SQS: Enhancing Sparse Perception Models via Query-based Splatting in Autonomous Driving

Haiming Zhang^{1,2}*, Yiyao Zhu³*, Wending Zhou^{1,2}, Xu Yan⁴

Yingjie Cai⁴, Bingbing Liu⁴, Shuguang Cui^{2,1}, Zhen Li^{2,1}

¹ FNii, Shenzhen ² SSE, CUHK-Shenzhen

³ HKUST ⁴ Huawei Noah's Ark Lab
{haimingzhang@link.,lizhen@}cuhk.edu.cn
yzhucp@connect.ust.hk
yanxu44@huawei.com

Abstract

Sparse Perception Models (SPMs) adopt a query-driven paradigm that forgoes explicit dense BEV or volumetric construction, enabling highly efficient computation and accelerated inference. In this paper, we introduce SQS, a novel query-based splatting pre-training specifically designed to advance SPMs in autonomous driving. SQS introduces a plug-in module that predicts 3D Gaussian representations from sparse queries during pre-training, leveraging self-supervised splatting to learn fine-grained contextual features through the reconstruction of multi-view images and depth maps. During fine-tuning, the pre-trained Gaussian queries are seamlessly integrated into downstream networks via query interaction mechanisms that explicitly connect pre-trained queries with task-specific queries, effectively accommodating the diverse requirements of occupancy prediction and 3D object detection. Extensive experiments on autonomous driving benchmarks demonstrate that SQS delivers considerable performance gains across multiple query-based 3D perception tasks, notably in occupancy prediction and 3D object detection, outperforming prior state-of-the-art pre-training approaches by a significant margin (i.e., +1.3 mIoU on occupancy prediction and +1.0 NDS on 3D detection).

1 Introduction

Recent advances in vision-centric autonomous driving have driven significant progress in the field [7, 60]. From a representation standpoint, existing approaches can be broadly categorized into dense BEV-centric and sparse query-centric paradigms. Dense BEV-centric methods [24, 44, 13] extract Bird's Eye View (BEV) features from multi-view images for downstream tasks, while Sparse Perception Models (SPMs) [55, 33, 31] bypass explicit dense representations and directly aggregate features from images using implicit queries, enabling faster inference. Sparse query-centric methods have garnered increasing attention within the community due to their practical advantages for real-world deployment. Despite the dominance of supervised methods, their reliance on precise ground-truth annotations presents a substantial challenge, as acquiring such labels is both costly and labor-intensive. Conversely, the abundance of unlabeled data offers a promising avenue to further enhance model performance. Nevertheless, effectively leveraging this data remains a non-trivial challenge.

To mitigate these challenges, various pre-training strategies have been proposed for autonomous driving. Earlier works leverage contrastive learning [45] and Masked Autoencoders (MAE) [38] for pre-training. However, the coarse supervision they provide limits their capacity to fully capture spatial-temporal geometry. In contrast, NeRF-based approaches such as UniPAD [62] and ViDAR [64] utilize

^{*}Equal contribution. Work done during internship at Huawei.

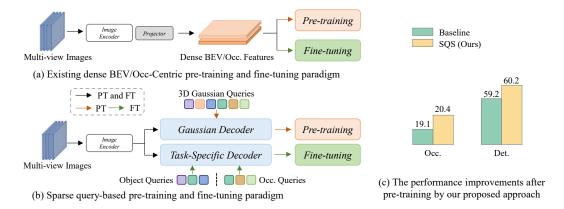


Figure 1: **The comparison of pre-training and fine-tuning paradigms.** (a) Existing pre-training approaches operate on dense BEV or Occupancy representations, which are subsequently shared during fine-tuning. (b) The proposed SQS can be integrated into any sparse query-based perception model, accepting Gaussian queries for pre-training and utilizing them for prediction. (c) We demonstrate the effectiveness of SQS on query-based 3D semantic occupancy prediction (Occ.) and 3D object detection (Det.) tasks. PT and FT denote pre-training and fine-tuning, respectively.

3D volumetric differentiable rendering to reconstruct and predict 3D scene structures. To reduce memory overhead and improve rendering efficiency, a separate line of research [58, 69] introduce 3D Gaussian Splatting (3DGS) [19] for explicit scene representation. By predicting Gaussian parameters for feedforward reconstruction, GaussianPretrain [58] achieves comprehensive scene understanding by integrating geometric and texture representations. Moreover, VisionPAD [69] projects neighboring frames onto the current frame using rendered depths and relative poses, relying solely on RGB image supervision rather than explicit depth annotations. Although existing pre-training paradigms have substantially enhanced the performance of downstream applications, their reliance on dense BEV representations limits their applicability to SPMs (Fig. 1(a)).

In this paper, we present the first attempt to pretrain Sparse Perception Models (SPMs) on unlabeled data to enhance their downstream performance, as shown in Fig. 1(b). Unlike dense BEV-centric perception models, we find out that the latent sparse queries in SPMs lack explicit spatial positions and semantic meanings, making it challenging to directly apply existing rendering-based pre-training methods, which often fail to preserve informative representations during training. To address this challenge, we propose SQS, a novel pre-training framework for SPMs based on query-based splatting. Unlike previous approaches, SQS introduces a small set of adaptive Gaussian queries during pre-training. These queries dynamically predict 3D Gaussians and reconstruct both depth and RGB images via a splatting mechanism, enabling the model to learn fine-grained representations from unlabeled data in a self-supervised manner. After pre-training, the learned Gaussian queries are used for fine-tuning, where they interact and fuse with task-specific queries, resulting in improved downstream performance. We evaluate our approach on tasks such as object detection and 3D occupancy prediction. Experimental results demonstrate that SQS consistently achieves significant performance improvements over state-of-the-art methods without pre-training.

To this end, our contributions can be summarized as follows:

- We propose SQS, the *first* query-based splatting pre-training technique specifically designed to advance Sparse Perception Models (SPMs).
- We introduce plug-and-play Gaussian queries, which learns fine-grained features in a self-supervised manner during pre-training, and further enhances downstream tasks via interactive feature fusion during fine-tuning.
- SQS significantly enhances performance in both occupancy prediction and 3D object detection, surpassing previous state-of-the-art results on multiple autonomous driving benchmarks (*i.e.*, +1.3 mIoU on occupancy prediction and +1.0 NDS on 3D detection as Fig. 1(c)).

