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ABSTRACT

Numerical interpolation for scattered data, i.e., estimating values for target points
based on those of some observed points, is widely used in computational science
and engineering. The existing approaches either require explicitly pre-defined ba-
sis functions, which makes them inflexible and limits their performance in prac-
tical scenarios, or train neural networks as interpolators, which still have lim-
ited interpolation accuracy as they treat observed and target points separately
and cannot effectively exploit the correlations among data points. Here, we
present a learning-based approach to numerical interpolation for scattered data
using encoder representation of Transformers (called NIERT). Unlike the recent
learning-based approaches, NIERT treats observed and target points in a unified
fashion through embedding them into the same representation space, thus gain-
ing the advantage of effectively exploiting the correlations among them. The
specially-designed partial self-attention mechanism used by NIERT makes it es-
cape from the unexpected interference of target points on observed points. We
further show that the partial self-attention is essentially a learnable interpolation
module combining multiple neural basis functions, which provides interpretability
of NIERT. Through pre-training on large-scale synthetic datasets, NIERT achieves
considerable improvement in interpolation accuracy for practical tasks. On both
synthetic and real-world datasets, NIERT outperforms the existing approaches,
e.g., on the TFRD-ADlet dataset for temperature field reconstruction, NIERT
achieves an MAE of 1.897 × 10−3, substantially better than the state-of-the-art
approach (MAE: 27.074 × 10−3). The source code of NIERT is available at
https://anonymous.4open.science/r/NIERT-2BCF.

1 INTRODUCTION

Scattered data consist of a collection of points and corresponding values, in which the points have
no structure besides their relative positions (Franke & Nielson, 1991). Scattered data arise naturally
and widely from a large variety of theoretical and practical scenarios, including solving partial dif-
ferential equations (PDEs) (Franke & Nielson, 1991; Liu, 2016), temperature field reconstruction
(Chen et al., 2021), and time series interpolation (Lepot et al., 2017; Shukla & Marlin, 2019). These
scenarios usually require numerical interpolation for scattered data, i.e., estimating values for tar-
get points based on those of some observed points. For example, in the task of temperature field
reconstruction for micro-scale electronics, interpolation methods are used to obtain the real-time
working environment of electronic components from limited measurements, and imprecise interpo-
lation might significantly increase the cost of predictive maintenance. Thus, accurate approaches to
numerical interpolation are highly desirable.

A large number of approaches have been proposed for interpolating scattered data. Traditional ap-
proaches use schemes that approximate the target function by a linear combination of some basis
functions (Heath, 2018), in which the basis functions should be explicitly pre-defined. To adapt to
different scenarios, various types of basis functions have been devised. These schemes can theoret-
ically guarantee the interpolation accuracy when sufficient observed points are available; however,
they have also been shown to be ineffective for sparse data points (Bulirsch et al., 2002). In addition,
the schemes can hardly learn from the experience of interpolation in similar tasks.

1

https://anonymous.4open.science/r/NIERT-2BCF


Under review as a conference paper at ICLR 2023

Recent progress has exhibited an alternative strategy that uses neural networks to learn target func-
tions directly from the given observed points. For example, conditional neural processes (CNPs)
(Garnelo et al., 2018) and their extensions (Kim et al., 2019; Lee et al., 2020b;a) model the condi-
tional distribution of regression functions given the observed points, and Chen et al. (2021) proposed
to use vanilla Transformer (Vaswani et al., 2017) to solve interpolation task in temperature field re-
construction. All of these approaches use an “encoder-decoder” architecture, in which the encoder
learns the representations of observed points while the decoder estimates values for target points.
Ideally, observed points and target points should be processed in a unified fashion because they are
from the same domain. However, these approaches treat them separately and cannot effectively
exploit the correlation between them.

