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ABSTRACT

We study the sparse spiked Wigner model, where the goal is to recover an s-
sparse unit vector u € R? from a noisy matrix observation Y = Suu' + W.
While the information-theoretic threshold is 5 = (y/s), existing polynomial-
time algorithms require 5 = €(s), yielding a substantial computational-statistical
gap. We propose a column thresholding method that attains the (1/s) scaling
for estimation and support recovery under the non-uniformity condition ||u||s =
Q(1). Building on this initializer, we further develop a truncated power method
that iteratively refines the estimate with provable linear convergence. Experiments
validate our theoretical guarantees and demonstrate superior performance in
estimation accuracy, support recovery, and computational efficiency.

1 INTRODUCTION

We study the sparse spiked Wigner model (Deshpande & Montanari, 2014} [Lesieur et al., 2015),
which addresses the problem of recovering a sparse vector u from a noisy matrix Y € R?*:

Y = fuu’ + W, (1)

where u € R is an unknown s-sparse unit vector, 3 > 0 denotes the signal strength, and

W ~ GOE(d) is distributed as the Gaussian orthogonal ensemble, i.e., W = %(A + AT) with

A having i.i.d. N(0,1) entries. This model captures fundamental inference problems involving
pairwise measurements, including Gaussian variants of community detection (Deshpande et al.|
2016) and Z/2 synchronization (Javanmard et al., 2016).

Information-theoretic limits The fundamental limits for sparse PCA in this model are well-
understood. For support recovery and estimation up to constant error, the information-theoretic

lower bound on signal strength is § = Q(\/E) (Banks et al., |2018; [Perry et al., 2018} [2020), which
is achievable through exhaustive search and other exponential-time procedures, but remains out of
reach for polynomial-time algorithms.

Polynomial-time algorithms Existing polynomial-time approaches fall into two main categories,
each with fundamental limitations:

Spectral methods. The vanilla spectral algorithm computes the leading eigenpair of Y, while
spectral projection (Brennan et al.| [2018) additionally projects this eigenvector onto the set of
unit s-sparse vectors. Both methods incur O(d®) computational cost and require signal strength
B = Q(\/ﬁ) for successful recovery (Baik et al., |2005; [Péché, [2006; |[Féral & Péché, [2007; [Paul,
2007; [Capitaine et al.l 2009; Benaych-Georges & Nadakuditi, 2011} |Brennan et al., [2018). This

requirement is tight—spectral methods provably fail when 5 = 5(\/&) (Montanari et al., 2015).

Thresholding methods. Diagonal thresholding (Johnstone & Luj [2009) identifies the support by
selecting the s largest diagonal entries of Y, then estimates w via the leading eigenvector of the
corresponding s x s submatrix, achieving O(dlogd + s®) complexity. Covariance thresholding
first applies soft (Deshpande & Montanari, [2016)) or hard (Krauthgamer et al.,|2015)) thresholding to
all entries of Y before eigendecomposition. While computationally more efficient than spectral
methods when s < d, these approaches uniformly require 5 = Q(s) for successful recovery
(Hopkins et al., 2017; Brennan et al., | 2018} |Choo & d’Orsil, [2021).
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Figure 1: Recovery regimes in the sparse spiked Wigner model (Brennan et al [2018), with
s = O(d®) and s/ = O(d¥). Regions I, H, and E correspond to the information-theoretically
impossible, computationally hard, and polynomial-time tractable regimes, respectively. The yellow
line indicates the information-theoretic threshold, while blue and orange lines show computational
boundaries achieved by spectral and thresholding methods, respectively.

Both the spectral and thresholding methods discussed above fall under a common spectral paradigm.
In this framework, matrix perturbation theory shows that the empirical matrix concentrates around
its expectation, which can be viewed as a low-rank “signal” perturbation of a simple baseline (such
as the identity); classical eigenvector perturbation bounds then imply that the leading eigenvector
aligns with the true spike once the signal is sufficiently strong. This spectral approach is often used
as an initialization, followed by a refinement stage, in problems such as phase retrieval
2015), matrix sensing 2016), and blind deconvolution [2018), and such
two-stage algorithms are now standard for tackling nonconvex optimization problems
[2019). In contrast, for the sparse spiked Wigner model, the analogous top—eigenvector method has

been analyzed and is known to require the suboptimal signal strength ?2(\/8)

The computational-statistical gap and three regimes A significant gap exists between the

information-theoretic threshold of (NZ(\/g) and the Q(s) signal strength required by polynomial-
time algorithms. [Brennan et al| (2018) characterized this phenomenon through three regimes.

Parameterizing s = ©(d?) and s/3 = ©(d¥) with ¢ € [0, 1], these regimes are:

« Regime I (Impossible): When 8 = O (v/s) (e, ¥ > ¢/2), recovery is information-
theoretically impossible for any algorithm (Banks et al}, 2018}, [Perry et al.| 2018} 2020}, [Barbier
et al} 2016} [Lelarge & Miolane}, 2017).

* Regime H (Hard): When 0 < ¢ < ¢/2 and ¢» > ¢ — 1/2, the problem is information-
theoretically solvable but conjectured to be computationally intractable in polynomial time under

the planted clique hypothesis (Brennan et al., 2018).

* Regime E (Easy): When 8 = §~2(s) orff = (Nl(ﬁ) (i.e., p < 0orey < ¢ —1/2), polynomial-
time algorithms exist. Thresholding methods succeed when 5 = ﬁ(s) (W <0)
[2017}, [Brennan et al. [2018}; [Choo & d’Orsil, 2021), while spectral methods succeed when 3 =
Q(vd) (¢ < ¢ — 1/2) (Benaych-Georges & Nadakuditi, [2011; [Brennan et al, 2018).

Assuming the planted clique conjecture holds, the reductions from the planted clique problem show
that any polynomial-time algorithms cannot recover a uniform spiked vector in the hard regime
of Figure |1} where the signal strength lies between /s and s. Thus, if one restricts to uniform
amplitudes, the statistical-computational gap in this regime s believed to be fundamental and cannot
be closed (assuming the conjecture).

By contrast, the computational complexity and the associated phase transitions are much less
understood when we consider different classes of spikes beyond the uniform case. Our goal is not
to claim progress in the classical hard regime for uniform spikes, but rather to clarify what can be
achieved once we move beyond the uniform setting. We identify a specific class of spikes, defined
by an £, lower bound on w, in which the uniform vector is ruled out and recovery at the /s signal
strength becomes possible.
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Under this ¢, condition, we prove that the column thresholding method succeeds at signal strength
B = Q(+/s), thereby providing a polynomial-time algorithm that operates in the hard regime for this
class of non-uniform spikes, where the planted clique lower bound does not apply.

Therefore, our paper does not resolve the planted-clique—hard regime for uniform spikes. Instead,
it identifies a different class of spikes, characterized by the /., condition, for which recovery at the
\/s signal strength is provably achievable in polynomial time. We have revised the manuscript to
make this distinction clearer.

Our contributions In this paper, we propose two algorithms for sparse spike recovery: a
polynomial-time column-thresholding method and a truncated power method (TPM) that uses
the column-thresholding output as an initialization to further refine the estimate. The column-
thresholding procedure still fits within the general spectral framework, but it is based on a
different statistic: rather than aggregating information through all diagonal entries or the global
top eigenvector, we first select a data-driven column by locating the largest observed diagonal entry,
and then apply entrywise thresholding to that column. This construction yields a stronger separation
between in-support and out-of-support indices, which in turn leads to an improved scaling in the
signal strength required for successful recovery. Our main contributions are:

* We prove that column thresholding achieves the ﬁ(\/g) signal-strength scaling for both
estimation and support recovery, under the assumption that |u||» = €2(1). This assumption

is not merely technical: it is essential for attaining the 2(y/s) rate and explicitly rules out
the uniform spike case in which planted-clique—based hardness results apply. Our work does
not resolve the planted-clique-hard regime for uniform spikes. Rather, by imposing this /.,
condition and analyzing the column-thresholding algorithm, we identify a concrete class of
non-uniform spikes, lying outside the reach of existing planted-clique reductions, for which

recovery at signal strength SN)(\/E) is provably achievable in polynomial time.

Additionally, the condition ||u||,, = £2(1) naturally covers power-law decaying signals (Jagatap

& Hegde, 2019; (Chen et al., 2015). When this condition fails, our bound degrades to (s),
matching existing thresholding methods. Conversely, to our knowledge, existing thresholding

methods cannot achieve the €2(1/5) rate even when ||u||oc = €2(1) holds.

