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Abstract
Per-example gradient clipping is a key algorithmic step that enables practical1

differential private (DP) training for deep learning models. The choice of clipping2

threshold R, however, is shown to be vital for achieving high accuracy under3

DP. We propose an easy-to-use replacement, called AutoClipping, that eliminates4

the need to tune R for any DP optimizers, including DP-SGD, DP-Adam, DP-5

LAMB and many others. The automatic variants are as private and computationally6

efficient as existing DP optimizers, but require no DP-specific hyperparameters7

and thus make DP training as amenable as the standard non-private training. We8

give a rigorous convergence analysis of automatic DP-SGD in the non-convex9

setting, which shows that it can enjoy an asymptotic convergence rate that matches10

the standard SGD, under a symmetric noise assumption of the per-sample gradi-11

ents. We also demonstrate on various language and vision tasks that automatic12

clipping outperforms or matches the state-of-the-art, and can be easily employed13

with minimal changes to existing codebases.14

1 Introduction15

Deep learning has achieved impressive progress in a wide range of computer vision and natural16

language processing tasks. These successes are made available, in part, by the collection of large17

datasets, sometimes containing sensitive private information of individual data points (e.g., chest scan18

images, DNA sequences). Prior works have illustrated that deep learning models pose severe privacy19

risks to individual subjects in the training data and are susceptible to various practical attacks. For20

example, machine learning services such as Google Prediction API and Amazon Machine Learning21

can leak membership information from the purchase records [58]; if one feeds the GPT2 language22

model with some specific prefix, the model will autocomplete texts that contain the full name, phone23

number, email address, etc., from the training data that it memorizes [11].24

Differential privacy (DP) [21, 23, 22] is a formal definition of privacy that has been shown to prevent25

the aforementioned privacy risks in deep learning [1]. On a high level, the key difference between the26

DP deep learning and the regular one is whether the gradient is privately released. In other words,27

while the standard optimizers update on the summed gradient
∑

i gi, and DP optimizers update on28

the private gradient:29

DP Optimizer({gi}Bi=1) = Optimizer(

private gradient︷ ︸︸ ︷∑
i
gi · Clip(∥gi∥;R) + σR · N (0, I)) (1.1)

Standard Optimizer({gi}Bi=1) = Optimizer(
∑

i
gi) (1.2)

Here gi ∈ Rd is the per-sample gradient of loss li, N is the standard normal random variable, σ is the30

noise multiplier, and R is the clipping threshold. The clipping function Clip : Rd → R is defined31

such that ∥gi · Clip(gi;R)∥ ≤ R. For instance, the DP-SGD in [1] on batch Bt is32

DP-SGDAbadi : wt+1 = wt − η
( ∑

i∈Bt

∂li
∂wt

min
(
R/
∥∥∥ ∂li
∂wt

∥∥∥, 1)+ σR · N (0, I)
)

(1.3)
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In comparison to the regular training (1.2), two additional DP-specific hyperparameters R and σ need
to be determined in DP learning (1.1). On the one hand, setting the noise multiplier σ is easy and
can be derived analytically prior to the training. Whenever the privacy budget (ϵ, δ) is determined,
one can apply off-the-shelf privacy accounting tools in Section 2.1 to determine σ, based on the
subsampling probability p (e.g. expected batch size over sample size) and the number of iterations T :

privacy_accountant(σ, p, T ; δ) = ϵ

On the other hand, the choice of clipping threshold R is crucial to the performance of DP models,33

yet the hyperparameter tuning is much labor-intensive. Recent advances of DP deep learning on34

ImageNet [34] and on E2E datasets [37], using ResNet18 and GPT2 respectively, illustrate that the35

performance is very sensitive to R. We have reproduced their results in Figure 1. Observe that on36

ImageNet, ResNet18 can drop from the highest 45% accuracy to 31% if R is chosen 2 times larger,37

and to 0.1% if R is chosen 4 times larger. Similar drastic drop can also be observed in [34, Figure 3]38

even if the noise multiplier σ = 0. Unlike the noise multiplier σ, the clipping threshold R cannot be39

inferred from the privacy budget (ϵ, δ) and have to be tuned. Consequently, DP training necessarily40

requires a 2D grid search for (R, η), like the lower plot of Figure 1, whereas the regular training41

only requires an easy 1D grid search for η. Even worse, the difficulty of tuning a per-layer clipping42

threshold vector [43], i.e. one clipping threshold for one layer, may increase exponentially as the43

number of layers increases.44

To save the effort of tuning R, previous researches have proposed different approaches. In [3, 51, 25],45

researchers advocate to use data-adaptive information to select R, such as a specified quantile of46

the gradient norm distribution. These adaptive clipping methods can be a little ad-hoc: they often47

replace the the need to tune R by the need to tune one or more new hyperparameters, e.g. the48

quantile to use and the ratio to split the privacy budget between the quantile decision and the gradient49

perturbation. Another approach used by the practitioners is to replace an expensive 2D grid search50

by multiple cheaper 1D grid searches. For example, the researchers propose, in [34, Section 3.3] to51

fine-tune η with non-DP SGD, fix η and sweep over various values of the clipping threshold R with52