Here, we present an approach to numerical interpolation that can effectively exploit the correlations
between observed points and target points. Our approach is a learning-based approach using the
encoder representations of Transformers (thus called NIERT). The key elements of NIERT include:
i) the use of mask mechanism, which complements target points with learnable mask tokens as
performed by masked language model, say BERT (Devlin et al., 2018), and thus enables process-
ing both observed and target points in a unified fashion, ii) a novel partial self-attention model that
calculates attentions among the given data points except for the influence of target points onto the ob-
served points at each layer, thus gaining the advantages of exploiting the correlations between these
two types of points and, more importantly, avoiding the unexpected interference of target points on
observed points at the same time, and iii) the use of the pre-training technique, which leverages
large-scale low-cost synthetic data to build powerful, general-purpose, and transferable pre-trained
interpolation models. The use of the pre-trained models significantly improves generalization ability
and interpolation accuracy.

The main contributions of this study are summarized as follows.

• We propose an accurate approach to numerical interpolation for scattered data. On rep-
resentative datasets including synthetic and real-world datasets, our approach outperforms
the state-of-the-art approaches and shows potential in a wide range of application fields.

• We propose a novel partial self-attention mechanism to make Transformer incorporated
with strong inductive bias for interpolation tasks, i.e., it can effectively exploit the correla-
tion among two types of points and, at the same time, avoids the interference of one type
of points onto the others.

• We also demonstrate the essence of NIERT, i.e., a learnable interpolation approach us-
ing neural basis functions, through illustrating the deep connection between partial self-
attention mechanism and traditional interpolation approaches.

• To the best of our knowledge, this study is the first work to propose the pre-trained models
for scatter-data interpolation. We have verified that such interpolation pre-trained models
can be generalized to a wide range of interpolation tasks.

2 RELATED WORKS

2.1 TRADITIONAL INTERPOLATION APPROACHES FOR SCATTERED DATA

Traditional interpolation approaches for scattered data use explicitly pre-defined basis functions to
construct interpolation function, e.g., Lagrange interpolation, Newton interpolation (Heath, 2018),
B-spline interpolation (Hall & Meyer, 1976), Shepard’s method (Gordon & Wixom, 1978), Kriging
(Wackernagel, 2003), and radial basis function interpolation (RBF) (Powell, 1987; Fornberg & Zuev,
2007). Among these approaches, the classical Lagrange interpolation, Newton interpolation and B-
splines interpolation are usually used for univariate interpolation. Wang et al. (2010) proposed a
high-order multivariate approximation scheme for scattered data sets, in which approximation error
is represented using Taylor expansions at data points, and basis functions are determined through
minimizing the approximation error.

2.2 NEURAL NETWORK-BASED INTERPOLATION APPROACHES

Equipped with deep neural networks, data-driven interpolation and reconstruction methods show
great advantages and potential. For instance, convolutional neural networks (CNNs) have been ap-
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Figure 1: Overview of NIERT training process. Here, xi represents the position of a point, and yi
represents its value. The predicted values of the point is denoted as ŷi. We prepare the training
interpolation tasks by first sampling functions from a function distribution F and then sampling
observed points O and target points T on each function. NIERT trains an interpolator over this data.
The partial self-attention mechanism facilitates exploiting the correlations between observed points
and target points and avoiding the unexpected interference of target points on observed points

plied in the interpolation tasks of single image super-resolution (Tai et al., 2017; Li et al., 2021), and
recurrent neural networks (RNNs) and Transformers have been used for interpolation of sequences
like time series data (Shukla & Marlin, 2019; 2021).

Recently, Garnelo et al. (2018) proposed to model the conditional distribution of regression func-
tions given observed points. The proposed approach, called conditional neural processes (CNPs),
has shown increased estimation accuracy and generalizing ability. A variety of studies have been
performed to enhance CNPs: Kim et al. (2019) designed attentive neural processes (ANPs), which
shows improved accuracy. Lee et al. (2020a) leveraged Bayesian last layer (BLL) (Weber et al.,
2018) for faster training and better prediction. In addition, the bootstrap technique was also em-
ployed for further improvement (Lee et al., 2020b). To solve the interpolation task in 2D temper-
ature field reconstruction, Chen et al. (2021) proposed a Transformer-based approach, referred to
as TFR-transformer, which can also be applied to solve interpolation tasks for scattered data with
higher dimensions.

