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ABSTRACT

Dual encoder architectures like CLIP models map two types of inputs into a
shared embedding space and learn similarities between them. However, it is not
understood how such models compare their two inputs. Similarity depends on
feature-interactions rather than individual features. Here, we first derive a method to
attribute predictions of any differentiable dual encoder onto feature-pair interactions
between its inputs. Second, we apply our method to CLIP models and show that
they learn fine-grained correspondences between parts of captions and regions in
images. They match objects across input modes and also account for mismatches.
This visual-linguistic grounding ability, however, heavily varies between object
classes, depends on the training data distribution, and largely improves upon in-
domain training. Using our method, we can identify individual failure cases and
knowledge gaps about specific classes.

1 INTRODUCTION

Dual encoder models use independent modules to represent two types of inputs in a common embed-
ding space and compute their similarity. The training objective is typically a triplet or contrastive
loss (Sohn, 2016; van den Oord et al., 2019). Popular examples include Siamese transformers for
text-text pairs (SBERT) (Reimers & Gurevych, 2019) and CLIP models (Radford et al., 2021; Jia
et al., 2021) for text-image pairs. The learned representations have proven to be highly informative for
downstream applications such image classification (Zhang et al., 2022a), visual question answering
(Antol et al., 2015), image captioning and visual entailment (Shen et al., 2021), as well as text (Chen
et al., 2023a; Yu et al., 2022) and image generation Rombach et al. (2022).

However, our understanding of which properties of the inputs these models base their predictions
on is very limited. Similarities depend on interactions between two instances rather than on either
instance’s properties alone. Few works have studied these interactions in symmetric Siamese encoders
(Eberle et al., 2020; Möller et al., 2023; 2024; Vasileiou & Eberle, 2024) and, to the best of our
knowledge, they are yet to be explored in non-symmetric models like vision-language dual encoders,
e.g. CLIP. First-order feature attribution methods like Shapley values (Lundberg & Lee, 2017) or
integrated gradients (Sundararajan et al., 2017) are insufficient for explaining similarities, as they can
only attribute predictions to individual features, not to interactions between them (Zheng et al., 2020;
Ramamurthy et al., 2022).

We address this research gap by extending previous work for language-only Siamese models in
NLP (Möller et al., 2023; 2024). Our contributions are: (1) We derive a method to compute general
feature-pair attributions that can explain interactions between inputs of any differentiable dual encoder
model. The method requires no modification of the trained model. (2) We apply the method to a
range of CLIP models and show it can capture fine-grained interactions between parts of captions
and corresponding regions in images as exemplified in Figure 2. It can also point out correspondence
between two captions or two images (Figures 11 and 12). (3) We utilize image-captioning datasets
containing object bounding-box annotations to evaluate the extent and the limit of the models’
intrinsic visual-linguistic grounding abilities.
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Our second-order attributions first-order attributions

Two cats chilling on a keyboard next to a screen and a cup. full caption

A kid with headphones sitting on a bench feeding birds. full caption

Deer next to people with umbrellas in front of trees. full caption

Figure 1: Examples of our second-order attributions for interactions between parts of caption and
image regions vs. the analogous first-order attributions for the similarity between the image and the
full caption.

2 RELATED WORK

Local feature attribution methods aim at explaining a given prediction by assigning contributions
to individual input features (Murdoch et al., 2019; Doshi-Velez & Kim, 2017; Lipton, 2018; Atanasova
et al., 2020). First-order gradients can approximate a prediction’s sensitivity to such features (Li
et al., 2016). In transformer architectures, attention weights were proposed as explanations (Abnar &
Zuidema, 2020), but ultimately rejected as only one part of the model(Jain & Wallace, 2019; Wiegr-
effe & Pinter, 2019; Bastings & Filippova, 2020). Layer-wise relevance propagation (LRP) defines
layer-specific rules to back-propagate attributions to individual features (Montavon et al., 2019; Bach
et al., 2015). In contrast shapley values (Lundberg & Lee, 2017) and IG (Sundararajan et al., 2017)
treat models holistically and can provide a form of theoretical guaranty for correctness. This has
recently been challenged by Bilodeau et al. (2024) who prove fundamental limitations of attribution
methods. A widely used attribution method in the vision domain is GradCam (Selvaraju et al., 2017),
which Chefer et al. (2021) and Bousselham et al. (2024) extend to transformer architectures. In
Appendix G we discuss the relation between IG, GradCam and our work.
First-order attribution methods including the above, cannot capture dependencies on feature inter-
actions. Tsang et al. (2018) have proposed to detect such interactions from weight matrices in
feed-forward neural netorks, the Shapley value has been extended to the Shapley Interaction Index
(Grabisch & Roubens, 1999; Sundararajan et al., 2020; Fumagalli et al., 2024) and Janizek et al.
(2021) have generalized IG to integrated Hessians. A special case are dual and Siamese encoders
whose predictions only depend on feature interactions between embeddings of two inputs coming
from independent encoders (cf. Eq. 1). Plummer et al. (2020) and Zheng et al. (2020) have assessed
image similarities. Eberle et al. (2020) have extended LRP for this model class (Vasileiou & Eberle,
2024). Möller et al. (2023) have extended IG to Siamese language encoders (Möller et al., 2024).
Here we further generalize this work to multi-modal dual encoders.

