
Removing Multiple Biases through the Lens of Multi-task Learning

Nayeong Kim 1 Juwon Kang 1 Sungsoo Ahn 1 2 Jungseul Ok 1 2 Suha kwak 1 2

Abstract
We consider the problem of training an unbiased
and accurate model using a biased dataset with
multiple biases. One of the major challenges is to
balance improving overall accuracy and ignoring
all the biases. To address this, we provide a novel
framework connecting the problem to multi-task
learning (MTL). To be specific, our framework
divides training data into several groups accord-
ing to their effects on the model bias, and defines
each task of MTL as solving the target problem
for each group. It in turn trains a single model
for all the tasks with a weighted sum of task-wise
losses as the training objective, while optimizing
the weights as well as the model parameters. At
the heart of our method lies the weight adjustment
algorithm, which is rooted in a theory of multi-
objective optimization and guarantees a Pareto-
stationary solution. Our algorithm achieved the
state of the art on two datasets with multiple bi-
ases, and demonstrated superior performance on
conventional single-bias datasets.

1. Introduction
Empirical risk minimization (ERM) (Vapnik, 1999) is cur-
rently the gold standard in supervised learning of deep neu-
ral networks. However, recent studies (Sagawa et al., 2019;
Geirhos et al., 2020) observed how training a classifier with
ERM is prone to spurious correlations between the target
label and other non-relevant attributes. Such a spurious cor-
relation is often hard to mitigate since the data collection
procedure itself is biased towards the correlation.

To resolve this issue, researchers have investigated debiased
training algorithms, i.e., algorithms training models to ig-
nore spurious correlations in a dataset (Arjovsky et al., 2019;
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Bahng et al., 2020; Sagawa et al., 2019; Teney et al., 2021;
Tartaglione et al., 2021; Lee et al., 2021; Nam et al., 2020;
Liu et al., 2021; Kim et al., 2022). Their main idea is to bal-
ance the performance of models on samples that agree with
the spurious correlation, i.e., bias-guiding samples, and the
samples that disagree, i.e., bias-conflicting samples. While
these algorithms have shown promising results, they are
evaluated in an unrealistic setting where only a single type
of spurious correlation is present in the training dataset.

We advocate that the debiased training algorithms should
be evaluated under a more realistic scenario with multiple
biases. This scenario is challenging since the intersection of
bias-conflicting samples, i.e., “clean” samples that disagree
with all the spurious correlations, are extremely rare. Fur-
thermore, the tasks of mitigating different types of spurious
correlation may even conflict with each other. Indeed, we
empirically observe that the promising performance of prior
work failed to generalize for the multi-bias scenarios.

In this work, we develop an algorithm for debiased training
under the presence of multiple spurious correlations. Our
novel idea is to realize the removal of different spurious
correlations as a multi-task learning (MTL) problem. From
the lens of MTL, performance degradation from simultane-
ously mitigating the spurious correlation can be interpreted
as conflicts between different tasks. We develop a new
multi-objective optimization (MOO) algorithm to prevent
this issue and train a model to reach Pareto-optimal per-
formance. To be specific, we realize our setting as a MTL
problem by dividing the entire training set into multiple
groups where all data in the same group have the same im-
pact on training in terms of the model bias, i.e., guiding to
or conflicting with each bias type in the same way, as illus-
trated in Figure 1. Unlike the conventional MTL problems,
this results in tasks that share the space of target predictions
but differ in the distribution of the biased attributes.

Next, our training strategy stems from the existing MOO
algorithm (Désidéri, 2012). Namely, we train our model
to reach Pareto-optimal performance with respect to the
aforementioned tasks. To this end, we devise an algorithm
to iteratively adjust task-wise importance weights so that
the model parameters converge to a Pareto-stationary point.
Our algorithm is also interpreted as an optimization to find
a flat minimum of the loss landscape (Li & Gong, 2021),
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Figure 1. Overview of our grouping strategy. (left) For each sample, its shape means its class while its color and pattern indicate its
attributes for two different bias types, respectively. (middle) For each class and each bias type, we examine which bias attribute is
spuriously correlated with the class and induces the model bias in consequence. (right) Samples that guide to or conflict with each bias
type in the same way are grouped together.

which has shown to improve the generalization of the model
performance.

Finally, we also present a new multi-bias benchmark,
dubbed MultiCelebA, for evaluation of debiased training
algorithms.

We extensively evaluate our algorithm on two multi-bias
benchmarks including MultiCelebA and two single-bias
benchmarks. Our algorithm outperformed all the existing
debiased training methods. Our ablation studies verify the
importance of each algorithmic component.