DP-SGD, then further fix R and do one more grid search on η. However, tuning R formally in a53

data-dependent way (e.g. through cross-validation) introduces additional privacy loss [48], and most54

existing empirical work does not privately conduct hyperparameter tuning.55

We take a completely different route by proposing a new clipping principle that removes R, instead56

of coming up with methods to find the appropriate R. We term our method as automatic clipping57

(AutoClipping) and we term the versions of DP optimizers using it as automatic DP optimizers.58

We summarize our contributions as follows.59

1. We propose the automatic clipping in (4.1) that expunge the clipping threshold from general DP60

optimizers, allowing DP learning to be as amenable as regular learning.61

2. We show that automatic DP optimizers are as private and efficient as existing DP optimizers.62

3. We show that automatic DP-SGD converges in the non-convex setting, at the same asymptotic63

convergence rate as the standard SGD. Our theoretical analysis successfully explains the training64

behaviors in previous empirical works.65

4. We demonstrate the superiority of automatic clipping on a variety of vision and language tasks,66

especially with large models including ResNet, RoBERTa and GPT2.67

5. In Appendix K, we include simple code snippets that demonstrate how easy it is to switch from68

Abadi’s clipping to our automatic clipping in popular codebases, that implement DP optimizers69

for deep learning, e.g. Opacus and ObJAX.70

2 Preliminaries71

2.1 Differential Privacy72

We consider the (ϵ, δ)-DP in Definition 2.1, where smaller (ϵ, δ) means stronger privacy guarantee.73

Definition 2.1 ([22]). A randomized algorithm M is (ε, δ)-differentially private (DP) if for any two74

neighboring1 datasets S, S′, and for any event E,75

P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ. (2.1)
1S′ is a neighbor of S if one can obtain S′ by adding or removing one data point from S.
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In words, DP restricts the influence of an arbitrary sample, so that the information contributed by such76

sample is limited and less vulnerable to privacy attacks. In deep learning, DP is generally achieved by77

applying the subsampled Gaussian mechanism to privatize the minibatch gradients during training.78

As illustrated in Equation (1.1), the subsampled Gaussian mechanism involves (1) Sampling a79

minibatch by including each data point iid with probability p (2) per-sample gradient clipping to80

bound the l2 norm sensitivity at R and (3) adding independent Gaussian noise proportional to the81

sensitivity R and σ, which is derived from the privacy loss ϵ. This can be realized by leveraging a82

variety of modern privacy accounting tools, such as those based on Renyi DP (or moments accountant)83

[1, 45, 63], Privacy Loss distribution (Fourier accountants) [33, 27, 70], or Gaussian DP [16, 7].84

2.2 Differentially Private optimizers with general clipping operations85

Privately released stochastic gradients (through the Gaussian mechanism) can be used to instantiate86

various off-the-shelf optimizers, which gives rise to DP-SGD in (1.3), DP-HeavyBall, DP-AdaGrad,87

DP-Adam, DP-FedAvg, DP-FedSGD [43], etc. To improve the performance of DP optimizers,88

previous researches can be classified into two categories.89

The first category, where the majority of researches lie in, works with Abadi’s clipping and focuses90

on better design of R. To name a few examples, one can adaptively design Rt for each iteration t91

[3, 51, 25], or design the per-layer clipping threshold vector R ∈ RL for L layers [1, 43] so as to92

apply a different clipping threshold for each layer.93

Much fewer works fall into the second category that proposes new clipping method. In fact, any94

function Clip : Rd → R satisfying ∥Clip(g) ·g∥ ≤ R can serve as a valid clipping function besides95

Abadi’s. For instance, the global clipping [9] proposes Clipglobal(g) := I(∥g∥ < Z) ·R/Z to correct96

the bias in the private gradient and alleviate the mis-calibration issue of DP classifiers. Our automatic97

clipping also belongs to this category. We note that different clipping methods work orthogonally to98

optimizers, network architectures and gradient norm computation (see Section 7).99

3 Motivation100

3.1 Small clipping threshold works best101
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Figure 1: Ablation study of clip-
ping threshold and learning rate that
achieves SOTA results. Upper: BLEU
score of GPT2 on E2E dataset, adapted
from [37], trained with DP-AdamW.
Lower: Test accuracy of ResNet18 on
ImageNet dataset, adapted from [34],
trained with DP-SGD with momen-
tum.