CLIP explainability. A number of works have focused on better understanding how CLIP models
and contrastive image encoders function. Gandelsman et al. (2023) identify functions of individual
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attention heads in CLIP’s image encoder. Tu et al. (2024) investigate safety objectives in CLIP
models and Mayilvahanan et al. (2024) analyze their out-of-domain generalization. Several works
have utilized local attributions on CLIP encoders. Zhao et al. (2024) have tested a wide range of
first-order methods attributing similarity scores onto images and captions. With the InteractionCAM
baseline, Sammani et al. (2023) have proposed a method to assess feature interactions in contrastive
models. InteractionLIME has pioneered the attribution of interactions between captions and images in
CLIP models (Joukovsky et al., 2023), and as such is the closest related method to ours. However, it
bi-linearly approximates CLIP and, therefore, cannot explain the actual model. Next to gradient-based
attribution methods, Li et al. (2022c; 2023) and Black et al. (2022) have proposed forward-facing
saliency methods for similarity models.

3 METHOD

We first derive general feature-pair attributions for dual encoder predictions and then specifically
apply the result to vision-language models.

Derivation of interaction attributions. Let

s = f(a,b) = g(a)Th(b) (1)

be a differentiable dual-encoder model, with two vector-valued encoders g and h, respective inputs
a and b and a scalar output s. For our purpose, g will be an image encoder with an image input a
and h will be a text encoder with a text representation b as input. To attribute the prediction s onto
features of the two inputs a and b, we also define two uninformative reference inputs ra, the black
image, and rb, a sequence of padding tokens with fixed length. We then rigorously start from the
following expression:

f(a,b)− f(ra,b)− f(a, rb) + f(ra, rb) (2)

Our derivation first proceeds by showing the equality of this initial starting-point to Eq. 10. We then
reduce this equality to our final attributions in Eq. 11 using the approximations discussed below. As
a first step, seeing f as an anti-derivative, we can turn the above formula into an integral over its
derivative: [

f(a,b)− f(ra,b)
]
−
[
f(a, rb)− f(ra, rb)

]
=

∫ b

rb

∂

∂yj

[
f(a,y)− f(ra,y)

]
dyj =

∫ b

rb

∫ a

ra

∂2

∂xi∂yj
f (x,y) dxi dyj

(3)

Here, x and y are integration variables for the two inputs. We use component-wise notation with the
indices i and j for the input dimensions and omit sums over double indices for clarity. We plug in the
model definition from Equation 1:∫ a

ra

∫ b

rb

∂2

∂xi∂yj
gk(x)hk(y) dxi dyj (4)

Again, we use component-wise notation for the dot-product between the two embeddings g(x) and
h(y) and index output dimensions with k. Since neither embedding depends on the other integration
variable, we can separate the integrals:∫ a

ra

∂gk(x)

∂xi
dxi

∫ b

rb

∂hk(y)

∂yj
dyj (5)

This step makes explicit use of the strict independence of the two encoders. Cross-encoder architec-
tures would introduce dependencies between them. Both terms are line integrals from the references
to the actual inputs in the respective input representation spaces; ∂gk(x)/∂xi and ∂hk(y)/∂yj are
the Jacobians of the two encoders. Following the concept of integrated gradients (Sundararajan et al.,
2017), we define the straight lines between both references and inputs,

x(α) = ra + α(a− ra), (6)
y(β) = rb + β(b− rb), (7)
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parameterized by α and β, and solve by substitution. For the integral over encoder g this yields∫ 1

0

∂gk (x(α))

∂xi

∂xi(α)

∂α
dα = (a− ra)i

∫ 1

0

∂gk (x(α))

∂xi
dα, (8)

since ∂x(α)/∂α = (a− ra), which is a constant w.r.t α; hence, we can pull it out of the integral. The
integral over encoder h is processed in the same way. We then define the two integrated Jacobians,

Ja
ki =

∫ 1

0

∂gk (x(α))

∂xi
dα ≈ 1

N

N∑
n=1

∂gk(x(αn))

∂xi
, (9)

and Jb
kj analogously. In practice, these integrals are calculated numerically by sums over N steps,

with αn = n/N . This introduces an approximation error which must, however, converge to zero for
large N by definition of the Riemann integral. We plug the results from Equation 8 and the definitions
of the integrated Jacobians back into Equation 5 and obtain:

(a− ra)i J
a
ikJ

b
kj (b− rb)j =: Aij (10)

After computing the sum over the output embedding dimensions k, this provides a matrix of interac-
tions between feature-pairs (i, j) in input a and b which we call attribution matrix Aij . Note that
except for the numerical integration, the equality to Equation 2 still holds. Hence, the sum over all
feature-pair attributions in A is an exact reformulation of the ansatz. If the references ra and rb are
uninformative, i.e. f(ra,b) ≈ 0, f(a, rb) ≈ 0, f(ra, rb) ≈ 0, we arrive at the final approximation

f(a,b) ≈
∑
ij

Aij , (11)

where i ranges over dimensions in input a and j over b. This provides an approximate decomposition
of the model prediction s=f(a,b) into additive contributions of feature-pairs in the two inputs.

Inter-modal attributions. In the derivation above, we treat image and text representations as
vectors. In current transformer-based language encoders, text inputs are represented as S×Db

dimensional tensors, where S is the length of the token sequence and D is the model’s embedding
dimensionality. In vision transformers, image representations are P×P×Da dimensional tensors,
with P being the number of patches that the image is split into horizontally and vertically. Our
pair-wise image-text attributions thus have the dimensions P×P×Da×S×Db. With hundreds of
embedding dimensions and tens of tokens and patches, this quickly becomes intractable. Fortunately,
the sum over dimensions in Equation 11 enables the additive combination of attributions in A. We
sum over the embedding dimensions of both encoders Da and Db and obtain a P×P×S dimensional
attribution tensor, which estimates for each pair of a text token and an image patch how much
their combination contributes to the overall prediction. These attributions are still three-dimensional
and thus not straightforward to visualize. However, again we can use their additivity, slice the 3d
attribution tensor along text or image dimensions and project onto the remaining dimensions by
summation. We can for example select a slice over a range of tokens and project it onto the image as
in Figure 2 (a)/(b). Attribution heat maps over the image result from interpolating the patch-level
attributions to image resolution. The reverse case of slicing parts of the image and projecting the
result onto the caption dimension is shown in Figure 2(c)/(d). Here, we project the selected image
slices marked by yellow bounding boxes onto the caption and visualize attributions as saliency maps
over tokens in the caption.

