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Abstract

It is often difficult to obtain industrial data for semantic segmentation due to the costs
and time required for annotation. However, deep learning models perform poorly when
trained on small datasets. The current advances in generative models can be exploited
to enhance existing datasets with synthetic data. In semantic segmentation, generating
images is not sufficient, as the images need to fit with corresponding labels on a pixel level,
which makes data generation more challenging. Our work exploits Diffusion Models, to
generate synthetic data for industrial semantic segmentation. Our thorough experimenta-
tion reveals that the generated data can contribute to improve the performance of semantic
segmentation models without altering their architecture when trained on a mix of real and
synthetic data. Additionally, some experiments demonstrate the feasibility of achieving
improvements by exclusively training the models on synthetic data. The source code is
available at https://github.com/RabJon/isdm.

Keywords: semantic image synthesis, semantic segmentation, diffusion models, anomaly
localization, synthetic data generation

1 Introduction

Semantic segmentation is a computer vision task in which each pixel of an image is cate-
gorised into a class. It is used for a wide range of applications, including scene understand-
ing, augmented reality, autonomous driving, video surveillance and anomaly detection. Se-
mantic segmentation datasets, however, are difficult to create and maintain because they
require meticulous labelling, which is time-consuming, expensive, and requires experts’ as-
sistance. Thus, datasets are often scarce, particularly in the medical and industrial fields,
which is a problem since deep learning models for semantic segmentation tend to be data-
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hungry as pointed out by Wu et al. (2023). Recent research has attempted to address this
issue by replacing or extending datasets for semantic segmentation with synthetically gen-
erated datasets. This is achievable through a process known as semantic image synthesis.
It aims at generating realistic images based on semantic masks provided as inputs like the
work of Park et al. (2019); Sushko et al. (2022); Wang et al. (2022). Other works go even
further and aim at generating both images and corresponding semantic masks like in Wu
et al. (2023); Cechnicka et al. (2023); Shao et al. (2023); Macháček et al. (2023); Han et al.
(2023); Fernandez et al. (2022); Zhang et al. (2021).

The approaches listed above represent a contrast to conventional computer vision ap-
proaches. Traditionally, the computer vision community has focused on engineering better
network architectures to improve the performance on a fixed dataset. In recent years there
has been a shift in research toward improving the data rather than designing complex net-
work architectures. Therefore, this paper addresses semantic image synthesis via Diffusion
Models (DMs). We improved the training and sampling strategies of the Semantic Diffu-
sion Model (SDM) by Wang et al. (2022) and conducted extensive experiments using three
famous semantic segmentation models. Our overall framework, dubbed Improved-SDM
(ISDM), was applied to a small-scale industrial dataset and has proven the performance
gain of introducing synthetic data during the training of the selected models. Our contri-
butions can be summarized as follows:

• We generate synthetic datasets for semantic segmentation using Diffusion Models
starting from a small-scale industrial dataset for quality control.

• We conduct extensive experiments to investigate the impact of introducing synthetic
data during the training process of three famous state-of-the-art segmentation models
analyzing the improvements and degradation of incrementally augmenting the per-
centage of synthetic data during training.

• We demonstrate that under certain dataset configurations, some models trained only
on synthetic data can reach comparable results to cases trained with only real data.
This result could be particularly valuable for the medical domain and other areas
where strict privacy rules apply.

2 Related Works

Park et al. (2019) equipped GANs with their proposed conditional normalisation technique
called SPADE. SPADE is an acronym for “spatially-adaptive (de)normalisation” layers that
can better preserve the semantic information in the mask. Sushko et al. (2022) built their
OASIS model on top of the implementation by Park et al. (2019) through redesigning
the discriminator to obtain a U-Net-like semantic segmentation model. The feedback of
this discriminator was no longer binary as for a conventional discriminator but on a pixel
level. Wang et al. (2022) introduced Semantic Diffusion Models (SDMs), one of the first
approaches using DMs for the task of semantic image synthesis. In SDM the noisy image
serves as input for the encoder of the network, whereas the semantic mask, which is used
to condition the diffusion process, is only fed into the decoder. Furthermore, the mask is
forwarded through SPADE layers. The Latent Diffusion Model (LDM) by Rombach et al.
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(2022) operates in the latent space reducing the computational costs. The integration of
cross-attention layers makes LDMs highly flexible in conditioning on various inputs such as
text or semantic masks.