The main contribution of this paper is four-fold:

• This work is the first to interpret debiased training as a
MTL problem. Based on this notion, we present a novel
and effective debiased training algorithm.

• We present a new real-image multi-bias benchmark for
evaluating debiased training methods under a realistic and
challenging condition.

• We benchmarked existing methods for debiased training
in multiple biases settings and demonstrated that they
struggle when training data exhibit multiple biases.

• Our algorithm achieved the state of the art on two datasets
with multiple biases. Moreover, it also showed superior
performance on conventional single-bias datasets.

2. Proposed method
To tackle multiple biases, we propose a novel debiased
training algorithm based on a theory of MOO (Désidéri,
2012). Our algorithm divides training data into several
groups according to their effects on the model bias, defines
each task of MTL as solving the target problem for each
group, and trains a single model for all the tasks while

optimizing weights of the tasks as well as model parameter.
The rest of this section first introduces the MOO theory that
motivates our work (Section 2.1) and then describes the
proposed algorithm in detail (Section 2.2).

2.1. Preliminary: MTL as MOO

We formulate MTL as a problem to optimize a parameter
θ with respect to a collection of task-wise training loss
functions L(θ) = [L1(θ), . . . ,LN (θ)]⊤. To solve such a
problem, MOO frameworks aim at finding a solution that
achieves Pareto optimality, i.e., a state where no objective
can be improved without sacrificing others.

Definition 2.1 (Pareto optimality). A parameter θ∗ is Pareto-
optimal if there exists no other parameter θ such that
Ln(θ) ≤ Ln(θ

∗) for n = 1, . . . , N and L(θ) ̸= L(θ∗).

However, finding the Pareto-optimal parameter is intractable
for non-convex loss functions like the training objective of
deep neural networks. Instead, one may consider using
gradient-based optimization to find a parameter satisfying
the Pareto stationarity (Désidéri, 2012), i.e., a state where
a convex combination of task-wise gradients equals a zero-
vector. Pareto stationarity is a necessary condition for Pareto
optimality if the loss functions in L(θ) are smooth.

Definition 2.2 (Pareto stationarity). A parameter θ∗ is
Pareto-stationary if there exists a task-scaling vector α =
[α1, . . . , αN ]⊤ satisfying the following condition:

α⊤∇θL(θ
∗) = 0, α ≥ 0, α⊤1 = 1, (1)

where 0 = [0, . . . , 0]⊤ ∈ RN and 1 = [1, . . . , 1]⊤ ∈ RN .

We consider multi-gradient descent algorithm
(MGDA) (Désidéri, 2012) to search for a Pareto-stationary
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parameter. For U -th step, MGDA finds a task-scaling
parameter α which combines the task-wise gradients ∇θL
to be approximately a zero vector based on solving the
following optimization problem:

min
α

∥∥α⊤∇θL
∥∥2
2
, α ≥ 0, α⊤1 = 1. (2)

After finding α, MGDA performs a gradient-based update
on the parameter θ with respect to α⊤L(θ). We also note
that (Li & Gong, 2021) interpreted the MGDA algorithm as
regularizing the local curvature of loss landscapes.

2.2. Debiased training by MOO

First, we introduce our formulation of debiased training as
MOO. To this end, we coin an attribute to be bias-guiding
if it is spuriously correlated with the target class and held
by a majority of training samples. In contrast, we coin an
attribute to be bias-conflicting if it does not exhibit such
a correlation and is held by a minority of samples. It is
well known that models trained using empirical risk mini-
mization (ERM), e.g., deep neural networks, are prone to
over-fitting to bias-guiding attributes and exhibit poor per-
formance under the presence of bias-conflicting attributes.

Therefore, we aim to balance the performance of the model
on samples with bias-guiding and bias-conflicting attributes
using MOO. Our main idea is to formulate each objective
as optimizing over a group of samples constructed using the
existence of bias-guiding or bias-conflicting attributes. The
remainder of this section elaborates on the grouping strategy
and the MOO formulation for debiased training.

2.2.1. GROUPING STRATEGY

As illustrated in Figure 1, we divide training data into mul-
tiple groups so that all data in the same group have the
same impact on training in terms of the model bias. To
be specific, we consider training a classifier on a dataset
D = {(x(m), t(m))}Mm=1, where each sample x(m) is as-
sociated with a target t(m) and a list of attributes b(m) =

[b
(m)
1 , . . . , b

(m)
D ]⊤. We group the samples using a list of

binary group labels g(m) = [g
(m)
1 , . . . , g

(m)
D ] based on

whether each attribute b
(m)
d is the “majority attribute” in

target class t(m), i.e., g(m)
d = 1 if

b
(m)
d = argmax

bd

∣∣∣{m′|t(m
′) = t(m), b

(m′)
d = bd

}∣∣∣,
and g

(m)
d = 0 otherwise. This results in 2D groups where

samples in the same group share a group label g(m). We
note how this grouping policy differs from prior works
(Sagawa et al., 2019; Kirichenko et al., 2022; Nam et al.,
2022; Sagawa et al., 2020; Zhang et al., 2022) that use the
targets and the attributes as the group labels. Each group

in our method contains samples from all the classes, while
existing ones only keep a group of samples with the same
target and the same attributes.