2 Related Work

Pre-training in autonomous driving. Pre-training has gained remarkable progress in recent years for autonomous driving. Conventional approaches cover supervised [42, 54, 50, 59], contrastive [23, 41, 45, 65], and masked signal modeling [39, 38, 2, 20] categories. With advances in neural rendering [37], rendering-based pre-training [62, 64, 74, 66] becomes an alternative by rendering images from dense BEV or Volume representation. For example, UniPAD [62] utilizes 3D volumetric differentiable rendering to reconstruct 3D shape structures and appearance characteristics. Meanwhile, ViDAR [64] predicts the future point cloud using a Latent Rendering operator based on historical embeddings. To achieve effective and efficient rendering, 3D Gaussian Splatting [19] is introduced in some recent works. GaussianPretrain [58] considers 3D Gaussian anchors as volumetric LiDAR points for unified geometric and texture representations. Without explicit depth supervision, VisionPAD [69] reconstructs images employing both voxel velocity estimation and multi-frame photometric consistency. These pre-training pipelines successfully model spatial-temporal representation for dense BEV features.

However, the emerging perception methods with sparse route [55, 33, 34, 52, 31] are not compatible with the paradigms above. Recently, the query-based pre-training in 2D image has been developed. Frozen-DETR [10] utilizes frozen foundation models with class token and patch token, which provide a compact context and semantic details, respectively. GLID [32] models pre-training pretext task and other downstream tasks as "query-to-answer" problems. Since the sparse pre-training in autonomous driving requires an accurate 3D geometric representation extracted from multi-view images, the existing methods for 2D are inapplicable for Sparse Perception Models (SPMs).

Sparse Perception Models for 3D Detection and Occupancy Prediction. For the sparse 3D detection, motivated by DETR [5], DETR3D [55] utilizes a sparse set of 3D object queries to sample the 2D features from images by 3D point projection. To avoid the complex 2D-to-3D projection and feature sampling, PETR series [33, 34, 52, 18, 30, 67] directly interact with 3D position-aware features by encoding the 3D position into 2D image features. Without relying on dense view transformation nor global attention, Sparse4D [27] iteratively refines anchor boxes via sparsely sampling and fuses spatial-temporal features. In the SparseBEV [31], to adapt the detector in both BEV and image space, a set of sparse pillar queries initialized in BEV space are applied to interact with the image features.

Regarding occupancy prediction, the query-based approaches [51, 48, 47] are proposed to reduce computational cost. OPUS [51] formulates the task as a streamlined set prediction paradigm. SparseOcc [48] proposes an efficient occupancy network with 3D sparse diffuser and convolutional kernels while OSP [47] presents the Points of Interest (PoIs) to represent the scene. Recently, 3DGS has demonstrated the capacity to adapt flexibly to varying object scales and regional complexities in a deformable manner, thereby enhancing resource allocation and overall efficiency. Based on the aforementioned advantages, another line of works utilize 3DGS for supervised [16, 14, 75] or self-supervised [1, 68, 17] occupancy prediction. In conclusion, compared to the BEV based methods, the sparse algorithms reduce computational cost and broaden the perception range. This distinctive advantage makes the development of a sparse pre-training algorithm for them particularly imperative.

3D Gaussian Splatting in Autonomous Driving. 3D Gaussian Splatting (3DGS) [19] uses multiple 3D Gaussian primitives for fast radiance field rendering, enabling explicit representation with fewer parameters. For reconstructing driving scenes, several approaches are carefully designed for 3D static [72, 61, 56] and 4D dynamic [63] scenes. More recently, 3DGS based perception models have been proposed, including occ prediction [16, 14, 75], bev segmentaiong [6, 36] and end-to-end tasks [71]. Alternatively, some recent works apply 3DGS for self-supervised occ prediction [1, 17, 68]. GaussianFlowOcc [1] and TT-GaussOcc [68] model scene dynamics by predicting the temporal flow for each Gaussian throughout the training procedure. Without requiring explicit annotations, GaussTR [17] splats the Gaussians onto 2D perspectives and aligns the extracted features with foundation models. Furthermore, regarding to the self-supervised pre-training, sevaral methods [58, 69] adopt 3DGS for explicit geometry representation in the Dense BEV or Volume feature to improve the performance of downstream tasks. Nevertheless, up to now, there is still no pre-training scheme that can effectively adapt to Sparse Perception Models (SPMs).

3 Proposed Method

In this section, we introduce our query-based splatting pre-training approach for autonomous driving. The overall architecture of the proposed SQS framework is depicted in Fig. 2.

We first provide the necessary preliminaries on 3D Gaussian Splatting, which enables the rendering of both RGB images and depth maps from predicted 3D Gaussians. Subsequently, we briefly outline the image encoder employed to extract multi-scale features from multi-view input images. We then detail the query-based Gaussian transformer decoder, which utilizes Gaussian queries to predict 3D Gaussians and facilitates the learning of fine-grained information via self-supervised splatting. Finally, by incorporating the pre-trained Gaussian queries through a query interaction module during fine-tuning, our approach effectively transfers knowledge from the pre-training stage, thereby enhancing downstream query-based learning performance.

3.1 Preliminaries

3D Gaussian Splatting (3DGS) [19] represents 3D scenes through collections of K Gaussians. Each primitive g_k contains 3D position $\mu_k \in \mathbb{R}^3$, covariance Σ_k , opacity $\alpha_k \in [0,1]$, and spherical harmonics coefficients $c_k \in \mathbb{R}^k$.

For differentiable optimization, the covariance matrix is parameterized using scaling $\mathbf{S} \in \mathbb{R}^3_+$ and rotation $\mathbf{R} \in \mathbb{R}^4$ matrices:

$$\Sigma = \mathbf{RSS}^T \mathbf{R}^T. \tag{1}$$

Projection to image coordinates employs view transformation ${\bf W}$ and Jacobian ${\bf J}$:

$$\Sigma' = \mathbf{J} \mathbf{W} \mathbf{\Sigma} \mathbf{W}^T \mathbf{J}^T. \tag{2}$$

Rendering combines ordered Gaussians using an alpha-blend rendering proceduure [37], and color at pixel p is computed as:

$$\mathbf{C}(p) = \sum_{i \in K} c_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_i). \tag{3}$$

To introduce geometric representation [8], depth rendering is computed as:

$$\mathbf{D}(p) = \sum_{i \in K} d_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j), \tag{4}$$

where d_i represents the distance from *i*-th Gaussian to the camera. Unlike volume rendering [37], 3DGS uses efficient splat-based rasterization that projects 3D Gaussians as 2D image patches.