2.3 MASKED LANGUAGE/IMAGE MODELS AND THE PRE-TRAINING TECHNIQUE

The design of NIERT is also inspired by the recent advances in masked language/image models
(Devlin et al., 2018; Bao et al., 2021; Brown et al., 2020; He et al., 2021) and pre-trained models
for symbolic regression (Biggio et al., 2021; Valipour et al., 2021). The mask mechanism enables
the models to reconstruct missing data from their context and effectively learn representations of
language and images. In addition, the pre-trained models for symbolic regression were designed to
learn the map from scattered data to corresponding symbolic formulas (Biggio et al., 2021; Valipour
et al., 2021). Here, NIERT uses the mask mechanism to reconstruct the missing values of target
points and uses the pre-training technique to learn the experience of interpolation on similar tasks.

3 METHOD

3.1 OVERVIEW OF NIERT

In the study, we focus on the interpolation task that can be formally described as follows: We are
given n observed points with known values O = {(xi, yi)}ni=1, and m target points with values to be
determined, denoted as T = {xi}n+m

i=n+1. Here, xi ∈ X denotes position of a point, yi = f(xi) ∈ Y
denotes the value of a point, and f : X → Y denotes a function mapping positions to values. The
function f is from a function distribution F , which can be explicitly defined using a mathematical
formula or implicitly represented using a set of scattered data in the form (xi, yi). The goal of the
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interpolation task is to accurately estimate the values f(x) for each target point x ∈ T according to
the observed points in O.

The main element of our NIERT approach is a neural interpolator that learns to estimate values for
target points. We train the neural interpolator using a set of interpolation tasks sampled from the
function distribution F (Fig. 1). For each of the sampled interpolation tasks, we mask the values of
target points, feed the task to the neural interpolator, and train the interpolator to predict the values
of target points and observed points as well. The training objective is to minimize the error between
the predicted values and the ground-truth values of both target and observed points. The trained
interpolator can be used to interpolate values of target points for the interpolation tasks from the
same function distribution.

3.2 ARCHITECTURE OF THE NIERT INTERPOLATOR

The neural interpolator in NIERT adopts the Transformer encoder framework; however, to suit the
interpolation task, significant modifications and extensions were made in the embedding, Trans-
former and output layers, which are described in detail below.

Embedding with masked tokens: NIERT embeds both observed points and target points into the
unified high-dimensional embedding space. As the position x of a data point and its value y are
from different domains, we use two linear modules : Linearx embeds the positions while Lineary
embeds the values.

It should be noted that for target points, their values are absent when embedding as they are to
be determined. In this case, we use a masked token as substitute, which is embedded as a trainable
parameter MASKy as performed in BERT (Devlin et al., 2018). This way, the interpolator processes
both target points and observed points in a unifying fashion.

We concatenate the embeddings of position and value of a data point as the point’s embedding,
denoted as h0

i , i.e.,

h0
i =

{
[Linearx(xi),Lineary(yi)] , if (xi, yi) ∈ O

[Linearx(xi),MASKy] , if xi ∈ T
.

Transformer layer with partial self-attention mechanism: NIERT feeds the embeddings of the
points into a stack of L Transformer layers, producing encodings of these points as results. Each
Transformer layer contains two subsequent sub-layers, namely, a multi-head self-attention module,
and a point-wise fully-connected network. These sub-layers are interlaced with residual connections
and layer normalization between them.