We remark that our grouping strategy can be interpreted as
an MTL problem where the tasks share the space of targets,
but are defined on different groups of samples. Our goal is to
train a model capable of accurately classifying samples from
all the groups, i.e., its performance is not biased towards
a certain group. Similar to MTL, naı̈vely minimizing a
linear combination of loss functions for each group leads to
conflicts between bias-guiding groups and bias-conflicting
groups.

2.2.2. TRAINING ALGORITHM

Based on the grouping strategy proposed in Section 2.2.1,
we propose a framework to optimize over N = 2D groups
while minimizing the conflict between group-wise loss func-
tions. To this end, we L(θ) = [L1(θ), . . . ,LN (θ)]⊤ denote
the list of empirical risk functions on N groups and con-
sider minimizing their convex combination α⊤L(θ) where
α ≥ 0 and α⊤1 = 1. To address between-group conflicts,
we propose adjusting the group-scaling parameter α such
that the training converges to a Pareto-stationary point with
a flat loss landscape.

Our goal is to minimize the training objective α⊤L(θ) while
simultaneously adjusting the group-scaling parameter α to
minimize Eq. (2). To this end, we simultaneously optimize
the parameters with respect to the following loss function:

L̂(θ) = α⊤L(θ) + λ
∥∥α⊤(∇L(θ))†

∥∥2
2
, (3)

where α ≥ 0, α⊤1 = 1, (·)† denotes the stop-gradient
operator, and λ is a Lagrangian multiplier for Eq. (2). In
practice, we re-parameterize group-scaling parameter using
a softmax function, i.e., set α = SoftMax(ᾱ). This allows
optimizing over ᾱ with gradient-based updates without vio-
lating the constraints α ≥ 0 and α⊤1 = 1. We update the
group scaling parameter α with gradient descent and the
Lagrangian multiplier λ with gradient ascent every U itera-
tions. The learning process of our method is also described
in Algorithm 1 in the Appendix.

3. Experiments
3.1. Setup

Datasets. To evaluate our framework, we consider two
multi-bias datasets, i.e., MultiCelebA and Multi-Color
MNIST, and two single-bias datasets, i.e., Waterbirds and
CelebA. We provide details of each dataset including the
proposed new benchmark, MultiCelebA, in the Appendix.

Evaluation metrics. For the multi-bias datasets, we eval-
uate algorithms using the average accuracy for each of the
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Table 1. GG, GC, CG, CC, UNBIASED, WORST, and INDIST metrics (%) evaluated on the MultiCelebA dataset. The first element of
each of the four combinations {GG, GC, CG, CC} represents the bias type of gender, while the second element represents the bias
type of age. We mark the best and the second-best performance in bold and underline, respectively.

Method Bias label GG GC CG CC UNBIASED WORST INDIST
ERM ✗ 90.97±4.10 84.43±1.55 50.06±3.52 30.29±4.09 63.94±1.46 23.88±6.48 89.18±2.32

LfF (Nam et al., 2020) ✗ 79.82±2.58 71.66±2.18 80.20±1.68 71.52±3.32 75.80±0.47 66.83±1.20 81.85±3.11

JTT (Liu et al., 2021) ✗ 73.35±2.68 58.67±5.10 60.22±9.35 52.08±2.17 62.89±1.17 49.64±2.58 75.75±5.45

DebiAN (Li et al., 2022) ✗ 64.39±30.4 63.60±22.2 49.80±7.58 45.50±13.2 55.82±11.7 25.72±6.00 66.82±34.1

Upsampling ✓ 79.79±1.45 80.97±1.30 76.68±1.09 75.56±1.16 78.25±0.75 71.54±1.96 82.59±0.79

Upweighting ✓ 78.96±4.05 79.20±6.02 80.83±0.04 78.65±3.64 81.16±3.87 73.47±4.23 83.40±5.92

GroupDRO (Sagawa et al., 2019) ✓ 81.17±0.98 81.15±1.24 76.74±1.48 74.62±0.40 78.43±0.68 71.58±1.07 83.46±0.65

SUBG (Sagawa et al., 2020) ✓ 77.09±1.03 78.37±0.70 77.46±1.66 77.95±1.24 77.72±0.60 69.57±0.74 80.31±1.11