One intriguing observation that we can make about the re-102

cent studies on DP learning with large models is that the103

state-of-the-art (SOTA) results are often achieved with very104

small clipping threshold R. This observation is consistent105

in both vision and language tasks. In [37], GPT2 (over 800106

million parameters) and RoBERTa models (over 400 mil-107

lions parameters) achieve the best results under DP on QNLI,108

MNLI, SST-2, QQP, E2E, and DART datasets, with each per-109

sample gradient clipped to length R = 0.1. In [34, 14, 44],110

ResNets and Vision Transformers achieve the best DP re-111

sults on ImageNet with R = 1; in [60], the best DP results112

on CIFAR10 use R = 0.1 with ResNeXt-29 and SimCLRv2113

[12]. The effectiveness of small clipping threshold together114

with proper learning rate is depicted in Figure 1.115

Intuitively, smaller R implies that the Abadi’s clipping (3.1)116

happens, which means min
(
R/∥gi∥, 1

)
= R/∥gi∥. Given117

that the clipping threshold R is so small compared to the118

number of parameters in large neural networks, and that119

strong DP is guaranteed when the number of training iter-120

ations is small (i.e. ∥gi∥ has not converged to small values121

yet), we expect and empirically observe that the clipping122

happens on a large proportion of per-sample gradients at123

all iterations. For instance, we find in the GPT2 genera-124

tion experiments in [37] that 100% of per-sample gradi-125

ents are clipped at all iterations; in classification tasks such126

as QQP/QNLI/MNLI, the percentage of clipping is about127

20 ∼ 60% on average (more details in Appendix H.1).128
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3.2 Per-sample gradient normalization as new clipping: a similarity viewpoint129

In the small clipping threshold regime, we can approximately view130

ClipAbadi(gi;R) = min (R/||gi||, 1) ≈ R/||gi|| =: ClipAUTO-V(gi;R) (3.1)

and thus derive a novel private gradient
∑

i R
gi

∥gi∥ + σR · N (0, I). Here AUTO-V stands for the131

vanilla automatic clipping, which essentially performs the gradient normalization on each per-sample132

gradient. As a specific example, we can write the R-dependent automatic DP-SGD as133

R-dependent DP-SGDAUTO-V : wt+1 = wt − η
( ∑

i∈Bt

R
∂li
∂wt

/∥ ∂li
∂wt

∥+ σR · N (0, I)
)

(3.2)

We may view our AUTO-V clipping as to maximize the dot-product similarity between the clipped134

gradient and the regular gradient, a commonly used similarity measure, e.g. in the attention block in135

transformers [61]. Suppose we want136

max
Ci

〈∑
iCigi,

∑
jgj

〉
s.t. 0 ≤ Ci ≤ R/∥gi∥

Note that the constraint is a sufficient condition for clipping, as discussed in Section 2.2. It is not137

hard to see that the optimal clipping factor is138

Ci =

{
R/∥gi∥ if ⟨gi,

∑
j gj⟩ > 0

0 if ⟨gi,
∑

j gj⟩ ≤ 0

If the per-sample gradients are indeed concentrated in the sense ∀i, ⟨gi,
∑

j gj⟩ ≥ 0, then AUTO-V139

is the optimal per-sample gradient clipping. We compare with Abadi’s clipping in Figure 2, where140

the dot-product similarity is significantly magnified by our AUTO-V clipping.
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Figure 2: RoBERTa-base with DP-Adam (ϵ = 3) on SST2 dataset, as in Section 6.2.
141 3.3 Stability constant breaks scale-invariance and remains stationary142
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Figure 3: Gradient (scalar) at each θ.

