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ABSTRACT

High-quality sentence embeddings are fundamental in many natural language
processing (NLP) tasks, such as semantic textual similarity (STS) and retrieval-
augmented generation (RAG). However, most existing methods leverage fixed-
length sentence embeddings from full-layer language models, which lack the
scalability to accommodate the diverse available resources across various applica-
tions. Viewing this gap, we propose a novel sentence embedding model Espresso
Sentence Embeddings (ESE) with two learning processes. First, the learn-to-
express process encodes more salient representations to shallow layers. Second,
the learn-to-compress process compacts essential features into the initial dimen-
sions using Principal Component Analysis (PCA). This way, ESE can scale model
depth via the former process and embedding size via the latter. Extensive exper-
iments on STS and RAG suggest that ESE can effectively produce high-quality
sentence embeddings with less model depth and embedding size, enhancing em-
bedding inference efficiency. 1

1 INTRODUCTION

Sentence embedding learning (Cer et al., 2018; Reimers & Gurevych, 2019; Gao et al., 2021; Li &
Li, 2024a;b) is a crucial yet challenging task in the NLP research. It aims to capture essential seman-
tic and syntactic information in language, benefiting various scenarios such as clustering (Reimers
& Gurevych, 2019), semantic textual similarity (STS) (Li & Li, 2024a; Zhang et al., 2024), and
retrieval-augmented generation (RAG) (Gao et al., 2023).

In the common deployment practices, the pipeline of applying sentence embeddings unfolds in two
typical stages: (i) computing the sentence embeddings via a forward pass and (ii) employing these
embeddings in downstream tasks. Existing work (Reimers & Gurevych, 2019; Gao et al., 2021; Li
& Li, 2024a, etc.) typically adopts entire Transformer (Vaswani et al., 2017) layers and full em-
bedding sizes for all tasks to ensure optimal performance, regardless of the varying resources and
requirements across applications. It can result in computational redundancy and fails to scale well to
the diverse resources available in downstream scenarios (Kusupati et al., 2022). To address this chal-
lenge, Matryoshka Representation Learning (MRL) concurrently trains multiple embeddings with
cascading dimensions to enable scalable embedding sizes while preserving maximum semantics
(Kusupati et al., 2022). However, MRL employs full Transformer layers for embedding inference,
in which high computational costs persist when using Large Language Models (LLMs) with very
deep architectures (Wang et al., 2023; Li & Li, 2024a;b; Lee et al., 2024).

We propose a novel Espresso Sentence Embeddings (ESE) to further improve inference efficiency
by enabling scalability on model depth. ESE consists of two key processes. First, the learn-to-
express process allocates more crucial latent representations to shallow layers by weighting embed-
dings at different levels. Second, the learn-to-compress process condenses essential features into
initial dimensions by exploring the inner dependencies of embedding dimensions through Principal
Component Analysis (PCA). Figure 1 illustrates ESE’s overview and its differences from the MRL
(Kusupati et al., 2022) and traditional embeddings (Reimers & Gurevych, 2019; Gao et al., 2021;
Li & Li, 2024a). As depicted, ESE is designed to encode more salient features into shallow layers
and small embedding dimensions simultaneously. Thus, it enables scalable sentence embeddings
that adapt to various settings of model depth and embedding size, allowing for more flexible accom-
modation of diverse computing resources. In contrast, MRL focuses solely on scaling embedding

1The code is available at https://anonymous.4open.science/r/Espresso.
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Figure 1: The comparison of traditional (left), MRL (middle), and ESE (right) sentence embedding
models. The gray blocks indicate Transformer layers fine-tuned in the full setting, while the coffee-
colored ones indicate scalable settings. ESE can scale both model depth and embedding size.

size, while traditional models lack scalability. Additionally, the PCA implementation of ESE at
various layers of embedding learning can help organize the learned features in order according to
their significance; it allows easier training than MRL by jointly training multiple varying-dimension
embeddings to scale embedding sizes.

To the best of our knowledge, we are the first to learn sentence embedding with information com-
pression, presenting scalable embedding inference to both model depths and embedding dimensions.

