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Abstract: We present Visual Navigation and Locomotion over obstacles (ViNL),1

which enables a quadrupedal robot to navigate unseen apartments while stepping2

over small obstacles that lie in its path (e.g., shoes, toys, cables). ViNL consists of:3

(1) a visual navigation policy that outputs linear and angular velocity commands4

that guides the robot to a goal in novel indoor environments; and (2) a visual loco-5

motion policy that controls the robot’s joints to avoid stepping on obstacles while6

following provided velocity commands. These two policies are trained indepen-7

dently, and can be seamlessly be coupled together upon deployment by feeding the8

velocity commands from the navigation policy to the locomotion policy. While9

several related prior works have demonstrated learning visual navigation policies10

or learning robust locomotion control, to the best of our knowledge, this is the11

first fully learned approach that leverages vision to accomplish both (1) intelligent12

navigation in new environments, and (2) intelligent visual locomotion that aims to13

traverse cluttered environments without disrupting obstacles. We find that ViNL14

outperforms prior work that was trained to robustly walk over challenging terrain15

using privileged terrain maps (+32.8% success and -4.4 collisions per meter).16

Keywords: Legged Locomotion, Reinforcement Learning, Visual Navigation17

1 Introduction18

For mobile robotic assistants to be useful in the real-world, they must skillfully navigate environ-19

ments they have never seen. This is critical since indoor environments are subject to constant change20

(e.g., change in furniture layouts, temporary clutter, etc.). In recent years, robust indoor navigation21

has seen significant progress using learned agents due to advances in deep reinforcement learn-22

ing, extensive datasets of real-world indoor scans [1], and scalable photo-realistic simulation [2–6].23

Works such as [7–12] show that agents trained entirely in simulation can be deployed in the real24

world in previously unseen environments without using a pre-computed map.25

However, current progress in visual indoor navigation within previously unseen environments has26

been largely limited to using wheeled-base robots in homes with immaculate, flat terrain. Typical27

wheeled robots have limited maneuverability, which can pose a problem even in indoor home envi-28

ronments; they have difficulty going over clutter, doorways with thresholds, stairs, and even thicker29

carpets. In contrast, legged robots are well-suited for navigating under such conditions. In particu-30

lar, they can step over obstacles without disrupting or breaking them. While there are several works31

in learning legged locomotion, these works often use blind and reactive policies meant for outdoor32

environments, which emphasize stability and robust recovery on rough terrain [13, 14].33

In our work we aim to bring legged robots to the unstructured and messy human world by enabling34

them to navigate over clutter typically found in indoor environments. We replicate a cat’s ability to35

carefully walk over small household obstacles (such as shoes, toys, clothes, etc.), rather than nav-36

igating around these obstacles entirely. We propose a fully learned hierarchical approach that uses37

only egocentric vision, proprioception, and egomotion estimates. Our low-level visual locomotion38

policy is learned in three stages using Isaac Gym [15]. First, we learn to walk in a wide variety39

of challenging terrains using large-scale deep reinforcement learning. Next, we learn to walk over40

clutter by fine-tuning the previous policy in a novel terrain that contains small obstacles on the41

ground. Finally, we learn to walk over clutter using egocentric vision through supervised learning42

to reconstruct the privileged terrain map using vision alone. Separately, we train a high-level visual43

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.



Figure 1: Left: ViNL navigates to goals in previously unseen environments while stepping over small obstacles
on the ground. Right: ViNL is a fully learned hierarchical approach for navigation and locomotion.

navigation policy in photo-realistic 3D scans of real-world indoor environments using Habitat [2, 3].44

Although the locomotion and navigation policies are trained in two different simulators (Isaac Gym45

and Habitat), the two can be combined zero-shot for the task of visual navigation over obstacles.46

