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Abstract

Sparse Perception Models (SPMs) adopt a query-driven paradigm that forgoes ex-
plicit dense BEV or volumetric construction, enabling highly efficient computation
and accelerated inference. In this paper, we introduce SQS, a novel query-based
splatting pre-training specifically designed to advance SPMs in autonomous driv-
ing. SQS introduces a plug-in module that predicts 3D Gaussian representations
from sparse queries during pre-training, leveraging self-supervised splatting to
learn fine-grained contextual features through the reconstruction of multi-view
images and depth maps. During fine-tuning, the pre-trained Gaussian queries are
seamlessly integrated into downstream networks via query interaction mechanisms
that explicitly connect pre-trained queries with task-specific queries, effectively
accommodating the diverse requirements of occupancy prediction and 3D object
detection. Extensive experiments on autonomous driving benchmarks demonstrate
that SQS delivers considerable performance gains across multiple query-based
3D perception tasks, notably in occupancy prediction and 3D object detection,
outperforming prior state-of-the-art pre-training approaches by a significant margin
(i.e., +1.3 mIoU on occupancy prediction and +1.0 NDS on 3D detection).

1 Introduction

Recent advances in vision-centric autonomous driving have driven significant progress in the field [7,
60]. From a representation standpoint, existing approaches can be broadly categorized into dense BEV-
centric and sparse query-centric paradigms. Dense BEV-centric methods [24, 44, 13] extract Bird’s
Eye View (BEV) features from multi-view images for downstream tasks, while Sparse Perception
Models (SPMs) [55, 33, 31] bypass explicit dense representations and directly aggregate features
from images using implicit queries, enabling faster inference. Sparse query-centric methods have
garnered increasing attention within the community due to their practical advantages for real-world
deployment. Despite the dominance of supervised methods, their reliance on precise ground-truth
annotations presents a substantial challenge, as acquiring such labels is both costly and labor-intensive.
Conversely, the abundance of unlabeled data offers a promising avenue to further enhance model
performance. Nevertheless, effectively leveraging this data remains a non-trivial challenge.

To mitigate these challenges, various pre-training strategies have been proposed for autonomous
driving. Earlier works leverage contrastive learning [45] and Masked Autoencoders (MAE) [38] for
pre-training. However, the coarse supervision they provide limits their capacity to fully capture spatial-
temporal geometry. In contrast, NeRF-based approaches such as UniPAD [62] and ViDAR [64] utilize
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Figure 1: The comparison of pre-training and fine-tuning paradigms. (a) Existing pre-training ap-
proaches operate on dense BEV or Occupancy representations, which are subsequently shared during
fine-tuning. (b) The proposed SQS can be integrated into any sparse query-based perception model,
accepting Gaussian queries for pre-training and utilizing them for prediction. (c) We demonstrate
the effectiveness of SQS on query-based 3D semantic occupancy prediction (Occ.) and 3D object
detection (Det.) tasks. PT and FT denote pre-training and fine-tuning, respectively.

3D volumetric differentiable rendering to reconstruct and predict 3D scene structures. To reduce
memory overhead and improve rendering efficiency, a separate line of research [58, 69] introduce 3D
Gaussian Splatting (3DGS) [19] for explicit scene representation. By predicting Gaussian parameters
for feedforward reconstruction, GaussianPretrain [58] achieves comprehensive scene understanding
by integrating geometric and texture representations. Moreover, VisionPAD [69] projects neighboring
frames onto the current frame using rendered depths and relative poses, relying solely on RGB image
supervision rather than explicit depth annotations. Although existing pre-training paradigms have
substantially enhanced the performance of downstream applications, their reliance on dense BEV
representations limits their applicability to SPMs (Fig. 1(a)).