We extensively experiment across STS and RAG tasks to evaluate ESE. First, the main results on
the STS benchmarks show that ESE performs competitively in full settings than non-trivial baselines
and shows significantly better results with shallow model depth or smaller embedding size. For in-
stance, ESE enhances BGE’s (Xiao et al., 2023) shallow-layer embeddings from 45.60 to 66.27,
showcasing the effectiveness of our method. Then, ablation studies indicate that all modules pos-
itively affect ESE, and its performance is sensitive to smaller PCA compression sizes. Moreover,
the RAG experiments show that ESE improves retrieval across varying embedding sizes and model
depths, underscoring the potential in various application scenarios. Finally, we further discuss ESE
and present the following findings: (i) The scaled embeddings from ESE work better than trained
embeddings with the same-sized model; (ii) ESE shows better inference efficiency on both STS and
RAG tasks; (iii) In visualization, ESE’s scaled embeddings exhibit greater overlap with the unscaled
ones, indicating its effectiveness in information compression and superiority in scaling embeddings.
In summary, our contributions are as follows:

• We are the first to employ the information compression technique to scale sentence embeddings.

• Our novel ESE model allows for scalable embeddings in both model depth and embedding size.

• Extensive experiments on STS and RAG show ESE’s superiority in producing effective embed-
dings with reduced model depth and embedding size, enhancing inference efficiency.

2 RELATED WORK

Our work is in line with the sentence embedding learning research. While early efforts primarily
focused on word embeddings (Mikolov et al., 2013), the recent trend has shifted towards sentence
embeddings as they can capture representations from richer contexts. In the training methods, many
studies adopted supervised approaches to align embeddings to human senses (Conneau et al., 2017;
Cer et al., 2018; Reimers & Gurevych, 2019; Li & Li, 2024a). And contrastive learning techniques
(Carlsson et al., 2020; Gao et al., 2021; Chuang et al., 2022; Xu et al., 2023; Liu, 2024) have
recently become popular to involve in-batch comparison of positive and negative pairs. As for
model architectures, with the LLMs breakthrough in NLP (OpenAI, 2022; Touvron et al., 2023),
LLM-based sentence embedding models have drawn a growing attention (Li & Li, 2024a; Wang
et al., 2023; Li & Li, 2024b; Muennighoff et al., 2024) for a more effective context exploration.

However, the common practices deploy embeddings with full model layers and predefined embed-
ding sizes. It inevitably constrains the scalability of sentence embedding use in downstream applica-
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Figure 2: The ESE framework. The left part is the vanilla Transformer backbone, where each
layer is not scalable. The center part is the ESE training with the learn-to-express (to scale model
depths) and learn-to-compress (to scale embedding sizes) processes. The right part is the trained
Espresso Transformer backbone, where each layer is scalable (marked with double-ended arrows).

tions, particularly in scenarios where resources are limited. To address this constraint, Matryoshka
Representation Learning (MRL) was introduced to allow scalable embedding sizes (Kusupati et al.,
2022). Yet, it still relies on full Transformer layers for embedding inference. In contrast, ESE has
dual scalability in both model depth and embedding size, largely enhancing the efficiency of embed-
ding inference. Moreover, MRL trains multiple embeddings in varying sizes, whereas ESE employs
PCA for embedding size compression. Here, the PCA in training can help organize the features in
order and allow more effective embedding learning. While some other methods (Zhu et al., 2018;
Gupta et al., 2019; Zhao et al., 2022) applied PCA-alike compression to pre- or post-process trained
embeddings, ESE is the first to integrate PCA into sentence embedding training.

3 ESPRESSO SENTENCE EMBEDDINGS

This section describes how ESE learns scalable sentence embeddings by elaborating the learn-to-
express and learn-to-compress processes. Figure 2 depicts its framework.

3.1 ENCODER

We start the discussion with how we process the input, where the pretrained language model are
used as an encoder to transform the text into dense sentence embeddings. Here, BERT (Devlin
et al., 2019) or LLMs (Touvron et al., 2023; Bai et al., 2023) serves as the backbone to encode text
x as follows:

Xk
i = Pooling(Encoder1:i(x)) ∈ Rk×1, (1)

where i ∈ [1, n] is first-i layers of the n-layer Transformer backbone, and k ∈ [1, d] denotes first-
k-dimensional sub-embeddings of the full d-dimensional embeddings. For BERT-based models,
we use the “CLS” pooling strategy following Li & Li (2024a). For LLM-based models, we follow
previous practices (Li et al., 2023; Li & Li, 2024b) to transform all layers into bidirectional and adopt
the mean pooling. Here, we select BERT and LLMs like Qwen and LLaMA as the encoder since
they are widely used Transformer-based models for sentence embeddings. It allows for evaluating
the effectiveness and generalization of the proposed ESE across various model scales.

