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ABSTRACT

Water impacts the globe daily in new and familiar ways such as the ongoing west-
ern United States drought and the 2022 Pakistan flood. These events sustain un-
certainty, risk, and loss forces to the global ecosystem. Better forecasting tools are
mandatory to calibrate our response in an effort to mitigate such natural hazards in
our watersheds and adapt to the planet’s dynamic environment. Here, we present
a Deep Convolutional Residual Regressive Neural Net (DCRRNN - pronounced
“discern”) platform for obtaining, visualizing, and analyzing the basin response
of watersheds to water cycle fluxes. We examine four very large basins, simulat-
ing river response to the hydroclimatic fluxes they face. Experiments modulating
the lever of time lag between remotely sensed and ground truth measurements are
performed to assess the metrological limits of this forecasting device. The re-
sultant grand mean Nash Sutcliffe and Kling Gupta efficiency values are both of
greater value than 90%. Our results show that DCRRNN can become a power-
ful resource to simulate and forecast the impacts of hydroclimatic events as they
relate to watershed response in a globally changing climate.

1 INTRODUCTION

Water is connected to and connects all living things on Earth. It is wielded to power electronic
devices, enables plants, food and animals to grow, serves as the living and recreational space for
many creatures big, small, young and old, and is nourishment to the human body. It has been
both the subject of, platform for, and weapon of choice in numerous conflicts. Global hydraulic
infrastructure is highly variable. Dirty water can be a source of disease and death. Water is branded,
modified, and sold at differing levels of purity and concentration. The cost of equipment to control
the flow of water is high, maintenance is frequent, and change of demand and supply is a constant
source of concern.

Furthermore, human activities have changed and continue to change Earth’s environment. The
changes are visible in both short (meteorological) and long (climatological) time scale responses
(Stott,2016). As the temperature of our home planet increases, the amount of snow and sea ice loses
volume over time (Qin et al.,|2020; Min et al., 2022), sea levels rise and swallow up once inhabited
land (Tebaldi et al., 2021; |Sévellec et al., 2017), storms intensify (Karl et al., [1997), droughts last
longer|\Underwood|(2015), floods become more severe (Milly et al., 2002; Hirabayashi et al.||2013)),
animal populations go extinct (Parmesan et al., [2000), and the availability of freshwater becomes
more unreliable (Gleick & Cooley, [2021}).

Concurrently, manmade Earth observation and control systems continue to improve (Crisp et al.,
2020; Minzu et al., |2021). Research, operational and pedagogical software tools for the climate
sciences are interrelated by common programming interfaces and standards. In these development
environments, the handling and organization of data is paramount for usability. In the United States,
government supported big data systems warehousing climate data are mature. Here, we approach
the topic of watershed modeling with a learned representation. We observe the connections between
model output of four United States drainage basins to actual gauged in the river measurements. All
basins are greater than 1M acres and one upwards of 1B. Each are substantial in size to observe
how the change in runoff and subsurface flow impacts the quantity of water discharging from the
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major river within the basin. Our findings show that the neural network performs well on all basins
according to commonly referenced statistical metrics when satellite-derived flux of water and ground
truth gauged streamflow are captured on the same day. The framework presented here meets or
exceeds comparable studies in the basins selected. Given the validated efficiency values, we envision
future work applying the same tools to study and consider all of Earth’s watersheds at fine fidelity.

2 MATERIALS AND METHODS

2.1 STUDY AREAS

Four United States drainage basins with areas of greater than one million acres each were selected
as study areas and are shown in Figure [} The Bear River and Connecticut River watersheds are
significantly smaller than either the Mississippi River or the Colorado River basins. The model
output imagery used observes approximately 100 square kilometers of area (on the order of 25,000
acres) in each pixel. Therefore, sufficiently large basins must be selected to ensure an adequate
number of pixels per day per location.
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Figure 1: Drainage basins under investigation