* We demonstrate that using column thresholding as initialization for truncated power iteration
yields a two-stage algorithm with both rigorous guarantees and strong practical performance.
While [Yuan & Zhang| (2013) established convergence theory conditional on a correlation
condition, they did not provide a concrete initialization procedure. Our work fills this gap
in the sparse spiked Wigner model by explicitly constructing an initialization that satisfies
their theoretical requirements at the optimal signal level, enabling the refinement framework
to operate in this previously inaccessible regime.

e Experiments validate our theory and demonstrate strong empirical performance. The
column-thresholding method matches the predicted signal-strength scaling, while TPM
achieves superior estimation accuracy and exact support recovery compared to baseline
methods, all with competitive computational efficiency.

It is also natural to extend our methods and analysis to related models. For instance, in the symmetric
two-cluster sparse Gaussian mixture model (Pesce et al., 2022; |[Loffler et al., [2022), the expected
sample covariance exhibits the same structural form as in the sparse spiked Wigner model. This
analogy allows both diagonal thresholding and our column-thresholding procedure to be used for
support estimation of the sparse cluster mean, after which standard eigenvector-based methods can
be applied to recover the cluster mean itself.

Notations: We use f(n) = O(g(n)) when f(n) < c1g(n), f(n) = Q(g(n)) when f(n) > cag(n),
and f(n) = O(g(n)) when both hold, for some constants c¢1,ca > 0. We use O, 2, © to denote
the logarithm-suppressing variants of O, €2, © that hide polylogarithmic factors in d. For vector a,
a; denotes the i-th element, ||a||o counts nonzero entries, and ||a||2, ||@|| denote the 5 and (o
norms. Given set R, ar zeros out elements indexed by R¢. For matrix A € R™*9, A;; is the
(4,7)-th element. With sets R and C, Ag ¢ retains rows in R and columns in C, zeroing others.
Special cases: A. ¢ = Ag ¢ when |[R| =m, and Agx = Ag ¢ whenC = R.



Under review as a conference paper at ICLR 2026

2 COLUMN THRESHOLDING

We present a novel column thresholding algorithm for the spiked Wigner model that achieves the
information-theoretically optimal signal strength requirement. Our method exploits the key insight
that column entries of the observation matrix provide stronger statistical separation than diagonal
entries, enabling recovery with signal strength 5 = Q(\f ) rather than the Q( ) required by
existing polynomial-time methods. After developing the algorithm and analyzing its computational
complexity, we establish theoretical guarantees for both estimation accuracy and support recovery.

2.1 ALGORITHM

Diagonal thresholding (Johnstone & Lul [2009) is a well-studied algorithm for the spiked Wigner
model that offers low computational cost but requires signal strength 5 = Q(s) for consistent
estimation (Hopkins et al.l 2017; |(Choo & d’Orsi, 2021). This requirement significantly exceeds
the information-theoretic lower bound of 5 = ﬁ(\/g) (Banks et al.,|2018; [Perry et al., [2018;2020).
We propose a novel thresholding algorithm that closes this gap.

To understand the limitations of diagonal thresholding, we analyze its signal strength requirements.
The algorithm estimates the support of u by selecting indices corresponding to the s largest diagonal
entries of Y, then computes the leading eigenvector of the resulting submatrix. This approach
exploits the expected diagonal structure:

ﬂui27 iETa
EWM{J' ieTe )

where T is the support of u. The statistical gap between in-support and out-of-support entries is

gaing = M E[Y],, — maxE[Y],, = 5 - min |ui|*. 3)

The following proposition shows when diagonal thresholding successfully identifies the support:
Proposition 2.1. If |[W;;| < %gdiag holds for all j € [d], thenY;; > Yy foralli € T and i’ € TC.

The proof of Proposition [2.1]is provided in Appendix Since W;; ~ N(0,2) independently,
the condition holds with high probability when gqiag is sufficiently large. In that case, the diagonal
entries Y;; for i € T exceed those for ¢ € T¢, so diagonal thresholding recovers the support of u by
selecting the largest s diagonal entries of Y. The success probability is governed by the gap gqiag: a
larger gap gqiag yields a higher probability of correctly estimating the support. Alternatively, when
gdiag/ 1s large, achieving any target gap sufficient for successful recovery requires less 3.

Our key insight is to leverage column entries instead of diagonal entries to achieve better separation
between in-support and out-of-support indices. Our approach is based on the observation that, when
l € T, the expected column structure is

_ BUiUl, S Ta
Bl = {0 fer @
The resultant gap becomes:
goor := min [E[Y] | —max [B[Y], | = 8 | min ui]. 5)

Crucially, gco1 = S |w| min;e7 |u;| > S miner |ui|2 = gdiag Whenever [ € T, providing enhanced
separation that enables recovery with weaker signal strength requirement. To maximize the gap gcol,
I should ideally be the index of the largest absolute element of u, which aligns with the index of the
largest diagonal entry of E [Y], as shown in (2). However, since we only have the noisy matrix Y,
we choose [ as the index of the largest diagonal entry of Y, denoted by 4.

Algorithmimplements our column thresholding approach in two steps: (1) estimate the support T
using the s largest entries of the ¢o-th column, where iy = arg max; Y;;; (2) reconstruct the spike
vector using the leadlng eigenvector of the s x s submatrix Y=, formed by restricting to rows and

columns indexed by T. For computational efficiency, Algorithm |2 I presents a variant that directly
normalizes the selected column entries.
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Algorithm 1 Column Thresholding

Input: Matrix Y € R*9_ sparsity level s
Output: Estimated sparse unit vector @ € R¢
1o < arg max;e[q) Yi > Find index of largest diagonal entry

T < indices of s largest entries in |Y. > Estimate support

520 ‘

Y+ < submatrix of Y with rows and columns in 7°
v < leading eigenvector of Y= with [[v| =1
Initialize @ < 0 € R? and set Uz < v > Embed eigenvector into full space

return u

R AN A R

Algorithm 2 Column Thresholding (Normalization Variant)

Set iy < Y7, /| V5

P > Embed normalized subvector into full space
T io

1: Input: Matrix Y € R%*?, sparsity level s

2: Output: Estimated sparse unit vector i € R¢

3: g < arg max;e(q) Yii > Find index of largest diagonal entry
4: T < indices of s largest entries in |Y. ;| > Estimate support
5:

6:

return i,

The enhanced statistical gap in our column-based approach is the key to achieving the optimal
signal strength requirement of 3 = Q(/s). As detailed in Section this improvement stems
from leveraging the correlations between entries in the selected column, which provides stronger
signal concentration than the independent diagonal entries used in diagonal thresholding.

Algorithm 2] presents a computationally efficient variant that applies the same thresholding strategy
for support estimation but directly normalizes the ¢o-th column rather than computing an eigenvalue
decomposition. This variant trades modest estimation accuracy for reduced computational cost
while preserving the optimal signal strength requirement of 5 = €(4/s) and maintaining the same
theoretical guarantees for support recovery. The variant is practical when computational resources
are limited or rapid support identification is prioritized over exact reconstruction.

2.2 COMPUTATIONAL COMPLEXITY

Algorithmrequires three main operations: finding the largest diagonal entry (O(d)), selecting the s
largest column entries (O(d log d) via sorting or O(d+ s log s) using partial sorting), and computing
the leading eigenvector of an s x s matrix (O(s?)). The total complexity is O(dlogd + s3),
which reduces to O(dlogd) when s = O((dlogd)'/?)—a regime covering many practical sparse
recovery scenarios. The normalization variant (Algorithm [2) eliminates the eigendecomposition
step, achieving O(d log d) complexity uniformly.

For comparison, diagonal thresholding (Johnstone & Lu, |2009) follows a similar computational
pattern: it finds the s largest diagonal entries (O(dlogd)) and computes the leading eigenvector
of the resulting s x s submatrix (O(s%)), yielding the same O(dlogd + s*) complexity. Spectral
methods, the vanilla spectral algorithm and spectral projection (Brennan et al., 2018)), compute the
leading eigenvector of the full d x d matrix Y, requiring O(d?) operations.

Column thresholding achieves fundamental improvement over existing approaches. While diagonal
thresholding and spectral methods both require suboptimal signal strength 5 = §2(s) for consistent

recovery, our algorithm achieves the information-theoretically optimal requirement of 8 = Q(+/s).
Moreover, we maintain the computational efficiency of diagonal thresholding and offer substantial
speedup over spectral methods. This unique combination of computational efficiency and statistical
optimality makes our approach particularly valuable for modern high-dimensional applications.