In this paper, we present the first attempt to pretrain Sparse Perception Models (SPMs) on unlabeled
data to enhance their downstream performance, as shown in Fig. 1(b). Unlike dense BEV-centric
perception models, we find out that the latent sparse queries in SPMs lack explicit spatial positions
and semantic meanings, making it challenging to directly apply existing rendering-based pre-training
methods, which often fail to preserve informative representations during training. To address this
challenge, we propose SQS, a novel pre-training framework for SPMs based on query-based splatting.
Unlike previous approaches, SQS introduces a small set of adaptive Gaussian queries during pre-
training. These queries dynamically predict 3D Gaussians and reconstruct both depth and RGB
images via a splatting mechanism, enabling the model to learn fine-grained representations from
unlabeled data in a self-supervised manner. After pre-training, the learned Gaussian queries are
used for fine-tuning, where they interact and fuse with task-specific queries, resulting in improved
downstream performance. We evaluate our approach on tasks such as object detection and 3D
occupancy prediction. Experimental results demonstrate that SQS consistently achieves significant
performance improvements over state-of-the-art methods without pre-training.

To this end, our contributions can be summarized as follows:

• We propose SQS, the first query-based splatting pre-training technique specifically designed
to advance Sparse Perception Models (SPMs).

• We introduce plug-and-play Gaussian queries, which learns fine-grained features in a
self-supervised manner during pre-training, and further enhances downstream tasks via
interactive feature fusion during fine-tuning.

• SQS significantly enhances performance in both occupancy prediction and 3D object detec-
tion, surpassing previous state-of-the-art results on multiple autonomous driving benchmarks
(i.e., +1.3 mIoU on occupancy prediction and +1.0 NDS on 3D detection as Fig. 1(c)).
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2 Related Work

Pre-training in autonomous driving. Pre-training has gained remarkable progress in recent
years for autonomous driving. Conventional approaches cover supervised [42, 54, 50, 59], con-
trastive [23, 41, 45, 65], and masked signal modeling [39, 38, 2, 20] categories. With advances
in neural rendering [37], rendering-based pre-training [62, 64, 74, 66] becomes an alternative by
rendering images from dense BEV or Volume representation. For example, UniPAD [62] utilizes 3D
volumetric differentiable rendering to reconstruct 3D shape structures and appearance characteristics.
Meanwhile, ViDAR [64] predicts the future point cloud using a Latent Rendering operator based on
historical embeddings. To achieve effective and efficient rendering, 3D Gaussian Splatting [19] is
introduced in some recent works. GaussianPretrain [58] considers 3D Gaussian anchors as volumetric
LiDAR points for unified geometric and texture representations. Without explicit depth supervision,
VisionPAD [69] reconstructs images employing both voxel velocity estimation and multi-frame pho-
tometric consistency. These pre-training pipelines successfully model spatial-temporal representation
for dense BEV features.

However, the emerging perception methods with sparse route [55, 33, 34, 52, 31] are not compatible
with the paradigms above. Recently, the query-based pre-training in 2D image has been developed.
Frozen-DETR [10] utilizes frozen foundation models with class token and patch token, which provide
a compact context and semantic details, respectively. GLID [32] models pre-training pretext task and
other downstream tasks as “query-to-answer” problems. Since the sparse pre-training in autonomous
driving requires an accurate 3D geometric representation extracted from multi-view images, the
existing methods for 2D are inapplicable for Sparse Perception Models (SPMs).

Sparse Perception Models for 3D Detection and Occupancy Prediction. For the sparse 3D
detection, motivated by DETR [5], DETR3D [55] utilizes a sparse set of 3D object queries to sample
the 2D features from images by 3D point projection. To avoid the complex 2D-to-3D projection
and feature sampling, PETR series [33, 34, 52, 18, 30, 67] directly interact with 3D position-aware
features by encoding the 3D position into 2D image features. Without relying on dense view
transformation nor global attention, Sparse4D [27] iteratively refines anchor boxes via sparsely
sampling and fuses spatial-temporal features. In the SparseBEV [31], to adapt the detector in both
BEV and image space, a set of sparse pillar queries initialized in BEV space are applied to interact
with the image features.