3.2 Image Encoder

Given a set of multi-view images $\mathcal{I}=\{\mathbf{I}_i\in\mathbb{R}^{3\times H\times W}|i=1,...,N\}$, corresponding intrinsics $\mathcal{K}=\{\mathbf{K}_i\in\mathbb{R}^{3\times 3}|i=1,...,N\}$ and extrinsics $\mathcal{T}=\{\mathbf{T}_i\in\mathbb{R}^{4\times 4}|i=1,...,N\}$ as inputs, where N is the number of cameras. We first need to extract multi-scale multi-view image features for the subsequent decoder. Specifically, we feed multi-view images to the backbone network (e.g., ResNet-101 [11]), and obtain the intermediate multi-level feature F'. To further enhance and aggregate these features across different spatial resolutions, we utilize a Feature Pyramid Network (FPN). The FPN processes the multi-level features and produces multi-scale image features F, which effectively captures both high-level semantic information and fine-grained spatial details.

3.3 Gaussian Transformer Decoder and Gaussian Queries

As illustrated at the top of Fig. 2, SQS employs a Gaussian Transformer Decoder to process 2D image features and reconstruct multi-view RGB and depth images. This reconstruction enables the model to capture the underlying geometry and appearance of Gaussian attributes, providing a strong feature prior. As a result, SQS enhances downstream sparse perception tasks by supplying a pretrained image backbone and enriched Gaussian query representations.

Each Gaussian query is initialized as learnable anchors $g_k \in \mathbb{R}^{K \times C}$, paired with queries $q_k \in \mathbb{R}^{K \times D}$ using zero vectors in high-dimensional space, where K is the number of Gaussians, C and D are

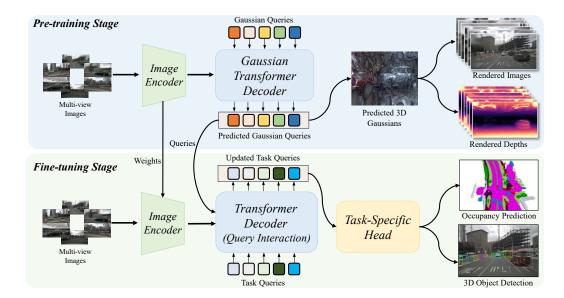


Figure 2: **The pipeline of our proposed SQS.** In order to adapt the sparse query-based downstream tasks, we design a sparse query-based 3D Gaussian Splatting pre-training paradigm with RGB image and depth as supervision. The pre-trained image encoder can be leveraged during the fine-tuning stage, and we also propose a query interaction module to fully exploit the knowledge encapsulated in the pre-trained queries. Our proposed light-weight pre-training paradigm can be plugged into any sparse query-based downstream tasks to enhance their performance.

the dimension of Gaussian primitives and query features respectively. During pre-training, guided by the initialized vectors with learnable Gaussian primitives, these query features interact through self-encoding and deformable cross-attention with image features to predict the Gaussian attributes, enabling the retention of rich and detailed geometric information.

To capture the representation across the entire scene, 3D sparse convolution across Gaussian queries is employed to reduce memory cost with linear computational complexity. Here, the 3D position $\mu_k \in \mathbb{R}^3$ in Gaussian anchor is used to voxelize each Gaussian and the sparse convolution is leveraged on the voxel grid.

Then the multi-level image feature F is aggregated with deformable cross attention. Concretely, for each Gaussian query, multiple 3D reference points are calculated with offsets added to the 3D position μ from the Gaussian anchor. With the intrinsics $\mathcal K$ and extrinsics $\mathcal T$, these 3D points are projected onto 2D image planes to facilitate feature sampling. The resulting set of sampled features serves as keys and values in the subsequent attention mechanism.

Finally, to enable the prediction of Gaussian properties, a dedicated Gaussian head comprising multilayer perceptrons (MLPs) is applied to each Gaussian query. To constrain the predicted parameters within appropriate value ranges, sigmoid activations are applied to the position, scale, and opacity, while the rotation is normalized to unit length. The Gaussian parameters μ , α , c, S and R are iteratively refined across decoder layers, where only the position μ is predicted in the form of a delta, while the remaining parameters are directly replaced at each refinement step.

3.4 Reconstruction Loss for Pre-training

We employ an L1 loss function for both RGB and depth reconstruction. LiDAR points serve as the ground truth (GT) for depth, and the depth loss is supervised exclusively at pixels corresponding to valid LiDAR measurements. The overall loss is formulated as follows:

$$\mathcal{L} = \omega_1 \mathcal{L}_{rgb} + \omega_2 \mathcal{L}_{depth}, \tag{5}$$

where ω_1 and ω_2 are set to 1.0 and 0.05, respectively, to weight the corresponding terms.

3.5 Query Interaction for Fine-tuning

Through query-based pre-training, both the image backbone and Gaussian queries acquire rich geometric feature. For fine-tuning downstream SPMs, loading the pre-trained image backbone is straightforward; however, reusing pre-trained Gaussian queries remains challenging. Unlike Dense BEV-Centric perception frameworks, which leverage dense BEV representations as a unified intermediate feature, SPMs typically lack such a common structural basis. Instead, these methods often employ task-specific queries and are paired with dedicated decoders designed for different perception tasks. The decoder architectures across various sparse perception algorithms can differ significantly. For instance, SparseBEV [31] initializes queries in 2D BEV space, whereas PETR [33] conducts initialization in 3D space.

To enable consistent reuse of pre-trained queries across diverse sparse perception tasks, as shown in the bottom of Fig. 2, we propose a plug-in framework based on Query Interaction, facilitating greater flexibility and generalization across diverse tasks. This module explicitly bridges pre-trained Gaussian queries with task-specific queries, facilitating effective transfer and adaptation within heterogeneous decoder frameworks.

Specifically, downstream SPMs initially load the weights of image backbone from a sparse pre-trained model. Regarding the reuse of pre-trained Gaussian queries, we fix the parameters of the lightweight pre-trained model. For each perception case, the pre-trained model infers a set of corresponding Gaussian anchors paired with query features. We set opacity threshold α_{thresh} to filter out anchors with low opacity. To leverage pre-trained queries efficiently, spatial-aware local attention [46] is applied. To elaborate, given 3D position μ_t of task query q_t and μ_k from pre-trained anchors g_k , we apply k-nearest neighbor algorithm to find k closest 3D Gaussians for each task query. To this end, q_t only aggregates features from nearest k Gaussian queries, finally the local query interaction is formulated as follows:

$$q_t = \text{LocalAttn}(q_t + \text{MLP}(\mu_t), q_k + \text{MLP}(g_k)). \tag{6}$$

4 Experiments

4.1 Experimental Settings

Dataset and Metrics. We conduct experiments on the nuScenes dataset [3], a large-scale benchmark specifically curated for autonomous driving research. The dataset comprises 700 training scenes, 150 validation scenes, and 150 test scenes. Each scene includes synchronized sensor data from six surround-view cameras and LiDAR, enabling comprehensive 3D perception across diverse urban environments. Comprehensive annotations are provided to support multiple tasks, including 3D object detection, LiDAR semantic segmentation, and 3D map segmentation. Building upon the nuScenes dataset, SurroundOcc [57] provides the dense 3D semantic occupancy annotation tailored for the occupancy prediction task. The annotated voxel grid spans [-50m, 50m] along both X and Y axes, and [-5m, 3m] along the Z axis with a resolution of $200 \times 200 \times 16$. Each voxel is assigned one of 18 classes, comprising 16 semantic categories, an empty class, and an unknown class.