2.3 THEORETICAL ANALYSIS

We establish theoretical guarantees showing that column thresholding achieves the information-

theoretically optimal signal strength requirement of 5 = ﬁ(\/g) under mild conditions. We analyze
estimation accuracy and support recovery separately.
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2.3.1 ESTIMATION ERROR

We analyze estimation accuracy using the following distance metric accounting for sign ambiguity:
dist(w, @) := min {||lu — |2, ||u + @2} . (6)

This metric is standard in PCA and phase retrieval problems where the sign of the recovered vector

is inherently ambiguous.

Theorem 2.2. Let u € RY be an s-sparse unit vector and Y = Puu' + W, where 3 > 0 and
W ¢ R¥? s distributed as GOE(d). For any target accuracy ¢ € (0,1], if the signal strength

satisfies
B2 017 ull Vslogd

for some universal constant C; > 0, then with probability at least 1 — 1.6d~", the output 4 of
Algorithmsatisﬁes dist(u,w) < ¢

This theorem, proved in Appendix [A.4] shows that column thresholding achieves signal strength
scaling of Q(y/slogd) for constant estimation error when ||u| = €(1), matching the

information-theoretic optimum of ﬁ(\/g) This bridges the computational-statistical gap between

the information-theoretic lower bound and the €2(s) requirement of existing polynomial-time
algorithms, including diagonal thresholding and spectral methods.

Attaining the optimal signal strength Q(+/s) in polynomial time requires additional assumptions.
Indeed, computational hardness results based on the planted clique conjecture indicate that no
polynomial-time algorithm can achieve the optimal signal strength without additional structural
assumptions (Brennan et al.l 2018). This infinity norm condition is mild and naturally satisfied
in many applications. For instance, when the nonzero entries of u follow a power-law decay—a
common model in compressive sensing (Donoho} [2006; |(Candes et al.l 2006)—the infinity norm
requirement is automatically satisfied. Similar phenomena arise in sparse phase retrieval, where
power-law signals enable optimal recovery (Jagatap & Hegdel 2019).

Theorem 2.3. Under the same model assumptions as Theorem[2.2] if the signal strength satisfies

B> Co¢?|ull)v/slogd

for some universal constant Cy > 0, then with probability at least 1 — 1.4d™", the output i, of
Algorithmsatisﬁes dist(u, tyy) <

The proof of Theorem [2.3] is provided in Appendix [A.5] While the normalization variant
(Algorithm [2)) requires a stronger dependence of /3 on the accuracy parameter ¢ (quadratic rather
than linear), it maintains the optimal scaling with respect to s and d. This highlights a key insight:
the statistical efficiency is determined by the column thresholding step for support estimation, not
by the reconstruction method (eigendecomposition versus direct normalization). The reconstruction
only affects the constant factors in the accuracy guarantee, confirming that our column-based support
estimation is the fundamental innovation enabling optimal signal strength requirements.

2.3.2 SUPPORT RECOVERY

Beyond estimation accuracy, exact support recovery is essential for interpretability and many
downstream applications. We now establish conditions under which our algorithms correctly
identify the support 7 := {4 : u; # 0} of the spike vector.

Theorem 2.4. Let u € R? be an s-sparse unit vector satisfying |u;| > 0/+/s foralli € T and some
constant 0 > 0. Under the spiked Wigner model with signal strength

B> C307  ||lul| 2t /slogd

for some universal constant C3 > 0, both Algorithms [l| and [2] recover the support exactly (i.e.,
T = T) with probability at least 1 — 1.3d~1.

The proof of Theorem is shown in Appendix Our support recovery guarantee attains
the signal strength scaling of Q(1/slog d), matching the information-theoretic limits Q(+/s). The
minimum magnitude assumption |u;| > 6/4/s ensures that all nonzero entries are sufficiently strong
to be distinguished from noise, as detailed in the proof in Appendix [A.6] This condition is standard
in the sparse recovery literature and naturally holds for many structured signals. Since Algorithms|I]
and[2]differ only in their estimation procedures while using identical support recovery methods, they
achieve the same support recovery guarantees.
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3 TRUNCATED POWER METHOD

Column thresholding meets the optimal signal-strength requirement but can benefit from iterative
refinement to improve accuracy. Its one-shot estimate, though supported by strong theory, may
not attain the smallest achievable error. In this section, we show how the truncated power method
iteratively refines the initial estimate, yielding improved estimation accuracy.

In the spiked Wigner model, recovering the sparse spike w from the noisy observation Y in (TJ)
naturally leads to the sparse PCA formulation:

maximize w' Yw, subjectto |w|. =1, |w|o < k. (7)
w

where k is a sparsity parameter. Since w is the leading eigenvector of E [Y] = Buu’, the solution
to (7) provides a natural estimator for u.

The truncated power method (Yuan & Zhang, [2013)) is an iterative algorithm designed to solve the
sparse PCA problem (7). Starting from an initial vector u?, it alternates between power iteration
and hard thresholding:

u' = Pgar (Hip(Yu'™1)), (8)
where Pga—1 : R?\ {0} — S?! defined by Pga-1(2) = z/||z[|2, and Hy : R? — R? is the hard
thresholding operator that retains the k largest entries (in absolute value) and zeros out the rest. The
parameter k denotes the sparsity level used in ([7), whereas s denotes the sparsity of the true spike.
We assume £ is of the same order as the true sparsity s throughout, and set k& = s in all experiments.

For computational efficiency, we exploit the sparsity structure. Let 7' = supp(u') denote the
support of iterate ¢. Since |7?| < k, we can rewrite the matrix-vector multiplication as:

u' = Poar (Hi(Y. 7erunhy)), ©)

where Y. 7 denotes the submatrix of Y with columns indexed by 7. This reduces the per-iteration
complexity from O(d?) to O(ds).

The sparse PCA problem is highly nonconvex due to the cardinality constraint, resulting in a
landscape riddled with local maxima. Like all iterative methods for such problems, the truncated
power method’s performance hinges on initialization quality—poor starting points can trap the
algorithm in suboptimal local maxima or prevent convergence entirely. The choice of initialization
thus becomes crucial for achieving good performance.

Yuan & Zhang| (2013) provided a sharp characterization of when the truncated power method
succeeds: geometric convergence to a near-optimal solution is guaranteed when the initial vector
u? has sufficient correlation with the truth:

[(u®, u)| > ¢ (10)
for some constant ¢ > 0. However, obtaining such initialization is the key challenge—random
initialization typically fails in high dimensions, while existing polynomial-time algorithms require
at least 5 = €(s). The column thresholding algorithm provides a simple and effective approach
that operates under weaker signal strength conditions in this setting. As shown in Section 2.3] it
produces an initialization with two key properties:

* Near-perfect correlation: |(@, u)| > 1 — % for arbitrarily small ¢ > 0.

 Optimal signal strength: It succeeds under 8 = Q(+/slogd), matching the information-
theoretic limit of Q(+/s).

With this initialization, the truncated power method attains near-optimal estimation accuracy under
minimal signal strength requirements—a combination unattainable by either method alone. We
formalize the resulting convergence guarantee in Section [3.2] and summarize the full two-stage
procedure in Algorithm

3.1 COMPUTATIONAL COMPLEXITY

The column thresholding initialization requires O(d log d+s3) operations, as detailed in Section
Each truncated power iteration involves two main steps: (i) a sparse matrix—vector multiplication
costing O(ds) operations, and (ii) sorting the resulting vector requiring O(d log d) operations. Thus,
each iteration costs O(ds—+d log d) operations. Since the method converges in O(log(1/€)) iterations
to achieve e-accuracy (Section , the total refinement cost is O((ds + dlog d)log(1/e)).
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Algorithm 3 Truncated Power Method (TPM)

Input: Matrix Y € R?¥9, sparsity s, parameter k
Output: Estimated sparse unit vector u’ € R¢
u® « Column Thresholding(Y’, s) > Column thresholding initialization
fort=1,2,...do
T'=1 < supp(u'™1)
28— Y rerugia > Sparse matrix-vector product
ul 735(171 (Hk (Zt))
end for

WU RN

return u'

3.2 THEORETICAL RESULTS

This section establishes the theoretical convergence guarantee for truncated power method, showing
that under the information-theoretically optimal signal scaling the algorithm achieves geometric
contraction of the optimization error down to an irreducible statistical floor.

Theorem 3.1. Let u € RY be an s-sparse unit vector and Y = Puu' + W, where 3 > 0 and
W ~ GOE(d). Fix any ¢ € (0, 1). There exist universal constants Cy, Cs > 0 such that, if

B > Cymax {|lul|}, ¢'}/slogd,

then, with probability at least 1 —1.5d ™", the sequence {u'},>1 produced by Algorithm initialized
with u® from Algorithmand using parameter k = Cls, satisfies

dist(u,u’) < n'dist(u,u’) + h, (11)
where 0, h € (0, 1) are universal constants.