To avoid the unexpected interference of target points on observed points and target points them-
selves, NIERT replaces the original self-attention in Transformer layer with a partial self-attention,
which calculates the feature of point i at the l + 1-st layer as follows:

hl+1
i = LayerNorm(ṽli +MLP(ṽli)), (1)

where ṽli = LayerNorm
(
vli +

∑
j
wijα

l
ijv

l
j

)
. (2)

Here, vli and αl
ij represent the value vector and ordinary attention weights at the l-th layer as cal-

culated in Transformer (Vaswani et al., 2017). We use an additional term wij to represent which
entries of attention weights are neglected in the partial self-attention mechanism, i.e.,

wij =

{
1, if (xj , yj) ∈ O

0, if xj ∈ T
.

For each observed point (xj , yj) ∈ O, we set wij = 1; thus, NIERT can model the correlation
between observed points and target points, and the correlation among observed points as well. Rel-
atively, the correlation among observed points is easier to learn as these points have known values.
In addition, this correlation can be transferred onto the target points, thus promoting learning repre-
sentations of these data points.

In contrast, by forcing the weight wij to be 0 for a target point i and any point j, we completely
avoid the unexpected interference of target points on the other points.
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Estimating values for target points: For each target point i, we estimate its value ŷi through
feeding its features at the final Transformer layer into a fully connected feed-forward network, i.e.,

ŷi = MLPout(h
L
i ).

We calculate the error between the estimation and the corresponding ground-truth value, and com-
pose the errors for all points into a loss function to be minimized.

3.3 ENHANCING NIERT USING PRE-TRAINING TECHNIQUE

The existing data-driven interpolation approaches, although powerful, still suffer from the short-
comings of limited generality and transferability. To overcome these shortcomings, we propose to
use the pre-training technique to build NIERT into pre-trained interpolation models. Due to the
lack of large-scale pre-training datasets for interpolation, we constructed the NeSymReS dataset ,
which contains a large variety of synthetic symbolic mathematical functions (see B.1 for further
details). These functions approximate general and diverse function distribution, thus gaining our
pre-trained model strong generalization ability. Here, we pre-train NIERT using NeSymReS dataset
and fine-tune it on other datasets in practical scenarios.

3.4 DEEP CONNECTION BETWEEN NIERT AND CLASSICAL INTERPOLATION METHOD

The underlying rational of using partial self-attention mechanism is rooted in its deep connection
with classical interpolation methods. We use RBF as a representative of classical methods to illus-
trate this connection below.

To interpolate n observed points O = {(xi, yi)}ni=1, the RBF approach uses the following interpo-
lation function

fRBF(x) =
∑n

j=1
λjϕ(x, xj). (3)

Here, ϕ(·, xj) represents a radial basis function specified by the observed point xj , and λj is the
coefficient, which can be determined through solving the linear equations

∑n
j=1 λjϕ(xi, xj) = yi,

(xi, yi) ∈ O (Solomon, 2015).

We further rewrite the partial self-attention shown in Eq. (2) with simplification but without loss of
its essence as:

fAttn(x) =
∑n

j=1
α(q(x), kj)vj . (4)

Here, α(q(x), kj) is the normalized attention weight that models the contribution to query vector
q(x) by the key vector kj , in which kj and vj are dominated by the observed point xj .

Comparing Eq. (3) with Eq. (4), we can find that partial self-attention is a general form of RBF
interpolation function: λj in Eq. (3) corresponds to vj in Eq. (4), and ϕ(x, xj) in Eq. (3) corre-
sponds to α(q(x), kj) in Eq. (4). This correspondence indicates that α(q(x), kj) can be treated as a
learnable basis function and, similarly, vj can be treated as a predictable basis function coefficient.
From this point of view, partial self-attention is a learnable layer that interpolates the representation
of observed points to yield new representations of data points. Together, this insight provides a plau-
sible explanation of the partial self-attention mechanism, which is also supported by the contribution
analysis of observed points shown in Section 4.4.

It should be pointed out that the decoder of TFR-transformer can also be rewritten into a formula
similar to Eq. (4); however, it still differs greatly from the partial self-attention mechanism: par-
tial self-attention encodes both observed and target points into the same feature space at each layer
whereas TFR-transformer treats these two types of data points separately. This unifying represen-
tation of data points gains NIERT the advantages of exploiting the correlations among data points
more effectively.