2.2  SATELLITE-DERIVED MODEL OBSERVATIONS

For each basin there are two input images, otherwise known as channels. These images are ex-
tracted from raw data obtained through the NASA Goddard Earth Sciences Data and Information
Services Center. The raw data is National Land Data Assimilation System (NLDAS) model output.
NLDAS is a project run by several United States based institutions and universities. NLDAS takes
continental scale meteorological data parameters (e.g. air temperature, wind speed, surface pressure,
precipitation, incoming radiation, specific humidity) as input and deterministically creates water and
energy flux layers as outputs. The NLDAS project in its second phase applies several different water
and energy balance algorithms to create flux outputs from one common set of meteorological inputs.
Here, the Noah implementation of a water and energy budget algorithm is used. Noah is selected
because of its concurrent implementation in the Global Land Data Assimilation System and length
of time series. The channels of interest are components of water flux, specifically surface and sub-
surface runoff, as they collectively represent the lateral movement of liquid water along and under
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the surface towards the terminal drainage point at a given point in time (Xia et al.|[2012;|[Liang et al.,
1994).
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Figure 2: NLDAS daily surface and subsurface flows

2.3 GROUND TRUTH MEASUREMENTS

Concurrent with the two NLDAS channels is a single gauged in the river streamflow measurement.
Daily streamflow measurements from four sites near the terminus of each basin are obtained from
the United States Geological Survey’s National Water Information System. The USGS operates
nearly 30,000 daily streamflow data collectors (Edwards et al.l [1986). Sites were selected based on
the availability, proximity to the terminal point of the basin, and relative continuity of data. Gaps in
data collection are solved with linear interpolation.

2.4 DATA COLLECTION AND PREPROCESSING

For this study, we looked at the time range starting on January 1, 2015 until the most recent output
available, March 1, 2022. The NLDAS model output is available in a monthly and hourly prod-
uct. We elected to combine the hourly data available for surface and subsurface streamflow into a
daily product. The raw hourly NLDAS product with all variables is a directory sized 351 gigabytes
comprised of 62,805 hourly files. The summing and extraction of lateral flows shrunk the total file
size by a factor of more than 150. Each raw data file consumes 5.8 megabytes of disk space, while
each daily surface and subsurface flow extraction 822.7 kilobytes. Filtered data consumes only 2.1
gigabytes and can easily be held on a graphical processing unit when trained with the neural net-
work. File size decreases further when clipped to a particular basin. Images are z-scored relative to
themselves while gauged streamflow data is z-scored relative to the entire time series of seven years.
Whitening has been shown to improve the performance of training a neural network (Karhunen et al.|
1997; |Chen et al.| [2020).

2.5 NEURAL NETWORK ARCHITECTURE

In this instance, images of Earth’s surface and subsurface water flow are passed through the net-
work that has random numbers associated with each layer and node of the network. Eventually,
the transformed image values reach a destination where its shape matches that of the target of the
input pair; here, the target is one pixel as the daily value for gauged streamflow is a single physical
measurement. The problem is one of regression because the prediction of streamflow is continuous
and can theoretically be any value greater than zero. We use convolutional neural networks because
our input to the network is a sequence of two channel images (Rawat & Wang| [2017). We also
use residual learning, which allows us to make the network very deep but control the opacity of the
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initial structure of the image. This makes training faster (He et al.l 2016)). Rectified linear unit acti-
vation functions are applied in all but the last layer of nodes, and batch normalization is used in the
residual layers (Agarap, |2018; [loffe & Szegedy, 2015). Batch normalization is similar to the z-score
treatment applied in[2.4] We selected a variant of stochastic gradient descent for optimization of the
neural network nodes (Amari, |1993}; |Kingma & Bal, 2014)).

3 RESULTS

Hourly NLDAS model output of surface and subsurface flow are summed to daily accumulations
over the time span of January 1st, 2015 to March 1st, 2022. This time series is 2,617 long comprised
of two channel images. Channels are surface and subsurface flow in kilograms per square meter.
Units are analogous to the weight of water in a given location. Sample observation output from
each basin capturing flow behavior on June 6th, 2021 is displayed in Figure 2] The effects of spatial
resolution are apparent, as the Bear River and Connecticut River basins have pronounced rectangular
edges due to their relatively small size. This pixelation effect is not present in the Mississippi River
and Colorado River observations of lateral flow from the basin view at this constrained figure size.
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Figure 3: Strip chart and histogram plots of z-scored gauged streamflow observations