3 Dataset

Some important datasets for semantic segmentation are Cityscapes (Cordts et al. 2016),
ADE20K (Zhou et al. 2017), CelebAMask-HQ (Lee et al. 2020), COCO-Stuff (Caesar et al.
2018) and Pascal VOC 2012 (Everingham et al. 2012). However, most of these datasets con-
sist of a large number of different real-world pictures and do not aim for anomaly detection.
One of the best-known public datasets for industrial inspection is MVTec by Bergmann
et al. (2021), which is however designed for unsupervised anomaly detection. Thus, it was
necessary to use a less explored dataset. The Lemons Quality Control Dataset by Adamiak
(2020) consists of 2690 images of lemons with defects labelled on a pixel level for fruit qual-
ity control. The dataset features nine different defect categories, seven of which concern
actual product quality issues. Further details about the dataset are described in Appendix
A. There is a considerable discrepancy between the frequency of the defect categories. We
decided to focus on the most frequent classes, which contribute to more than 5 % of all
defective pixels. This choice was also necessary due to time constraints as the thorough ex-
perimentation required the repeated training and evaluation of several deep learning models.
Therefore, we also started from the simpler binary segmentation task before considering the
multi-class scenario. We created three sub-datasets:

• Binary Blemish: “Blemish” is a collective class for several issues on lemons. In total,
there are 200 images.

• Binary Blemish-Illness-Mould: to overcome the issue of limited availability of images
we took the three most representative classes (“blemish”, “illness” and “mould”) and
treated them as a single class. The resulting dataset consists of 790 images.

• “Multi-Class Blemish-Illness-Mould Dataset”: it is composed of the three most fre-
quent defect classes but considered separately with a total of 790 images.

4 ISDM: Improved Semantic Diffusion Model

We aim to explore the capability of DMs for semantic image synthesis on a small-scale
industrial dataset. The main goal is not to generate images that look as realistic as possible
but to find an approach to improve semantic segmentation models for vision-based anomaly
detection. In particular, we make use of the SDM implementation by Wang et al. (2022)
and adjust the training and sampling strategies which result in improvements on the tested
datasets. Therefore, the proposed method is referred to as Improved-SDM (ISDM). The
SDM implementation essentially represents a three-stage procedure. The training stage
where a SDM is trained with typical configurations for DMs in general: T = 1000 diffusion
steps, a linear variance schedule and the prediction of the mean as well as the standard
deviation of the random noise, which is why Lhybrid is used as a loss function. The optional
finetuning stage where the SDM is trained further with a nearly identical configuration
except for an additional drop rate parameter that indicates the probability with which the
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diffusion process is not conditioned on the semantic masks. Finally, the sampling stage
where a synthetic dataset is generated from the trained SDM.

Our ISDM implementation stays with the original default parameters for training. How-
ever, we adapt the training algorithm to monitor the training epochs and their losses. The
model checkpoint is only overwritten when the training loss improves. Although this cannot
avoid possible overfitting, usable models can be trained consistently with this method. In
addition, the time required to train usable models has been reduced by around half and the
amount of disk space required has also been reduced. The second change to the original
SDM implementation brings significant advantages in terms of runtime as well. One of
the disadvantages of the SDM implementation is that for sampling, as for training, 1000
diffusion steps are used as default. This leads to long sampling times and high resource con-
sumption. Since the implementation uses Lhybrid as a loss function and is based on Guided
Diffusion by Nichol and Dhariwal (2021), it is possible to rescale timesteps during sampling.
Therefore, we were able to reduce the diffusion steps to T = 300. These improvements are
illustrated in more detail in Appendix B with visual examples.