LISA (Yao et al., 2022) ✓ 82.84±1.29 83.19±0.50 79.84±0.80 77.56±2.56 80.86±0.16 72.79±1.54 84.47±1.69

DFRtr
tr (Kirichenko et al., 2022) ✓ 91.25±3.49 83.55±4.02 46.70±3.75 28.53±4.59 62.51±0.55 12.31±8.48 85.51±6.15

Ours ✓ 82.43±0.58 85.12±0.43 81.65±0.35 82.58±0.92 82.94±0.23 77.90±0.18 84.29±0.92

Table 2. GG, GC, CG, CC, and UNBIASED metrics (%) for the Multi-Color MNIST dataset. The first element of each of the four
combinations {GG, GC, CG, CC} represents the bias type of left-color, while the second element represents the bias type of
right-color. We mark the best and the second-best performance in bold and underline, respectively.

Method Bias label GG GC CG CC UNBIASED
ERM ✗ 100.0±0.0 96.5±1.2 79.5±2.5 20.8±1.1 74.2±1.1

LfF (Nam et al., 2020) ✗ 99.6±0.5 4.7±0.5 98.6±0.4 5.1±0.4 52.0±0.1

EIIL (Creager et al., 2021) ✗ 100.0±0.0 97.2±1.5 70.8±4.9 10.9±0.8 69.7±1.0

PGI (Ahmed et al., 2021) ✗ 98.6±2.3 82.6±19.6 26.6±5.5 9.5±3.2 54.3±4.0

DebiAN (Li et al., 2022) ✗ 100.0±0.0 95.6±0.8 76.5±0.7 16.0±1.8 72.0±0.8

Upsampling ✓ 99.4±0.6 89.8±1.4 81.3±2.6 42.0±1.7 78.1±1.4

Upweighting ✓ 100.0±0.0 90.0±2.5 83.4±2.1 37.1±2.8 77.6±1.0

GroupDRO (Sagawa et al., 2019) ✓ 98.0±0.0 87.2±4.3 77.3±7.5 52.3±2.6 78.7±2.7

Ours ✓ 99.7±0.6 90.4±3.4 81.8±4.0 48.1±0.3 80.0±2.0

Table 3. WORST and INDIST metrics (%) evaluated on Waterbirds
and CelebA. We mark the best and the second-best performance
of WORST in bold and underline, respectively.

Bias Waterbirds CelebA
Method label WORST INDIST WORST INDIST

ERM ✗ 63.7±1.9 97.0±0.2 47.8±3.7 94.9±0.2
LfF (Nam et al., 2020) ✗ 78.0 91.2 70.6 86.0
EIIL (Creager et al., 2021) ✗ 77.2±1.0 96.5±0.2 81.7±0.8 85.7±0.1
JTT (Liu et al., 2021) ✗ 83.8±1.2 89.3±0.7 81.5±1.7 88.1±0.3
LWBC (Kim et al., 2022) ✗ - - 85.5±1.4 88.9±1.6
CNC (Zhang et al., 2022) ✗ 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5
Upweighting ✓ 88.0±1.3 95.1±0.3 83.3±2.8 92.9±0.2
GroupDRO (Sagawa et al., 2019) ✓ 89.9 ±0.6 92.0 ±0.6 88.9 ±1.3 93.9 ±0.1
SUBG (Sagawa et al., 2020) ✓ 89.1±1.1 - 85.6±2.3 -
SSA (Nam et al., 2022) ✓ 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1
LISA (Yao et al., 2022) ✓ 89.2±0.6 91.8±0.3 89.3±1.1 92.4±0.4
DFRtr

tr (Kirichenko et al., 2022) ✓ 90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7
Ours ✓ 91.8±0.3 95.6±0.3 89.8±1.3 91.4±1.2

four groups categorized by the guiding or conflicting na-
ture of the biases: {GG, GC, CG, CC}. Here, G and C
describes whether a group contains bias-guiding or bias-
conflicting samples for each bias type, respectively. We
also report the average of these four metrics, denoted as
UNBIASED.

3.2. Quantitative result

MultiCelebA. In Table 1, we present the results of our ex-
periments evaluating the performance of various baselines
and existing debiased training methods on the MultiCelebA
dataset. One can observe how our method outperforms the
baselines by a significant margin in terms of UNBIASED,

GC, CG, CC, and WORST metrics. Our algorithm even
achieves a moderate accuracy for the GG metric. This high-
lights how our algorithm successfully prevents performance
degradation by simultaneously removing multiple spurious
correlations. Interestingly, we observe that existing debias-
ing algorithms struggle with conflicts when attempting to
remove different spurious correlations. We also observe that
DFR (Kirichenko et al., 2022) achieves lower CC and CG
metrics than ERM, suggesting that an ERM-based feature
representation alone is insufficient to debias the training.