Intra-modal attributions. Albeit vision-language dual-encoders are typically trained to match
images against captions, we can compute attributions for image-image or text-text pairs as well by
applying the same encoder to both inputs. In Appendix A, we describe this in more detail and show
examples.

4 EXPERIMENTS

In the experiments, we apply our feature-pair attributions to contrastively trained vision-language
dual encoders. We focus on evaluating the interactions between mentioned objects in captions and
corresponding regions in images by selecting sub-strings in captions and analyzing their interactions
with image patches, as illustrated in Figure 2 (a)/(b). Throughout our experiments, we attribute to the
second-last hidden representation in the models’ image and text encoder and use N=50.
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(a) A couple sitting on a
bench looking at the sea.

(b) A couple sitting on a
bench looking at the sea.

(c) A dog is jumping for
a frisbee.

(d) A dog is jumping for
a frisbee.

Figure 2: Inter-modal attributions between: (left) selected parts of a caption in yellow and an image,
heatmaps over the image are red for positve and blue for negative; (right) selected bounding-boxes in
the image and the caption, saliencies over captions are red for positive and blue for negative.

Datasets. We base this evaluation on three image-caption datasets that also contain object bounding-
box annotations in images, Microsoft’s COCO (Lin et al., 2014), the Flickr30k collection (Young
et al., 2014; Plummer et al., 2015), and the HNC dataset by Dönmez et al. (2023). For HNC, we
follow their approach by generating captions from scene graphs using templates. Specifically, we
use a basic template of the form "<subject> <predicate> <object>" to align the generated captions
with the domain of the other two datasets. In our analysis, we use HNC for evaluation only, on
Flickr30k we use the test split, and on COCO we use the validation split as the test split does not
contain captions1.

Models. We analyze CLIP dual-encoder architectures (Radford et al., 2021) without cross-encoder
dependencies and the standard inter-modal contrastive objective. We evaluate the original OpenAI
models, as well as the OpenCLIP reimplementations trained on the Laion (Schuhmann et al., 2022),
Dfn (Fang et al., 2024), CommonPool and DataComp (Gadre et al., 2023) datasets, as well as
MetaCLIP (Xu et al., 2024) 2.

Fine-tuning. Next to the unmodified models, we evaluate variants fine-tuned on the COCO and
Flickr30k train splits. All trainings run for five epochs using the AdamW optimizer (Loshchilov &
Hutter, 2018) with an initial learning rate of 1× 10−7, exponentially increasing to 1× 10−5, a weight
decay of 1× 10−4, and a batch size of 64 on one NVIDIA A6000 GPU.

4.1 OBJECT LOCALIZATION

To systematically assess the visual-linguistic grounding abilities of the analyzed dual encoders, we
evaluate the models’ localization ability of objects in the image that are mentioned in a caption. For
this experiment, we use all object annotations for which a single instance of its class appears in the
image and its bounding-box is larger than one patch. For COCO, we identify class occurrences in the
caption through a dictionary based synonym matching. For HNC, classes exactly match sub-strings in
captions and in Flickr30k, respective spans are already annotated. This results in 3.5k image-caption
pairs from COCO, 8k pairs from Flickr30k, and 500 pairs from HNC.

Localization evalutaion. We compute attributions between the token range of a class mention
in a given caption and the image. Following Zhao et al. (2024), we then employ the Point Game
(PG) framework by Zhang et al. (2018) to evaluate how well attributions correspond to human
bounding-box annotations. It defines PG Accuracy (PGA) as the fraction of cases for which the
maximally attributed patch lies within the objects’ bounding-box, and PG Energy (PGE) as the
fraction of positive attributions falling inside a given bounding-box over the total attribution to
the full image (Zhao & Chan, 2023; Wang et al., 2020). Figure 3 shows examples from different
PGE-ranges. Very high or low values, unambiguously indicate object correspondence or clear failure
cases, respectively (examples a and d). Intermediate values, however, often arise from attributions

1https://www.kaggle.com/datasets/shtvkumar/karpathy-splits
2CLIP family: https://github.com/openai/CLIP, Open family: https://github.com/mlfoundations/open_clip
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extending to the context beyond the bounding box, such as the shirt in (b) and the tennis court in (c).
Figure 4 (Left) shows cumulative PGE-distributions for the OpenClip models on the COCO dataset.
Table 1 shows the median PGE and PGA for the OpenAI model and the OpenClip Laion counterpart
both implementing the ViT-B-16 architecture on all three evaluation datasets. Results for all tested
OpenAI and OpenCLIP models on all datasets are included in Appendix C.

In-domain fine-tuning. The tested models are trained with large captioning datasets from the web
but have (presumably) not been tuned on the Flickr30k and COCO train splits. In order to assess
domain-effects of the models’ grounding ability, we fine-tune them on the respective train splits. We
emphasize that all fine-tunings are performed in the standard contrastive setting and never change
model architectures nor training objectives to explicitly perform grounding. We then compare the
grounding ability of unmodified models and their fine-tuned counterparts by assessing their full
PGE-distributions and test whether the stochastic dominance of one over the other is significant
(Dror et al., 2019) (details in Appendix F).
For both the OpenAI and OpenCLIP models, fine-tuning increases grounding abilities by a large
margin. These improvements are consistently significant at a strict criterion of p<0.001 and ϵ=0.01.
While the unmodified CLIP ViT-B/16 model already has good grounding abilities on COCO and
Flickr30k (the examples in Figure 3 are from this model), the off-the-shelf OpenCLIP counterparts
ground rather poorly on these datasets. However, their improvement upon in-domain fine-tuning is
remarkable, which is apparent in Figure 7. The off-the-shelf model cannot identify the clock and even
attributes the surfboard negatively, while the fine-tuned version points out both clearly.