3.2 LEARN TO EXPRESS

The encoded embeddings Xk
i will then go through a learn-to-express process to allow scalable

model depths. Our idea is to encode more essential representations into shallow layers. Concretely,
we cache each layer’s sentence embeddings obtained by Eq. 1 for i ∈ [1, n − 1] and then jointly
train their first-k-dimension sub-embeddings by a weighted loss. The loss is computed as follows:

3
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Lle =

n−1∑
i=1

wi ∗ loss(Xk
i ,G) + loss(Xk

n,G). (2)

Here wi denotes the weight for i-th layer. We provide two implementations for the weights wi. The
first implementation is to parameterize wi so that the weights can be adjusted dynamically during
the model training. The second implementation sets wi =

1
1+ln(i) . This way, the weights decrease

as the layer depth increases, allowing the shallow layers to capture more crucial information for
embedding scalability in model depths. Note that we leave the last layer unweighted due to its
critical role in capturing sentence-level semantics (Li & Li, 2024b). The second implementation is
applied by default as it does not introduce any additional parameters, making the implementation
more efficient as the efficiency is always an important factor for the proposed ESE. The loss(·) can
be any loss function for sentence embedding learning, e.g., contrastive loss (Gao et al., 2021) or
AnglE loss (Li & Li, 2024a). We use the latter one by default. G is the positive or negative sample
indicators for loss computation.

3.3 LEARN TO COMPRESS

The learn-to-express method (Section 3.2) focuses on scaling embeddings across layers for model
depths. Then, the learn-to-compress aims to enable scalable embedding sizes within each layer
while preserving maximum semantics. The goal is to allow ESE to condense more essential infor-
mation into sub-vectors of the initial embedding dimensions, as shown in the “Information Squeeze”
box in Figure 2. It shows information distributions, where the left-hand-side part contains higher
“information density” and a richer representation than the right-hand-side.

To achieve the above, we use Principal Component Analysis (PCA) to reduce embeddings’ dimen-
sionality from size d to k while preserving the crucial semantics, where d and k denote full and
compressed embedding sizes, respectively. We compress the inner dependencies within embedding
dimensions instead of directly compressing the sentence embeddings. This step aims to enable ESE
to capture nuanced cross-dimension interactions without oversimplifying the embedding structure.

Concretely, we first compute the embedding inner-dependency matrix by scaled dot product:

Ad
i = softmax(

Xd
i ·Xd

i
T

√
d

) ∈ Rd×d, (3)

where i denotes first-i Transformer layers. Xd
i ∈ Rd×1 are full sentence embeddings obtained from

Eq. 1. The design pertains to the self-attention of Transformer Vaswani et al. (2017) reflecting
the weights across varying dimensions. Then, we employ PCA, implemented with Singular Value
Decomposition (SVD), to compress its information. It thus results in Ad

i = UiΣiV
T
i , based on

which we obtain top-k principal components (i.e. dependencies) for each embedding, as follows:

Ak
i = U1:d,1:k

i Σ1:k,1:k
i ∈ Rd×k, (4)

where 1 ≤ k ≤ d. 1 : d, 1 : k means the selection of the first-d rows and first-k columns, and Ak
i

indicates the compressed inner-dependency matrix. The diagonal matrix Σi displays the singular
values σi,1, σi,2, . . . , σi,k on its diagonal, arranged in descending order according to their magnitude.