Multi-Color MNIST. In Table 2, we report the evalu-
ation results for Multi-Color MNIST. Overall, our pro-
posed method demonstrates the best performance along with
GroupDRO. In particular, our algorithm exhibits the highest
UNBIASED accuracy and the second-best CC accuracy.

Single-bias datasets. Surprisingly, as shown in Table 3, our
method achieves the best WORST accuracy on Waterbirds
and CelebA, indicating that our method is effective not only
for multi-bias settings but also for single-bias settings.

3.3. Ablation study

Comparison of strategies to choose α. We first conduct
an ablation study to verify our strategy to adjust the group-
scaling parameter α. In Table 4, we compare our strategy
to choose α with two alternatives: (i) using a fixed uniform
group-scaling parameter, i.e., α = 1

N 1, (ii) minimizing
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Table 4. Ablation studies for stratigies to choose group-scaling
parameter α on MultiCelebA: (i) fixing by 1

N
1, (ii) minimizing

α⊤L(θ), and (iii) minimizing L̂(θ), i.e., ours.

GG GC CG CC UNBIASED
(i) 76.6 79.0 76.8 79.7 78.0
(ii) 75.1 78.1 75.9 79.0 77.0
(iii) 82.3 84.7 81.9 82.7 82.9

(i) Group by 𝒃 (ii) Group by 𝒃, 𝑡 (iii) Group by 𝒈

Figure 2. Group-wise test accuracy of each grouping strategy: (i)
group by bias attribute, (ii) group by both bias attribute and target
class, and (iii) group by list of binary group labels. The line
represents the UNBIASED performance, and the lower and upper
bounds of the shaded regions indicate the minimum accuracy (i.e.,
WORST) and maximum accuracy among each group.

α⊤L(θ), and (iii) our method to minimize L̂(θ). One can
observe how our strategy consistently outperforms other
strategies, supporting the use of our strategy.

Intriguingly, one can also observe how learning α as in
(ii) leads to a worse performance compared to (i) that uses
a fixed value of α. Our analysis is that with a learnable
group scaling parameter based solely on the weight sum
of group-wise losses led to worse performance in all five
metrics compared to training without it. We found out such
a performance degradation to happen is because optimizing
α solely on the weight sum of group-wise losses increase
in the weight of a group that has a small training loss, while
decreasing the weight of a group that has difficulty learning.
This runs counter to the goal of debiased training and thus
negatively impacts the overall performance of the model.

Comparison of grouping strategies. We next conduct
an ablation study for verifying our grouping strategy. We
compare ours with two other possible strategies: grouping
samples with (i) the same bias attribute b and (ii) the same
pair of bias attribute b and target class t. We report the
group-wise test accuracies of each model are in Figure 2.
Here, we represent the UNBIASED metric as a solid line and
the range between the minimum and maximum accuracies
of the test groups by shaded regions.

Figure 2 (i) shows that the test accuracy gap between groups
widens as training progresses when using the bias attribute
grouping. We hypothesize that this is due to class imbalance
within the groups caused by training with biased dataset sam-
ples grouped by bias attributes. Specifically, the number of
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Figure 3. Learning curve of group scaling parameter α of
our method and GroupDRO on MultiCelebA. In case of
GroupDRO, (H) and (L) denote High-cheekbones and
Low-cheekbones, respectively.

samples belonging to a target class that is spuriously corre-
lated with the bias attribute becomes dominant, leading to an
imbalanced representation of target classes within the group.
In Figure 2 (ii), we applied the commonly used grouping
by both target classes and bias attributes. Compared to the
conventional grouping, our approach demonstrates a smaller
performance gap between groups and higher worst group
accuracy, as shown in Figure 2 (iii). Finally, we also report
the performances of the grouping strategies in Appendix.

Learning curve for group-scaling parameter α. We com-
pare learning curve of group scaling parameter α of our
method with that of GroupDRO (Sagawa et al., 2019) on
MultiCelebA, as illustrated in Figure 3. Our method shows
an increasing trend for the weight of the CC group, while
those of the other groups decrease during training. This
indicates that the model initially learns a shared represen-
tation that incorporates information from all groups, but
later focuses more on the minority group. On the other
hand, GroupDRO exhibits a decreasing weight trend for the
minority groups (CC (L) and CC (H) in Figure 3). This
trend occurs because the minority groups have lower train-
ing losses in the early stages of training, leading to lower
weights in GroupDRO method. As a result, it tends to ignore
minority groups and exacerbate the bias issue, and resulting
in inferior performance compared to the upweigthing.