Class-wise evaluation. To test the knowledge about specific visual-linguistic concepts in the models
and how it changes upon in-domain tuning, we can break down the above analysis for individual
classes. Figure 5 shows average PGE-values and their standard deviations in the OpenClip Dfn
model for all COCO classes, ordered from left to right by how good their average grounding ability
is in the unmodified model (blue). Values for PGE range from 0.92±0.08 for sheep to 0.07±0.07
for snowboard. The model can already point out the leftmost classes sheep, bear, elephant etc. very
well, while for the rightmost classes snowboard, cell phone, baseball bat, etc., intrinsic grounding is
poor. Upon fine-tuning (orange) most classes improve. Using the standardized mean difference of the
two PGE-values as a measure for effect size, we observe the largest improvements for the classes
horse, bench, giraffe, airplane and clock. In Appendix C (Figure 19), we repeat this experiment for
the Laion and CommonPool models and observe similar results.

Baselines. To test whether the complexity of our attributions is necessary to assess the models’
interactions between captions and images, we compare our method against two baselines: the
InteractionCAM by Sammani et al. (2023) extending GradCAM to contrastive encoders (cf. Appendix
G), and the ITSM method by Li et al. (2022c) resulting from pair-wise multiplication of token and
patch embeddings. In contrast to other first-order attribution methods, both of these baselines
can assess interactions between captions and images and, like our method, do not modify model
parameters, embeddings nor gradients. Figure 4 (right) includes cumulative PGE-distributions for
our attributions and both baselines, for a selection of models on the COCO test split. Our method
results in significantly better PGE-statistics (p<0.001, ϵ=0.01). Table 2 shows median PGE and
PGA on COCO and Flickr30k for the OpenAI model, quantifying the large performance margin
between our method and the two baselines. Results for the Laion, DataComp and DFN model are
included in Table 6. Figure 15 shows qualitative comparison of the interaction attributions by the
three methods.

4.2 OBJECT DISCRIMINATION

In many of the above examples, we observe that attributions between a given object in the text and a
non-matching one in the image or vice versa are often not only neutral but negative. Figure 9 includes
four explicit examples. For a systematic evaluation of this effect, we sample instances from COCO
that include at least two different object classes, which both appear exactly once in the image and are
mentioned in the caption. We compute attributions between the two corresponding bounding-boxes
and text spans and also across them, which we refer to as cross-attribution. The attribution to the
actual object’s bounding-box is almost always positive (97.1%), while cross-attributions to the other
object are negative in 65.6% of the cases (70.1% in the COCO fine-tuned model - cf. Figure 16 in

6
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(a) Dog sitting inside the
cab of a yellow truck.
(PGE=0.1)

(b) A man in a shirt and
tie sitting on a white chair.
(PGE=0.4)

(c) A woman on the court
while holding her tennis
racket. (PGE=0.5)

(d) A man is feeding
an elephant over a fence.
(PGE=0.9)

Figure 3: Examples for attribuitions between selected objects in the caption (yellow) and the image
together with corresponding COCO bounding-boxes. PGE is the fraction of positive attributions
falling inside the box as described in Section 4.1.
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Figure 4: (Left) Cumulative distributions of the fraction of attributions falling within corresponding
COCO object bounding-boxes (PGE) as described in Section 4.1 before (dashed) and after (solid)
in-domain fine-tuning. (Right) Cumulative PGE-distributions for our method (solid), the Interac-
tionCAM (dashed) and ITSM (dotted) baselines.

Table 1: Summary of the vision-language grounding
evaluation for the ViT-B-16 models trained by OpenAI
and on Laion. Tuning is whether the model was fine-
tuned on the train split of the respective dataset, mPGE
reports median Point Game Energy and PGA is the
Point Game Accuracy. Full results in Table 5 and 4.

COCO HNC Flickr30k

Training Tuning mPGE PGA mPGE PGA mPGE PGA

OpenAI No 72.3 79.0 57.0 65.0 64.4 72.1
Yes 78.0 82.9 - - 73.4 79.0

Laion No 49.4 63.3 40.0 51.6 38.2 52.0
Yes 71.1 83.2 - - 54.6 61.8

Table 2: Point Game comparison of our at-
tributions against the ITSM method and In-
teractionCAM (ICAM) for the OpenAI and
Laion model. Results for more models are
in Table 6.

COCO Flickr30k

Training Method mPGE PGA mPGE PGA

OpenAI
ITSM 18.1 21.4 19.5 23.3
ICAM 38.6 54.6 33.5 51.4

Ours 72.3 79.0 64.4 72.1

Laion (tuned)
ITSM 22.8 30.3 24.5 28.7
ICAM 32.5 58.4 33.5 51.4

Ours 71.1 83.2 54.3 61.8

Appendix C). This shows that the models do indeed often attribute mis-matching objects negatively,
however, this is not consistently the case.
We further investigate cases where cross-attribution tends to be positive. Table 7 (Appendix C)
shows the five class-pairs with the highest average values. All are between classes that often occur
together in the labels often involving people but also Toilet and Sink. We hypothesize that the
models may positively relate objects that frequently appear together and test it by correlating class co-
occurrence in the labels with average cross-attribution between all classes. The Spearman (Pearson)
correlation is rS = 0.25 (rP = 0.33), indicating that class co-occurrence may moderately affect
positive cross-attribution but is likely not the only reason for it.
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Figure 5: Class-wise average Point Game Energy (PGE) and
its standard deviation (error bars) of the OpenClip DFN model
before and after in-domain fine-tuning on the COCO train split.