The quality of semantic occupancy prediction is evaluated using the mean Intersection-over-Union (mIoU) and Intersection-over-Union (IoU) metrics [49]. For 3D object detection, we adopt the standard nuScenes Detection Score (NDS) and mean Average Precision (mAP) metrics [3]. We also contain five true positive (TP) metrics, including ATE, ASE, AOE, AVE, and AAE for measuring translation, scale, orientation, velocity, and attribute errors, respectively.

Implementation Details. During the pre-training stage, we adopt a ResNet101-DCN [11] backbone initialized from an FCOS3D [54] checkpoint for the occupancy prediction task, while ResNet50 and ResNet101 backbones that are pre-trained with nuImages [3] for the 3D object detection task. The feature extraction employs a feature pyramid network [25] (FPN), producing multi-scale image representations at downsampling factors of 4, 8, 16, and 32. We configure the Gaussian counts to 25,600, and apply two transformer layers to enhance Gaussian attributes. Model training utilizes the AdamW [35] optimizer, with a 0.01 weight decay. The learning rate linearly warms up over the initial 500 steps to 2e-4 and then follows a cosine decay schedule. Pre-training is conducted for 20 epochs using a batch size of 8. Only random horizontal flipping data augmentation is included. Our implementation is based on MMDetection3D [9]. Fine-tuning follows the official downstream model configurations without modification. All experiments are conducted on a server with 8 GPUs.

Table 1: **3D** semantic occupancy prediction results on the SurroundOcc val set. While the original TPVFormer [15] is trained with LiDAR segmentation labels, TPVFormer* is supervised by dense occupancy annotations.

Method	SC IoU	SSC mIoU	■ barrier	bicycle	snq _	car	const. veh.	motorcycle	pedestrian	traffic cone	trailer	truck	drive. suf.	other flat	■ sidewalk	terrain terrain	manmade	vegetation
MonoScene [4]	23.96	7.31	4.03	0.35	8.00	8.04	2.90	0.28	1.16	0.67	4.01	4.35	27.72	5.20	15.13	11.29	9.03	14.86
Atlas [40]	28.66	15.00	10.64	5.68	19.66	24.94	8.90	8.84	6.47	3.28	10.42	16.21	34.86	15.46	21.89	20.95	11.21	20.54
BEVFormer [24]	30.50	16.75	14.22	6.58	23.46	28.28	8.66	10.77	6.64	4.05	11.20	17.78	37.28	18.00	22.88	22.17	13.80	22.21
TPVFormer [15]	11.51	11.66	16.14	7.17	22.63	17.13	8.83	11.39	10.46	8.23	9.43	17.02	8.07	13.64	13.85	10.34	4.90	7.37
TPVFormer* [15]	30.86	17.10	15.96	5.31	23.86	27.32	9.79	8.74	7.09	5.20	10.97	19.22	38.87	21.25	24.26	23.15	11.73	20.81
OccFormer [70]	31.39	19.03	18.65	10.41	23.92	30.29	10.31	14.19	13.59	10.13	12.49	20.77	38.78	19.79	24.19	22.21	13.48	21.35
SurroundOcc [57]	31.49	20.30	20.59	11.68	28.06	30.86	10.70	15.14	14.09	12.06	14.38	22.26	37.29	23.70	24.49	22.77	14.89	21.86
GaussianFormer [16]	29.83	19.10	19.52	11.26	26.11	29.78	10.47	13.83	12.58	8.67	12.74	21.57	39.63	23.28	24.46	22.99	9.59	19.12
GaussianFormer + SQS (Ours)	31.52	20.40	19.98	11.86	28.21	30.68	10.87	15.03	14.28	9.57	14.74	22.98	39.82	23.88	25.46	23.09	14.56	21.31

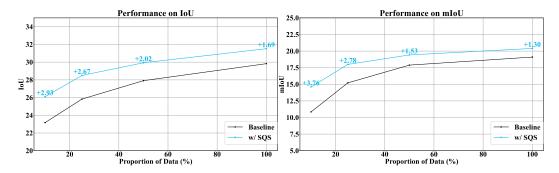


Figure 3: **Data efficiency analysis.** To assess data efficiency under limited annotation scenarios, we reduce the amount of labeled data used for downstream fine-tuning in the 3D semantic occupancy prediction task. The outcomes demonstrate that our pre-training method significantly enhances performance, even when only a small portion of annotations is available.

4.2 Main Results

We evaluate the effectiveness of SQS on two challenging downstream perception tasks: semantic occupancy prediction and 3D object detection.

Semantic Occupancy Prediction. In Tab. 1, we present a comprehensive quantitative comparison of various methods for multi-view 3D semantic occupancy prediction on the SurroundOcc validation set. Among these methods, GaussianFormer [16] is a novel query-based occupancy prediction method, performing on par with OccFormer [70] and SurroundOcc [57]. After being pre-trained by our method, the GaussianFormer obtains 1.69 IoU and 1.30 mIoU improvements, achieving 20.40% mIoU, when compared to the 19.10% mIoU for GaussianFormer. These results highlight the effectiveness of SQS for the query-based semantic occupancy prediction task.

3D Object Detection. We also have conducted experiments in the 3D object detection task, the results are illustrated in Tab. 2. To validate the generality of SQS, we have performed two different sparse object detection methods, e.g., SparseBEV [31] and Sparse4Dv3 [29] on the nuScenes validation set. When leveraging the ResNet50 as the image backbone, and the input image size is 704×256 , SparseBEV achieves 55.8 NDS performance, and an impressive 44.8 mAP metric. After being pre-trained by SQS, we reach the 56.6 NDS and 45.2 mAP performance. Meanwhile, we set the new performance record, that is 56.9 NDS and 47.4 mAP for the Sparse4Dv3 being pre-trained by SQS. Then, we upgrade the backbone to ResNet101 and scale the input size to 1408×512 . Under this setting, the SparseBEV also benefits from our pre-training paradigm with 0.8 mAP and 1.0 NDS improvements. Likewise, Sparse4Dv3 obtains corresponding improvements of 0.7 mAP and 0.8 NDS. The results also validate the effectiveness and generality of our pre-training paradigm.