The core contributions of our work are: 1) We propose ViNL, the first approach to the best of our47

knowledge to accomplish both intelligent navigation in new environments, and intelligent visual lo-48

comotion that aims to traverse cluttered environments without disrupting obstacles; 2) We show that49

our visual navigation policy can be seamlessly deployed to a simulator using full rigid-body dynam-50

ics and a low-level locomotion policy, despite being trained kinematically in a different simulator51

and different low-level control; 3) ViNL can successfully guide the robot to the goal in cluttered52

indoor environments with a success rate of 73.6%, a 32.8% increase from prior works [16].53

2 Method54

We propose ViNL, a hierarchical architecture (Figure 1 right) for navigating over clutter in indoor55

environments, which consists of (1) a visual locomotion policy (Figure 2) that avoids stepping on56

small obstacles, and (2) a visual navigation policy that commands linear and angular velocities. The57

locomotion and navigation policies are trained in parallel, independently of each other.58

2.1 Visual Locomotion59

Figure 2: Teacher’s encoder (terrain
maps) distilled to student’s (vision).

We utilize a three-stage approach for learning a low-level con-60

troller that walks over small obstacles.61

Stage 1: Learning to Walk. We first aim to learn a teacher62

locomotion policy that can robustly walk over challenging ter-63

rain (e.g., stairs, rough terrain, etc.). Using the rough ter-64

rain environment in the Isaac Gym benchmark [16], we teach65

AlienGo using deep reinforcement learning to walk over chal-66

lenging terrain while following commanded linear and angular67

velocities. In contrast to [16], we encode the local map of the68

robot’s terrain using a 3-layer MLP, and pass the map encoding69

to the policy with the rest of the observations (Figure 2).70

The teacher locomotion policy takes as input the robot’s proprioceptive state and a privileged height71

map H containing information about the surrounding terrain. Specifically, at timestep t, the observa-72

tion space consists of: joint positions qt ∈ R12, joint velocities q̇t ∈ R12, previous joint commands73

qt−1 ∈ R12, base linear velocity v ∈ R3, base angular velocity ω ∈ R3, projected gravity vector74

g ∈ R3, commanded velocities (vx, vy, ωz)
∗ ∈ R3, and a terrain map H ∈ R187. The terrain75

map contains terrain height samples from a 1.6m × 1.0m grid around the robot. The output of the76

locomotion policy consists of joint angles that are used as target positions for PD motor controllers.77

We use the same rewards from [16], which encourages the robot to maintaining a smooth, natural78

gait. The episode is terminated when the robot falls over.79

Stage 2: Learning to Walk Over Clutter.80

Figure 3: Our obstacle terrain.

We construct an obstacle terrain consisting of small blocks on81

the ground (Figure 3). We utilize a curriculum of increasing82

obstacle density, similar to [16]. The terrain consists of 25, 8m83

× 8m tiles, each with a different density of obstacles. Robots84

which are able to walk more than half the total tile distance in85

an episode are promoted to a more challenging tile in the terrain. Using this terrain and density86
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curriculum, we fine-tune the locomotion policy from Stage 1 with an added penalty discouraging87

contact between the obstacles on the ground and the robot’s feet. Specifically, the robot receives a88

penalty of −1 if any leg is in contact with an obstacle.89

Figure 4: Time-lapse of locomotion
policy walking over clutter.

Stage 3: Learning to Walk Over Clutter with Vision.90

Finally, we aim to lift the assumption of access to a privileged91

terrain map for navigating over clutter. Instead of a terrain map92

H , we train the robot to avoid clutter using egocentric vision93

d from a front-facing depth camera pitched downwards 30◦.94

Figure 4 shows an example of our locomotion policy using95

vision to lift up its feet to avoid obstacles in its path.96

Drawing inspiration from Kumar et al. [13], we use Learning97

by Cheating [17] to predict the encoding of a privileged terrain98

map using an encoder that takes in egocentric depth observations and proprioceptive states of the99

robot. A key difference between our method and Kumar et al. is that they use a history of 50 consec-100

utive observations. In contrast, we rely on an LSTM provide the policy with temporal information.101

At each step, the LSTM takes in visual encodings of depth images from a CN, proprioceptive states102

of the robot and its previous hidden state to predict the encoding of the current terrain map. An103