One potential drawback of AUTO-V clipping is that all143

gradients lose their magnitudes information completely,144

since ∥gi · ClipAUTO-V(gi;R)∥ = R,∀i. This scale-145

invariance in AUTO-V and partially in Abadi’s clipping146

(when ∥gi∥ > R) leads to the "lazy region" issue: the147

parameters will not be updated by DP-GD even if the148

true gradients are non-zero. In Figure 3, we illustrate149

in a logistic regression2 that AUTO-V and Abadi’s clip-150

ping have zero clipped gradient for the trainable parameter151

θ ∈ [−2, 2], as the per-sample gradients from two classes cancel each other.152

Another benefit of γ is to remain stationary as gi → 0, i.e. making the clipped gradient Cigi → gi/γ153

small rather than having a magnitude R in AUTO-V. We elaborate this point in Section 4.3.154

To preserve the magnitude information and thus escape the lazy region, we propose the AUTO-S155

clipping, with a positive stability constant γ:156

ClipAUTO-S(gi;R) := R/(||gi||+ γ) (3.3)

We visualize in Figure 4 that AUTO-S allows larger per-sample gradients to have larger magnitudes157

after the clipping, while still allowing smaller gradients to vanish after “clipping”. This is critical in158

our convergence analysis and allows DP-SGDAUTO-S (but not DP-SGDAUTO-V) to converge to zero159

gradient norms in Section 5.160
2The settings are in Appendix F, where the lazy region issues also emerge in the mean estimation problem.

We note that the lazy region is also discussed in [13, Example 2].
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4 Automatic DP Training161

One may wonder why our clipping (3.1)(3.3) is automatic at all, if the hyperparameter R is still162

present and there is an additional parameter γ to choose. It turns out that any constant choice of R > 0163

is equivalent to choosing R = 1, and common deep learning optimizers are insensitive to the choice164

of γ (e.g. for any γ > 0, we show that the gradient norm converges to zero at the same asymptotic165

rate in Theorem 4; see also the ablation study in Figure 14). Consequently, we set γ = 0.01 as the166

default. Specifically, let us redefine the R-independent clipping function:167

ClipAUTO-S(gi) := 1/(||gi||+ γ). (4.1)

With this clipping, we can design automatic DP optimizers similar to (1.1):168

Automatic DP Optimizer({gi}Bi=1) = Optimizer(ĝt)

where ĝt :=
∑
i∈Bt

gt,i
||gt,i||+ γ

+ σ · N (0, I) (4.2)

Clearly, the new private gradient ĝt from our automatic clipping is R-independent, in contrast to the169

one used in (1.1). A concrete example (in the case of γ = 0) that is comparable to (3.2) will be170

R-independent DP-SGDAUTO-V : wt+1 = wt − η
( ∑

i∈Bt

∂li
∂wt

/
∥∥∥ ∂li
∂wt

∥∥∥+ σ · N (0, I)
)

(4.3)

Leveraging the private gradient ĝt in (4.2), we can train DP neural networks without tuning DP-171

specific hyperparamters R and σ, as demonstrated in Algorithm 1.172

Algorithm 1 Automatic Deep Learning with DP
Parameters: initial weights w0, learning rate ηt, sampling probability p, number of iterations T .

1: Find σ such that ϵAccountant(δ, σ, p, T ) ≤ ϵ from any privacy accountant.
2: for iteration t = 1, · · · , T do
3: Sample a batch Bt by including each data point iid with probability p (E[BatchSize] = pn).
4: Apply automatic clipping to per-sample gradients {gi}i∈Bt

: ĝi = gi/(∥gi∥2 + 0.01).
5: Add Gaussian noise to the sum of clipped gradients: ĝ =

∑
i ĝi + σ · N (0, I).

6: Update wt by any optimizer on the private gradient ĝ with learning rate ηt.

173

We will elaborate two distinct reasons in each section for the following statement:

DP OptimizerAbadi ≈ R-dependent DP OptimizerAUTO ≡ R-independent DP OptimizerAUTO

which reduces the hyperparameter tuning of DP training to that of the regular training, i.e. only on174

learning rate, weight decay, etc. The significant save in the tuning effort is illustrated in Figure 15.175

4.1 Non-adaptive optimizer couples clipping threshold with learning rate176

With R-dependent automatic clipping, DP-SGD becomes

wt+1 = wt − η
( ∑

i∈Bt

gt,i ·
R

||gt,i||+ γ
+ σR · N (0, I)

)
= wt − ηRĝt.

We can view ηeffective ≡ ηR as a whole: increasing R has the same effect as increasing η, which177

explains the diagonal pattern in Figure 1(lower plot) where DP-SGDAbadi is applied with small178

clipping threshold3. We extend to general non-adaptive optimizers in Theorem 1, with proof in179

Appendix B.14.180

Theorem 1. Non-adaptive R-dependent automatic DP optimizers (including SGD, Heavyball[52]181

and NAG[47]), with learning rate η and weight decay λ, is equivalent to R-independent automatic182

DP optimizers, with learning rate η′ = ηR and weight decay λ′ = λ/R.183

3When we further consider weight decay in automatic clipping (included in Theorem 1), increasing R is no
longer equivalent to increasing η, as η also couples with the weight decay constant λ.