4 EXPERIMENTS AND RESULTS

We evaluated NIERT and compared it with ten representative scattered data interpolation approaches
on both synthetic and real-world datasets. We further examined the effects of the key elements of
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NIERT, including the partial self-attention, and the pre-training technique. We also visualized the
attention map to exhibit the contribution of each observed point to the interpolation function.

4.1 EXPERIMENT SETTING

We evaluated NIERT on three synthetic datasets (NeSymReS, TFRD-ADlet, and D30) and one real-
world dataset (PhysioNet): NeSymReS is a synthetic dataset of up to 4 dimensions for mathematical
function interpolation, TFRD-ADlet is a synthetic dataset for 2D temperature field reconstruction,
and D30 is a high dimension dataset that contains data points of up to 30 dimensions. PhysioNet is a
real-world dataset collected from intensive care unit (ICU) records for time-series data interpolation.

In this study, the NeSymReS dataset was used for pre-training NIERT to further improve its interpo-
lation accuracy on TFRD-ADlet and PhysioNet datasets. For the TFRD-ADlet dataset, we directly
use the 2D NeSymReS dataset for pre-training. As the PhysioNet dataset has a dependent variable
with a dimensionality of 37, we construct the pre-training instances by stacking random 37 functions
from the 1D NeSymReS dataset and then sampling interpolation task instances.

When evaluating NIERT and other interpolation approaches, the prediction error of target points is
calculated as interpolation accuracy. For the NeSymReS, D30 and PhysioNet datasets, we adopted
mean squared error (MSE) as the error metric. For the TFRD-ADlet dataset, we use three error met-
rics: mean absolute error (MAE), MAE in the component area (CMAE) and MAE at the boundary
(BMAE) following Chen et al. (2021). Accordingly, we use L2-form loss function for NeSymReS
and PhysioNet dataset and L1-form loss function for TFRD-ADlet dataset for training.

We compared NIERT with state-of-the-art approaches. Further details of datasets, approaches for
comparison, and other experiment settings are provided in the Supplementary material.

4.2 INTERPOLATION ACCURACY ON SYNTHETIC AND REAL-WORLD DATASETS

For each instance of test dataset, we applied the trained NIERT to estimate values for target points.
We calculate the errors between estimation and ground-truth as interpolation accuracy.

Interpolation
approach

MSE (×10−5) on NeSymReS test set

1D 2D 3D 4D

RBF 215.439 347.060 443.094 327.775
MIR 67.281 274.601 448.933 342.997
CNP 67.176 248.668 392.348 314.311
ANP 34.558 140.005 206.699 164.751

BANP 14.913 84.187 143.518 140.288
TFR-transformer 15.556 58.569 99.986 90.579

NIERT 8.964 45.319 77.664 72.025

Table 1: Interpolation accuracy of NIERT and
existing approaches on NeSymReS dataset

Interpolation
approach

Evaluation criteria (×10−3)

MAE CMAE BMAE

CNP 96.674 109.419 56.939
ANP 54.684 62.511 26.524

BANP 28.671 29.450 19.984
TFR-transformer 27.074 29.772 18.835

NIERT 3.473 3.947 2.467
NIERT w/ pretraining 1.897 1.971 1.246

Table 2: Interpolation accuracy of NIERT and
existing approaches over TFRD-ADlet dataset

Interpolation
approach

MSE (×10−4) on D30 test set

10D 20D 30D

RBF 181.744 161.261 112.902
MIR 161.474 155.038 92.278
CNP 35.623 51.166 58.312
ANP 12.578 11.401 17.545

BANP 12.077 13.010 17.462
TFR-transformer 7.465 6.211 6.334

NIERT 5.496 4.681 1.549

Table 3: Interpolation accuracy of NIERT
and existing approaches on D30 dataset

Interpolation
approach

Ratio of observed points

50% 70% 90%

RNN-VAE 13.418±0.008 11.887±0.005 11.470±0.006
L-ODE-RNN 8.132±0.020 8.171±0.030 8.402±0.022
L-ODE-ODE 6.721±0.109 6.798±0.143 7.142±0.066
mTAND-Full 4.139±0.029 4.157±0.053 4.798±0.036