0 25 50 75 100 125 150 175
Deleted Patches

0.00

0.25

0.50

0.75

1.00

Co
sin

e 
Si

m
ila

rit
y

Ours
Random
ICAM
ITSM

Figure 6: Decline of similarity
scores between images and cap-
tions for iterative conditional im-
age patch deletions.

(a) A clock on a pole in the intersection of two streets. (b) A surfer riding a wave on a yellow surfboard.

Figure 7: Attribution differences between the off-the-shelf OpenCLIP Laion model (left image) and a
version fine-tuned on COCO (right image). Attribution heat maps are for selected caption parts in
yellow.

4.3 INPUT PERTURBATION

Insertion and Deletion. We evaluate the attribution quality through a perturbation experiment
(Samek et al., 2016). We follow Sammani et al. (2023) to extend perturbation evaluations to contrastive
models by conditionally removing or inserting the most attributed features in one input while keeping
the other input unmodified and compare our method with random selection, InteractionCAM, and
ITSM baselines. Figure 6 plots the decrease in similarity score for conditional image patch deletion
(CID). Our method produces the steepest score decline as a function of the number of patches
removed, indicating its ability to identify the most relevant interactions. Next to CID, we also evaluate
image patch insertion (CII) as well as conditional text token deletion/insertion (CTD/CTI). All plots

+
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ac

tio
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+
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actual object
other object

Sign of total attribution within bounding-box

Figure 8: Distribution of signs of attributions
to actual and other objects in the image as
described in Section 4.2.

Method CID ↓ CII ↑ CTD ↓ CTI ↑
Ours 64 112 6.4 7.4
Random 83 84 6.6 6.8
ICAM 89 80 6.5 6.9
ITSM 99 69 6.8 6.7

Table 3: AUC for conditional image deletion
(CID), conditional image insertion (CII), con-
ditional text deletion (CTD), and conditional
text insertion (CTI), performed on COCO for
models pre-trained on Laion and fine-tuned
on COCO. ↓ denotes lower is better and ↑
denotes greater is better. Corresponding plots
are in Figure 20.
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(a) A giraffe and a zebra
checking each other out.

(b) A desk with items in-
cluding a cellphone and
pocket change.

(c) A long bridge with a
train going underneath.

(d) A couple sitting on a
bench looking at the sea.

Figure 9: Attributions between selected parts of a caption (yellow) and a corresponding image. Other
objects that also appear in the image and are mentioned in the caption (underlined) but are not selected
for attribution often receive negative attributions (blue parts of the attribution heatmaps).

(a) A man holding a
slice of pizza.

(b) A man holding a
coffee mug.
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Figure 10: (Left) Example attributions for hard negative captions. True object marked in yellow,
negative in magenta. COCO bounding-boxes in red. (Right) Histograms for score (δS) and attribution
(δA) changes in hard negative captions (cf. Section 4.3).

are included in Figure 20. Table 3 provides a summary and reports the area under the curve (AUC)
for the four variants. Our method consistently results in the highest AUC values for the insertion
experiments and the lowest for deletion.

Hard negative captions. Insertion and deletion experiments have been criticized for producing
out-of-domain inputs Hooker et al. (2019). On the text side, it is straightforward to produce in-domain
perturbations. We create hard negative captions that replace a single object in a positive caption
with a reasonable but different object to receive a negative counterpart. To this end, we leverage the
automatic procedure by (Dönmez et al., 2023) together with our simplified template (cf. Section 4)
and additionally create a second resource from COCO by manually annotating a small yet high-quality
evaluation sample of 100 image-caption pairs.
We check whether our negative captions actually result in a decrease of the predicted similarity
score compared with their positive counterparts and define the difference as δS . It is negative in
95.2% (89.1%) of the COCO (HNC) pairs. We then compute attributions between the token range of
the original or replaced object and the object bounding-box in the image and define the attribution
difference between the negative and the positive caption as δA. It is also negative in 95.2% (74.1%)
of the COCO (HNC) examples. Full histograms for δA and δS are included in Figure 10 (Right).
These results show that the model mostly reacts correctly to the mistake in the caption and decreases
the assigned attribution. An examples are included in Figure 10 (Left).

5 DISCUSSION

Interpretation of results. Prior to us, others have shown which areas in images and tokens in
captions have an influence on CLIP similarities by means of first-order attributions. However,
by enabling second-order attributions, to our knowledge, our evaluation is the first that analyzes
interactions between captions and images. This way we can assess fine-grained correspondence
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between parts of captions and regions in images.
An interesting finding is that the models do not only match objects, but can also penalize mismatches
by assigning negative contributions to them. However, such cross-attributions also happen to be
positive in other cases and we cannot ultimately clarify what determines their sign. Objects that
frequently occur in the same context, like various things associated with people, toilets and sinks,
cars and buses, etc. appear to have an influence but do not seem to be the only determining factor.
We note that positive cross-attributions need not indicate the model cannot differentiate between two
objects, but may be due to the presence of one object increasing the likelihood of observing another.
Future work should develop a better understanding of this phenomenon.
The fact that the models’ grounding ability can be poor for individual classes and improves by large
margins upon in-domain tuning shows that the models can have knowledge gaps about particular
classes and require explicit exposure to their visual-linguistic concepts to develop a robust inter-modal
correspondence. Despite clip embeddings being known to be among the most generalizable available,
this finding indicates that there is still room for improvement.
While the unmodified OpenCLIP models frequently exhibit obvious misattributions, we can hardly
identify unreasonable attributions in the tuned versions nor the OpenAI models. Qualitatively in
these models attributions outside of object bounding-boxes occur in visually correlated scenes like
bathrooms or streets (Figure 14 (a), (c)), true misidentification in difficult contexts (e.g. the dog in
Figure 3), partial coverage (Figure 14 (d)) or attributions falling just outside of boxes (Figure 14 (b)).