Gauged streamflow measurements of the four target rivers are significantly different in magnitude
from one another. We process each with a z-score treatment to center their mean values around
the number zero and standardize each increasing and decreasing integer around intervals of standard
deviation. Measurements of each basin both as a function of time and flow are presented in Figure[3]
The strip charts show the change in streamflow over time, and the histograms show how often
actual measurements in the respective basin occur relative to the average discharge. This is a single
dimensional z-scoring system. We also perform a two dimensional treatment to each of the input
channels, surface and subsurface streamflow. Whereas the 1-D treatment uses the entire time series
of gauged streamflow measurements for computation, 2-D z-scores are computed based on a single
image at a time. Changeable levers to control DCRRNN are basin, lag, number of epochs and the
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ratio of training data to testing data (TTS). There is also an override for stopping the model training
early when the training data has a Nash Sutcliffe efficiency (NSE) value of a variable efficiency
percentage.

Figure ] shows a sample output from one configuration of the neural network. The topmost graph
illustrates the time series of discharge measurements in cubic feet per second of the Bear River. This
graph is rotated ninety degrees relative to its sibling hydrograph in Figure [3] There is a notable
seasonality to this streamflow measurement of Bear. Spring brings melting snow pack in the nearby
mountainous terrain and subsequent increases in neighboring river flows. Spring melting snow in
2021 appears more subdued than all other years observed. The Bear River drainage basin is located
in between the Great Salt Lake and Yellowstone National Park in the Rocky Mountain region of the
United States. The eponymously named river flows in a counterclockwise loop.

Hydrographs, Bear River
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Figure 4: Neural network sample output

The second row plots each modeled observation in the time series against its respective actual mea-
surement. On the left is a study of the model output ordered on the x-axis from low to high flows
and corresponding actual measurement on the y-axis. The right plot retains the same axis labels, but
instead observes spatial proximity of values. Darker points are more commonly occurring ranges
of flow. The left plot also contains two lines of best fit, the ideal or desired line found from the
data, and the actual line of fit as exists between the actual gauged streamflow and the neural network
model output of streamflow from surface and subsurface flow.

The third and final row shows epochal values during the neural network training process. On the left,
the average error between the actual measurements and DCRRNN output declines as the model goes
through its iterations of propagate and backpropagate. Concomitant with error v. epoch is efficiency
v. epoch. As the error declines towards zero, the NSE measurement increases towards 100%. When
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the neural network is set to run, the lever of NSE stoppage trigger is iterable. Here it is set to stop
the network at an NSE value of 95%, which occurs at the sixth epoch.

We perform nine iterations of the configuration of 252 experiments. For each of the four basins,
there are sixty three experiments per iteration based on nine possible values of lag and seven possi-
ble values of data split, equating to 2,268 individual runs of the same neural network. Each exper-
iment either stops when the measurement of average NSE of the training dataset within an epoch
equals 95% (see bottom right plot in Figure ) or the total number of epochs of back and forward
propagation of the entire basin dataset reaches 100. The resultant 2,268 database entries include an
specialized output within the framework of Figure[d] We execute the experiments through a slurm
controlled high performance computer cluster. Computations are constrained to a single node with
two central processing units, a single NVIDIA GeForce RTX 2080 Ti graphical processing unit,
and no more than 130 gigabytes of random access memory. Our platform is written in the python
programming language and managed with the miniconda package manager. The total run time to
compute the experiments within was 83.0 hours.

4  DISCUSSION

The results presented indicate relatively favorable performance of the neural network architecture as
it is applies to the transformation of surface and subsurface flow into a prediction of basin gauged
streamflow; the kernel density estimates (KDE) in Figure 5 illustrate this point. We executed a total
of more than 2,200 experiments in total using the common architecture. We use two hydrological
metrics: Kling Gupta (KGE) and Nash Sutcliffe (NSE) (Nash & Sutcliffe} [1970; Gupta et al., 2009;
Gupta & Kling, [2011;/Knoben et al.,|2019)). For each of these metrics, the peak resultant merit value
of the 2,268 experiments is greater than ninety percent with a standard deviation of less than 0.06.
The results are tolerant to lagging the data beyond the residence time of water in the atmosphere
(Van Der Ent & Tuinenburg, [2017;|Gimeno et al., 2021)).
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Figure 5: Kernel Density Estimates (KDE) of the 2,268 experiments.