NIERT 2.868±0.021 2.656±0.041 2.709±0.157
NIERT w/ pretraining 2.831±0.021 2.641±0.052 2.596±0.159

Table 4: Relationship between interpolation accuracy
(MSE, ×10−3) on PhysioNet with observed ratio

Accuracy on NeSymReS and D30 datasets: As shown in Table 1, on the 1D NeSymReS test
set, RBF shows the largest interpolation error (MSE: 215.439). MIR, another approach using ex-
plicit basis functions, also shows a high interpolation error of 67.281. In contrast, BANP and TFR-
transformer, which use neural networks to learn interpolation, show relatively lower errors (MSE:
14.913, 15.556). Compared with these approaches, our NIERT approach achieves the best interpo-
lation accuracy (MSE: 8.964). Table 1 also demonstrates the advantage of NIERT over the existing
approach on the 2D, 3D, and 4D instances.
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Figure 2: The relationship between the inter-
polation accuracy and the number of observed
points. Here we use the 2D instances in the
NeSymReS test dataset as representatives

To examine in depth the interpolation accuracy,
we further divide test instances into subsets ac-
cording to the number of observed points. As
shown in Figure 2, as the number of observed
points increases, the interpolation error decreases
as expected. In addition, the relative advantages
of these approaches vary with the number of ob-
served points, e.g., CNP is better than RBF and
MIR initially but finally becomes worse as the
number of observed points increases. Among all
approaches, NIERT stably shows the best perfor-
mance over all test subsets, regardless of the num-
ber of observed points.

Table 3 suggests that even for D30 dataset with
high-dimensional (up to 30 dimensions) data
points, NIERT still shows excellent interpolation accuracy and outperforms all existing methods,
which demonstrates the scalability of NIERT to the high-dimensional interpolation tasks.

Accuracy on TFRD-ADlet and PhysioNet datasets: As shown in Table 2, CNP, although employ-
ing the neural network technique, still performs poorly with MAE as high as 96.674. In contrast,
NIERT achieves the lowest interpolation error (MAE: 3.473), which is over one order of magnitude
lower than CNP, ANP, BANP and TFR-transformer. Moreover, when enhanced with the pre-training
technique, NIERT can further decrease its interpolation MAE to 1.897. Besides MAE, other metrics,
say CMAE and BMAE, also show the superior of NIERT over the existing approaches (Table 2 ).

Table 4 suggests that on the PhysioNet dataset, NIERT also outperforms the existing approaches,
e.g., when controlling the ratio of observed points to be 50%, NIERT achieves an average MSE
(×10−3) of 2.868, significantly lower than other approaches. Again, NIERT with the pre-training
technique shows better performance. The advantages of NIERT hold across various settings of the
ratio of the observed points.

Taken together, these results demonstrate the power of NIERT for numerical interpolation in multiple
application fields, including interpolating the scattered data generated using mathematical functions,
reconstructing temperature fields, and interpolating time-series data.