Subsequently, we apply the top-k inner-dependency matrix Ak
i (with compressed self-attention-alike

weights) to the original Xd
i . It results in compressed sentence embeddings as follows:

Xk
i

pca
= Ak

i

T ·Xd
i ∈ Rk×1. (5)

Although the above process works only in training, PCA may cause higher computational costs
in embedding inference. To tackle this issue, we align the truncated first k-dimensional sub-
embeddings to the PCA-compressed ones to reduce the cost. The alignment involves mean squared
error and Kullback-Leibler divergence losses (Kim et al., 2021). As an innovative approach, we em-
ploy a weighted strategy across layers, in alignment with the learn-to-express process, to coherently

4
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coordinate the compression of embedding sizes across scalable model depths, as follows:

Llc =

n−1∑
i=1

wi ∗ align(Xk
i ,X

k
i

pca
) + align(Xk

n,X
k
n

pca
),

align(x, y) = MSE(x, y) + KLDiv(x, y),

(6)

where MSE(·) and KLDiv(·) denote the mean squared error and Kullback-Leibler divergence, re-
spectively. wi means the weight for the i-th layer. It has the same setting as Eq. 2. By optimizing
Llc, the truncated first k-dimensional sub-embedding will be aligned to be similar to the PCA-
compressed ones. It allows the direct use of the first k-dimensional sub-embeddings at inference
without repeatedly performing PCA and improves inference efficiency.

3.4 JOINT LEARNING

Finally, we jointly train the learn-to-express and learn-to-compress processes within a unified frame-
work. Their respective objectives are seamlessly integrated into the overall learning objective of the
proposed ESE, as follows:

L = αLle + βLlc, (7)

where α and β are the weights trading off the two processes. We set both to 1 by default. By jointly
optimizing the two objectives, ESE trains its sentence embeddings to be scalable in both model
depths and embedding sizes.

4 EXPERIMENT

In the experiments, we first present the main intrinsic results of STS in Section 4.1. Then, we probe
into more details of ESE output via an ablation study in Section 4.2. Next, we present extrinsic
evaluation with RAG in Section 4.3. Finally, we further discuss ESE from varying perspectives in
Section 4.4 to provide more insight.

Table 1: STS benchmark results. The last column (≺ Avg.) is the average results of shallow layers
(except the last one), while the remaining correspond to the last-layer results. Avg.: average results
over varying benchmark datasets. RAW: the original model; MRL: Kusupati et al. (2022). The
coffee-colored cells: the best results for each backbone model; boldfaced numbers: the overall best
results. For ≺ Avg., ESE performs significantly better than baselines: p-value < 5% (paired t-test).

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. ≺ Avg.

bge-base-en-v1.5 (Xiao et al., 2023)
RAW 78.03 84.18 82.27 87.96 85.47 86.41 79.88 83.46 45.60
+ MRL 75.90 87.87 83.97 88.92 85.07 87.17 79.18 84.01 46.18
+ ESE 77.70 86.97 83.57 89.43 86.16 87.27 80.32 84.49 66.27

UAE-Large-V1 (Li & Li, 2024a)
RAW 79.09 89.62 85.02 89.51 86.61 89.06 82.10 85.86 44.80
+ MRL 78.26 90.19 84.91 89.48 86.17 88.49 79.28 85.25 44.97
+ ESE 79.64 90.40 85.76 90.33 86.64 88.54 81.09 86.06 59.12

Qwen1.5-0.5B (Bai et al., 2023)
RAW 75.91 83.77 80.04 86.05 82.91 85.32 78.98 81.85 56.59
+ MRL 76.30 85.04 80.68 86.15 83.12 85.65 79.45 82.34 58.22
+ ESE 76.43 85.70 81.75 86.30 83.67 85.76 80.16 82.82 59.99

4.1 STS EXPERIMENTS

Following common practices Gao et al. (2021); Li & Li (2024a), we adopt STS for intrinsic evalua-
tion to assess the quality of trained sentence embeddings. It measures how well embeddings capture
semantic similarity between sentences, indicating their capacity for effective text representation.

5
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Setup. In the comparison, we include two baselines: the scalable embeddings MRL (with scalable
embedding sizes) (Kusupati et al., 2022) and RAW embeddings (without any scaling operations).

For the datasets, we train sentence embeddings on MultiNLI (Williams et al., 2018) and SNLI (Bow-
man et al., 2015) datasets following previous studies. Evaluation of model performance is conducted
on the STS benchmark computed by SentEval (Conneau & Kiela, 2018), where Spearman’s corre-
lation in the “all” setting is reported as the evaluation metric. To enable comprehensive evaluation,
this benchmark comprises seven widely used STS datasets: STS 2012-2016 (Agirre et al., 2012;
2013; 2014; 2015; 2016), SICK-R (Marelli et al., 2014), and STS-B (Cer et al., 2017).