Regarding occupancy prediction, the query-based approaches [51, 48, 47] are proposed to reduce
computational cost. OPUS [51] formulates the task as a streamlined set prediction paradigm.
SparseOcc [48] proposes an efficient occupancy network with 3D sparse diffuser and convolu-
tional kernels while OSP [47] presents the Points of Interest (PoIs) to represent the scene. Recently,
3DGS has demonstrated the capacity to adapt flexibly to varying object scales and regional complexi-
ties in a deformable manner, thereby enhancing resource allocation and overall efficiency. Based on
the aforementioned advantages, another line of works utilize 3DGS for supervised [16, 14, 75] or
self-supervised [1, 68, 17] occupancy prediction. In conclusion, compared to the BEV based methods,
the sparse algorithms reduce computational cost and broaden the perception range. This distinctive
advantage makes the development of a sparse pre-training algorithm for them particularly imperative.

3D Gaussian Splatting in Autonomous Driving. 3D Gaussian Splatting (3DGS) [19] uses multiple
3D Gaussian primitives for fast radiance field rendering, enabling explicit representation with fewer
parameters. For reconstructing driving scenes, several approaches are carefully designed for 3D
static [72, 61, 56] and 4D dynamic [63] scenes. More recently, 3DGS based perception models
have been proposed, including occ prediction [16, 14, 75], bev segmentaiong [6, 36] and end-to-
end tasks [71]. Alternatively, some recent works apply 3DGS for self-supervised occ prediction
[1, 17, 68]. GaussianFlowOcc [1] and TT-GaussOcc [68] model scene dynamics by predicting
the temporal flow for each Gaussian throughout the training procedure. Without requiring explicit
annotations, GaussTR [17] splats the Gaussians onto 2D perspectives and aligns the extracted
features with foundation models. Furthermore, regarding to the self-supervised pre-training, sevaral
methods [58, 69] adopt 3DGS for explicit geometry representation in the Dense BEV or Volume
feature to improve the performance of downstream tasks. Nevertheless, up to now, there is still no
pre-training scheme that can effectively adapt to Sparse Perception Models (SPMs).
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3 Proposed Method

In this section, we introduce our query-based splatting pre-training approach for autonomous driving.
The overall architecture of the proposed SQS framework is depicted in Fig. 2.

We first provide the necessary preliminaries on 3D Gaussian Splatting, which enables the rendering
of both RGB images and depth maps from predicted 3D Gaussians. Subsequently, we briefly outline
the image encoder employed to extract multi-scale features from multi-view input images. We then
detail the query-based Gaussian transformer decoder, which utilizes Gaussian queries to predict 3D
Gaussians and facilitates the learning of fine-grained information via self-supervised splatting. Finally,
by incorporating the pre-trained Gaussian queries through a query interaction module during fine-
tuning, our approach effectively transfers knowledge from the pre-training stage, thereby enhancing
downstream query-based learning performance.

3.1 Preliminaries

3D Gaussian Splatting (3DGS) [19] represents 3D scenes through collections of K Gaussians. Each
primitive gk contains 3D position µk ∈ R3, covariance Σk, opacity αk ∈ [0, 1], and spherical
harmonics coefficients ck ∈ Rk.

For differentiable optimization, the covariance matrix is parameterized using scaling S ∈ R3
+ and

rotation R ∈ R4 matrices:
Σ = RSSTRT . (1)

Projection to image coordinates employs view transformation W and Jacobian J:

Σ′ = JWΣWTJT . (2)

Rendering combines ordered Gaussians using an alpha-blend rendering proceduure [37], and color at
pixel p is computed as:

C(p) =
∑
i∈K

ciαi

i−1∏
j=1

(1− αi). (3)

To introduce geometric representation [8], depth rendering is computed as:

D(p) =
∑
i∈K

diαi

i−1∏
j=1

(1− αj), (4)

where di represents the distance from i-th Gaussian to the camera. Unlike volume rendering [37],
3DGS uses efficient splat-based rasterization that projects 3D Gaussians as 2D image patches.

3.2 Image Encoder

Given a set of multi-view images I = {Ii ∈ R3×H×W |i = 1, ..., N}, corresponding intrinsics
K = {Ki ∈ R3×3|i = 1, ..., N} and extrinsics T = {Ti ∈ R4×4|i = 1, ..., N} as inputs, where
N is the number of cameras. We first need to extract multi-scale multi-view image features for the
subsequent decoder. Specifically, we feed multi-view images to the backbone network (e.g., ResNet-
101 [11]), and obtain the intermediate multi-level feature F

′
. To further enhance and aggregate

these features across different spatial resolutions, we utilize a Feature Pyramid Network (FPN). The
FPN processes the multi-level features and produces multi-scale image features F , which effectively
captures both high-level semantic information and fine-grained spatial details.