LSTM enables the policy to leverage temporal dependencies using the hidden state, without the104

costly compute and memory that is typically required for processing a large buffer of images. This105

is important for navigating over clutter using a front-facing egocentric depth camera. As the robot106

walks over objects, and the objects leave the camera’s view, it must make use of past temporal infor-107

mation in order to remember the location of these obstacles and avoid them with its legs. We train108

using supervised learning with on-policy data to minimize MSE loss, similar to [13, 18].109

2.2 Visual Navigation110

Task & Dataset. In PointGoal Navigation [19], a robot is tasked with navigating to a goal location111

in an indoor environment without being given a pre-built map of the environment. An episode is112

considered successful when the robot reaches within 0.325m of the goal. For training and evaluation,113

we use both the Habitat-Matterport (HM3D) [1] and Gibson [20] 3D datasets, which contains over114

1000 scans of real-world indoor environments (homes, offices, etc.).115

Kinematic Visual Navigation. The navigation policy takes as input an egocentric depth image and116

the robot’s current distance and heading relative to the goal. The output of the navigation policy117

is the desired center-of-mass forward linear and angular velocities. The overall architecture of the118

navigation policy is shown in Figure 1 right. Specifically, we use a ResNet-18 [21] visual encoder to119

process the egocentric depth images, a linear layer to encode the goal vector, and a 2-layer LSTM for120

our policy. We use the reward function from [9], which encourages path efficiency and discourages121

collisions. The policy is trained using DD-PPO [22] using the Habitat simulator [3].122

We use kinematic low-level control as an approximation for the robot’s movement, which was shown123

in [9] to lead to better sim-to-real transfer. At each step, we directly teleport the robot (without124

running full rigid-body dynamics simulation) by integrating the commanded velocities at 2 Hz. If125

the resulting pose intersects with the environment, the robot is simply kept in its current pose. We126

additionally randomize the roll and pitch of the front-facing camera by up to ±30◦ during training127

to improve the robustness of the policies against camera shake that occurs on moving quadrupeds.128

3 Results129

In this section, we aim to address the following questions: 1) How well can our navigation policy130

perform in a different simulator and low-level control? 2) How does ViNL compare to prior work?131

3) How vital is the use of exteroception, pre-training, or an LSTM for the locomotion policy?132

We evaluate using the task of PointGoal Navigation over clutter across 5 unique floor plans in Isaac133

Gym as shown on the right of Figure 1. In each floor plan, we randomly sample 10 start and goal134

locations for the robot, and report results across 5 seeds for a total of 250 experiments per method.135

For evaluation, we report success rate (SR), distance traveled, and foot collisions per meter. Since136

the low-level controller is being run at 50 Hz, a foot contact lasting 1 second will count as 50 foot137

collisions. During evaluation, the navigation policy uses a front-facing depth camera pitched 15◦138

upwards, while the locomotion policy uses a front-facing depth camera pitched 30◦ downwards.139
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Table 1: We evaluate all policies in cluttered floor plans simulated in Isaac Sim.

Method Sensors Train Terrain Leg Contact
Penalty

Success
Rate ↑

Distance
traveled (m) ↑

Foot Collisions
per Meter ↓Terrain Map Vision Rough Obstacle

Blind 7 7 X X X 1.2 ± 1.0 10.2 ± 0.8 18.2 ± 5.3
Rough X 7 X 7 7 40.8 ± 3.5 7.6 ± 0.2 16.5 ± 2.5

ViNL (no-pretraining) 7 X 7 X X 54.4 ± 8.0 6.6 ± 1.0 14.1 ± 7.1
ViNL (MLP) 7 X X X X 66.8 ± 8.1 7.5 ± 0.7 12.2 ± 0.4