For model settings, we examine two popular BERT-based backbones, bge-base-en-v1.5 (Xiao et al.,
2023) and UAE-Large-V1 (Li & Li, 2024a) , and an LLM-based backbone, Qwen1.15 (Bai et al.,
2023). We use the recent popular AnglE (Li & Li, 2024a) loss as the sentence embedding training
loss. The initial learning rates are set to 5e − 5 and 2e − 4 to train BERT-based and LLM-based
models, respectively. For efficient LLM fine-tuning, we utilize LoRA (Hu et al., 2021; Dettmers
et al., 2024) with parameters lora r = 32, lora alpha = 32, and lora dropout = 0.1. For the
ESE setup, the compression dimension k is set to 128 by default, and the weights α and β for joint
learning (Eq. 7) are set to 1.

Main Results In the main STS experiments, we extract embeddings from the last 12 Transformer
layers for comprehensive analyses. Then, we follow common practices to report results from the
last layer of all benchmark datasets, including their average (Avg.). Moreover, we report the average
results from the shallow layers (excluding the last one) to assess the scalability of ESE across model
depths (≺ Avg.). The results are shown in Table 1, where we can draw the following observations.

Sp
ea

rm
an

's

Embedding Size

BGE Based Qwen Based

Figure 3: Results of the STS benchmark for each of the last 12 layers of BGE-based backbone (left
part) and Qwen-based backbone (right part). For each layer’s result, the x-axis shows the embedding
size, and the y-axis shows the average Spearman’s correlation over varying benchmark datasets.

First, ESE shows competitive and even better performance compared to RAW across every backbone
in the last layer results. It indicates that the scalability learning of ESE does not adversely impact
its last-layer performance. The marginal performance gain could be attributed to the use of PCA
in organizing features, which potentially facilitates more effective embedding learning even in an
unscaled setup. In contrast, MRL fails to outperform RAW in UAE’s last layer, possibly due to
chaos introduced by its multi-embedding learning strategy. Second, ESE significantly outperforms
baselines in the ≺ Avg. setup , with a 20.67 gain to BGE. It indicates ESE’s capability of effectively
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Figure 4: The average STS benchmark results of various embedding sizes for the half layer (first 16
layers) and last layer (full 32 layers) of LLaMA2 7B (Touvron et al., 2023) with the RAW, MRL,
and ESE training.

scaling embeddings across different layers. The improvement is less notable in LLM-based models
than in BERT-based models, possibly due to LoRA’s limitation on updating parameters in LLMs.

To further examine the scalability of ESE in model depths and embedding sizes, we show the STS
results over embedding sizes from every layer in Figure 3. While all the models achieve competitive
results using the full-sized embeddings from the last layer, RAW and MRL exhibit inferior perfor-
mance in the shallow layers. They even demonstrate performance fluctuations as the layers deepen.
In contrast, ESE can significantly improve the performance of the shallow layers. For example, the
BGE achieves a result over 60.00 at the 11th layer, while BGE-MRL requires ten layers to reach
that level. In contrast, BGE-ESE only requires two layers and consistently improves until the last
layer, reaching a score of 84.49. This shows the effectiveness of ESE’s learn-to-express process in
encoding the more important information into shallow layers.

Moreover, ESE consistently performs better over embedding sizes at each layer, indicating the ef-
fectiveness of its learn-to-compress process. The performance gain is more significant at shallow
layers, potentially because they contain richer information, resulting in more effective compres-
sion. Notably, ESE’s stable performance since the 128 dimension suggests that a 128-dimensional
embedding may capture the majority of salient features.

Furthermore, considering the Qwen1.5 0.5B is a relatively small LLM (Lu et al., 2024), we also
evaluate the effectiveness of ESE on larger LLMs by testing LLaMA2 7B (Touvron et al., 2023) on
the STS benchmark, as shown in Figure 4. Here, we report the results of two typical layers, i.e. the
half layer (layer=16) and the last layer (layer=32). It is evident that the proposed ESE consistently
outperforms baselines across different model depths and embedding sizes. Notably, ESE achieves
a significant improvement at shallow layers, demonstrating its superior scalability. We can also see
that there is a performance drop observed at the half layer for baselines and ESE. This could be
attributed to the LoRA’s limitation in sentence embedding learning. Nevertheless, ESE can mitigate
this limitation, as evidenced by its lower drop rate than baselines.