3.3 Gaussian Transformer Decoder and Gaussian Queries

As illustrated at the top of Fig. 2, SQS employs a Gaussian Transformer Decoder to process 2D image
features and reconstruct multi-view RGB and depth images. This reconstruction enables the model to
capture the underlying geometry and appearance of Gaussian attributes, providing a strong feature
prior. As a result, SQS enhances downstream sparse perception tasks by supplying a pretrained image
backbone and enriched Gaussian query representations.

Each Gaussian query is initialized as learnable anchors gk ∈ RK×C , paired with queries qk ∈ RK×D

using zero vectors in high-dimensional space, where K is the number of Gaussians, C and D are
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Figure 2: The pipeline of our proposed SQS. In order to adapt the sparse query-based downstream
tasks, we design a sparse query-based 3D Gaussian Splatting pre-training paradigm with RGB image
and depth as supervision. The pre-trained image encoder can be leveraged during the fine-tuning
stage, and we also propose a query interaction module to fully exploit the knowledge encapsulated in
the pre-trained queries. Our proposed light-weight pre-training paradigm can be plugged into any
sparse query-based downstream tasks to enhance their performance.

the dimension of Gaussian primitives and query features respectively. During pre-training, guided
by the initialized vectors with learnable Gaussian primitives, these query features interact through
self-encoding and deformable cross-attention with image features to predict the Gaussian attributes,
enabling the retention of rich and detailed geometric information.

To capture the representation across the entire scene, 3D sparse convolution across Gaussian queries
is employed to reduce memory cost with linear computational complexity. Here, the 3D position
µk ∈ R3 in Gaussian anchor is used to voxelize each Gaussian and the sparse convolution is leveraged
on the voxel grid.

Then the multi-level image feature F is aggregated with deformable cross attention. Concretely,
for each Gaussian query, multiple 3D reference points are calculated with offsets added to the 3D
position µ from the Gaussian anchor. With the intrinsics K and extrinsics T , these 3D points are
projected onto 2D image planes to facilitate feature sampling. The resulting set of sampled features
serves as keys and values in the subsequent attention mechanism.

Finally, to enable the prediction of Gaussian properties, a dedicated Gaussian head comprising multi-
layer perceptrons (MLPs) is applied to each Gaussian query. To constrain the predicted parameters
within appropriate value ranges, sigmoid activations are applied to the position, scale, and opacity,
while the rotation is normalized to unit length. The Gaussian parameters µ, α, c, S and R are
iteratively refined across decoder layers, where only the position µ is predicted in the form of a delta,
while the remaining parameters are directly replaced at each refinement step.

3.4 Reconstruction Loss for Pre-training

We employ an L1 loss function for both RGB and depth reconstruction. LiDAR points serve as the
ground truth (GT) for depth, and the depth loss is supervised exclusively at pixels corresponding to
valid LiDAR measurements. The overall loss is formulated as follows:

L = ω1Lrgb + ω2Ldepth, (5)

where ω1 and ω2 are set to 1.0 and 0.05, respectively, to weight the corresponding terms.
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3.5 Query Interaction for Fine-tuning

Through query-based pre-training, both the image backbone and Gaussian queries acquire rich
geometric feature. For fine-tuning downstream SPMs, loading the pre-trained image backbone
is straightforward; however, reusing pre-trained Gaussian queries remains challenging. Unlike
Dense BEV-Centric perception frameworks, which leverage dense BEV representations as a unified
intermediate feature, SPMs typically lack such a common structural basis. Instead, these methods
often employ task-specific queries and are paired with dedicated decoders designed for different
perception tasks. The decoder architectures across various sparse perception algorithms can differ
significantly. For instance, SparseBEV [31] initializes queries in 2D BEV space, whereas PETR [33]
conducts initialization in 3D space.