4This coupling of η and R is also partially observed in [14] through a reparameterization trick of Abadi’s
clipping. Unlike AUTO-S/V, their coupling is not strict (e.g. doubling R is not equivalent to doubling η in their
Figure 8, thus necessitating tuning both (η,R)), and the relationship to weight decay was not discussed.
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4.2 Adaptive optimizer can be insensitive to clipping threshold184

Adaptive automatic DP optimizers are different than the non-adaptive ones, as the clipping threshold
cancels out instead of being coupled with learning rate. To see this, we scrutinize DP-AdamAbadi
(which is similar to DP-AdamAUTO-V) in Figure 1(upper plot), where columns to the left are almost
identical. Further evidence is observed in [44, Table 5] that shrinking R has zero effect on LAMB.
We now give a simple explanation using AdaGrad [19]:

wt+1 = wt − η
gt√
Gt

where gt =
∑

i gt,i is the gradient sum and Gt =
∑

τ<t g
2
τ is sum of gradient square by Hadamard

product over the past iterations. In R-dependent DP-AdaGradAUTO-V, the private gradient is Rĝt in
place of the standard gradient sum gt, and Ĝt = R2

∑
τ≤t ĝ

2
τ :

wt+1 = wt − η
Rĝt√
Ĝt

= wt − η
ĝt√∑

τ<t (ĝτ )
2
.

We generalize to the general adaptive optimizers in Theorem 2, with proof in Appendix B.2.185

Theorem 2. Adaptive R-dependent automatic DP optimizers (including AdaGrad[19], AdaDelta[69],186

AdaMax/Adam[31], NAdam[17], RAdam[39], LARS[65], LAMB[66]), with learning rate η and187

weight decay λ is equivalent to R-independent automatic DP optimizers with learning rate η and188

weight decay λ′ = λ/R. With decoupled weight decay[42], R-dependent automatic DP-AdamW is189

equivalent to R-independent automatic DP-AdamW with the same η and λ.190

Similarly, we demonstrate the automatic DP optimizers with per-layer clipping style in Appendix B.3.191

4.3 Automatic clipping guarantees the same level of privacy while maximizes utility192
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Figure 4: Gradient norms before and after
being clipped by different methods at R = 1.

In Theorem 3 (proved in Appendix A), we show that193

the new private gradient ĝt in (4.2) has the same level194

of privacy guarantee as the existing one in (1.1), since195

the global sensitivity remains the same (see Figure 4).196

We note that as long as γ > 0, the magnitude informa-197

tion of per-sample gradients is preserved by AUTO-198

S, in the sense that ∥gi∥ > ∥gj∥ ⇐⇒ ∥Cigi∥ >199

∥Cjgj∥, whereas this can be violated in both the200

AUTO-V and Abadi’s clipping (as depicted by the201

flat curve in Figure 4 when ∥gi∥ > 1).202

Additionally, note that when γ is small, almost all data203

points “max out” the signal relative to the amount of noise we add. To say it differently, for the same204

amount of noise, AUTO-S with small γ allows more signal to be pushed through a differentially205

private channel. Towards the end of the training, i.e., at the limit when ∥gi∥ → 0 for all i, then we206

have
∑

i
gi

∥gi∥+γ → 1
γ

∑
i gi. In words, the clipped gradients become closer to the standard SGD,207

thus do not suffer from the instability of AUTO-V.208

Theorem 3. Under the noise multiplier σ, number of iterations T , subsampling probability B/n,209

DP optimizers using AUTO-V or AUTO-S clipping satisfy (ϵAccountant(δ, σ,B/n, T ), δ)-DP, where210

ϵAccountant is any valid privacy accountant for DP-SGD under Abadi’s clipping.211

5 Convergence analysis of DP-SGD with automatic clipping212

5.1 Convergence theory of DP-SGD to stationary points213

We highlight that automatic clipping can be more amenable to analysis than Abadi’s clipping in [13],214

since we no longer need to decide whether each per-sample gradient is clipped.215

To analyze the convergence of automatic DP-SGD (4.2) in the non-convex setting, we follow the216

standard assumptions in the SGD literature [24, 2, 6], with one additional symmetry assumption on217

the gradient noise.218

Assumption 5.1 (Lower bound of loss). For all w and some constant L∗, we have L(w) ≥ L∗.219

Assumption 5.2 (Smoothness). Let g(w) denote the gradient of the objective L(w). Then ∀w,v,220

there is an non-negative constant L such that221

L(v)−
[
L(w) + g(w)⊤(v −w)

]
≤ L

2
∥w − v∥2. (5.1)
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Assumption 5.3 (Gradient noise). The per-sample gradient noise g̃t,i − gt is i.i.d. from some
ditribution such that

E(g̃t,i − gt) = 0,E∥g̃t,i − gt∥2 ≤ ξ2,

and g̃t,i is centrally symmetric5 about gt in distribution:

g̃t,i − gt
D
= gt − g̃t,i.