4.2 ABLATION STUDY

While Section 4.1 shows the overall effectiveness of ESE, we conduct ablation studies of ESE on the
STS benchmark to assess the effectiveness of each component. The results are presented in Table 2.

We first evaluate different compression strategies to scale embedding sizes: the default PCA on
embedding dependencies, PCA on sentence embeddings directly (i.e., PCA on Xd

i ), the max-k
embedding dependencies (i.e., max k of dependency matrix Ad

i in Eq. 3 without PCA), and the
ablation without any compression. All components contribute positively to the learning of both
the last-layer and the shallow-layer embeddings. Interestingly, the performance drops substantially
without compression, suggesting that compression can also help the learning of scaling across layers.

7
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As to the weighting strategies, we compare the performance of without, dynamic, and default layer
weighting. The results indicate that without layer weight performs worse than dynamic and default
in both the last layer and shallow layer learning, particularly the latter. It suggests that assigning dif-
ferent layer weights allows shallow layers to capture more essential information. While the dynamic
layer weighting strategy outperforms the default strategy in the last layer, it performs worse for shal-
low layers. This might be because dynamic weighting places more importance on the last layer of
learning, which negatively affects the shallow layers’ performance, thereby hurting the scalability
of model depth. The default layer weighting strategy consistently improves the performance of both
the last and shallow layers. This could be because the performance improvements in the shallow
layers propagate to the deeper layers, resulting in an overall performance improvement.

Furthermore, we assess the impact of different PCA compression sizes (k) during training. We train
ESE on NLI datasets with varying compression sizes and evaluate their STS performance in the full
setting. For comparison with the baselines, we report ESE’s and baseline’s results in Figure 5. The
results indicate that ESE consistently outperforms the baselines across different compression sizes,
highlighting the effectiveness of information compression in enhancing sentence embeddings. How-
ever, there exhibits a first-increase-then-decrease trend (peaked at 128). This is because the model
with large compression sizes may overlook critical details, whereas that with small compression
sizes might not have adequate capacity to retain all essential information.

Table 2: Ablation study of ESE on STS bench-
mark. Avg. and ≺ Avg. denote the aver-
age Spearman’s correlation of the last layer and
shallow layers (except the last), respectively.

Model Avg. ≺ Avg.

Compression Strategies

PCA on dependencies (default) 84.49 66.27
PCA on sentence embeddings 84.30 65.69
max-k embedding dependencies 84.22 65.47
none (w/o compression) 84.13 50.18

Layer Weighting Strategies

without weight 84.25 64.56
dynamic weight 84.63 65.94
default weight 84.49 66.27

Figure 5: The STS benchmark results of ESE
trained on different PCA compression sizes.
Dashed lines indicate baseline results, serving
as reference points.

4.3 RAG EXPERIMENTS

The previous discussions center on the intrinsic evaluation in STS. We conduct an extrinsic eval-
uation to examine how ESE helps downstream retrieval and generation deployment. We compare
different sentence embedding models based on bge-base-en-v1.5 (Xiao et al., 2023) on HotpotQA
dataset. It contains 113k Wikipedia-based factoid question-answer pairs. We employ faiss (Johnson
et al., 2019) to index and retrieve documents based on sentence embeddings. Since our sentence
embeddings are normalized, cosine similarity or Euclidean distance can be used. We follow the
common practice (Douze et al., 2024) of using Euclidean distance, i.e., IndexFlatL2 in faiss, as the
similarity measurement. For each query, we retrieve the most relevant context from all Wikipedia
documents in HotpotQA and generate responses using LLaMA2-7B (Touvron et al., 2023) via a
prompt in Table 3. For the QA evaluation, we adopt the popular metric Exact Match.