4.3 CASE STUDIES OF INTERPOLATION RESULTS

To further understand the advantages of NIERT, we carried out case studies through visualizing
the observed points, the reconstructed interpolation functions and the interpolation errors in this
subsection. More visualized cases are put in Section D.1 in the Supplementary material.
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Figure 3: An example of 2D interpolation task extracted from NeSymReS test set. The up-left
figure shows the ground-truth function while the bottom-left figure shows the 22 observed points.
The interpolation functions reported by NIERT and the existing approaches are listed on the top
panel with their differences with the ground-truth are list below

Figure 3 show a 2D instance in the NeSymReS test set, respectively. As illustrated, RBF performs
poorly in the application scenario with sparse observed data. In addition, RBF and MIR, especially
ANP, cannot accurately predict values for the target points that fall out of the range restricted by
observed points. The CNP approach can only learn the rough trend stated by the observed points,
thus leading to significant errors. In contrast, BANP, TFR-transformer and NIERT can accurately
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estimate values for target points within a considerably large range, and compared with BANP and
TFR-transformer, NIERT can produce more accurate results.
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Figure 4: An example of temperature field reconstruction task extracted from TFRD-ADlet test set.
The up-left figure shows the ground-truth temperature field while the bottom-left figure shows the
32 observed points. The reconstructed results reported by NIERT and the existing approaches are
listed on the top panel with their differences with the ground-truth temperature field are list below

Figure 4 shows an instance of temperature field reconstruction extracted from TFRD-ADlet. From
this figure, we can observe that when using the pre-training technique, NIERT further improves its
interpolation accuracy in the whole area.

4.4 CONTRIBUTION ANALYSIS OF OBSERVED POINTS FOR INTERPOLATION

An idealized interpolation approach is expected to effectively exploit all observed points with ap-
propriate consideration of relative positions among observed points and target points as well. To
examine this issue, we visualized the attention weight, i.e., α(q(x), kj) in Eq. (4), of each observed
point to all target points. These attention weights provide an intuitive description of the contribution
by observed points, which also represents the learned neural basis functions as stated in Section 3.4.
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Figure 5: Contributions by observed points for interpolation. The 2D instance is same to that used
in Figure 3. We randomly select 4 observed points and extract their attention weights from the final
attention layer of NIERT and TFR-transformer. The contributions by other 18 observed points are
shown in Section D.2 in the Supplementary material

As shown in Figure 5, when using TFR-transformer, the contributions by observed points are consid-
erably imbalanced: on one side, some observed points (e.g., Fig. 5a) might affect their neighboring
target points in a large region; on the other side, the other observed points (e.g., Fig. 5b) have little
contributions to interpolation. In contrast, when using NIERT, contributions by an observed point
are much more local and thus targeted. More importantly, all observed points have contributions to
interpolation. These results demonstrate that NIERT can exploit the correlation between observed
points and target points more effectively.

4.5 ABLATION STUDY

The effects of partial self-attention: For a specific interpolation task, the interpolation function
is determined by the observed points only. To investigate the effects of partial self-attention in
avoiding interference of target points, we evaluated NIERT on the test sets with various numbers of
target points. Here, we compared NIERT with its two variants, one using vanilla self-attention, and
the other using partial self-attention with the target points’ correlation added. Both of them were
trained using the same training sets (the number of target points varies within [206, 246]).
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As illustrated by Figure 6, the two NIERT variants show poor performance for the tasks with few
target points, say less than 64 target points or more than 768 target points. In contrast, NIERT, which
uses partial self-attention, always performs stably without significant changes in accuracy.

The results clearly demonstrate that the partial self-attention mechanism allows NIERT to be free
from the unexpected effects of the target points.
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The effects of pre-training technique: To investigate the effects of the pre-training technique,
we show in Figure 7 the training process of two versions of NIERT, one without the pre-training
technique, and the other enhanced with pre-training. As depicted by the figure, even at the first
epoch, the pre-trained NIERT shows a sufficiently high interpolation accuracy, which is comparable
with the fully-trained BANP and TFR-transformer. Moreover, the performance of the pre-trained
NIERT improves at roughly the same convergence speed as the original NIERT. At the final epoch,
the pre-trained NIERT decreases the interpolation error to nearly half of that of the original NIERT.

These results clearly suggest that the experience learned by NIERT from the interpolation task in
one application field has the potential to be transferred to the tasks in other application fields.