To enable consistent reuse of pre-trained queries across diverse sparse perception tasks, as shown in
the bottom of Fig. 2, we propose a plug-in framework based on Query Interaction, facilitating greater
flexibility and generalization across diverse tasks. This module explicitly bridges pre-trained Gaussian
queries with task-specific queries, facilitating effective transfer and adaptation within heterogeneous
decoder frameworks.

Specifically, downstream SPMs initially load the weights of image backbone from a sparse pre-trained
model. Regarding the reuse of pre-trained Gaussian queries, we fix the parameters of the lightweight
pre-trained model. For each perception case, the pre-trained model infers a set of corresponding
Gaussian anchors paired with query features. We set opacity threshold αthresh to filter out anchors
with low opacity. To leverage pre-trained queries efficiently, spatial-aware local attention [46] is
applied. To elaborate, given 3D position µt of task query qt and µk from pre-trained anchors gk, we
apply k-nearest neighbor algorithm to find k closest 3D Gaussians for each task query. To this end,
qt only aggregates features from nearest k Gaussian queries, finally the local query interaction is
formulated as follows:

qt = LocalAttn(qt + MLP(µt), qk + MLP(gk)). (6)

4 Experiments

4.1 Experimental Settings

Dataset and Metrics. We conduct experiments on the nuScenes dataset [3], a large-scale benchmark
specifically curated for autonomous driving research. The dataset comprises 700 training scenes,
150 validation scenes, and 150 test scenes. Each scene includes synchronized sensor data from six
surround-view cameras and LiDAR, enabling comprehensive 3D perception across diverse urban
environments. Comprehensive annotations are provided to support multiple tasks, including 3D
object detection, LiDAR semantic segmentation, and 3D map segmentation. Building upon the
nuScenes dataset, SurroundOcc [57] provides the dense 3D semantic occupancy annotation tailored
for the occupancy prediction task. The annotated voxel grid spans [-50m, 50m] along both X and Y
axes, and [-5m, 3m] along the Z axis with a resolution of 200× 200× 16. Each voxel is assigned
one of 18 classes, comprising 16 semantic categories, an empty class, and an unknown class.

The quality of semantic occupancy prediction is evaluated using the mean Intersection-over-Union
(mIoU) and Intersection-over-Union (IoU) metrics [49]. For 3D object detection, we adopt the
standard nuScenes Detection Score (NDS) and mean Average Precision (mAP) metrics [3]. We also
contain five true positive (TP) metrics, including ATE, ASE, AOE, AVE, and AAE for measuring
translation, scale, orientation, velocity, and attribute errors, respectively.

Implementation Details. During the pre-training stage, we adopt a ResNet101-DCN [11] backbone
initialized from an FCOS3D [54] checkpoint for the occupancy prediction task, while ResNet50
and ResNet101 backbones that are pre-trained with nuImages [3] for the 3D object detection task.
The feature extraction employs a feature pyramid network [25] (FPN), producing multi-scale image
representations at downsampling factors of 4, 8, 16, and 32. We configure the Gaussian counts to
25,600, and apply two transformer layers to enhance Gaussian attributes. Model training utilizes
the AdamW [35] optimizer, with a 0.01 weight decay. The learning rate linearly warms up over the
initial 500 steps to 2e-4 and then follows a cosine decay schedule. Pre-training is conducted for 20
epochs using a batch size of 8. Only random horizontal flipping data augmentation is included. Our
implementation is based on MMDetection3D [9]. Fine-tuning follows the official downstream model
configurations without modification. All experiments are conducted on a server with 8 GPUs.
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Table 1: 3D semantic occupancy prediction results on the SurroundOcc val set. While the
original TPVFormer [15] is trained with LiDAR segmentation labels, TPVFormer* is supervised by
dense occupancy annotations.
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MonoScene [4] 23.96 7.31 4.03 0.35 8.00 8.04 2.90 0.28 1.16 0.67 4.01 4.35 27.72 5.20 15.13 11.29 9.03 14.86
Atlas [40] 28.66 15.00 10.64 5.68 19.66 24.94 8.90 8.84 6.47 3.28 10.42 16.21 34.86 15.46 21.89 20.95 11.21 20.54
BEVFormer [24] 30.50 16.75 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21
TPVFormer [15] 11.51 11.66 16.14 7.17 22.63 17.13 8.83 11.39 10.46 8.23 9.43 17.02 8.07 13.64 13.85 10.34 4.90 7.37
TPVFormer* [15] 30.86 17.10 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81
OccFormer [70] 31.39 19.03 18.65 10.41 23.92 30.29 10.31 14.19 13.59 10.13 12.49 20.77 38.78 19.79 24.19 22.21 13.48 21.35
SurroundOcc [57] 31.49 20.30 20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86

