TA + Magnitude 71.93 89.32 63.18 73.85 84.12 72.22 64.70 72.86 74.02 (-1.57)
TA + DARE 72.64 88.86 64.53 72.82 84.03 73.44 61.40 79.34 74.63 (-0.96)
TIES-Merging 71.42 89.17 63.16 73.82 84.74 73.01 64.80 73.08 74.15 (-1.44)
TIES + DARE 71.87 88.95 63.56 72.87 84.61 73.21 61.40 79.63 74.51 (-1.08)
CABS (Ours) 72.92 88.89 63.50 74.41 84.63 74.65 65.10 79.20 75.41 (-0.18)

For these experiments, we reused the merging configuration from our previous 7B experiments
to ensure consistency across evaluations and to reduce computational overhead during this phase.
CABS achieves an average score of 75.41, closely matching the ideal model’s performance of 75.59

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a difference of -0.18). In comparison, the best alternative, Task Arithmetic + DARE, achieves 74.63
(-0.96), with other methods falling even further behind. These results confirm that CABS delivers
competitive performance across both English and non-English tasks.

Additionally, these findings underscore the robustness of CABS in maintaining performance across
multilingual benchmarks, highlighting its potential applicability to a wide range of languages and
tasks. While the absolute improvement margins may vary due to upper-bound constraints imposed
by the ideal model, CABS consistently demonstrates its effectiveness and adaptability across diverse
settings.

A.22 PERFORMANCE AT 90% SPARSITY

To address concerns regarding performance under extreme sparsity levels, we conducted additional
experiments at 90% sparsity for smaller models. As shown in Table 16, all methods experienced
performance degradation due to the removal of a large number of parameters. Among the meth-
ods, TA-dare showed the most significant decline, likely due to the excessive pruning of critical
parameters, leading to a drop of -3.08 in average score.

In contrast, our CABS approach demonstrated superior robustness, achieving the best performance
across all methods with an average score of 76.10. Notably, CABS outperformed Task Arith-
metic(Dense) (76.00), further validating its generalization capabilities. These findings highlight
CABS’s ability to maintain competitive performance even under extreme sparsity conditions.

Based on these results, sparsity levels beyond 90% would likely lead to further performance degra-
dation across all methods, as extreme pruning would render the models incapable of maintaining
sufficient capacity. Thus, we limited our exploration to 90% sparsity in this study.

Table 16: Performance comparison at 90% sparsity across different methods.

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
Mistral-7B-v0.1 59.98 83.31 64.16 42.15 78.37 37.83 60.97
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic (Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.00
TA-dare 70.73 87.18 60.15 70.69 82.64 67.93 73.22 (-3.08)
TA-magnitude 71.47 89.01 62.74 73.49 83.48 72.43 75.44 (-0.86)
Ties-dare 70.31 87.12 60.38 70.40 83.66 67.93 73.30 (-3.00)
Ties-magnitude 71.57 88.93 62.71 73.49 84.08 73.26 75.67 (-0.63)
CABS (Ours) 71.87 89.01 62.95 74.04 84.65 74.06 76.10 (-0.20)

26

	Introduction
	Related Work
	Issues in Task Vector Sparsification for Model Merging
	Methodology
	Overview of CABS Framework
	Conflict-Aware Sparsification (CA)
	Balanced Sparsification (BS)

	Experiments
	Experimental Setup
	Performance of CABS on Encoder-based LMs
	Performance of CABS on Decoder-based LMs
	Ablation Studies And Discussion

	Conclusion
	Appendix
	Overlap Rate Calculation
	Weight Distribution Analysis Across Layers and Sparsity Ratios
	Algorithm of Low-Overlap Sparsity
	Comparison of n:m pruning and BS
	Flexibility, Integration, and Efficiency
	Details of Datasets and Models for Decoder-based LMs
	Details of Datasets and Models for Encoder-based LMs
	Evaluation Metrics
	Impact of Lambda Search Grid on Performance
	Grid Search Details for Small-Scale Experiments
	Additional Experiments on other Task Pairs for Small-Scale Experiments
	Performance Impact of Sparsification Sequence
	Effect of Different n:m Ratios at Fixed Sparsity Levels
	Rescale Experiments
	Limitations and Future Work
	Impact of Lambda on Performance
	Detailed Descriptions of Additional Model Merging Approaches
	Extended Experiments: Merging Multiple Task Vectors
	Balanced Sparsity (BS): Unique Advantages in Model Merging
	Additional Experiments on GPT-2-Based Models
	Multilingual Applicability of CABS
	Performance at 90% Sparsity