We test our approach with three well-known semantic segmentation models to have a
proper estimation of the improvements and/or deterioration of the introduced synthetic
data. In particular, we follow the evaluation approach by Macháček et al. (2023) and use
the U-Net++ by Zhou et al. (2018), the FPN by Lin et al. (2017) and the DeepLabv3+
by Chen et al. (2018). All models feature a ResNet34 encoder pre-trained on ImageNet.
They are trained for 50 epochs, with an image resolution of 256 × 256. There is no data
augmentation applied during training. The training process is monitored using a validation
split of 20 % from the real training set. After training the models are evaluated on the real
test set. For the evaluation metric, we use the Intersection over Union (IoU) widely used
in semantic segmentation. It calculates the ratio between the intersection and the union of
the ground truth and predicted semantic masks and is defined as:

IoU =
TP

TP + FP + FN
, (1)

where TP, FP, TN and FN are the numbers of true positive, false positive, true negative and
false negative predicted pixels respectively. It should also be noted that the aggregations of
the IoU score over images and classes are often simply referred to as mean IoU (mIoU).

For any given dataset and segmentation model, the proposed evaluation process first
trains and evaluates the model on the real data only. This model serves as a baseline for
comparison. Further models are trained using varying dataset configurations, including both
real and synthetic data. The percentage of synthetic data is gradually increased to verify if
adding too much synthetic data could lead to the deterioration of the model performance.

5 Results

The following sections report the results of the proposed method on the binary and multi-
class sub-datasets. The different dataset configurations are expressed in terms of numbers on
real #R and synthetic #S data used to train the downstream segmentation model. For the
values of #S below 1000, a random subset of the 1000 generated image-mask pairs is chosen.
The training and evaluation of each segmentation model on each dataset configuration was
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repeated three times to exclude possible coincidences during training. We report the average
mIoU from these three runs and compare it to the mIoU of the baseline, which is represented
as black dashed line in the following figures.

5.1 Binary Blemish Dataset

The results of the experiments with the ISDM method on the Binary Blemish Dataset are
reported in Figure 1. It emerges that nearly all of the tested configurations could outperform
the baseline with a significant improvement when using 400 generated image-mask pairs or
more. For the U-Net++ and the DeepLabv3+, the models improved even further as more
synthetic data was added, although the differences between the configurations with #S=700
and #S=1000 are marginal. For all models, it was also possible to train them with 1000
synthetic image mask pairs alone and achieve a mIoU score comparable to the baseline.
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Figure 1: Results of the ISDM method on the Binary Blemish Dataset.

A shortcoming of the ISDM approach is that the models tend to overfit when trained
on small datasets, however, the conditioning on the semantic masks worked so well that the
defects are even more visible than in the original image (see Figure 9 Appendix C).

5.2 Binary Blemish Illness Mould dataset

The Binary Blemish Illness Mould dataset combines the three most common defect classes
into a single one overcoming the problem of overfitting (see Figure 10 Appendix C). However,
Figure 2 shows that the generated data could hardly achieve improvements in terms of mIoU
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compared to the baseline. The best-performing configuration is #R=504 #S=1000 for all
three models. Moreover, the data generated with the finetuned ISDM usually achieve higher
improvements than the data generated without finetuning. The largest differences regarding
finetuning can be observed when the segmentation models were trained on synthetic data
only (#R=0). These differences amounted up to +6.4 %pt. for the U-Net++, +9.6 %pt.
for the FPN and +7.7 %pt. for the DeepLabv3+ between the finetuned and non-finetuned
models in comparison to the baseline.
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Figure 2: Results for the ISDM Method on the Binary Blemish-Illness-Mould Dataset for
a Finetuned and a Non-Finetuned ISDM.