Table 2: **3D object detection results on the nuScenes** val **split.** † benefits from perspective pre-training [31]. ‡ indicates methods with CBGS [73] which will elongate 1 epoch into 4.5 epochs.

Method	Backbone	Input Size	Epochs	NDS	mAP	mATE	mASE	mAOE	mAVE	mAAE
PETRv2 [34]	ResNet50	704×256	60	45.6	34.9	0.700	0.275	0.580	0.437	0.187
BEVStereo [21]	ResNet50	704×256	90 ‡	50.0	37.2	0.598	0.270	0.438	0.367	0.190
BEVPoolv2 [12]	ResNet50	704×256	90 ‡	52.6	40.6	0.572	0.275	0.463	0.275	0.188
SOLOFusion [43]	ResNet50	704×256	90 ‡	53.4	42.7	0.567	0.274	0.511	0.252	0.181
Sparse4Dv2 [28]	ResNet50	704×256	100	53.9	43.9	0.598	0.270	0.475	0.282	0.179
StreamPETR † [53]	ResNet50	704×256	60	55.0	45.0	0.613	0.267	0.413	0.265	0.196
SparseBEV [31]	ResNet50	704×256	36	54.5	43.2	0.606	0.274	0.387	0.251	0.186
SparseBEV † [31]	ResNet50	704×256	36	55.8	44.8	0.581	0.271	0.373	0.247	0.190
SparseBEV † + SQS (Ours)	ResNet50	704×256	36	56.6	45.2	0.564	0.263	0.362	0.232	0.182
Sparse4Dv3 † [29]	ResNet50	704×256	100	56.1	46.9	0.553	0.274	0.476	0.227	0.200
Sparse4Dv3 † + SQS (Ours)	ResNet50	704×256	100	56.9	47.4	0.542	0.266	0.458	0.218	0.191
DETR3D † [55]	ResNet101-DCN	1600 × 900	24	43.4	34.9	0.716	0.268	0.379	0.842	0.200
BEVFormer † [24]	ResNet101-DCN	1600×900	24	51.7	41.6	0.673	0.274	0.372	0.394	0.198
BEVDepth [22]	ResNet101	1408×512	90 ‡	53.5	41.2	0.565	0.266	0.358	0.331	0.190
Sparse4D † [26]	ResNet101-DCN	1600×900	48	55.0	44.4	0.603	0.276	0.360	0.309	0.178
SOLOFusion [43]	ResNet101	1408×512	90 ‡	58.2	48.3	0.503	0.264	0.381	0.246	0.207
SparseBEV † [31]	ResNet101	1408×512	24	59.2	50.1	0.562	0.265	0.321	0.243	0.195
SparseBEV † + SQS (Ours)	ResNet101	1408×512	24	60.2	50.9	0.531	0.251	0.318	0.241	0.185
Sparse4Dv3 † [29]	ResNet101	1408×512	100	62.3	53.7	0.511	0.255	0.306	0.194	0.192
Sparse4Dv3 † + SQS (Ours)	ResNet101	1408 × 512	100	63.1	54.4	0.498	0.241	0.298	0.187	0.188

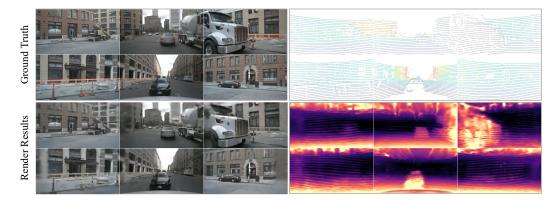


Figure 4: **Rendering results visualization.** Leveraging multi-view images and depth maps projected by the sparse point cloud as supervision, SQS demonstrates compelling depth and image reconstruction after pre-training.

Data Efficiency. One of the main advantages of pre-training lies in its ability to improve data efficiency for downstream tasks, especially when annotated data is limited. To further demonstrate the effectiveness of our pre-training strategy under conditions where there is plenty of pre-training data but restricted access to labeled downstream samples, we fine-tune our model—initially pre-trained on the full dataset—using different fractions (10%, 25%, 50%, and 100%) of the SurroundOcc training set.

Fig. 3 showcases how SQS improves data efficiency. With full fine-tuning data, SQS yields improvements of +1.69 IoU and +1.3 mIoU over the baseline. Notably, this benefit is amplified as less fine-tuning data is used: for instance, fine-tuning with only 10% of the data results in a gain of about +3.7 mIoU. These findings highlight the strength of SQS in achieving notable performance improvements through query-based splatting pre-training, particularly when downstream annotated data is scarce.

Visualization of Renderings. As shown in Fig. 4, employing 25,600 queries for 3DGS reconstruction through the multi-view RGB images and depth maps as supervision, SQS could predict promising depth and RGB images during the pre-training stage.

Table 3: **Ablation studies.** We report the IoU and mIoU metrics on the SurroundOcc *val* set for the 3D semantic occupancy prediction task. "Rend.", "B.b." and "Inter." denote rendering, image backbone, and query interaction, respectively.

Methods	Rend. RGB	Rend. Depth	Load B.b.	Query Inter.	IoU	mIoU
Baseline [16]	1				25.8	15.2
Model A	✓		 		23.8 ^{\(\frac{2}{2}.0\)}	12.2 \(\frac{13.0}{4}
Model B		\checkmark	✓		$27.9^{\uparrow 2.1}$	$17.3^{+2.1}$
Model C	✓	\checkmark	√		$28.2^{\ \uparrow 2.4}$	$17.5^{\uparrow 2.3}$
Model D	✓	\checkmark		✓	$26.3 ^{\uparrow 0.5}$	$15.9^{\uparrow 0.7}$
Model E				✓	$25.7^{\ \downarrow 0.1}$	$15.3^{\ \uparrow 0.1}$
SQS (Ours)	✓	\checkmark	✓	✓	28.5 ^{↑2.7}	18.0 ^{↑2.8}

4.3 Ablation Studies

In this section, we conduct ablations on the semantic occupancy prediction task on the validation split of the SurroundOcc dataset. In order to reduce the training time, we utilize the quarter of training data during the pre-training and fine-tune stage for all experiments. The results are demonstrated in Tab. 3.