4. Conclusion
We have presented a novel debiased training method that
addresses the challenges posed by multiple biases in training
data, inspired by multi-task learning (MTL). We evaluated
our approach on multiple benchmarks both in multi-bias and
single-bias settings. The empirical results demonstrated that
our proposed method achieves state-of-the-art performance
in all benchmarks, surpassing existing debiased training
methods and baselines. Since we propose a debiased train-
ing method inspired by MTL and highlight its potential, we
hope to inspire more future works that use the advancements
in MTL to benefit debiased training.
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A. MultiCelebA
To evaluate debiased training algorithms in multi-bias settings, prior work (Li et al., 2022) proposed Multi-Color MNIST
benchmark that injects two biased attributes, i.e., color of left background and color of right background, to the vanilla
MNIST dataset (LeCun et al., 1998). Unfortunately, such a synthetic dataset is underwhelming as it is not sufficient to
reflect the performance of the algorithms in the real world. To resolve this issue, we propose a new, natural image dataset,
coined MultiCelebA, for evaluating debiased training algorithms under the presence of multiple biases.

MultiCelebA is curated using images of the CelebA dataset, which is a large-scale collection of face images each with 40
attribute annotations. Among the attributes, we chose high-cheekbones as the target attribute to predict from a face
image. We further inspect the dataset and identified two bias attributes, gender and age, that hinder the training through
spurious correlations with high-cheekbones. In particular, we observed that a deep neural network trained by ERM to
predict high-cheekbones relies on the spurious correlation from the gender attribute and then the age attribute. To
simulate challenging scenarios where training data are extremely biased, we set the ratio of bias-guiding samples for each
bias type (either gender or age) to 95.3% so that only 0.22% of training samples are free from such spurious correlations.
Example images and the number of samples for each attribute are presented in Fig. 4.
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Figure 4. Configuration of MultiCelebA training set. The target class is High-cheekbones, and there are two bias types: gender
and age. We provide an example of each attribute along with the number of samples for each attribute. The samples are grouped by
colored borders, with each color representing a group for MTL training. The name of each group, from GG to CC, denotes whether if the
sample in the group has a guiding attribute (G) or a conflicting attribute (C) for gender and age, in respective order.

B. Algorithm

Algorithm 1 Debiased training by MOO
1: while not converged do
2: Let α = SoftMax(ᾱ).
3: for u← 1 to U do
4: Update θ ← θ − η1α

⊤∇θL(θ).
5: end for
6: Let L̂(θ) = α⊤L(θ) + λ

∥∥α⊤∇θL(θ)
∥∥2
2
.

7: Update ᾱ← ᾱ− η2∇ᾱL̂(θ).
8: Update λ← λ+ η2∇λL̂(θ).
9: end while
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C. Experiments
C.1. Datasets

To evaluate our framework, we consider two multi-bias datasets, i.e., MultiCelebA and Multi-Color MNIST, and two
single-bias datasets, i.e., Waterbirds and CelebA. In what follows, we provide details of each dataset.

First, we mainly consider MultiCelebA as the dataset to evaluate debiased training algorithms. As introduced in Sec-
tion A, this dataset requires training a model to predict whether if a given face image has high-cheekbones or not.
Each image is additionally annotated with gender and age attributes which are spuriously correlated with the target
high-cheekbones.

As the secondary multi-bias dataset, we consider Multi-Color MNIST dataset proposed by Li et al. (Li et al., 2022). Its task is
to predict the digit number from an image. The digit numbers are spuriously correlated with left and right background colors,
coined left-color and right-color, respectively. As proposed by Li et al., we set the proportion of bias-guiding
attributes to be 99% and 95% for left-color and right-color, respectively.

Next, Waterbirds (Sagawa et al., 2019) is a single-bias dataset consisting of bird images. Given an image, the target is
bird-type, i.e., whether if the bird is “landbird” or a “waterbird.” The biased attribute is background-type, i.e.,
whether if the image contains “land” or “water.” The proportion of biased attribute is set to 95%.

Finally, we consider CelebA (Liu et al., 2015) as the single-bias dataset. It is a face recognition dataset where each sample is
labeled with 40 attributes. Following the previous settings (Sagawa et al., 2019; Yao et al., 2022), we use HairColor as
the target and gender as the bias attribute.

C.2. Evaluation metrics

We consider various metrics to evaluate whether if the trained model is biased towards a certain group in the dataset. We
remark that no metric is universally preferred over others, e.g., worst-group and average-group accuracy reflects different
aspects of a debiased training algorithm.