The proof is provided in Appendix Theorem [3.1] decomposes the estimation error into two
parts. The first term, n'dist(u,u’), represents an optimization error that decays geometrically
with iteration count ¢{. The second term, h(, captures the irreducible statistical error inherent
to the problem. Consequently, the truncated power method rapidly eliminates the optimization
error—requiring only O(log(~!) iterations to achieve (-accuracy—while operating under the

information-theoretically optimal signal strength 5 = Q(1/5) when [|u||o = Q(1).

4 EXPERIMENTAL RESULTS

We empirically verify that column thresholding satisfies the information-theoretic signal-strength
requirement, thereby validating our theoretical guarantees. We further show that TPM outperforms
existing methods in estimation accuracy, support recovery, and computational efficiency.
Performance is assessed by estimation error (via the distance metric in () and F-score (0-1 scale,
with 1 indicating perfect recovery). All results are averaged over 200 independent runs.

4.1 EMPIRICAL VALIDATION OF OPTIMAL SIGNAL THRESHOLDS

We empirically verify that our column thresholding achieves the information-theoretic signal
strength requirement for constant estimation error and exact support recovery, thereby validating
Theorem and Theorem In each trial, we construct an s-sparse spike w with one entry of
magnitude 0.5 and the remaining s — 1 nonzeros of equal magnitude, normalized so that ||u|y = 1.
This design ensures two key properties: (i) |||« is constant in d and s (as required by Theorem,
and (ii) every nonzero entry satisfies |u;| > 6//s for a universal constant 6 (as required by
Theorem [2.4). We then generate Y~ according to the spiked Wigner model in (T)).

We conduct experiments across two complementary regimes: (i) varying the dimension d €
{2000, 5000, 10000, 15000, 20000} with fixed sparsity s = 20, and (ii) varying the sparsity
s € {20,50,100, 150,200} with fixed dimension d = 10000. When performance is plotted against
the scaled signal strength 8/+/slogd, the curves from different (d, s) collapse, indicating that the
phase transition depends only on this scaled quantity, confirming the theoretical scaling.
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Figure 2: Estimation error versus scaled signal strength for our column thresholding under varying
dimensions (left) and sparsities (right).
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Figure 3: Success rate versus scaled signal strength for our column thresholding under varying
dimensions (left) and sparsities (right).

Figure shows that curves from all (d, s) settings collapse once 3/+/slogd > 10, regardless of the
specific values of d and s. This indicates that column thresholding succeeds when 8 > C1+/slogd
with a universal constant C; =~ 10, thereby validating the Q(1/slog d) signal strength requirement
established in Theorem

Figure [3| exhibits a sharp phase transition for support recovery at 3/+/slogd = 7.5. Below this
threshold, perfect recovery is not guaranteed; above it, the success rate reaches 1 uniformly across all
tested d and s. This empirically validates the (/s log d) signal strength requirement for successful
support recovery established in Theorem [2.4]

4.2 COMPARATIVE EVALUATION: STATISTICAL AND COMPUTATIONAL PERFORMANCE

We evaluate TPM against three established approaches: diagonal thresholding (DT) (Johnstone
& Lul 2009), covariance thresholding (CT) (Krauthgamer et al. 2015), and spectral projection
(SP) (Brennan et al.l [2018). For all experiments, we construct the true spike w with s randomly-
located nonzero entries, each taking values +1/4/s with equal probability. This balanced spike
design, standard in the sparse PCA literature (Krauthgamer et al.l 2015), ensures ||u||2 = 1 while
maintaining uniform entry magnitudes.

Figure [4] reports performance as the signal strength § varies, with fixed dimension d = 2000 and
sparsity s = 10. Our TPM shows clear advantages, especially in weak-signal regimes. As the signal
weakens, CT and SP degrade markedly, while TPM maintains strong accuracy and support recovery.
TPM consistently outperforms DT across all signal strengths, validating our analysis in Section 2.1]
that column thresholding yields a fundamentally larger statistical gap than diagonal thresholding.

Figure [5| evaluates computational scalability by varying the dimension d from 2000 to 10000, with
fixed signal strength 8 = 100 and sparsity s = 15. Our TPM attains the lowest estimation error
across all dimensions, whereas competing methods deteriorate as d grows. Notably, this accuracy
comes with minimal computational overhead: TPM’s runtime scales comparably to the efficient DT
method. By contrast, CT and SP incur substantially higher costs. Overall, these results show that
TPM combines strong statistical performance with practical computational efficiency.
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Figure 4: Estimation error (left) and support-recovery success rate (right) versus signal strength /.
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Figure 5: Scalability analysis across dimensions: estimation error (left) and runtime (right).
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(a) DT: Error = 0.6801, (b) CT: Error = 0.1392, (c) SP: Error = 0.1695, (d) Ours: Error =0.1033,
F-score = 0.2619 F-score = 0.8333 F-score = 0.7959 F-score = 0.8750

Figure 6: Three-peak benchmark results. True spike (black curve) versus estimated spike (red
markers) for four methods: (a) DT, (b) CT, (c) SP, and (d) TPM. The true signal comprises three
Beta densities on [0, 1] with dimension p = 5000 and signal strength 5 = 100.

4.3 THREE-PEAK BENCHMARK EVALUATION

We evaluate our method on the canonical “three-peak” experiment (Johnstone & Lul 2009), a
demanding benchmark for sparse recovery in high dimensions. The true spike v is constructed as a
mixture of three Beta densities on [0, 1], producing three pronounced peaks separated by near-zero
valleys. This setup rigorously tests an algorithm’s ability to localize multiple signal components
while suppressing inter-peak noise. The experiment stresses methods’ capacity to distinguish true
signal peaks from spurious activations. As shown in Figure [ TPM faithfully recovers all three
peaks, achieving lower estimation error and higher F-score than competing methods, which either
misestimate the peaks or introduce false detections in the valleys.

5 CONCLUSIONS

We introduce two complementary algorithms for sparse PCA in the spiked Wigner model. Column
thresholding achieves a breakthrough in computational-statistical tradeoffs: it runs in polynomial
time while requiring only Q(+/s) signal strength when ||u| = (1) holds. Truncated power
method iteratively refines the column thresholding estimate with provable linear convergence.
Extensive experiments validate our theoretical guarantees and demonstrate superior performance
over existing methods in estimation accuracy, support recovery, and computational efficiency.

10
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Appendix [A] contains the proofs of our theoretical results, while Appendix [B] provides additional
experimental results. We clarify that our usage of large language models (LLMs) is limited strictly
to polish writing.

A PROOFS

In Appendix [A] we prove the proposition and theorems introduced in Sections [2] and [3] First, we
present some auxiliary lemmas in Appendix[A.T|and show some technical lemmas in Appendix[A.2}
Next, we prove Proposition in Appendix Subsequently, we present the proofs for

Theorem [2.2] Theorem [2.3] and Theorem [2.4] in Appendix [A.4] Appendix [A.5]and Appendix [A.6
respectively. Finally, we show the proof for Theorem [3.1]in Appendix

Throughout Appendix [A] we define the largest and smallest ¢-sparse eigenvalue of a symmetric
matrix B € R™*"™ by

Amax (B, ) = max w? Bw, Amin (B, ) = min w? Bw,

weR™, [lwll2=1,]|w|o=¢ weR™ [|w|l2=1,[lwllo=¢
respectively. Then we define the maximum spectral norm of all £ x ¢ submatrices of B by

p(B,1) = max {|Amax(B, )|, |[Amin (B, £)| } . (12)

A.1 AUXILIARY LEMMAS

The following two lemmas are used to prove the convergence of truncated power method in
Algorithm 3] which will be used for the proof of Theorem [3.1]in Appendix

Lemma A.1 ((Yuan & Zhang| 2013)). Let z be the eigenvector with the largest eigenvalue (in
absolute value) of a symmetric matrix B, and let k < 1 be the ratio of the second to the largest
eigenvalue in absolute values. Given any y such that ||y||2 = 1, let y' = By/| Byl|2, then

=Ty| > =Ty <1 e (e \zTy|2)) .