GaussianFormer [16] 29.83 19.10 19.52 11.26 26.11 29.78 10.47 13.83 12.58 8.67 12.74 21.57 39.63 23.28 24.46 22.99 9.59 19.12
GaussianFormer + SQS (Ours) 31.52 20.40 19.98 11.86 28.21 30.68 10.87 15.03 14.28 9.57 14.74 22.98 39.82 23.88 25.46 23.09 14.56 21.31
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Figure 3: Data efficiency analysis. To assess data efficiency under limited annotation scenarios, we
reduce the amount of labeled data used for downstream fine-tuning in the 3D semantic occupancy
prediction task. The outcomes demonstrate that our pre-training method significantly enhances
performance, even when only a small portion of annotations is available.

4.2 Main Results

We evaluate the effectiveness of SQS on two challenging downstream perception tasks: semantic
occupancy prediction and 3D object detection.

Semantic Occupancy Prediction. In Tab. 1, we present a comprehensive quantitative comparison of
various methods for multi-view 3D semantic occupancy prediction on the SurroundOcc validation
set. Among these methods, GaussianFormer [16] is a novel query-based occupancy prediction
method, performing on par with OccFormer [70] and SurroundOcc [57]. After being pre-trained
by our method, the GaussianFormer obtains 1.69 IoU and 1.30 mIoU improvements, achieving
20.40% mIoU, when compared to the 19.10% mIoU for GaussianFormer. These results highlight the
effectiveness of SQS for the query-based semantic occupancy prediction task.

3D Object Detection. We also have conducted experiments in the 3D object detection task, the results
are illustrated in Tab. 2. To validate the generality of SQS, we have performed two different sparse
object detection methods, e.g., SparseBEV [31] and Sparse4Dv3 [29] on the nuScenes validation
set. When leveraging the ResNet50 as the image backbone, and the input image size is 704× 256,
SparseBEV achieves 55.8 NDS performance, and an impressive 44.8 mAP metric. After being
pre-trained by SQS, we reach the 56.6 NDS and 45.2 mAP performance. Meanwhile, we set the new
performance record, that is 56.9 NDS and 47.4 mAP for the Sparse4Dv3 being pre-trained by SQS.
Then, we upgrade the backbone to ResNet101 and scale the input size to 1408 × 512. Under this
setting, the SparseBEV also benefits from our pre-training paradigm with 0.8 mAP and 1.0 NDS
improvements. Likewise, Sparse4Dv3 obtains corresponding improvements of 0.7 mAP and 0.8
NDS. The results also validate the effectiveness and generality of our pre-training paradigm.
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Table 2: 3D object detection results on the nuScenes val split. † benefits from perspective
pre-training [31]. ‡ indicates methods with CBGS [73] which will elongate 1 epoch into 4.5 epochs.