We show in Theorem 4 that DP-SGD with AUTO-S clipping allows the true gradient norm to converge222

to zero, but not so with AUTO-V clipping. We leave the proof in Appendix C.1.223

Theorem 4. Under Assumption 5.1, 5.2, 5.3, running DP-SGD with automatic clipping for T224

iterations and setting the learning rate η ∝ 1/
√
T give225

min
0≤t≤T

E(∥gt∥) ≤ G

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; ξ, γ

)
:= min

r>0

ξ

r
+ F (· · · ; r, ξ, γ) . (5.2)

Here · · · represents the first argument of G, and G is increasing and positive. As T → ∞, we have226

mint E(∥gt∥) = O(T−1/4) for AUTO-S, the same rate as the standard SGD given in Theorem 9.227
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Figure 5: Left: DP-SGD with AUTO-V clipping. Middle: DP-SGD with AUTO-S clipping. Right:
Log-log plot of convergence rate in comparison to standard SGD. Here ξ = 25, γ = 0.01, and the
O(1/

√
T ) term is set to 10 for DP-SGD and to 2 for standard SGD.

Remark 5.4. In Theorem 4, the upper bound takes an implicit form of G(·; ξ, γ) because it is a228

lower envelope of functions ξ
r + F(·; r, ξ, γ) over all possible r > 0, whose forms are detailed in229

Theorem 6. Notice that G results only from the clipping operation, not from the noise addition.230

Remark 5.5. We show in Theorem 6 and demonstrate in Figure 5 that the upper bound (5.2) is always231

larger than ξ with AUTO-V (γ = 0), and can only be reduced to zero with AUTO-S (γ > 0). We232

provide real data evidence in Figure 13 that strictly positive γ reduces the gradient norm significantly.233

5.2 Analysis of factors affecting the convergence234

We now analyze the many factors that affect the convergence in Theorem 4, from a unified viewpoint235

of both the convergence and the privacy.236

We start with the stability constant γ and the learning rate ηt, both only affect the convergence not237

the privacy. We empirically observe in Figure 7 that small γ benefits the convergence at initial238

iterations (when the privacy guarantee is strong) but larger γ converges faster asymptotically. For ηt,239

the optimal is in fact the miminizer of the hyperbola in (C.4), that is unique and tunable.240

Next, we focus on the hyperparameters that affect both convergence and privacy: the batch size B,241

the noise multiplier σ, and the number of iterations T . These hyperparameters have to be considered242

along the privacy-accuracy tradeoff, not just from a convergence perspective.243

Recall that given a fixed privacy budget (ϵ, δ), we rely on modern privacy accountant for computing244

the appropriate combinations of parameter σ, T,B. The exact expression of the bound as a function of245

(ϵ, δ) is somewhat messy. For this reason, we illustrate our analysis in terms of the surrogate parameter246

µ for µ-GDP [16]. [7] showed that DP-SGD’s privacy guarantee asymptotically converges to µ-GDP247

(as T → ∞) with µ = B
n

√
T (e1/σ2 − 1). µ-GDP implies (ϵ, δ)-DP with ϵ = µ2 + µ

√
2 log(1/δ))6.248

We can alternatively leverage ρ-tCDP [10] for similar conclusions, using ρ in place of µ2 in (5.3).249

5The symmetry assumption has been empirically verified in [13, Figure 3]. For theoretical analysis, it can be
extended to mirror symmetry about the hyperplane normal to gt, that is {v : g⊤

t v = 0}.
6More precisely, µ-GDP is equivalent to an entire family of (ϵ, δ)-DP for any ϵ > 0 and δ = Φ(µ/2 −

ϵ/µ)− eϵΦ(−µ/2− ϵ/µ) where Φ is the standard Gaussian CDF.
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Theorem 5. Under Assumption 5.1, 5.2, 5.3, fixing the asymptotic µ(ϵ, δ)-GDP parameter, running250

DP-SGD with automatic clipping for T iterations and setting the learning rate η ∝ 1/
√
T give251

min
0≤t≤T

E(∥gt∥) ≤ G

(
4

√
(L0 − L∗)L

(
1

T
+

d

µ2n2
+O

( 1

B2T

))
; ξ, γ

)
(5.3)