Limitations. Our feature-pair attributions are an approximation as Equation 11 clearly states.
Moreover, throughout this work, we attribute to deep representations of inputs because it is computa-
tionally feasible and informative (Möller et al., 2024). In transformers, deep representations have
undergone multiple contextualization steps and are technically not bound to input features at the given
position. Last, recently proven fundamental limitations of attribution methods urge caution in their
interpretation, especially regarding counterfactual conclusions about the importance of individual
features for the overall prediction (Bilodeau et al., 2024). Despite these considerations, empirically,
our evaluations show that our derived feature-pair attributions produce reasonable results in a large
majority of cases and can point out general inabilities (misattribution before fine-tuning), individual
errors (misidentification of objects), and biases (positive cross-attribution of objects). While they
should not be seen as guaranteed robust and faithful explanations, we argue that our attributions do
provide valuable insights into dual-encoder models and have the potential to improve these models
further.

6 CONCLUSION

In this paper, we have derived general feature-pair attributions for dual-encoder architectures enabling
the attribution of similarity predictions for two inputs onto interactions of their features. Our method
applies to any differentiable dual-encoder architecture and requires no modification of the model
itself, its representations or gradients. We believe it can lead to valuable insights in other applications
like image similarity or (multi-modal) information-retrieval and help improve these models further.
Applying our method to CLIP models shows that they learn fine-grained correspondence between
visual and linguistic concepts. Mis-matching or wrong objects are often not only ignored, but
contribute negatively to image-caption similarities. However, this inter-modal correspondence can be
poor when models are not exposed to matching data distributions during training and we can identify
knowledge gaps about specific object classes. In-domain fine-tuning can substantially improve these
gaps pointing out weak spots in the generalization of the initial models.

7 REPRODUCIBILITY STATEMENT

Upon publication we will make our code available on GitHub. For reviewers to verify the implemen-
tation of our method, we include code of the core functionality in the supplementary material.
For the implement of our method, we make use of the auto-differentiation framework in the PyTorch
package. For a give input x(αn), g(x(αn)) is the forward pass through the encoder g, and the
Jacobian ∂gk(x(αn))/∂xi is the corresponding backward pass. For an efficient computation of all N
interpolation steps in Eq. 9, we can batch forward and backward passes since individual interpolations
are independent of another.
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In practice, we attribute to intermediate representations, thus, the interpolations in Eq. 6 are be-
tween latent representations of the references and inputs. We use PyTorch hooks to compute these
interpolations during the forward pass.
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A hot dog sitting on a table covered in confetti.
Surrounded by glitter, there is a sausage in a bun.

A hot dog sitting on a table covered in confetti.
Surrounded by glitter, there is a sausage in a bun.

Figure 11: Intra-modal text-text attributions
between top and bottom captions (top: selec-
tions in yellow, bottom: saliencies as above).

Figure 12: Intra-modal image-image attributions
between left and right image (left: selection in
yellow, right: heatmaps as above). More examples
in Figure 13

Figure 13: Image-image attributions between the yellow bounding-box in the left image and the one
to its right as described in Section 3

A INTRA-MODAL ATTRIBUTIONS

Albeit vision-language dual-encoders are typically trained to match images against captions, we can
compute attributions for image-image or text-text pairs as well by applying the same encoder to both
inputs. For text-text attributions, after summation over embedding dimensions, this yields an S1×S2

dimensional attribution tensor, with S1 and S2 being token sequence lengths of the two texts. These
2d attributions may be visualized in the form of a matrix (Möller et al., 2023). In Figure 11 we,
however, stick to the slice representation and attribute the yellow selected slice in the first caption
onto the second caption. For image-image similarities, attribution tensors become four dimensional
taking the shape (P×P )1×(P×P )2 and containing a contribution for every pair of two patches
from either image. Parentheses indicate which input the dimensions belong to. In Figure 12, we
attribute the slice of the yellow bounding-box in the left image onto the image to its right. Appendix
B includes additional examples.

B ADDITIONAL EXAMPLES

Figure 13 shows two more examples for image-image attributions as described in Section 3. Figure
14 shows error cases of attributions that are discussed in Section 5.

C ADDITIONAL RESULTS

Figure 16 shows the distribution of attribution signs that the analysis in Section 4.2 is based on.
Figure 17 and 18 provide additional plots of cumulative PGE-distributions for different models and
datasets and Figure 19 shows class-wise evaluations of PGE for two additional OpenCLIP models.

D CROSS OBJECT ATTRIBUTION

Table 7 shows class pairs from COCO with a positive cross-attribution as discussed in Section 4.2.
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(a) A bathroom with a
sink. PGE=0.17

(b) Somone is going
down a wave lying on
a surfboard belly down.
PGE=0.1

(c) A yellow bus and
a red car on a street.
PGE=0.08

(d) A waiting person be-
hind a locked bicycle.
PGE=0.1

Figure 14: Different error cases with low PGE-values as discussed in Section 5. COCO bounding-
boxes (red) are for corresponding token-ranges (yellow).

Table 4: Summary of the vision-language grounding evaluation for all OpenClip models on COCO
and Flickr30k. The Training column refers to the dataset the model was initially trained on, Tuning
is whether the model was addionally fine-tuned on the respective evaluation dataset. All models
implement the ViT-B-16 architecture except Meta-Clip that uses quickgelu activations.