Rendering Objectives. We first investigate the impact of various rendering objectives during the pretraining stage. Specifically, in ModelA, ModelB, and ModelC of Tab. 3, we employ RGB rendering only, depth rendering only, and a combination of both RGB and depth rendering as the pre-training objectives, respectively. The results reveal that utilizing only RGB rendering during pre-training impairs fine-tuning performance, resulting in a reduction of 2.0 in IoU and 3.0 in mIoU. In contrast, incorporating depth rendering alone leads to improvements of 2.1 in both IoU and mIoU metrics. These findings suggest that rendered depth supervision enhances the geometric representation capability of the pre-trained model, thereby facilitating improved fine-tuning performance. Furthermore, when both RGB and depth renderings are jointly applied, we observe a marginal additional improvement. This indicates that rendered RGB supervision provides supplementary benefits in the presence of rendered depth supervision.

Effects of Query Interaction. To further assess the impact of query interaction during the fine-tuning stage, we develop Model D, which exclusively incorporates the query interaction mechanism during fine-tuning. As presented in Tab. 3, the pre-trained model is capable of generating meaningful queries for reconstruction, which can be further leveraged to enhance the query learning process through the query interaction module during fine-tuning. This results in improvements of 0.5 IoU and 0.7 mIoU. To eliminate the influence of extra query interaction during the fine-tuning stage, we additionally design Model E to exclusively adapt the query interaction module without pre-training. Its performance remains nearly identical to that of the baseline, indicating that the additional query interaction module offers negligible benefit during fine-tuning. Finally, by initializing with the pre-trained image backbone and FPN neck, we obtain optimal fine-tuning performance, reaching 28.5% IoU and 18.0% mIoU. These results demonstrate the superiority of the query interaction design within our proposed SQS paradigm.

4.4 Limitations and Future Work

While SQS has achieved further improvements across various downstream tasks, becoming a plugand-play general pre-training paradigm for sparse perception models, it still faces several limitations. One limitation is the extra computation burden and memory consumption incurred by the plug-in pre-training model. Another limitation is the insufficient utilization of pre-training queries for different downstream tasks.

In the future, we will explore how to introduce the semantic information during the pre-training stage and then use the semantic information to distinguish the pre-trained queries for various downstream tasks. We will also try to apply the SQS to query-based end-to-end autonomous driving approaches such as SparseAD [67] and GaussianAD [71].

5 Conclusion

In this paper, we introduced SQS, a novel query-based splatting pre-training paradigm tailored for autonomous driving SPMs. SQS overcomes the limitations of previous pre-training methods by enabling image backbone and Gaussian queries to learn rich 3D representations through 3D Gaussian prediction and the reconstruction of both images and depth maps. The plug-in design and query interaction strategy further allow seamless transfer and adaptation of the pre-trained model to diverse downstream tasks. Extensive experiments on benchmark datasets validate the effectiveness of SQS, showing promising improvements over various SOTA SPMs.

Acknowledgements

This work was supported by NSFC with Grant No. 62573371, by the Basic Research Project No. HZQB-KCZYZ-2021067 of Hetao Shenzhen-HK S&T Cooperation Zone, by Guangdong S&T Programme with Grant No. 2024B0101030002, by the Shenzhen General Program No. JCYJ20220530143600001, by the Shenzhen Outstanding Talents Training Fund 202002, by the Guangdong Research Project No.2017ZT07X152 and No. 2019CX01X104, by the Guangdong Provincial Key Laboratory of Future Networks of Intelligence (Grant No. 2022B1212010001), by the Guangdong Provincial Key Laboratory of BigData Computing CHUK-Shenzhen, by the NSFC 61931024&12326610&62293482, by the Key Area R&D Program of Guangdong Province with grant No. 2018B030338001, by the Shenzhen Key Laboratory of Big Data and Artificial Intelligence (Grant No. SYSPG20241211173853027), by China Association for Science and Technology Youth Care Program, by the Shenzhen-Hong Kong Joint Funding No. SGDX20211123112401002, and by Tencent & Huawei Open Fund.

References

- [1] Simon Boeder, Fabian Gigengack, and Benjamin Risse. Gaussianflowocc: Sparse and weakly supervised occupancy estimation using gaussian splatting and temporal flow. *arXiv* preprint arXiv:2502.17288, 2025.
- [2] Alexandre Boulch, Corentin Sautier, Björn Michele, Gilles Puy, and Renaud Marlet. ALSO: automotive lidar self-supervision by occupancy estimation. In CVPR, 2023.
- [3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In CVPR, 2020.
- [4] Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3991–4001, 2022.
- [5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In *European conference on computer vision*, pages 213–229. Springer, 2020.
- [6] Florian Chabot, Nicolas Granger, and Guillaume Lapouge. Gaussianbev: 3d gaussian representation meets perception models for bev segmentation. *arXiv preprint arXiv: 2407.14108*, 2024.
- [7] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-to-end autonomous driving: Challenges and frontiers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- [8] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation. In *Forty-first International Conference on Machine Learning*, 2024.
- [9] MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation platform for general 3D object detection. https://github.com/open-mmlab/mmdetection3d, 2020.
- [10] Shenghao Fu, Junkai Yan, Qize Yang, Xihan Wei, Xiaohua Xie, and Wei-Shi Zheng. Frozen-detr: Enhancing detr with image understanding from frozen foundation models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