For the multi-bias datasets, we evaluate algorithms using the average accuracy for each of the four groups categorized by
the guiding or conflicting nature of the biases: {GG, GC, CG, CC}. Here, G and C describes whether a group contains
bias-guiding or bias-conflicting samples for each bias type, respectively. For example, GC group for MultiCelebA is an
intersection of bias-guiding samples with respect to the first bias type, i.e., gender, and bias-conflicting samples with
respect to the second bias type, i.e., age. In calculating the GG, GC, CG, CC accuracies on the MultiCelebA dataset, we
excluded the impact of class imbalance within each group by first computing the mean accuracy for each class within the
group, and then taking the average of the class accuracies to obtain the group accuracy. We also report the average of these
four metrics, denoted as UNBIASED.

Next, for the single-bias datasets, the minimum group average accuracy is reported as WORST, and the weighted average
accuracy with weights corresponding to the relative proportion of each group in the training set as INDIST (in-distribution)
following Sagawa et al. (Sagawa et al., 2019). We also report WORST and INDIST metrics on MultiCelebA.

C.3. Baselines

We extensively compare our algorithm against the existing debiased training algorithms. In particular, one can categorize a
baseline by whether it explicitly uses the supervision on biased attributes, i.e., bias labels, or not.

To this end, compare our method with nine training algorithms, consisting of four that do not use the bias label and six that
do. Algorithms that do not require using the bias label are as follows: (1) training with vanilla ERM, (2) LfF (Nam et al.,
2020) employs a reweighting scheme where samples that are more likely to be misclassified by a biased model are assigned
higher weights, (3) JTT (Liu et al., 2021) retrains a model using different weights for each group, where the groups are
categorized as either bias-guiding or bias-conflicting based on an ERM model, and (4) DebiAN (Li et al., 2022) utilizes a
pair of alternate networks to discover and mitigate unknown biases sequentially.

We consider debiased training methods using bias attribute labels as follows: (1) Upsampling assigns higher sampling
probability to minority groups, (2) Upweighting assigns scales the sample-wise loss to be higher for minority groups, (3)
GroupDRO (Sagawa et al., 2019) computes group-scaling weights using group-wise training loss to upweight the worst-case
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group samples. (4) SUBG (Sagawa et al., 2020) proposes a group-balanced sampling scheme by undersampling the majority
groups. (5) LISA (Yao et al., 2022) performs group mixing (mixup) augmentation to learn from both intra- and inter-group
information. (6) DFR (Kirichenko et al., 2022) retrains the last layer of an ERM model using a balanced set obtained
through undersampling.

C.4. Implementation details.

We conduct experiments using the following neural network architectures: a three-layered MLP for Multi-Color MNIST,
ResNet18 for MultiCelebA, and ResNet50 for single-bias datasets. For the implementation of our method, we set the batch
size to {512, 512, 128, 128}, learning rate η1 to {2e−4, 2e−2, 1e−3, 2e−3} and η2 to {1e−2, 2e−3, 1e−3, 1e−4}, weight
decay to {1, 1e−4, 1e−1, 1e−5}, the update frequency U to {10, 50, 5, 1} with optimizer {SGD, Adam, SGD, Adam},
respectively for {MultiCelebA, Multi-Color MNIST, Waterbirds, CelebA}. The group scaling parameter α is initialized to
1/N where N is the number of groups and the Lagrangian multiplier λ is initialized to 0. For mini-batch construction during
training, group-balanced sampling is used to compute each loss for multiple tasks. We report the average and standard
deviation of each metric calculated from three runs with different random seeds.

Training existing methods on multi-bias setting. When training a model using SUBG (Sagawa et al., 2020), group-
DRO (Sagawa et al., 2019) and DFR (Kirichenko et al., 2022), we grouped the training set based on the same pair of bias
attribute b and target class t and followed the approach outlined in the original paper.

LISA (Yao et al., 2022) adopts the two kinds of selective augmentation strategies, Intra-label LISA and Intra-domain LISA.
In the multi-bias setting, Intra-label LISA (LISA-L) interpolates samples with the same target label but different all bias
labels (t(m) = t(m

′), b(m)
d ̸= b

(m′)
d ∀d). Intra-domain LISA (LISA-D) interpolates samples with the same bias labels but

different target label (t(m) ̸= t(m
′), b(m) = b(m

′)).

When training a model using biased training methods that do not require bias labels, such as LfF (Nam et al., 2020), JTT (Liu
et al., 2021), and DebiAN (Li et al., 2022), we followed the approach outlined in the original paper without modification,
regardless of the number of bias types presented in the dataset.

We conducted ‘Upsampling’ method in Table 1 and 2 by uniformly sampling from groups, which is upsampling the minority
groups with replacement.