We investigated the possibility that better results could be achieved by using more
synthetic data. Figure 3 shows that larger amounts of synthetic data help especially when
the semantic segmentation models are trained only on synthetic data. The improvements
for adding more synthetic data are smaller for the configurations with a mix of synthetic
and real data. The configuration #R=0 #S=4000 could keep up with the baseline for all
models. The configuration #R=504 #S=4000 proved to be the best for all models.

5.3 Multi-Class Blemish-Illness-Mould Dataset

The results for the Multi-Class Blemish-Illness-Mould Dataset are shown in Figure 4. There
are improvements through the synthetic data for all three models and all three classes. How-
ever, the best dataset configuration for one class does not automatically prove to be the
best for the other two classes. For instance, the DeepLabv3+ achieved the greatest im-
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Figure 3: Comparison of Different Amounts of Synthetic Data on the Binary Blemish-
Illness-Mould Dataset. The percentages refer to the improvements/deterioration compared
to the baseline.

provement for “blemish” (+7.0 %) with the configuration #R=504 #S=700 which resulted
in a decrease ( -1.8 %) for the ”illness” class. Likewise, the U-Net++ reached its best
improvements with different configurations for each class. The FPN profited from the use
of many synthetic image-mask pairs (700 or 1000) for “blemish” and “illness” but “mould”
improved most when only 100 synthetic images were used. However, there were also configu-
rations for each model with which all three classes improved, or at least did not deteriorate,
compared to the baseline. Therefore, the configuration #R=504 #S=700 should be chosen
for the FPN, as it gave the best average improvements across classes for this model. For
the U-Net++ the configuration #R=504 #S=504 could offer the best compromise and for
the DeepLabv3+ the configurations #R=504 #S=400 and #R=504 #S=700 were the only
ones where adding the synthetic data did not degrade any of the classes.

6 Conclusion

Our work aligns with a recent paradigm shift in deep learning that was made possible
through the advances of generative models: instead of fixing the dataset and attempting
to improve the architecture of the neural network, the model is fixed and the dataset is
enhanced through synthetic data. As semantic segmentation datasets are scarce, particu-
larly in the medical and industrial fields, we used Diffusion Models to supplement existing
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Figure 4: Results for the ISDM Method on the Multi-Class Blemish-Illness-Mould Dataset.
The percentages refer to the improvements/deterioration compared to the baseline.

datasets with generated images. We developed ISDM to synthesize synthetic data for the
industrial Lemons Quality Control Dataset. The impact of the generated data was tested
on three well-known semantic segmentation architectures DeepLabv3+, FPN and UNet++.
Extensive experiments have shown that ISDM was able to generate binary and multi-class
segmentation datasets that improved all three models, although the amounts of the improve-
ments differed between model architectures and dataset configurations. The most important
insight is that for some models that were trained only on synthetic data, we could achieve
scores comparable to the real baseline. This result could be particularly valuable for the
medical domain and other areas where strict privacy rules apply.
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Appendix A. Lemons Quality Control Dataset

The Lemons Quality Control Dataset by Adamiak (2020) is one of the few publicly available
datasets addressing semantic segmentation for anomaly detection in the industrial domain.
As the name of the dataset, dubbed Lemons Dataset, suggests, it consists of 2690 images of
lemons with defects labelled on a pixel level for fruit quality control. The dataset comprises
nine different defect categories with a considerable discrepancy between their frequencies.
The healthy tissue of the lemons is not labelled, therefore the background of the image
and the healthy parts share a single label (with category ID 0) and are simply referred to
as the ”background” category. Figure 5 represents the distribution of the different defect
categories with (5a) and without (5b) considering the ”background” class. Figure 6 shows
some example images and their corresponding ground-truth labels (semantic masks). These
figures demonstrate that most of the pixels in the dataset belong to the ”background”
category, only approximately 1.5 % of the pixels are defective. Datasets with imbalanced and
underrepresented categories generally decrease the performance of semantic segmentation
models, which is why we decided to focus only on subsets of the Lemons Dataset.

(a) Distribution with “Background”. (b) Distribution without “Background”.