The RAG results of the last layer with various embedding sizes are listed in Table 4. We observe that
ESE outperforms baselines in all embedding sizes. The improvements are more evident with smaller
embedding sizes, for example, 2.42% and 1.80% higher than RAW and MRL with 64-dimensional
embedding, respectively. Moreover, we compare the performance when using the sentence embed-
dings from the half layer (n = 6). ESE shows 0.72% and 0.44% improvement compared to RAW
and MRL, respectively. These results demonstrate that effective ESE sentence embeddings, scalable
in terms of both embedding sizes and model depths, can further benefit RAG.
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Table 3: The prompt used in LLaMA2-7B for the RAG task. The “{context}”, and “{question}” are
the placeholders for the input context and question.

As an advanced QA system, your role is to provide accurate and straightforward answers
based on the provided context. Utilize the following information to answer the given
question, directly output the straightforward answer, and do not explain it:

Context: {context}.

Question: {question}.

Requirement: For ‘yes/no’ question, directly output ‘yes’ or ‘no’. For the ‘who’ question,
directly output the people’s names. For the ‘when’ question, directly output the date or
time, so on and so forth.

Output:

Table 4: RAG exact matching scores with dif-
ferent embedding sizes of different sentence
embedding models on HotpotQA. bge-base-en-
v1.5 serves as the backbone sentence embed-
ding model (marked with RAW).

embedding size Model

RAW + MRL + ESE

64 29.86 30.48 32.28
128 38.85 38.90 39.28
256 42.05 42.20 42.50
512 44.16 44.20 44.44
768 45.06 45.09 45.31

Table 5: Results of different model scales and
their independently trained counterparts.

Model Avg. Spearman’s Corr.

Small Scale (n = 4, d = 512)

BERTsmall 74.01
MRL w/ BERTbase 54.91 (−19.10)
ESE w/ BERTbase 74.46 (+0.35)

Tiny Scale (n = 2, d = 128)

BERTtiny 69.85
MRL w/ BERTbase 54.90 (−14.95)
ESE w/ BERTbase 71.64 (+1.79)

4.4 DISCUSSION

Scalability. We scale down the trained BERTbase (Devlin et al., 2019) ESE model to BERTsmall

and BERTtiny sizes by truncating the model depth and embedding size. Then, we compare
the scaled-down ESE models with BERTsmall and BERTtiny models trained independently on
MultiNLI and SNLI datasets, and show the results in Table 5. Scaled MRL performs poorly primar-
ily due to its inability to support model depth truncation. It is noted that our scaled ESE consistently
outperforms both trained BERTsmall and BERTtiny models. It demonstrates that the proposed ESE
can be truncated and adapted to various scenarios while achieving competitive performance com-
pared to a trained smaller model.

Efficiency. We compare ESE with MRL (Kusupati et al., 2022) in terms of efficiency on STS, as
shown in Figure 6a. ESE’s trend is almost linear and outperforms MRL. The results imply that it is
scalable for ESE to choose shallow layers for efficiency considerations. We also examine how ESE
affects RAG efficiency. Figure 6b illustrates the time consumed by the encoding and retrieval stages
of the RAG pipeline with various embedding sizes. The results indicate that smaller embedding sizes
are more efficient than larger ones, and ESE is slightly more efficient than baselines. The possible
reason is the ESE’s high-quality embeddings in varying scaled sizes allow easier and more effective
indexing, thus improving RAG efficiency.

Compression Quality. To intuitively compare the information compression quality between ESE
and baselines, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize 768-dimensional (full)
and 128-dimensional (scaled) sentence embeddings in 2D space, as shown in Figure 7. ESE exhibits
a higher overlapping rate between the dark- and light-color dots than baselines, showing ESE’s high
fidelity in the compressing process, i.e., ESE’s first-128 sub-embeddings carry most key information
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(a) (b)

Figure 6: (a) The inference time of ESE over different layers on STS. MRL serves as a reference.
(b) The encoding and retrieval time with different embedding sizes on the HotpotQA dataset.

(a) RAW (Avg. distance=32.63) (b) MRL (Avg. distance=25.75) (c) ESE (Avg. distance=10.36)

Figure 7: The t-SNE visualization of sentence embeddings on the STS-B test set. bge-base-en-
v1.5 serves as the backbone for RAW, MRL, and ESE models. The dark-color dots denote the
full 768-dimensional sentence embeddings, while light-color ones represent the first 128-dimension
sub-embeddings. The Avg. means the average distance between the 768-dimensional and the 128-
dimensional embedding points.

from their full embeddings. To quantitatively measure the difference, we calculate the average
distance between the 768- and 128-dimensional embedding points and put the numbers in Figure
7. It is evident that the proposed ESE achieves the lowest average distance among the baselines.
This indicates that ESE can effectively condense essential information into the initial embedding
dimensions by the learn-to-compress process. It can reduce information loss when using small first-
k sub-embeddings for downstream applications.