Lemma A.2 ((Yuan & Zhang| [2013)). Consider y with ||yllo = ¢. Consider z and let F =
supp(z, ') be the set of indices with the ¢’ largest absolute values in z. If ||yl = ||z]2 = 1,

then
v zr| > [y 2| = V0 min{\/ 1=y T2, (4 V) (1 - \yTZ|2>} :

A.2 TECHNICAL LEMMAS

In Appendix [A.2] we show some technical lemmas that will be used for the proofs of Theorem [2.2]
and Theorem 3.1| The first lemma bounds the quantity p(W, ) defined in (12).

Lemma A.3. Foranyr € (0,1),

2 9ed r2p3?
P{p(W,0) <3rB} >1— ——(—)" — . 13
(W, 8) <3} 21— =25 (7)o (= — ) (13)
Proof. Denote the set of {-sparse vectors in R? by T¢ := {w : |w]|]2 = 1, ||w||o = ¢}. For any

§ € (0,1), there exists a set Ny C "JT? such that for any w € T‘Zi, there exists ws € N such that
supp(w) = supp(ws) and ||w — w;||2 < 6 and |Ns| < (?)(%)e < (3)* (Baraniuk et al.l 2008).
From (12)), we obtain
p(W 1) = max y Wz =y Wz,.
y,zET?,

supp(y)=supp(z)

From the definition of N3, there exists ys, 25 € N such that supp(ys) = supp(y.) = supp(z«) =
supp(2s), ||y« — ysll2 < 9 and ||z, — z5||2 < J. Then we have

Y, Wz, =y Wz — 25) + (y —y5) Wzs +y] Wz; <20y Wz, +yi Wz,

13
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which implies that

PW.0) < (1-20)"yy Wy < (1-20)7"  max  y' Wz, (14)
supp(y)=supp(2)
where the inequalities hold when 1 — 2§ > 0.
Now for any (y,z) € N, we bound |y W z| as follows. Since W = (A + AT) with some

2
random matrix A ~ A(0,1)®4*4  we obtain

S

y Wz~ N(©0,1+ |yTz|2).
Therefore, using the tail of a Gaussian variable (Vershynin, 2018), for any r € (0, 1), it holds that

1+ [yTz|?
Plly Wl 20} <2V g (-1 R,

2
2(1+ |yTz|2)) = VB P ( 4

where the last inequality we use ||yl||2 = ||z]]2 = 1.

By taking union bounds for all (y, z) € N5, we obtain that

2 3ed r2 32
P TWz| < >1— —— ()" — :
Jus  lyWal<np > NN exp (= =)
supp(y)=supp(z)
Setting § = 3 together with (T4) leads to (T3). O

The next lemma bounds the error between w and the ¢-sparse largest eigenvector of Y.

Lemma A.4. Let A C [d] be such that A|JT # 0 and |A| = L. Let w be the largest eigenvector of
Y with |[wl|s = 1. If p(W ,£) < gHuA 2, then we have

[lwall2
1+ p(W,£)2 ,
(ﬁ\luA|\§—2p(W,e))

Proof. Denote X the largest eigenvalue of Y}, i.e. A= A1(Y4). Recall that Y = Buu’ + W and
E [Y] = Buu'. Using Weyl’s inequality (Horn & Johnson, [2012), it holds that

dist(w, up)? < |luallz +1 -2

A > M(E[YA]) + An(Wa) > Blluallz — p(W, 0), (15)

where the last inequality holds by A\, (W) > —p(W, £) from the definition. Similarly, we have for

alli > 2,
I\i(Yy)| < yAi(E[YA})| + ‘/\i(YA) — )\i(E[YAM {16)
= max {| A (Wa)], An(Wa)[} < p(W, 0).

Notice ||w]|2 = 1 but [|uall2 < 1. We divide w as

Up
w=a;7— + a2y

[[wall2

withujy =0, ||y|l2 = 1 and a? + a2 = 1. Then we have supp(y) C A, and

- u - - Yiu
/\aliA 4+ dacy = Aw = Yyw = alg + asYry.
[all2 [uall2
By taking the inner product with y, we obtain
- "Yau
Aag = alw + azy ' Yay.
(NP

14
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Since u, is the eigenvector of E[Y, | and ujy = 0, we have y " E[Y Jus = 0. This leads to

‘ T(Wa 'HE[YA])\
A=y T Yyl

T UA
‘y WATuals
A=y Yy

|uAH2
= |a]|

lag| = |ai]

Since supp(y) C A, we have ‘y—'— WAH;‘ﬁ‘ < p(W,£). Moreover, since y is perpendicular to

uy, from we have
|y" Yay| < max|Xi(Ya)| < p(W,0).

So from (I3) and p(W,£) < 5|lus |3, we have

T u
Jas| _ ‘?{ WATurlz p(W, 0)
lai] A=y Yay| ~ Blluallz —20(W,0)

Then, since a3 + a3 = 1, we have

a? > L
1 = )
1 p(W 75)2 >

(3|\UAH3*2P(W¢)>

which implies that
dist(w, up)® = min {[lup — w3, [|us +w|3}

= lluall3 +1 = 2ar| - ual

[[uall2

14 p(W .0)? 2 '
(ﬁuuAné—zmw,a)

< Juall3 +1-2

A.3 PROOF OF PROPOSITION[2.]]

Proof of Proposition2.1] Recall that Y = Auu' + W and IE[Y} = Muu'. Foranyi € T and
any i’ € T¢, using 2)(3), we obtain

Yii > (E[Y])n - {(E[Y]) ‘Y“” 2 B|“Z| gdlag7

1
Yy < ’(E [Y])M, + |(E[Y])¢/¢/ — Y| < 5 Ydiag:
Following from the fact that ggiag = /5 - né17r_1 | \2, one has Y;; > Y. O

A.4 PROOF OF THEOREM[2.2]

In Appendix [A.4] we prove Theorem [2.2]in three steps. First, we prove that the index ¢y chosen

in Algorithm I satisfies |u;,| > H”““’ with high probability. Second, we show that 7T chosen in
Algorithm [T] contains the indices of most of the larger nonzero entries of w with high probability.
Finally, we put everything together.

Step 1: Estimating |u;,|. Recall that iy = arg m?d}]( Yii.
1€

Lemma A.5. If 3 satisfies
322 —
6> 7““’“00 1Ogd7

with probability exceeding 1 — W\/ngQd_l, [wig] > ”u2”

15
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Proof. From (T)@), for any i € [d], we obtain Y;; = 8 |u|> + Wi; and E[Y;;] = 8 |ui|*.

Firstly, we consider Y;_;,, where 4, satisfies |u;, | = ||u]|s- Since W;_;, ~ N(0,2), using the tail
of a Gaussian variable (Vershynin, [2018)), it holds that, for any €; > 0,
P{Yi.. — Allul2 < e} = B{Wi... < —a1} < — exp(—ﬁ) (17)
Tals >~ Tty > ﬁGI 4 .

Secondly, we consider 77 := {z € ld] : |Jw] < %} Since W;; ~ N(0, 2), taking union bound
and using the tail of a Gaussian variable (Vershynin, 2018)), we have, for any €5 > 0,

]P){néaj;g( (Yii — ,B|ui|2> > 62} < (d—1)P{W; > e for some i € 71}
' (18)

Now we combine (T7)(T8) and set e; = €3 = 2 3||u||% . The complementary events in (T7)(T8) are
3
Vi, 2 BlullZ, — 2Bl
3
Yii — B lui 2) <3 2o
max (Vi = 8wl ) < SAllull

which leads to

Ul
i < Sl + 5(P0) " pagz, - 2ol < Vi, < Vi

where we use the definition of 77 in the first inequality. It follows that ig ¢ 71, i.e. |u;,| > H"2H°°

Therefore, using (T7)(T8), we obtain
w0 8d 962 ||ull3

P ju; | > >1-__ % (—700) 19

> B2 21 g o (- 2 )

which leads to the desired result with the condition of 3. O

Step 2: Estimating ||uz||2. For any ¢ € (0, 1], we define 7. := {z eT :|ul < 2\[} and 7';r =

_ 2 2 2 .
T\ 7. Then we have HUTC*H% < S -s=% and ||uT<+||§ > 1 - & Since ||jullo > %,
Lemma implies that |u;,| > 2\1/5 > Q—f/g with high probability, and thus iq € T+ The

following lemma shows that 7? C T with high probability, where 7T is chosen in Algorlthmm

Lemma A.6. Forany ¢ € (0,1], if 8 satisfies

8> 16¢ ul| " v/s(logd + 2log 5),

with probability exceeding 1 — G%d ! T+ cT.

Proof. 1t suffices to show that with high probability,

Iél%} [Yiio| > max [V, |-

To prove this, first, we show that for any [ € 75, where 75 := {z eT:|ul > ”"2”"" },

Z_m}r? Y| > max [Yal,

which needs to bound |Y;| and |Y;; — E[Y;]| foralli € 7¢and i € 7?“.