To show that our analysis matches the training behaviors observed in SOTA empirical work [37, 34,252

14, 60, 44, 68], we minimize the first argument of G in (5.3), denoted as X(B, T, µ, d, L,L0).253

1. [Train longer with larger noise] Fixing the expected batch size B, we see that X is decreasing254

in T . Hence larger T and consequently larger σ are preferred.255

2. [Larger batch size helps] Fixing number of iterations T or epochs E = BT/n, we see that X is256

decreasing in B. Hence larger B and consequently larger σ are preferred.257

3. [Pretraining is critical] Pretraining can boost the accuracy of DP learning through a much smaller258

initial loss L0 and from a smooth (small L) and flat (small ξ, c.f. Figure 7(left)) initialization.259

4. [Learning rate needs tuning] The optimal learning rate by minimizing (C.4) is
√

(L0−L∗)µ2n2

L(µ2n2+dT ) .260

This indicates that one should use larger learning rate for smaller model d, weaker privacy (larger261

µ or small ϵ), or smaller iteration budget T . Interestingly, the optimal choice of learning rate is262

independent to (expected) batch-size B.263

6 Experiments264

We evaluate our automatic DP training on image classification, sentence classification, and table-to-265

text generation tasks. Detailed settings including hyperparameters can be found in Appendix G.266

6.1 Image classification267

For MNIST/FashionMNIST, we use the same setup as in [49, 60, 57] with a simple CNN. For268

CIFAR10, we use the same setup as in [60] with pretrained SimCLRv2 [12]. For ImageNette, a269

10-class sub-task of ImageNet [15], we use the same setup as in [32] without the learning rate decay.270

For CelebA [41], the real human face dataset, we train ResNet9 [28] with group normalization to271

replace the batch normalization. Notice that CelebA contains high-resolution (178x218) images, each272

with 40 labels. We consider CelebA for either multi-class classification on one label, e.g. ‘Smiling’273

and ‘Male’, or for multi-label/multi-task problem to learn all labels simultaneously.274

Task Model (ϵ, δ)
Accuracy %

Abadi’s clipping AUTO-S clipping non-DP
(ϵ = ∞)

MNIST 4-layer CNN (3, 1e-5) 98.04± 0.09 98.15± 0.07 99.11± 0.07
FashionMNIST 4-layer CNN (3, 1e-5) 86.04± 0.26 86.36± 0.18 89.57± 0.13

CIFAR10 pretrained SimCLRv2 (2, 1e-5) 92.44± 0.13 92.70± 0.02 94.42± 0.01
ImageNette ResNet9 (8, 1e-4) 60.29± 0.53 60.71± 0.48 71.11± 0.37

CelebA [Smiling] ResNet9 (8, 5e-6) 90.75± 0.11 91.08± 0.08 92.61± 0.20
CelebA [Male] ResNet9 (8, 5e-6) 95.54± 0.14 95.70± 0.07 97.90± 0.04

CelebA Multi-label ResNet9 (3, 5e-6) 86.81± 0.03 87.05± 0.01 90.30± 0.02
CelebA Multi-label ResNet9 (8, 5e-6) 87.52± 0.15 87.58± 0.04 90.30± 0.02

Table 1: Average test accuracy and 95% confidence interval on image tasks over 5 runs.

In Table 1, we observe that AUTO-S clipping outperforms existing clipping in all datasets with statis-275

tical significance. Interestingly, the standard deviation from different runs is smaller for automatic276

DP optimizers, indicating better reproducibility and stability. We additionally experiment 40 binary277

classification problems on CelebA with respect to each label, and observe that the mean accuracy278

further improves to 91.63% at ϵ = 8 for AUTO-S (see Appendix J).279

6.2 Sentence classification280

On five benchmark language datasets (MNLI(m/mm)[64], QQP[30], QNLI[55], SST2[59]), we281

compare our automatic DP training with reparameterized gradient perturbation (RGP, [68]) and282

full-parameter finetuning (full, [37]) using RoBERTa models [40]. These methods use the same283

experimental setup. For language models, our automatic training is based on the codebase of [37]7.284

7See https://github.com/lxuechen/private-transformers and the detailed modification in Ap-
pendix K.3.
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Method ϵ = 3 ϵ = 8 ϵ = ∞ (non-DP)
MNLI QQP QNLI SST2 MNLI QQP QNLI SST2 MNLI QQP QNLI SST2

RGP [68] - - - - 80.5/79.6 85.5 87.2 91.6 83.6/83.2 89.3 91.3 92.9
full [37] 82.45/82.99 85.56 87.42 91.86 83.20/83.46 86.08 87.94 92.09

85.91/86.14 87.34 91.40 94.49full AUTO-V 81.21/82.03 84.72 86.56 91.86 82.18/82.64 86.23 87.24 92.09
full AUTO-S 83.22/83.21 85.76 86.91 92.32 83.82/83.55 86.58 87.85 92.43
Table 2: Test accuracy on language tasks with RoBERTa-base (12 blocks, 163 million parameters).