For the ‘Upweighting’ method, we calculate the weight of each group as the ratio between the total number of training
samples and the number of samples in that group, as follows:

group weight =
(# of training samples)
(# of group samples)

Hyperparameters. We tune all hyperparameters, including early stopping, for both our method and existing methods,
based on highest WORST for MultiCelebA, Waterbirds and CelebA on validation set. For Multi-Color MNIST, we tune
hyperparemters based on highest UNBIASED on test set, following the previous work (Li et al., 2022). We use a single
GPU (RTX 3090) for training. The hyperparameter search spaces used in all experiments conducted in this paper are
summarized in Table 5. Furthermore, the search space for the upweight value λup in JTT is 5, 10, 20, 30, 40, 50, 100.
JTT (Liu et al., 2021) and DFR (Kirichenko et al., 2022) utilize the ERM model as a pseudo labeler and frozen backbone
network, respectively. We used the ERM model as reported in the literature for our implementation of these methods.

Given that the proportion of samples from minority groups can impact the performance of debiased training, we trained
DFR exclusively on the training set to ensure a fair comparison, which is denoted as DFRtr

tr.

Table 5. The search spaces of hyperparameters.
Method Search space

Learning rate η1, η2
{5e−4, 2e−4, 1e−4,
5e−3, 2e−3, 1e−3,
5e−2, 2e−2, 1e−2}

Weight decay {0, 1e−4, 1e−2, 1e−1, 1}
Updating iteration U {1, 5, 10, 50}
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C.5. Additional Interpretation of the results on MultiCelebA

In Table 1, we analyzed whether a model is biased toward the two bias types, based on the difference between GG, GC,
CG, CC, while also evaluating the UNBIASED accuracy. Let G* denote the combination of GG and GC, and similarly for
C* and others. A model is biased towards gender attributes if there is a significant difference between the G* and C*
combinations, whereas a significant difference between the *G and *C combinations indicates bias towards age attributes.

Intriguingly, we observe that algorithms like JTT, DebiAN, DFR exhibit UNBIASED metric even lower than the vanilla
ERM algorithm. Our hypothesis is that this performance degradation stems from conflicts between removal of different
spurious correlations. To be specific, JTT (Liu et al., 2021) exhibits varying accuracy across the GG, GC, CG, and CC
groups, indicating that the model is biased towards both gender and age biases. DebiAN (Li et al., 2022) shows high
accuracy in the GG and GC groups, but low accuracy in the CG and CC groups, indicating that the algorithm partially
mitigates age bias but still suffers from gender bias. We also observe that DFR (Kirichenko et al., 2022) achieves lower
CC and CG metrics than ERM, suggesting that an ERM-based feature representation alone is insufficient to debias the
training.

The remaining algorithms, e.g., Upsampling, GroupDRO (Sagawa et al., 2019), and LISA (Yao et al., 2022) show overall
decent performance, but the GG and GC metrics are slightly higher than that in CG and CC groups, indicating that the model
is still slightly biased towards the gender attribute. Surprisingly, Upweighting achieved the second-best performance in
CC, UNBIASED, and WORST on MultiCelebA, surpassing all the existing debiased training methods.

C.6. Ablation study

Comparison of grouping strategies. We report the performances of the grouping strategies in Table 6. Here one can
observe that our grouping strategy outperforms the others in all five metrics.

Table 6. Ablation studies on the grouping strategy on MultiCelebA: group by bias attribute b, bias attribute and target class (b, t), and list
of binary group labels g.

Group by GG GC CG CC UNBIASED
b 75.3 78.2 75.7 78.8 77.0
b, t 76.5 79.0 76.8 79.8 78.0
g 83.1 85.0 81.3 81.6 82.7

Updating frequency U . We conducted experiments to examine how hyperparameter U affects the performance of our
method. Table 7 presents the GG, GC, CG, CC and UNBIASED accuracies on the MultiCelebA dataset using five different
values of U . To exclude the influence of the learning rate η2, we adjusted the learning rate η2 inversely proportional to the
increase in the value of U . We found that the UNBIASED remained consistent across all U values. Additionally, the GC,
CC, and UNBIASED of our proposed method outperformed existing methods and baselines regardless the value of U .

U GG GC CG CC UNBIASED
1 83.7 85.7 81.2 81.1 82.9
5 83.0 85.3 81.5 81.8 82.9
10 83.1 85.0 81.3 81.6 82.7
20 82.7 85.4 80.9 81.8 82.7
30 80.8 84.3 82.4 84.4 83.0

Table 7. Ablation studies on the updating frequency U of the group scaling parameter α on the MultiCelebA dataset.