- [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [12] Junjie Huang and Guan Huang. Bevpoolv2: A cutting-edge implementation of bevdet toward deployment. *arXiv preprint arXiv:2211.17111*, 2022.
- [13] Junjie Huang, Guan Huang, Zheng Zhu, and Dalong Du. Bevdet: High-performance multi-camera 3d object detection in bird-eye-view. *CoRR*, abs/2112.11790, 2021.
- [14] Yuanhui Huang, Amonnut Thammatadatrakoon, Wenzhao Zheng, Yunpeng Zhang, Dalong Du, and Jiwen Lu. Probabilistic gaussian superposition for efficient 3d occupancy prediction. *arXiv preprint arXiv:2412.04384*, 2024.
- [15] Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective view for vision-based 3d semantic occupancy prediction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9223–9232, 2023.
- [16] Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Gaussianformer: Scene as gaussians for vision-based 3d semantic occupancy prediction. In *European Conference on Computer Vision*, pages 376–393. Springer, 2024.
- [17] Haoyi Jiang, Liu Liu, Tianheng Cheng, Xinjie Wang, Tianwei Lin, Zhizhong Su, Wenyu Liu, and Xinggang Wang. Gausstr: Foundation model-aligned gaussian transformer for self-supervised 3d spatial understanding. *arXiv* preprint arXiv:2412.13193, 2024.
- [18] Xiaohui Jiang, Shuailin Li, Yingfei Liu, Shihao Wang, Fan Jia, Tiancai Wang, Lijin Han, and Xiangyu Zhang. Far3d: Expanding the horizon for surround-view 3d object detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 2561–2569, 2024.
- [19] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.
- [20] Georg Krispel, David Schinagl, Christian Fruhwirth-Reisinger, Horst Possegger, and Horst Bischof. Maeli: Masked autoencoder for large-scale lidar point clouds. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 3383–3392, 2024.
- [21] Yinhao Li, Han Bao, Zheng Ge, Jinrong Yang, Jianjian Sun, and Zeming Li. Bevstereo: Enhancing depth estimation in multi-view 3d object detection with dynamic temporal stereo. arXiv preprint arXiv:2209.10248, 2022.
- [22] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth: Acquisition of reliable depth for multi-view 3d object detection. In *AAAI*, 2023.
- [23] Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming Liu, Junjun Jiang, Bolei Zhou, and Hang Zhao. Simipu: Simple 2d image and 3d point cloud unsupervised pre-training for spatial-aware visual representations. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 1500–1508, 2022.
- [24] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers. In ECCV, 2022.
- [25] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie. Feature pyramid networks for object detection. In *CVPR*, 2017.
- [26] Xuewu Lin, Tianwei Lin, Zixiang Pei, Lichao Huang, and Zhizhong Su. Sparse4d: Multi-view 3d object detection with sparse spatial-temporal fusion. arXiv preprint arXiv:2211.10581, 2022.
- [27] Xuewu Lin, Tianwei Lin, Zixiang Pei, Lichao Huang, and Zhizhong Su. Sparse4d v2: Recurrent temporal fusion with sparse model. arXiv preprint arXiv:2305.14018, 2023.
- [28] Xuewu Lin, Tianwei Lin, Zixiang Pei, Lichao Huang, and Zhizhong Su. Sparse4d v2: Recurrent temporal fusion with sparse model. *arXiv preprint arXiv:2305.14018*, 2023.
- [29] Xuewu Lin, Zixiang Pei, Tianwei Lin, Lichao Huang, and Zhizhong Su. Sparse4d v3: Advancing end-to-end 3d detection and tracking. *arXiv preprint arXiv:2311.11722*, 2023.
- [30] Feng Liu, Tengteng Huang, Qianjing Zhang, Haotian Yao, Chi Zhang, Fang Wan, Qixiang Ye, and Yanzhao Zhou. Ray denoising: Depth-aware hard negative sampling for multi-view 3d object detection. In *European Conference on Computer Vision*, pages 200–217. Springer, 2024.

- [31] Haisong Liu, Yao Teng, Tao Lu, Haiguang Wang, and Limin Wang. Sparsebev: High-performance sparse 3d object detection from multi-camera videos. In *Proceedings of the IEEE/CVF International Conference* on Computer Vision, pages 18580–18590, 2023.
- [32] Jihao Liu, Jinliang Zheng, Yu Liu, and Hongsheng Li. Glid: Pre-training a generalist encoder-decoder vision model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22851–22860, 2024.
- [33] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. Petr: Position embedding transformation for multi-view 3d object detection. In *European conference on computer vision*, pages 531–548. Springer, 2022.
- [34] Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Aqi Gao, Tiancai Wang, and Xiangyu Zhang. Petrv2: A unified framework for 3d perception from multi-camera images. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3262–3272, 2023.
- [35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.
- [36] Shu-Wei Lu, Yi-Hsuan Tsai, and Yi-Ting Chen. Gaussianlss–toward real-world bev perception: Depth uncertainty estimation via gaussian splatting. *arXiv preprint arXiv:2504.01957*, 2025.
- [37] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.
- [38] Chen Min, Liang Xiao, Dawei Zhao, Yiming Nie, and Bin Dai. Occupancy-mae: Self-supervised pretraining large-scale lidar point clouds with masked occupancy autoencoders. *IEEE Transactions on Intelligent Vehicles*, 2023.
- [39] Chen Min, Dawei Zhao, Liang Xiao, Yiming Nie, and Bin Dai. Voxel-mae: Masked autoencoders for pre-training large-scale point clouds. CoRR, abs/2206.09900, 2022.
- [40] Zak Murez, Tarrence Van As, James Bartolozzi, Ayan Sinha, Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-to-end 3d scene reconstruction from posed images. In *European conference on computer vision*, pages 414–431. Springer, 2020.
- [41] Lucas Nunes, Rodrigo Marcuzzi, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss. Segcontrast: 3d point cloud feature representation learning through self-supervised segment discrimination. *IEEE Robotics and Automation Letters*, 7(2):2116–2123, 2022.
- [42] Dennis Park, Rares Ambrus, Vitor Guizilini, Jie Li, and Adrien Gaidon. Is pseudo-lidar needed for monocular 3d object detection? In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3142–3152, 2021.
- [43] Jinhyung Park, Chenfeng Xu, Shijia Yang, Kurt Keutzer, Kris Kitani, Masayoshi Tomizuka, and Wei Zhan. Time will tell: New outlooks and a baseline for temporal multi-view 3d object detection. *arXiv* preprint *arXiv*:2210.02443, 2022.
- [44] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d. In ECCV, 2020.
- [45] Corentin Sautier, Gilles Puy, Alexandre Boulch, Renaud Marlet, and Vincent Lepetit. BEVContrast: Self-supervision in bev space for automotive lidar point clouds. In *International Conference on 3D Vision* (3DV), 2024.
- [46] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with global intention localization and local movement refinement. Advances in Neural Information Processing Systems, 35:6531– 6543, 2022.
- [47] Yiang Shi, Tianheng Cheng, Qian Zhang, Wenyu Liu, and Xinggang Wang. Occupancy as set of points. In *European Conference on Computer Vision*, pages 72–87. Springer, 2024.
- [48] Pin Tang, Zhongdao Wang, Guoqing Wang, Jilai Zheng, Xiangxuan Ren, Bailan Feng, and Chao Ma. Sparseocc: Rethinking sparse latent representation for vision-based semantic occupancy prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15035– 15044, 2024.
- [49] Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang, and Hang Zhao. Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous driving. *Advances in Neural Information Processing Systems*, 36, 2024.