Figure 5: Histograms of the Pixel Frequency for the Categories of the Lemons Dataset. The
”background” category comprises the real image background as well as the healthy tissue
of the lemons and is therefore extremely predominant in terms of pixel frequency (left).
To represent the distribution of the various defects on the lemons, the ”background” pixels
need to be ignored (right).

Appendix B. Improved Training and Sampling Procedures

We want to point out some differences introduced by our improved training and sampling
procedures:

1. The introduction of a monitoring mechanism leads to the saving of model checkpoints
that improve with further training steps.

11



Figure 6: Examples from the Lemons Dataset. The images (left) are shown alongside the
corresponding semantic masks (right). Each category of the dataset is mapped to a specific
colour that can be looked up on the legends. The ticks on the axes show that the original
image resolution is 1056× 1056.

2. The use of timestep rescaling during sampling not only helps to reduce the necessary
diffusion steps and thus runtime costs but also leads to better sampling results.

All three images in Figure 7 were sampled using the same semantic mask for conditioning.
The first image, which appears the noisiest among all three, was sampled from an SDM
trained for 29142 steps and using 300 diffusion steps and timestep rescaling for sampling.
The second image was sampled with the same procedure from a later checkpoint (53664
optimisation steps) of the same model. It shows some noise as well but seems the best
among all three. Note, that both of these checkpoints would never been saved without our
modifications, previously, the training algorithm saved a checkpoint arbitrarily after each
10000 optimisation steps without considering any metric. The last image in the figure was
sampled from the same model, but using 1000 diffusion steps for sampling without rescaling.
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(a) Sample from ISDM
Trained for 29142 Steps.

(b) Sample from ISDM
Trained for 53664 Steps.

(c) Sample from ISDM (53664
Steps) without Rescaling.

Figure 7: Example for Three Differently Sampled Images. All three images were sampled
from the same ISDM, but at different points in training, images (a) and (b), or with and
without the rescaling of diffusion steps, images (b) and (c).

It seems better than the first, but worse than the second, although its sampling process
lasts three times longer.

Appendix C. ISDM Shortcomings

We observed that the same ISDM, when conditioned with the same semantic mask, could
produce samples of vastly different quality. This is illustrated in Figure 8 and is a reason
why researchers, such as Shao et al. (2023), chose to design filtering mechanisms to exclude
bad samples. So, it seems that problem is not entirely unknown but applies to other DMs
as well. This problem could also be the reason, why ISDM could only achieve moderate
and inconstant improvements.

(a) Sample 1. (b) Sample 2. (c) Sample 3. (d) Real Image.

Figure 8: Example of Three Identically Sampled Images of Different Perceived Quality. The
same ISDM and the same semantic mask were used for generating all three samples. The
semantic mask belongs to the real image shown in (d).

Another observation is that using the small Binary Blemish Dataset resulted in over-
fitting, which is illustrated in Figure 9. Despite the clear overfitting, we validated the
generated data and included the results in this work since the objective to improve the
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baseline model was still being achieved. The problem of overfitting was overcome on the
larger Binary Blemish-Illness-Mould dataset, Figure 10 shows that for the identical condi-
tioning information, ISDM could sample two lemons that differ from each other in shape,
colour and other features. They also differed significantly from their real image.

Figure 9: ISDM on the Binary Blemish Dataset. The model generates images that show
hardly any changes in shape and size compared to the original.

Figure 10: SDM on the Binary Blemish-Illness-Mould Dataset. The two synthetic images
on the right show no signs of overfitting as the lemons differ in shape and colour.

14


	Introduction
	Related Works
	Dataset
	ISDM: Improved Semantic Diffusion Model
	Results
	Binary Blemish Dataset
	Binary Blemish Illness Mould dataset
	Multi-Class Blemish-Illness-Mould Dataset

	Conclusion
	Lemons Quality Control Dataset
	Improved Training and Sampling Procedures
	ISDM Shortcomings