Method ϵ = 3 ϵ = 8 ϵ = ∞ (non-DP)
MNLI QQP QNLI SST2 MNLI QQP QNLI SST2 MNLI QQP QNLI SST2

RGP [68] - - - - 86.1/86.0 86.7 90.0 93.0 - - - -
full [37] 86.43/86.46 86.43 90.76 93.04 87.02/87.26 87.47 91.10 93.81

90.33/90.03 87.90 93.61 96.21full AUTO-V 85.33/85.61 86.61 89.99 93.12 85.91/86.10 86.86 90.55 93.35
full AUTO-S 86.27/86.67 86.76 91.01 93.92 87.07/87.16 87.47 91.45 94.61

Table 3: Test accuracy on language tasks with RoBERTa-large (24 blocks, 407 million parameters).

In Table 2 and Table 3, we note that full parameter finetuning with AUTO-S outperforms or at least285

matches SOTA on all tasks. We use exactly the same hyperparameters as in [37].286

6.3 Table-to-text generation287

We compare our automatic DP training with a variety of fine-tuning methods, for table-to-text288

generation task on E2E dataset [20], where the goal is to generate texts about different aspects of a289

restaurant’s data. We measure the success on this task by BLEU, ROUGE-L (in Table 4), METEOR,290

NIST, CIDEr (extended in Table 7), with higher value meaning better model quality.291

DP GPT2 GPT2 GPT2
Metric guarantee large medium

full full full full full LoRA RGP prefix top2 retrain
AUTO-S AUTO-S AUTO-S AUTO-V [37] [29] [68] [36] [37] [37]

BLEU
ϵ = 3 64.180 63.850 61.340 61.519 61.519 58.153 58.482 47.772 25.920 15.457
ϵ = 8 64.640 64.220 63.600 63.189 63.189 63.389 58.455 49.263 26.885 24.247

non-DP 66.840 68.500 69.463 69.463 69.463 69.682 68.328 68.845 65.752 65.731

ROGUE-L
ϵ = 3 67.857 67.071 65.872 65.670 65.670 65.773 65.560 58.964 44.536 35.240
ϵ = 8 68.968 67.533 67.073 66.429 66.429 67.525 65.030 60.730 46.421 39.951

non-DP 70.384 71.458 71.359 71.359 71.359 71.709 68.844 70.805 68.704 68.751
Table 4: Test performance on E2E dataset with GPT2. Additional performance measures are included
in Table 7. The best two GPT2 models for each row are marked in bold.

Competitive methods include low-rank adaption (LoRA), prefix-tuning (prefix), RGP, only fine-tuning292

the top 2 Transformer blocks (top2), and training from scratch (retrain), as were recorded in [37].293

Again, we use the exactly the same hyperparameters as in [37]. For GPT2 (163 million parameters),294

GPT2 medium (406 million), and GPT2 large (838 million), Table 4 shows that AUTO-S is scalable295

with stronger performance on larger models. Our automatic full-parameter finetuning has the best296

overall performance. Additionally, we highlight that AUTO-S and methods like LoRA are not297

mutually exclusive and can be combined to yield strong performance, since AUTO-S modifies the298

optimizers and LoRA modifies the architecture.299

7 Discussion300

In this work, we proposed AutoClipping as a drop-in replacement to the standard per-example301

clipping differentially private training. This is the first technique that eliminate the need to tune the302

clipping threshold R, thus making DP deep learning as easy as regular learning. Our AUTO-S method303

enjoys both theoretical guarantee of convergence in non-convex problems (under various conditions),304

and strong empirical performance that advances the state-of-the-art (SOTA) of DP learning on both305

computer vision and language tasks.306

We are excited about the future of automatic DP training, especially along with other working307

techniques. Notably, our automatic clipping applies compatibly with general optimizers (e.g. [8, 18]),308

clipping styles (all-layer or per-layer), architecture modifications (e.g. LoRA, RGP, prefix), and data309

augmentation (e.g. adversarial training [26] and multiple augmentation [14]). Thus, we expect to310

achieve comparable results to all SOTA in a lightweight fashion.311
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