16
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For any | € T3, we first consider max |Yii|. From (@), for any ¢ € T¢, we have E [Yiz] = (0, and thus
€T ¢

Yy = Wy by (). Since W;; ~ N(0,1), by taking union bound and using the tail of a Gaussian
variable (Vershynin| [2018)), it holds that, for any e3 > 0,

V2(d - s) exp(_eﬁ)

Vres .

P Y| > <
{grelgggl al > 63} <

Second, we consider min |E[Yi]|. From @), E[Y;] = Busu for any i € T+ Then, from the
zET

definition of 73 and 7", we obtain

mln |E[ H > CB”uHOO
167— 4[
Third, we estimate max |Yi — E[Yu]|. By (), Yir = Busu; + Wy Since Wiy ~ N(0,1) if i # L or

Wi ~ N(0,2) if i = [, by taking union bound and using the tail of a Gaussian variable (Vershynin
2018)), we have, for any ¢4 > 0,

21

2s €
P Yy —E[Yy]| > e b < (— A). 2
{If?%’-(‘ 1 —E[ z]\_e4}_ﬁ€4eXp 1 (22)
Now we combine Z0)(22) and set e3 = ¢4 = 2% 5! \/g . The complementary event in (20) is
¢Bllufloo

ax |Yy| <
max |Yy| <

8V/s

Moreover, (21)) and the complementary event in (22) lead to

Bllulloo  (Bllulles  (Bllullw .
¥al > | [E[¥a]| - i - B[] || > Lol _ Pl S8 e 7

These two inequalities implies that min |Y;;| > max |Y;| for any I € Ts.
€T,
¢

Finally, by taking union bound and using (T9)20)(22), we obtain

ISP
IP’{TC C T}
= Z P{mm |Ya| > max|Yzl\ io = l}
iers  UETd
> Z (1- {mln [Vl < max|YZl|} —P{io #1})
€T Te (23)
> (P{ig=1} - ]P’{mm Yi| < max|m|})
lET2
pm S (PNl SIS CHul)
o 3VBllully 256 VT(Bl[uflo 128s
oyt @y
 VaBlulle 2565
Since ¢ € (0, 1], (23) leads to the desired result with the condition of /3. O

Step 3: Putting everything together. Now we estimate dist(w, ) and prove Theorem

17
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Proof of Theorem2.2] For simplicity, we denote p = p(W,s). By applying Lemma with
C { = sand Lemma L if £ satisfies

B > max {16§—1||u||<:011 /s(logd + 2log s), 32g—1\/10gd + slog(gid)} , (24)

then we have

1 g1 TH3V2
7 log(18e) 6\/7r10g

Under the event in (23)), we estimate dist(,w). Since supp (@) = 7, we have

> 1—1.5558d7 1. (25)

3 . ~
P{P<16C57 10672+C7—}>1—

dist(@, u)* = dist(@, uz)* + [uz|f3. (26)
Firstly, we estimate ||u+.[|3. Since Tec (T T ) =T; UT¢, we have
¢ 1 SR
VIR ||u?||2>1**>1~

Secondly, we estimate dist (@, uA) Applying Lemma with A = 7 and ¢ = s, we obtain

lugells < flug= 5 + flur]l? <

Uz us

|| T||22 S ||'U1,?‘—||2 + 1-—2 || T||22 ,
\/1 + G 1+ w5

(Blluzllz—2p) ($8-2p)

where the last inequality holds since [|uz||3 > 2. Therefore, using Lemmaand uszl5 < %,

we have B
C2 21/ 1-— (Sl 2
dist(w, u?) <max{2— > —
\/ V (38—2p)2

dist(@, uz)? < luzlz +1 -2

2 1_L 1
< max 2—%—2 p4 22 =
I+ G2 1+ w5502
2
L [SGs-wrre-  ap
(38202 +p* (38202 +p?
¢ 2p*

Z+( B—2p)2 +p*

It follows from (26) and p < (3 that
dist(d, u)? < > + > = (2,
completing the proof. O

Remark A.7. From @24), a sufficient condition for the constant Cy in Theorem[2.2)is

C1 > max {16\/5, 321/2 + 10g2(9e)} = 321/2 + logy(9e).

A.5 PROOF OF THEOREM 2.3

Since Algorithm [I]and Algorithm [2have the same step for support estimation, we use some results

and techniques in Section [A4] to prove Theorem 2.3 Specifically, it requires Lemma [A.3] and
Lemma [A.6, which show that with high probability, |u;,| > % and 7?' C T. Recall that

iy = Yz /Y5, |2 and 75 = {i e T

- 5k
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Proof. From (6)), similar to (26), we have
dist (thyy, u)? = dist(anv, uz)? + |uz.||3. 27)

Recall that [|uz. |3 < < and |lu=[3 >1— 5 from the proof of Theorem L hence we only need
to estimate dist (., uT)Q.

From the definition of ., we obtain

Y'T i0 2

dist(dny, uz)* = dist(7—"2—, uz)?,
1YZ 12
To handle the randomness of 4y. Similarly to Lemmal[A6] we estimate

Y-
T A)Q (28)

dist
N

forany [ € T = {Z €T |u| > %} Without loss of generality, we assume u; > 0 and
consider

Y-
T,l 2
s — wrlles (29)
||Y7Ajl||2 T2
which is an upper bound of (28).
We begin with a simplification of (29):
TR S R
~ N, Th2T ~ 1,
V71 e
Z Yy — Buiw + wi (Bu — || Y- 7all2 )‘
= Y7113
€T , (30)
Zml Busul® + Juil” [ Bur = |V I
ieT ” l||2
RET x |Yi — E[Y3] \ﬁuﬁl\ Yz ll2 \
- Y7113 Y7057

where we use (a1 +az)? < 2(af+a3) in the first inequality and use ||u+ |3 < 1in the last inequality.

To estimate (30), we consider the following event:

2
{maxw <y = LI o vy B[] | <5 T C T} 7 G31)
i€Te NG €T
where ¢, > 0 is a constant close to 0. This event is related to 20)(22)(23).
Under the event in (31)), we first estimate the lower bound of || Y- l||% It holds that
1Y% ,5 > > (B luiw| — | Busuy — Yiz\)
zET;r
¢ Blull 2
> 4Z+ (8 [wiw| — T)
ieT; (32)
2
2 Z (8 [wiw| — 423 luzwil )
ieTH
3 252 12
> 1(1 —4%2)"B% lw|”,
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where 7'<+ c T and triangle inequality are used in the first inequality, the third inequality holds by

l € Tzandi € T and the last inequality holds by Hu7—c+ lo>1- % >3,

2
Second, we estimate ‘ﬂul - Y= ZHQ‘ . We obtain
B — %7 | = 8 hul? — 28ul] Y 1 + %713
2 2
< B Jul* - 28w > (Bluiw] —es)" + > (Bluiw| + €5)
i€T i€T

2 2
< B2 Juf® — 28uy/ B2 [ua? s |3 — 2€5BurJuz |1 + se?
2
+ 82 fw]” [|ug |13 + 2658w f|luz 1 + se3,

where the first inequality holds similar to (32)). Thus we have

2
B~ 1Yz, 2|

2
u=|5+1
< 28u (ﬂu'THZ + eslluzlly — /8 huif? [l 3 - 2es Buillus | + ) + 52,

To complete this estimation, we compute

luzll3 +1 2 furl? lan 2 2
Bur—TF =+ eslluzlls — /B2 |ual? lfuz |13 — 25 Burllug |y + se?

1
_ (Bu AT BH g lln)® — (82l [upl3 - 2esBulluz ] + seb)

Bur + esllup |l + /B2 [l uzllf — 2esBurlluzl + s

2 (1 - HU?H%)Q 2 2
< g (B ST s Bulugl + (g - 5)eh).

< BulC + 4es/s,

(33)

where we use [luz; < y/sand 1 — % < Jluz[|3 < 1 in the last inequality. It follows that (33) can

be simplified as
2 _ oy 26 2
[Bur = Y7 llo| < 82 uf? 25 + SesBuiy/s + s

Therefore, under the event in (31), combining 28)(30)(32)(34), we have

Y-

dist (o us)?
Y712
25 c2¢4p? HuHio 182 |’LL | _|_8§2< ﬁ”u”oo Bu \/>+S§2C B2 w2,

< +2

30 - 4<2) B2 Juy|* 20— 4<2)2ﬂ2 |
- ( 3262 1 1286, 3263 )<z
“\3(1—4)? " 12(1 —4¢)2 ' 3(1—4w)? | 3(1 —4g)?