Method Backbone Input Size Epochs NDS mAP mATE mASE mAOE mAVE mAAE

PETRv2 [34] ResNet50 704 × 256 60 45.6 34.9 0.700 0.275 0.580 0.437 0.187
BEVStereo [21] ResNet50 704 × 256 90 ‡ 50.0 37.2 0.598 0.270 0.438 0.367 0.190
BEVPoolv2 [12] ResNet50 704 × 256 90 ‡ 52.6 40.6 0.572 0.275 0.463 0.275 0.188
SOLOFusion [43] ResNet50 704 × 256 90 ‡ 53.4 42.7 0.567 0.274 0.511 0.252 0.181
Sparse4Dv2 [28] ResNet50 704 × 256 100 53.9 43.9 0.598 0.270 0.475 0.282 0.179
StreamPETR † [53] ResNet50 704 × 256 60 55.0 45.0 0.613 0.267 0.413 0.265 0.196
SparseBEV [31] ResNet50 704 × 256 36 54.5 43.2 0.606 0.274 0.387 0.251 0.186
SparseBEV † [31] ResNet50 704 × 256 36 55.8 44.8 0.581 0.271 0.373 0.247 0.190
SparseBEV † + SQS (Ours) ResNet50 704 × 256 36 56.6 45.2 0.564 0.263 0.362 0.232 0.182
Sparse4Dv3 † [29] ResNet50 704 × 256 100 56.1 46.9 0.553 0.274 0.476 0.227 0.200
Sparse4Dv3 † + SQS (Ours) ResNet50 704 × 256 100 56.9 47.4 0.542 0.266 0.458 0.218 0.191

DETR3D † [55] ResNet101-DCN 1600 × 900 24 43.4 34.9 0.716 0.268 0.379 0.842 0.200
BEVFormer † [24] ResNet101-DCN 1600 × 900 24 51.7 41.6 0.673 0.274 0.372 0.394 0.198
BEVDepth [22] ResNet101 1408 × 512 90 ‡ 53.5 41.2 0.565 0.266 0.358 0.331 0.190
Sparse4D † [26] ResNet101-DCN 1600 × 900 48 55.0 44.4 0.603 0.276 0.360 0.309 0.178
SOLOFusion [43] ResNet101 1408 × 512 90 ‡ 58.2 48.3 0.503 0.264 0.381 0.246 0.207
SparseBEV † [31] ResNet101 1408 × 512 24 59.2 50.1 0.562 0.265 0.321 0.243 0.195
SparseBEV † + SQS (Ours) ResNet101 1408 × 512 24 60.2 50.9 0.531 0.251 0.318 0.241 0.185
Sparse4Dv3 † [29] ResNet101 1408 × 512 100 62.3 53.7 0.511 0.255 0.306 0.194 0.192
Sparse4Dv3 † + SQS (Ours) ResNet101 1408 × 512 100 63.1 54.4 0.498 0.241 0.298 0.187 0.188
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Figure 4: Rendering results visualization. Leveraging multi-view images and depth maps projected
by the sparse point cloud as supervision, SQS demonstrates compelling depth and image reconstruc-
tion after pre-training.

Data Efficiency. One of the main advantages of pre-training lies in its ability to improve data
efficiency for downstream tasks, especially when annotated data is limited. To further demonstrate the
effectiveness of our pre-training strategy under conditions where there is plenty of pre-training data
but restricted access to labeled downstream samples, we fine-tune our model—initially pre-trained on
the full dataset—using different fractions (10%, 25%, 50%, and 100%) of the SurroundOcc training
set.

Fig. 3 showcases how SQS improves data efficiency. With full fine-tuning data, SQS yields im-
provements of +1.69 IoU and +1.3 mIoU over the baseline. Notably, this benefit is amplified as
less fine-tuning data is used: for instance, fine-tuning with only 10% of the data results in a gain of
about +3.7 mIoU. These findings highlight the strength of SQS in achieving notable performance
improvements through query-based splatting pre-training, particularly when downstream annotated
data is scarce.

Visualization of Renderings. As shown in Fig. 4, employing 25,600 queries for 3DGS reconstruction
through the multi-view RGB images and depth maps as supervision, SQS could predict promising
depth and RGB images during the pre-training stage.
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Table 3: Ablation studies. We report the IoU and mIoU metrics on the SurroundOcc val set for
the 3D semantic occupancy prediction task. “Rend.”, “B.b.” and “Inter.” denote rendering, image
backbone, and query interaction, respectively.