COCO Flickr30k

Training Tuning mPGE PGE>0.8 PGA mPGE PGE>0.8 PGA

Laion No 49.4 22.0 63.3 38.2 15.9 52.0
Yes 71.1 47.3 83.2 54.6 30.6 61.8

CommonPool No 43.0 18.2 58.8 36.7 15.5 53.0
Yes 57.7 28.7 67.1 44.6 20.8 56.2

DataComp No 38.5 14.6 56.0 32.8 11.8 48.9
Yes 72.4 50.0 75.1 50.7 27.3 56.0

DFN No 46.5 19.6 54.3 35.4 12.3 43.3
Yes 71.4 53.3 74.6 53.1 33.5 58.3

Meta-Clip No 44.2 16.8 52.3 37.0 14.5 46.4
Yes 57.5 49.8 77.1 49.2 24.1 57.2

Table 5: Summary of the vision-language grounding evaluation for different CLIP models by OpenAI
as described in Section 4.1. Model refers to the investigated architecture, Tuning is whether the model
was fine-tuned on the train split of the respective dataset.

COCO HNC Flickr30k

Model Tuning mPGE PGE>0.8 PGA mPGE PGE>0.8 PGA mPGE >0.8 PGA

RN50 No 66.3 28.8 76.9 50.1 22.6 61.8 60.1 25.5 71.2
ViT-B/32 No 63.5 33.3 69.1 52.8 28.5 58.5 50.4 23.4 58.1
ViT-B/16 No 72.3 35.7 79.0 57.0 31.7 65.0 64.4 28.4 72.1
ViT-B-16 Yes 78.0 48.4 82.9 - - - 73.4 40.7 79.0

E PERTURBATIONS

E.1 CONDITIONAL INSERTION AND DELETION

E.2 HARD NEGATIVE CAPTIONS

Figure 21 shows full histograms of δS and δA as discussed in the experiments with hard negative
captions in Section 4.3.
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A guy with a hat and a frisbee in front of a car by a lake

O
ur

s
IC

A
M
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SM

A woman on the phone with an umbrella sitting on a bench in a street

O
ur

s
IC

A
M

IT
SM

Figure 15: Qualitative comparison between our attributions and the InteractionCAM (ICAM) and
ITSM baseline. Heatmaps over images in a given column are for the marked marked parts of the
captions in yellow below.
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Sign of total attribution within bounding-box

Figure 16: Distribution of signs of attributions to actual and other objects in the image as described
in Section 4.2.

COCO Flickr30k

Training Method mPGE PGA mPGE PGA

OpenAI
ITSM 18.1 21.4 19.5 23.3
ICAM 38.6 54.6 33.5 51.4

Ours 72.3 79.0 64.4 72.1

Laion (tuned)
ITSM 22.8 30.3 24.5 28.7
ICAM 32.5 58.4 33.5 51.4

Ours 71.2 83.2 56.3 63.6

DFN (tuned)
ITSM 24.2 34.5 25.1 31.4
ICAM 33.3 46.5 24.2 42.2

Ours 71.4 74.6 53.1 58.3

DataComp (tuned)
ITSM 25.5 38.7 26.5 33.9
ICAM 36.9 49.5 23.2 37.3

Ours 72.4 75.1 50.7 60.0

Table 6: Localization results of our method compared against the ITSM and InteractionCAM (ICAM)
baselines for different models.

Table 7: Class-pairs with the highest average positive attributions between the first class in the caption
and the second class in the image (cross-attribution), together with how often the first class appears
together with the second one in the COCO labels (co-occurrence).

Class-pair Co-occurrence [%] Cross-attribution [×10−3]

Kite – Person 90.1 2.5 ± 6.9
Frisbee – Person 86.9 1.9 ± 3.5

Surfboard – Person 95.3 1.8 ± 2.5
Dining Table – Person 49.9 1.5 ± 1.7

Toilet – Sink 45.6 1.0 ± 2.5
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Figure 17: Cumulative γ-distribution plots of the OpenAI models for the Coco (left) and Flickr30k
(right) dataset as described in Section 4.1.
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Figure 18: Cumulative γ-distribution plots for the OpenAI models on HNC (left) and the OpenCLIP
models on Flickr30k (right) as described in Section 4.1.

F STOCHASTIC DOMINANCE

Stochastic dominance defines an order relation between probability distributions based on their
cumulatives. del Barrio et al. (2018) have proposed a significance test building on the principle and
Dror et al. (2019) have identified it as being particularly suitable to compare deep neural models.
The test’s ϵ-parameter is the maximal percentile range where the inferior distribution is allowed to
dominate the superior one and Dror et al. suggest to set it to ϵ < 0.4. The smaller ϵ, the stricter the
criterion. α is the significance level.

G RELATION TO GRADCAM

Here, we discuss the relation of integrated gradients Sundararajan et al. (2017) and GradCam. We
start by deriving IG for a model f(a) = s with a vector-valued input a and a scalar prediction s,
which might e.g. be a classification score for a particular class. We define the reference input r, begin
from the difference between the two predictions and reformulate it as an integral:

f(a)− f(r) =

∫ a

r

∂f(x)

∂xi
dxi (12)

To solve the resulting line integral, we substitute with the straight line x(α) = r+ α(a− r) and pull
its derivative dx(α)/dα = (a− r) out of the integral:
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Figure 19: Class-wise evaluation of intrinsic grounding (γ) in the OpenCLIP Laion (top) and
DataComp (bottom) models before and after in-domain fine-tuning as discussed in Section 4.1, cf.
Figure 5.
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(a) Conditional Image In-
sertion.
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(b) Conditional Text Inser-
tion.
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(c) Conditional Image
Deletion.
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(d) Conditional Text Dele-
tion.

Figure 20: Conditional insertion and deletion performed on either the caption or the image.