3
< =
< 4C

(34)

(35)

where in the second inequality we use |u;| > % and 0 < ¢ < 1, and in the last equality we set
G2 = 1/69. Then, according to the event in (3I)), using 20)(22) with €3 = ¢4 = Chllulee ppg 23),

69+/s
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it holds that
_3¢;quwp(‘9g1$@ﬁ Tﬂd%umj Xp<—€f%£ﬁ%>
flggﬁum P ( - %)
(36)

Finally, similar to (23)), taking the union bound and using (T9)27)(36), we obtain
P {dist(tpy, uz) < ¢}

Y-
= ZP{dwt HYA1H2 uz) < on—l}

leT2
> 3 (1P dist( T un) s Y- B i £1))
2 e
Y
> Z (P{ig =1} — P{dlst(” H A)>C})
l€T2 Tl

 69v2s5(d — 5) ¢*B2|ull% 138,/ss” ¢ |ullZ
Y = T (g5 ) - VBl P (—to0iss>)
e 0PSB o Gl

— 5 ©
3vmBllull3, 256 VTCBlulls 1285
164/ss B2l
_16y/ss® exp ( - ] ).
- VaBlullo 2565
If § satisfies
B> 138¢7?||ul|"v/s(log d + 21log 5), (37)
it implies that
)  231V/2 4 470 =
P {dist Anv; T S 2 d >1—1.3041d".
{dist (v, u7) < ¢} 114/rTog2

Remark A.8. From (37), a sufficient condition for the constant Cs in Theorem[2.3is
Cy > 138V/3.
A.6 PROOF OF THEOREM[2.4]
Proof. Recall that 7" = {z €T :|ul > 3 f} From the assumption of u, we have 7 = T,}.
Therefore, using (23) and ’T’ = |T| = s, we obtain

~ 8d 98%||lulld\  4v2ss(d — 5) 0°5°||ull2
P{T_T}Zl_gfgu B e (~ ) - 0B [l e (- )
2122 2
BN RN Y

~ V0Bl 64s
If (3 satisfies
32v/2
B > max {?:[Huﬂofx/log d,80 || u|| 2t /s(log d + 2log s)} , (38)
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it implies that
5+ 4v/2

d ' >1-1.2766d".
- 4+/2mlog2

Remark A.9. From (38)), a sufficient condition for the constant C3 in Theorem[2.4)is

22
ng%[.

A.7 PROOF OF THEOREM [3.1]

The proof of Theorem is organized into two parts. First, we show that u° falls into a small
constant neighborhood of w. Subsequently, we prove the convergence of the truncated power
method.

Proof of Theorem[3.1} We denote § = s + 2k, p = p(W, 5) and F; = supp(u'), where k = Css
for some absolute constant Cs > 1. Similar to the proof of Theorem setting r = 0.01¢" and
¢ = §in Lemma[A3|with ¢’ € (0,1) and ¢ = 1 in LemmalA.6] if 3 satisfies

£ > max {16||u||001\/s(10gd + 2log s), 200((’)_1\/(1 +2C5)slog ((Qeds) + logd} )

1+2C5)
(39)

then with the probability exceeding

- 1 g1 T+3v2
mlog(432e3) 61/mlog 2

the following event holds:

d~'>1-14571d71,

{p <0.03¢'B, dist(u’,u) <1}.
We will continue the proof under this event.
Step 1: Estimating |u u®|. Since 1 > dist(u,u®)? =2 — 2 |u"u|, we have |u"u’| > 0.5.

Step 2: Convergence of truncated power method. To prove (II), we will first show that
dist(u, u?) < 1 by induction.

We denote Ay = F;_1 U F UT, then |A;| < s+ 2k = 3. Also, we define
w' =Yy, u'"/|[Ya,u o, (40)

hence we have u’ = w? /||w ||2 and F; is the set of indices with the & largest absolute values

in w'. Let x be the ratio of the second largest (in absolute value) to the largest eigenvalue of Yy, .
Then, since 7 C Ay, similar to (I5)(I6), we obtain

- max;-£i ‘AZ(YAf)| < P < 0036 - i
M(Ya)l 7 Bllualz—p ~ 8-0.033 97

where in the second inequality we use p < 0.03¢’3 and ¢’ < 1.

<1,

Let @ be a unit eigenvector corresponding to the largest eigenvalue of Y}, and satisfying w " @ > 0.
hence we have dist(u, @) = ||u — @/|2. Then, using (@0) and Lemma|A.1| we have

|ﬁT,wt’ > |,aTut71| (1+ %(1 752)(1 _ |ﬂTut71|2>)7

which implies that

2
1= JaTw| < (1= a7 ) (1~ ! (T @) @
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Since 7 C A, Lemma[A-4] gives
S S
02
1+ (B—2p)? 42)
P (00382 9(¢)
~(B—2p)2 ~ (B—0.068)2 8836’

|lu — a3 = dist(u,u)> <2 —2

. . . 1 a . . ..
where in the second inequality we use 1 — Jite <3 for a > 0, and in the last two inequalities we

use p < 0.03¢’B and ¢’ < 1. Note that the induction assumption dist(w,u!~1) < 1 implies that
|uTu'"1| > 0.5, which with [@2) further leads to

@ Y > [uTut | = |(u— a) Tul
3 (43)
S g Tt — Nl — =1 > 05— >
> T a7 > 05—
Plugging @3) into @T)), we have
1—|u"w'| <0.6568(1 —|u'u'""]),
which is equivalent to
dist (@, w') < 0.8105 - dist(@, u' ™), (44)
where we use ||| = ||w!|]2 = |[u*~!||2 = 1. For unit vectors @, u'~!, u, we obtain
dist(m, u'™") < dist(@,u) + dist(u'"*, u). (45)
This is because
dist(w, u) + dist (w1, u) = |12 — ul]2 + ||u + u' ",

Z ||T1ﬁ + 7_2ut71||2
> dist(@, u' ™),

where 71,79 € {£1} and we use @ Similarly, for unit vectors u, w!, u, it holds that

dist (u, w') < dist(u, ) + dist(w?, @). (46)
Using @2)@4)@3)@E6), we have
dist(u, w') < 0.8105 - dist(w,u' ™) + 0.0578¢". 47)

Since k = Css and F; is the set of indices with the largest k& absolute values in w?, Lemma
generates

lu'wh, | > |[uTw'| - c; /2 min{\/ 1— |uTwt?, (1+ Cgl/Q)(l - ]uth‘g )}
> [uTw!| - 5 (14 05 2) (1= JuTw! ),
which implies that

1= fuTwh, | <1 [uTwf|+ 05 200+ 652 (1= [uTw![*) < DI~ [uTw]),

where Dy := \/1 + 205_1/2(1 + 05_1/2). Then, since u’ = w, /||w, ||2, we have

dist(u, u') = \/2 —2uTut| = \/2 -2 |uTw}t’ /lw, |2
§Q/272|uth}-t’§D1-\/2(17\uth\) (48)
= D - dist(u, w")
< 0.8105D; - dist(u, u’ ') + 0.0578D; ¢’

where in the last second inequality we use (@7). Since dist(u,u’~!) < 1 and ¢’ < 1, the above
inequality also implies that dist(u, u!) < 1 with suitable constant Cs (constant D). Therefore, we

23



Under review as a conference paper at ICLR 2026

complete the induction, which proves that dist(u, u') < 1 for all . As a result, the above inequality
holds for all ¢, which leads to
dist(w, u') < n - dist(uw,u’ 1) + DyC’
< n? - dist(u,u'?) + nDo(’ + Dy’
< ...

<n'-dist(u,u’) + h¢’,

where 7 := 0.8105D1, Dy := 0.0578 D1 and h := 1’227]. This inequality is just (TT). O

Remark A.10. From 39)#@S), a sufficient condition for constants C, Cs in Theorem[3.1] is

Oy > max {16\/3, 200+/1 + (1 + 2C5)(1 + log2(9e))} ,

(0.8105 + 0.0578)\/1 +205 1+ 05 < L

It can be simplified as

Cy > 2004/ (1 + 210gy(9€))Cs + 2 + 21log, (9e),
Cs > 49.047.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 COMPUTATIONAL EFFICIENCY AND STATISTICAL PERFORMANCE

Figure [7] provides complementary analysis of computational efficiency and support recovery,
extending results in Figures [ and 5] Runtime results (left panel) show that our TPM matches
the efficiency of diagonal thresholding (DT), with only modest increase in cost at small 5 due to
extra iterations with weaker initialization; in contrast, covariance thresholding (CT) and spectral
projection (SP) are substantially more expensive across all signal strengths. Dimension-scaling
results (right panel) demonstrate that our TPM achieves perfect support recovery (success rate = 1)
across all tested dimensions, while competing methods underperform; in particular, DT maintains
a low success rate throughout. This superior statistical performance incurs minimal computational
overhead, as TPM’s runtime scales comparably to the efficient DT baseline (see Figure [5).