Methods Rend. RGB Rend. Depth Load B.b. Query Inter. IoU mIoU

Baseline [16] 25.8 15.2

Model A ✓ ✓ 23.8 ↓2.0 12.2 ↓3.0

Model B ✓ ✓ 27.9 ↑2.1 17.3 ↑2.1

Model C ✓ ✓ ✓ 28.2 ↑2.4 17.5 ↑2.3

Model D ✓ ✓ ✓ 26.3 ↑0.5 15.9 ↑0.7

Model E ✓ 25.7 ↓0.1 15.3 ↑0.1

SQS (Ours) ✓ ✓ ✓ ✓ 28.5 ↑2.7 18.0 ↑2.8

4.3 Ablation Studies

In this section, we conduct ablations on the semantic occupancy prediction task on the validation split
of the SurroundOcc dataset. In order to reduce the training time, we utilize the quarter of training
data during the pre-training and fine-tune stage for all experiments. The results are demonstrated in
Tab. 3.

Rendering Objectives. We first investigate the impact of various rendering objectives during the pre-
training stage. Specifically, in ModelA, ModelB, and ModelC of Tab. 3, we employ RGB rendering
only, depth rendering only, and a combination of both RGB and depth rendering as the pre-training
objectives, respectively. The results reveal that utilizing only RGB rendering during pre-training
impairs fine-tuning performance, resulting in a reduction of 2.0 in IoU and 3.0 in mIoU. In contrast, in-
corporating depth rendering alone leads to improvements of 2.1 in both IoU and mIoU metrics. These
findings suggest that rendered depth supervision enhances the geometric representation capability of
the pre-trained model, thereby facilitating improved fine-tuning performance. Furthermore, when
both RGB and depth renderings are jointly applied, we observe a marginal additional improvement.
This indicates that rendered RGB supervision provides supplementary benefits in the presence of
rendered depth supervision.

Effects of Query Interaction. To further assess the impact of query interaction during the fine-tuning
stage, we develop Model D, which exclusively incorporates the query interaction mechanism during
fine-tuning. As presented in Tab. 3, the pre-trained model is capable of generating meaningful
queries for reconstruction, which can be further leveraged to enhance the query learning process
through the query interaction module during fine-tuning. This results in improvements of 0.5 IoU
and 0.7 mIoU. To eliminate the influence of extra query interaction during the fine-tuning stage, we
additionally design Model E to exclusively adapt the query interaction module without pre-training.
Its performance remains nearly identical to that of the baseline, indicating that the additional query
interaction module offers negligible benefit during fine-tuning. Finally, by initializing with the
pre-trained image backbone and FPN neck, we obtain optimal fine-tuning performance, reaching
28.5% IoU and 18.0% mIoU. These results demonstrate the superiority of the query interaction design
within our proposed SQS paradigm.

4.4 Limitations and Future Work

While SQS has achieved further improvements across various downstream tasks, becoming a plug-
and-play general pre-training paradigm for sparse perception models, it still faces several limitations.
One limitation is the extra computation burden and memory consumption incurred by the plug-in pre-
training model. Another limitation is the insufficient utilization of pre-training queries for different
downstream tasks.

In the future, we will explore how to introduce the semantic information during the pre-training stage
and then use the semantic information to distinguish the pre-trained queries for various downstream
tasks. We will also try to apply the SQS to query-based end-to-end autonomous driving approaches
such as SparseAD [67] and GaussianAD [71].
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5 Conclusion

In this paper, we introduced SQS, a novel query-based splatting pre-training paradigm tailored for
autonomous driving SPMs. SQS overcomes the limitations of previous pre-training methods by
enabling image backbone and Gaussian queries to learn rich 3D representations through 3D Gaussian
prediction and the reconstruction of both images and depth maps. The plug-in design and query
interaction strategy further allow seamless transfer and adaptation of the pre-trained model to diverse
downstream tasks. Extensive experiments on benchmark datasets validate the effectiveness of SQS,
showing promising improvements over various SOTA SPMs.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have claimed the contributions and results in the abstract and introduction
parts.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations and future work are illustrated in Sec. 4.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not contain the corresponding theoretical assumptions and proof in our
paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have elaborated the implementation details, experimental settings and
training inference in our main paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We plan to release the code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are included in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The error bars are not necessary to report in our settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included this part in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and conform them accurately.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts are included in the supplementary materials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper and stated the terms of use accordingly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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