Others have observed the changing water quantity of the Mississippi. One study used NLDAS data
focused on a subsection of the Mississippi with a higher quantity of streamflow target sites (Qi et al.}
2019). Another group considers a different data system altogether for watershed modeling on the
upper Mississippi basin (Chen et al., [2021). Some groups suggest that NLDAS is too simplified,
and are decided to create their own blend. They take a much broader approach than the scope
of the problem observed here (Tran et al.| [2022). The same is true for another study, where they
look at several different models and 961 small river basins. There appears to be some disparities
in the upper midwestern United States model (Cai et al., [2014). Some use meteorological data as
a predictor for electric outages, as seen in a study looking at Connecticut. They, too, use the Nash
Sutcliffe efficiency as a figure of merit (Yang et al.| [2021)) but are approaching the problem with a
different lens. Their target is a smaller population and the risk of being without electric power.

This process can be expanded in different ways. Our study relies on the internal programming of
NLDAS to compute surface and subsurface flow. There is much uncertainty in these observations
based on the natural heterogeneity of the land surface. We do not look at the independent influence
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of any single forcing variable. Take snow, for example. In large mountain proximal basins such as
those near the Rocky Mountains or Himalayan ranges, accumulation of subzero degrees Celsius wa-
ter in solid form provides a continuous upland buffer tank for the communities with which the river
down land serves. As the relative presence of carbon dioxide increases and the land temperature
responds in agreement, the duration and scale of snow melt and sea ice is variable. It is challenging
to equate with exact certainty how much solid water exists. To a degree, interpolating satellite data
with gauged data is sufficient, but these apparatus are challenging to maintain in cold temperatures
or in places of very high altitude. One could elect to observe more individual locations as targets,
therefore making the relationship no longer image to single value at a given time, but instead im-
age to image. There are studies that consider the impact of slow moving oceanic and atmospheric
abnormalities upon the hydrology of the land. Independent variables include the Madden-Julian
oscillation (Jiang et al.| 2020), the El Nifio—Southern Oscillation (Hu et al., [2015)), and the Atlantic
meridional overturning circulation (Ionita et al.| 2022].

While the NLDAS product used here is of a particular spatial fidelity, the Global Land Data Assim-
ilation System is more coarse in its resolution. It is beneficial to the scientific community to have
a clearer picture of the meteorological forcing and environmental responses in the ocean, land, air,
and mixed interfaces. One could use this framework to fuse the high resolution NLDAS product
with the global GLDAS product and evaluate the result according to one common set of metrics.
The software could be packaged and ported to use with an already existent embedded in situ mesh
system to provide forecasting information.

Instead, one might consider looking at a different time signature, such as seasonally decomposed but
over several years or introducing higher resolution localized water quality data into the model. By
tracking environmental statistical anomalies relative to other points in time and relative to the global
community, municipal decision makers can clue into the trajectory of their land, their structures, and
their constituents within. The choice to retreat is not to be approached lightly, but in some instances
is becoming the necessary measure (Siders, 2019; |Hino et al., [2017)). This intelligence can also be
placed in the hands of consulting engineers to distribute in new and existing infrastructure. Logic is
necessary to manage assets of complex hydraulic systems (pumps, motors, chemical feed, aeration,
dewatering, gates, valves).

Lessons must be learned from events on both sides of the water quantity spectrum such as the 2022
Pakistan and Mississippi floods on one end and the 2017 Cape Town South Africa water crisis on
the other. The opportunities to improve our monitoring systems are many; however, more people
are needed in the conversation to consider how we might better cooperate with the environment.

5 CONCLUSION

Using modern techniques and data systems, we introduce a fresh perspective to studying and under-
standing the water cycle with a learned representation. Our results show that a deep convolutional
residual regressive neural network combined with water flux and gauged streamflow data comes to
an optimized state, exhibiting strong forecasting performance according to standard hydrological
statistical figures of merit. Through the careful use of visuals and data management, this solution is
poised to approach with success other locations, degrees of fidelity, time scales, and parameters of
interest in the greater climate observatory community.
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