1 & @ & & A ©
—6—DT
——CT
0.8 |—=—SP
——TPM

o
o

Success rate
I
D

0.2 |

0)\6\"“"\9\9—0—6—9

3 40 50 60 70 80 90 100 2000 4000 6000 8000 10000
& Dimension

Figure 7: Left—Runtime versus signal strength 5. Right—Support-recovery success rate versus
dimension d. Experimental settings match those in Figures E| and E}

B.2 PERFORMANCE TRADE-OFFS BETWEEN COLUMN THRESHOLDING AND ITS VARIANT

We evaluate the performance trade-off between column thresholding (Algorithm [I) and its
computationally efficient variant (Algorithm ). The two methods differ only in their estimation
procedures: column thresholding applies eigenvalue decomposition to selected submatrices for
higher accuracy, whereas the variant adopts a simpler normalization-based estimator for speed. Both
use the same thresholding rule for support identification, yielding identical support recovery. We
assess this trade-off along two axes: problem dimension and sparsity level.
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Table [I] shows performance across increasing dimensions. Column thresholding consistently
achieves substantially lower estimation error than the variant, but requires more computation
time. These findings suggest that practitioners should choose column thresholding when estimation
accuracy is paramount and the variant when computational budget is tight. In addition, the runtime
of column thresholding grows almost linearly with dimension, reflecting favorable scaling relative
to CT and SP that require O(d>) operations.

Table 1: Performance comparison of column thresholding (Algorithm and its variant
(Algorithm[2)) across increasing dimensions. Column thresholding achieves lower estimation error at
higher computational cost, while the variant offers faster runtimes with reduced estimation accuracy;
support-recovery rates are identical due to the shared thresholding strategy. Results averaged over
500 trials with s = 25 and 8 = 150.

Algorithm Metric d=1000 d=3000 d=5000 d=7000 d=9000
Estimation error ~ 0.0555 0.0846 0.0950 0.0993 0.1152

Algorithm Success rate 0.8660 0.7080 0.6480 0.6300 0.5420
Runtime (s) 1.3x1073  1.4x1073  1.5x10™% 1.6x107% 1.7x1073
Estimation error 0.1932 0.2087 0.2165 0.2205 0.2305

Algorithm Success rate 0.8660 0.7080 0.6480 0.6300 0.5420
Runtime (s) 1.9x107%  2.8x107* 3.8x10~* 5.5x107* 7.2x107*

Table 2] examines performance under varying sparsity. Column thresholding preserves its accuracy
advantage across all sparsity levels while incurring higher runtime. As sparsity increases, its runtime
grows because the eigenvalue decompositions operate on larger s X s submatrices. By contrast,
the variant’s runtime remains nearly constant across sparsity levels, being driven primarily by the
ambient dimension rather than sparsity.

Table 2: Performance comparison of column thresholding (Algorithm and its variant
(Algorithm [2) under varying sparsity levels. Column thresholding maintains superior estimation
accuracy at higher computational cost, while both methods achieve identical support recovery.
Results averaged over 500 trials with d = 5000 and 5 = 150.

Algorithm Metric s=10 s=15 s=20 s=25 s=30
Estimation error ~ 0.0198 0.0243 0.0307 0.1030 0.2549

Algorithm Success rate 1 1 0.9900 0.6000 0.0620
Runtime (s) 1.0x10™3  1.1x1073 1.1x1073 1.5x1073 1.5x1073
Estimation error ~ 0.0738 0.1097 0.1456 0.2237 0.3619

Algorithm Success rate 1 1 0.9900 0.6000 0.0620
Runtime (s) 4.1x107%  4.0x107* 4.0x107* 4.1x10™* 4.1x107*

B.3 EMPIRICAL SIGNAL STRENGTH REQUIREMENTS UNDER UNIFORM AMPLITUDES

We examine the empirical signal strength requirement of the TPM initialized by column thresholding
(Algorithm [3) in the uniform-amplitude setting. Our theoretical results show that, under the non-
uniform /o condition ||ullc = €(1), a signal strength of order 8 = Q(v/slogd) suffices. By
contrast, the experiments here indicate that with uniform amplitudes, where ||u| = 1/4/s, the
algorithm empirically requires a stronger signal of order 5 = () (50'6\/log d).

Figure [8| reports the estimation error as a function of the scaled signal strength 5/+/slogd. In
panel (a), when varying the dimension d, the curves collapse under this scaling. In panel (b),
however, when varying the sparsity level s, the curves stabilize at different phase-transition
thresholds, with larger s requiring larger values of 3/+/slog d.

Figure [9] shows the corresponding support recovery performance. The phase-transition curves
exhibit the same dependence on s: larger sparsity levels demand larger 5/+/slogd at transition.
This parallel behavior indicates that the /s log d scaling is not attained for either estimation error or
support identification in the uniform-amplitude case.
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Figure 8: Estimation error versus scaled signal strength for TPM initialized by column thresholding
(Algorithm 3)), under varying dimensions (left) and sparsities (right). Experimental settings match
those in FigureEI, except that the nonzero entries of the true spike u have uniform amplitudes.
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Figure 9: Success rate versus scaled signal strength for TPM initialized by column thresholding
(Algorithm 3)), under varying dimensions (left) and sparsities (right). Experimental settings match
those in FigureEI, except that the nonzero entries of the true spike w have uniform amplitudes.
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Figure 10: Estimation error (left) and success rate (right) versus scaled signal strength %

for the truncated power method initialized by column thresholding (Algorithm [3) under varying
dimensions. Experimental settings match those in Figures |3_§| andEl

In Figure , we instead scale the signal strength by 3/ (30'6\/ log d). Under this scaling, the
curves for different s align much more closely for both estimation error and support recovery. This
collapse provides empirical evidence for an s°-6,/log d signal strength requirement for the column-
thresholding-initialized truncated power method when the spike has uniform amplitudes.

Taken together, these experiments suggest that the ¢, condition in our analysis is not merely
technical, but crucial for achieving the /slogd signal strength rate. In the uniform-amplitude
setting, the algorithm does not empirically attain the y/slogd scaling, in line with our theory.
Nonetheless, the method remains practically attractive even when the ¢, condition is violated.
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B.4 GROWING-s EXPERIMENT AND PHASE-TRANSITION BEHAVIOR

In this subsection we empirically investigate how the performance of the column—thresholding step
evolves as the sparsity level s grows with the dimension d. We adopt the same phase-diagram
parametrization as in Figure[T}

S

s =0(d?), 5= O(d?).

For any fixed 1), increasing ¢ moves the problem from the “Impossible” region, through the “Hard”
region, and eventually into the “Easy” region (see Figure I).

In this experiment we fix v = 0.2, for which the phase diagram predicts a transition from
“Impossible” to “Hard” at ¢ = 0.4 and from “Hard” to “Easy” at ¢ = 0.7. To probe the growing-s
behavior along this slice, we consider three representative sparsity scalings

s = dO.47 s = d0'5, s = dO.67

corresponding to ¢ = 0.4, 0.5, 0.6, respectively, and set 3 = 10sd~%2 so that s/8 < d°-? in all
cases. Figure 11 reports the empirical success probability over 500 Monte Carlo trials as a function
of d for these three values of ¢.

The results in Figure [[T] are consistent with the theoretical phase diagram and clearly illustrate the
growing-s transition. When s = d’# (i.e., ¢ = 0.4, at the boundary between the “Impossible” and
“Hard” regions), the success rate remains close to zero across the range of dimensions considered,
indicating that the algorithm almost never identifies the true support. When s = d% (¢ = 0.6, in
the “Hard” region), the success probability rises to 1 (exact support recovery in every trial) over the
range of d considered.

Overall, these experiments provide a quantitative illustration of the transition in algorithm
performance as s grows with d, and show that the empirical behavior of the support-recovery step
closely matches the theoretically predicted thresholds in (¢, ¢)-space.
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Figure 11: Empirical success rate of support recovery by column thresholding as a function of the
dimension d for three sparsity scalings: s = d%4, s = d"-%, and s = d"5, with ¢ = 0.2 fixed. The
success rate is computed over 500 Monte Carlo trials.
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