∫ 1

α=0

∂f(x(α))

∂xi(α)

∂xi(α)

∂α
dα = (a− r)i

∫ 1

α=1

∇if(x(α)) dα (13)

to arrive at the final IG we approximate the integral by a sum over N steps:

(a− r)i
1

N

N∑
n=1

∇if(x(αn)) (14)

If f(r) ≈ 0 this is the contribution of feature i in a to the model prediction f(a) = s. We can now
reduce these feature attributions further by setting N = 1 and r = 0, to obtain
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Figure 21: Histograms of the difference between hard negative and original positive captions for the
predicted similarity score (left) and the attribution between objects in the caption and corresponding
bounding-boxes in the image (right).

ai∇if(a), (15)

which is often referred to as gradient times input and the basic form of GradCam. The method
typically attributes to deep image representations in CNNs, so that a has the dimensions C×H×W ,
the number of channels, height and width of the representation. To reduce attributions to a two-
dimensional map, it sums over the channel dimension and applies a relu-activation to the outcome.
The original version also average pools the gradients over the spacial dimensions, however, this is
technically not necessary.

As discussed earlier, neither integrated gradients nor GradCam can explain dual encoder predictions.
Following the logic from above we can, however, derive a "GradCam for similarity" by setting N = 1
in the computation of the integrated Jacobians in Equation 9 and using ra = 0 and rb = 0. For our
attribution matrix from Equation 10 we then receive the simplified version

ai
∂gk

∂ai

∂hk

∂bj
bj . (16)

In our experiments we use these attributions as a baseline and call them Jacobians times Embeddings.
However, setting N = 1 is the worst possible approximation to the integrated Jacobians. Therefore,
it is not surprising that empirically this version performs worse than our full attributions.

H BROADER RELATED WORK

Metric learning refers to the task of producing embeddings reflecting the similarity between inputs
(Kaya & Bilge, 2019). Applications include face identification (Guillaumin et al., 2009; Wojke &
Bewley, 2018) and image retrieval (Zhai & Wu, 2018; Gao et al., 2014). Siamese networks with
cosine similarity of embeddings were early candidates (Chen & He, 2021). The triplet-loss (Hoffer
& Ailon, 2015) involving negative examples has been proposed as an improvement but requires
sampling strategies for the large number of possible triplets (Roth et al., 2020). Qian et al. (2019) have
shown that the triplet-loss can be relaxed to a softmax variant. Sohn (2016) and van den Oord et al.
(2019) have proposed the batch contrastive objective which has been applied in both unsupervised
(Caron et al., 2020) and supervised representation learning (Khosla et al., 2020) and has lead to highly
generalizable image (He et al., 2020) and semantic text embeddings (Reimers & Gurevych, 2019).

Vision-language models process both visual and linguistic inputs. Zhang et al. (2022b) were the
first to train a dual-encoder architecture with a contrastive objective on image-text data in the medical
domain. With CLIP Radford et al. (2021) have applied this principle to web-scale image captions and
the ALIGN model has achieved similar results with alt-text (Jia et al., 2021). In the following, the
basic inter-modal contrastive loss has been extended by, intra-modal loss terms (Goel et al., 2022; Lee
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et al., 2022; Yang et al., 2022a), self-supervision (Mu et al., 2022), non-contrastive objectives (Zhou
et al., 2023), incorporating classification labels (Yang et al., 2022b), textual augmentation (Fan et al.,
2023), a unified multi-modal encoder architecture (Mustafa et al., 2022) and retrieval augmentation
(Xie et al., 2023). Next to more advanced training objectives, other works have identified the training
data distribution to be crucial for performance: Gadre et al. (2023) have proposed the DataComp
benchmark focusing on dataset curration while fixing model architecture and training procedure,
Xu et al. (2024) have balanced metadata distributions and Fang et al. (2024) propose data filtering
networks for the purpose. The strictly separated dual-encoder architecture has been extended to
include cross-encoder dependencies (Li et al., 2022a; Pramanick et al., 2023), and multi-modal
encoders have been combined with generative decoders (Chen et al., 2023a; Lu et al., 2023; Li et al.,
2021; Koh et al., 2023; Alayrac et al., 2022). The CoCa model combines contrastive learning on
uni-modal vision- and text-representations with a text generative cross-modal decoder (Yu et al.,
2022).

Visual-linguistic grounding is the identification of fine-grained relations between text phrases and
corresponding image parts (Chen et al., 2023b). Specialized models predict regions over images for a
corresponding input phrase (Sadhu et al., 2019; Ye et al., 2019). This objective has been combined
with contrastive caption matching (Li et al., 2022b; Datta et al., 2019), and caption generation (Yang
et al., 2022c). The VoLTA model internally matches latent image-region and text-span representations
(Pramanick et al., 2023). In multi-modal text generative models, grounding has been included as an
additional pretraining task (Li et al., 2020; Su et al., 2019; Chen et al., 2020); alternatively grounding
abilities can be unlocked with visual prompt learning (Dorkenwald et al., 2024). At the intersect of
grounding and explainability, Hendricks et al. (2016) have generated textual explanations for vision
models and have grounded them to input images (Hendricks et al., 2018; Park et al., 2018). In this
paper, we do not optimize models to explicitly ground predictions, but aim at analyzing to which
extent purely contrastively trained dual encoders have this ability.

27


	Introduction
	Related work
	Method
	Experiments
	Object localization
	Object Discrimination
	Input Perturbation

	Discussion
	Conclusion
	Reproducibility Statement
	Intra-Modal Attributions
	Additional Examples
	Additional results
	Cross Object Attribution
	Perturbations
	Conditional Insertion and Deletion
	Hard Negative Captions

	Stochastic Dominance
	Relation to GradCam
	Broader Related Work