5 CONCLUSION

In this paper, we have presented a novel sentence embedding model called Espresso Sentence
Embeddings (ESE). It is the first work to support both model depth and embedding size scal-
ing with two novel processes. First, the learn-to-express enables model depth scaling by allowing
more important features to be captured by shallow layers. Second, the learn-to-compress allows
embedding size scaling by employing information compression to compress embeddings’ inner de-
pendencies. The dual scalability of ESE enables it to be truncated into different scales, making it
adaptable to varying computational resource requirements. Extensive experiments on STS and RAG
have suggested that ESE can effectively produce high-quality embeddings with less model depth
and embedding size, enhancing embedding inference efficiency.
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Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001.
URL https://aclanthology.org/S17-2001.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. Uni-
versal sentence encoder for English. In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, pp. 169–174, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2029. URL
https://aclanthology.org/D18-2029.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin Soljacic,
Shang-Wen Li, Scott Yih, Yoon Kim, and James Glass. DiffCSE: Difference-based contrastive

11

https://aclanthology.org/S12-1051
https://aclanthology.org/S14-2010
https://aclanthology.org/S15-2045
https://aclanthology.org/S16-1081
https://aclanthology.org/S16-1081
https://aclanthology.org/D15-1075
https://aclanthology.org/S17-2001
https://aclanthology.org/D18-2029


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

learning for sentence embeddings. In Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 4207–4218. Association for Computational Linguistics, July 2022. doi: 10.18653/v1/2022.
naacl-main.311. URL https://aclanthology.org/2022.naacl-main.311.

Alexis Conneau and Douwe Kiela. SentEval: An evaluation toolkit for universal sentence repre-
sentations. In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources Associa-
tion (ELRA). URL https://aclanthology.org/L18-1269.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 670–
680, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1070. URL https://aclanthology.org/D17-1070.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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Figure 8: The average STS benchmark results of various embedding sizes for the half layer (first 16
layers) and last layer (full 32 layers) of LLaMA3.1 8B (Touvron et al., 2023) with the RAW, MRL,
and ESE training.

A LLAMA3.1 STS RESULTS

To evaluate the ESE performance on larger LLMs, we conducted an STS experiment using
LLaMA3.1 8B 2, as shown in Figure 8. Here, we reported the results for the half layer (layer=16)
and the last layer (layer=32). It is evident that ESE consistently outperforms baselines across differ-
ent model depths and embedding sizes. Notably, ESE significantly improves at shallow layers. A
performance drop was observed at the half layer, which could be attributed to the LoRA’s limitation
in sentence embedding learning. However, ESE can mitigate this limitation, as evidenced by its
lower drop rate than baselines.

B BEIR RESULTS

We also test ESE on information retrieval datasets, including SciFact, SciDOCS, and NFCorpus
from the BEIR benchmark (Thakur et al., 2021), as shown in Figure 9. We can see that ESE can
effectively improve the performance of the shallow layer and is more stable than the baselines in the
shallow layers. In the last layer, ESE also consistently outperforms the baselines. This shows the
effectiveness of ESE in information retrieval.

C SHALLOW LAYER PERFORMANCE

Figure 10 depicts the inference time and STS performance of different layers in MRL and ESE
models. Although the inference times at different layers are largely the same, the performance gaps
between MRL’s and ESE’s embeddings are significant. This shows that our approach can effectively
improve the shallow layer’s task-specific representation, underscoring the scalability of the ESE
model.

2meta-llama/Llama-3.1-8B
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(a) layer=6

(b) layer=12

Figure 9: The information retrieval results on SciFact, SciDOCS, and NFCorpus (NFC) datasets
from BEIR benchmark (Thakur et al., 2021). bge-base-en-v1.5 serves as the backbone.

Figure 10: Inference time and STS performance vs layers.
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