ViNL 7 X X X X 73.6 ± 5.9 8.2 ± 0.3 12.1 ± 0.7
ViNL

Eval. w/ no obstacles 7 X X X X 86.8 ± 4.7 7.7 ± 0.4 2.9 ± 0.3

To get an upper bound for the performance of ViNL, we first evaluate the performance of our visual140

navigation policy for PointGoal Navigation without clutter. We evaluate ‘in-domain’ (kinematic141

low-level control in Habitat), and compare its performance when evaluated out-of-domain (low-level142

control using ViNL in Isaac Gym). In-domain, the visual navigation policy is evaluated using 1000143

episodes from scenes in the validation split of the HM3D dataset, and achieves a success rate (SR)144

of 89.70%. Out-of-domain, ViNL has a SR of 86.8% (Table 1, row 6), indicating a small sim-to-sim145

gap (-2.9% SR). This demonstrates that despite training the high-level navigation policy and146

low-level locomotion policy separately in different simulators and different levels of abstraction,147

the two can be nearly seamlessly coupled together with a minimal drop in navigation performance.148

Next, we compare ViNL to other baselines and ablations. We couple the same high-level navigation149

policy with the following locomotion policies:150

1. Blind: Locomotion policy trained in rough terrains, and fine-tuned in the obstacle terrain with151

the leg contact penalty. Neither a terrain map nor vision is used.152

2. Rough: Locomotion policy from [16] trained from scratch in rough terrains, without the leg153

contact penalty. This policy has access to a privileged terrain map for locomotion.154

3. ViNL (no pre-training): Same as ViNL, but all training is done in the obstacle terrain, with no155

pre-training phase in the rough terrain. Egocentric depth observations are used (no terrain map).156

4. ViNL (MLP): Same as ViNL, but the encoder is an MLP instead of an LSTM. This locomotion157

policy uses egocentric depth observations.158

All baselines are trained for the same amount of experience, including steps used for fine-tuning.159

Note that the navigation policy is being tested out-of-distribution using a different simulator, novel160

environments, and unseen low-level controllers with no adaptation.161

From Table 1, we see that Blind completely struggles (1.2% SR, row 1), demonstrating the impor-162

tance of using exteroceptive sensors in cluttered environments. Because the robots are spawned in163

obstacle-free patches of terrain during training and evaluation, we find that Blind learns to crawl164

in circles near the starting position and largely ignore commanded velocities in favor of not crash-165

ing due to obstacle collision. This results in a higher distance traveled, despite a near-zero success166

rate. In comparison to Rough, we see that our method results in an average increase of 32.8% SR,167

and average decrease of 4.4 foot collisions per meter traveled (rows 2 and 5), despite the fact that168

Rough has access to a privileged terrain map. We find that Rough often gets its hind feet stuck169

while climbing over an obstacle, causing the robot to fall over and thus failing the episode. Next,170

we compare against ViNL (no-pretraining), which was trained solely in the obstacle terrain. ViNL171

(no-pretraining) achieves a slightly higher success rate than Rough (+13.6% SR, rows 2 and 3),172

and fewer foot collisions per meter (-2.41 collisions). However, this method still has a lower success173

rate than ViNL (-19.2% SR, rows 3 and 5), and more foot collisions per meter (+2.01 collisions).174

This emphasizes the importance of pre-training in the rough terrain in stage 1 of our approach to175

avoid falling over (which leads to episode failure). We see that ViNL (MLP) performs just as well176

as ViNL for foot collision per meter (12.6 vs. 12.1, rows 4 and 5). However, ViNL outperforms177

ViNL (MLP) by +6.8% SR, which highlights the benefit of leveraging temporal information with an178

LSTM. Because ViNL (MLP) does not have any information about the whereabouts of objects that179

have left the robot’s field-of-view, it cannot avoid obstacles that it tries to step over as adequately.180

This causes the robot to trip and fall over, leading to more episode failures.181

4 Conclusion182

We present ViNL, which enables a robot to intelligently navigate cluttered indoor environments183

using egocentric vision. While prior works focus on recovering from instability, or path planning184

around obstacles, we present a fully learned hierarchical approach that avoids these obstacles using185

fine-grained control of its legs.186
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