- [50] Wenwen Tong, Chonghao Sima, Tai Wang, Li Chen, Silei Wu, Hanming Deng, Yi Gu, Lewei Lu, Ping Luo, Dahua Lin, et al. Scene as occupancy. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8406–8415, 2023.
- [51] JiaBao Wang, Zhaojiang Liu, Qiang Meng, Liujiang Yan, Ke Wang, JIE YANG, Wei Liu, Qibin Hou, and Ming-Ming Cheng. Opus: Occupancy prediction using a sparse set. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [52] Shihao Wang, Yingfei Liu, Tiancai Wang, Ying Li, and Xiangyu Zhang. Exploring object-centric temporal modeling for efficient multi-view 3d object detection. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 3621–3631, 2023.
- [53] Shihao Wang, Yingfei Liu, Tiancai Wang, Ying Li, and Xiangyu Zhang. Exploring object-centric temporal modeling for efficient multi-view 3d object detection. arXiv preprint arXiv:2303.11926, 2023.
- [54] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin. Fcos3d: Fully convolutional one-stage monocular 3d object detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 913–922, 2021.
- [55] Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun Wang, Hang Zhao, and Justin Solomon. Detr3d: 3d object detection from multi-view images via 3d-to-2d queries. In *Conference on Robot Learning*, pages 180–191. PMLR, 2022.
- [56] Dongxu Wei, Zhiqi Li, and Peidong Liu. Omni-scene: Omni-gaussian representation for ego-centric sparse-view scene reconstruction. *arXiv preprint arXiv:2412.06273*, 2024.
- [57] Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, and Jiwen Lu. Surroundocc: Multi-camera 3d occupancy prediction for autonomous driving. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 21729–21740, 2023.
- [58] Shaoqing Xu, Fang Li, Shengyin Jiang, Ziying Song, Li Liu, and Zhi-xin Yang. Gaussianpretrain: A simple unified 3d gaussian representation for visual pre-training in autonomous driving. *arXiv* preprint *arXiv*:2411.12452, 2024.
- [59] Xiangchao Yan, Runjian Chen, Bo Zhang, Jiakang Yuan, Xinyu Cai, Botian Shi, Wenqi Shao, Junchi Yan, Ping Luo, and Yu Qiao. Spot: Scalable 3d pre-training via occupancy prediction for autonomous driving. arXiv preprint arXiv:2309.10527, 2023.
- [60] Xu Yan, Haiming Zhang, Yingjie Cai, Jingming Guo, Weichao Qiu, Bin Gao, Kaiqiang Zhou, Yue Zhao, Huan Jin, Jiantao Gao, et al. Forging vision foundation models for autonomous driving: Challenges, methodologies, and opportunities. arXiv preprint arXiv:2401.08045, 2024.
- [61] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. *arXiv* preprint arXiv:2401.01339, 2024.
- [62] Honghui Yang, Sha Zhang, Di Huang, Xiaoyang Wu, Haoyi Zhu, Tong He, Shixiang Tang, Hengshuang Zhao, Qibo Qiu, Binbin Lin, et al. Unipad: A universal pre-training paradigm for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15238–15250, 2024.
- [63] Jiawei Yang, Jiahui Huang, Boris Ivanovic, Yuxiao Chen, Yan Wang, Boyi Li, Yurong You, Apoorva Sharma, Maximilian Igl, Peter Karkus, et al. Storm: Spatio-temporal reconstruction model for large-scale outdoor scenes. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [64] Zetong Yang, Li Chen, Yanan Sun, and Hongyang Li. Visual point cloud forecasting enables scalable autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.
- [65] Jiakang Yuan, Bo Zhang, Xiangchao Yan, Botian Shi, Tao Chen, Yikang Li, and Yu Qiao. Ad-pt: Autonomous driving pre-training with large-scale point cloud dataset. Advances in Neural Information Processing Systems, 36, 2024.
- [66] Zhang Yumeng, Gong Shi, Xiong Kaixin, Ye Xiaoqing, Tan Xiao, Wang Fan, Huang Jizhou, Wu Hua, and Wang Haifeng. Beyworld: A multimodal world model for autonomous driving via unified bev latent space. arXiv preprint arXiv:2407.05679, 2024.

- [67] Diankun Zhang, Guoan Wang, Runwen Zhu, Jianbo Zhao, Xiwu Chen, Siyu Zhang, Jiahao Gong, Qibin Zhou, Wenyuan Zhang, Ningzi Wang, et al. Sparsead: Sparse query-centric paradigm for efficient end-to-end autonomous driving. arXiv preprint arXiv:2404.06892, 2024.
- [68] Fengyi Zhang, Huitong Yang, Zheng Zhang, Zi Huang, and Yadan Luo. Tt-gaussocc: Test-time compute for self-supervised occupancy prediction via spatio-temporal gaussian splatting. arXiv preprint arXiv:2503.08485, 2025.
- [69] Haiming Zhang, Wending Zhou, Yiyao Zhu, Xu Yan, Jiantao Gao, Dongfeng Bai, Yingjie Cai, Bingbing Liu, Shuguang Cui, and Zhen Li. Visionpad: A vision-centric pre-training paradigm for autonomous driving. *arXiv preprint arXiv:2411.14716*, 2024.
- [70] Yunpeng Zhang, Zheng Zhu, and Dalong Du. Occformer: Dual-path transformer for vision-based 3d semantic occupancy prediction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9433–9443, 2023.
- [71] Wenzhao Zheng, Junjie Wu, Yao Zheng, Sicheng Zuo, Zixun Xie, Longchao Yang, Yong Pan, Zhihui Hao, Peng Jia, Xianpeng Lang, et al. Gaussianad: Gaussian-centric end-to-end autonomous driving. *arXiv* preprint arXiv:2412.10371, 2024.
- [72] Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Drivinggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21634–21643, 2024.
- [73] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-balanced grouping and sampling for point cloud 3d object detection. *arXiv preprint arXiv:1908.09492*, 2019.
- [74] Jialv Zou, Bencheng Liao, Qian Zhang, Wenyu Liu, and Xinggang Wang. Mim4d: Masked modeling with multi-view video for autonomous driving representation learning. arXiv preprint arXiv:2403.08760, 2024.
- [75] Sicheng Zuo, Wenzhao Zheng, Yuanhui Huang, Jie Zhou, and Jiwen Lu. Gaussianworld: Gaussian world model for streaming 3d occupancy prediction. arXiv preprint arXiv:2412.10373, 2024.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We have claimed the contributions and results in the abstract and introduction parts.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations and future work are illustrated in Sec. 4.4.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We do not contain the corresponding theoretical assumptions and proof in our paper.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have elaborated the implementation details, experimental settings and training inference in our main paper.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We plan to release the code upon acceptance.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the training and test details are included in Sec. 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The error bars are not necessary to report in our settings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We have included this part in Sec. 4.

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and conform them accurately.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are included in the supplementary materials.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pre-trained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited the original paper and stated the terms of use accordingly.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.