5 DISCUSSION AND CONCLUSION

We present in the study an accurate approach to numerical interpolation for scattered data. The
specific features of our NIERT approach are highlighted by the full exploitation of the correlation
between observed points and target points through unifying scattered data representation. At the
same time, the use of the partial self-attention mechanism can effectively avoid the interference of
target points onto the observed points. The enhancement with the pre-training technique is another
special feature of NIERT. The advantages of NIERT in interpolation accuracy have been clearly
demonstrated by experimental results on both synthetic and real-world datasets. Analysis suggests
that the advantages of NIERT mainly come from the fact that both observed and target points are
embedded into the same feature space at each layer, which makes the message passing from observed
points to target points more efficient and informative.

The current version of NIERT has a computational complexity of O(n(m+n)), thus cannot handle
the interpolation tasks with extremely large amounts of observed points due to the limitations of
GPU memory size. Compared with the lightweight traditional methods, our NIERT approach has
a larger model with expensive computation to learn complex function distribution, which limits its
application in cost-sensitive scenarios.

One possible strategy to improve NIERT’s efficiency is sparse partial self-attention: As shown in
Figure 5, the contribution by an observed points is quite local and targeted. Thus, for a target point,
its neighboring observed points dominate the estimation of its value. Considering the neighborhood
only might greatly reduce the computation cost. We will investigate this strategy in future studies.

We expect NIERT, with extensions and modifications, to greatly facilitate numerical interpolations
in a wide range of engineering and science fields.
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REPRODUCIBILITY STATEMENT

In the Supplementary material, we provide the anonymous link to the source code for the key ex-
periments. Instructions on how to generate data and train the models are described in detail in the
code base. We also provide the construction method or source of each dataset and list the details
of experimental configurations. We have fully checked our implementation and verified that our
method is reproducible through sufficient experiments.
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A DETAILS OF IMPLEMENTATION AND EXPERIMENTS

A.1 AVAILABILITY OF THE SOURCE CODE OF NIERT

We provide the details of implementation and experiments in this section and deposit source code of
NIERT at https://anonymous.4open.science/r/NIERT-2BCF.

A.2 HYPERPARAMETER SETTINGS

Table 5 lists the the hyper-parameters of NIERT when running on the four representative datasets,
including NeSymReS, TFRD-ADlet, D30 and PhysioNet datasets. For fair comparison, we set up
the TFR-transformer with the same H and dmodel, and the number of its encoder layers is set to
L− 1 and that of its decoder is set to 1 following (Chen et al., 2021).

Parameter name Symbol
Parameter value in experiments on

NeSymReS TFRD-ADlet D30 PhysioNet

Number of layers L 6 3 6 3
Hidden dimension dmodel 512 128 128 128
Number of heads H 8 4 8 4
x’s embedding dimension dxemb 16×dx 32 16×dx 16
y’s embedding dimension dyemb 16 16 16 592

Table 5: Hyper-parameters of NIERT in experiments on the four representative dataset

Training on NeSymReS dataset: For experiments on NeSymReS dataset, we trained NIERT and
the neural approaches for comparison on two NVIDIA GeForce RTX 3090 GPUs for 160 epochs
with a batch size of 128. Adam optimizer with a learning rate of 1.0 × 10−4 and no schedules are
performed for parameters optimization.

Training on D30 dataset: For experiments on D30 dataset, NIERT and the neural approaches for
comparison are trained on one NVIDIA GeForce RTX 3090 GPUs for 100 epochs with a batch size
of 128. Adam optimizer with a learning rate of 1.0 × 10−4 and no schedules are performed for
parameters optimization.

Training on TFRD-ADlet and PhysioNet datasets: For experiments on TFRD-ADlet dataset, we
trained NIERT and the approaches for comparison on one NVIDIA GeForce RTX 3090 GPU for
100 epochs with a batch size of 5. Adam optimizer with a learning rate of 5.0× 10−4 with a decay
rate of 0.97 is performed. For experiments on PhysioNet dataset, we trained NIERT on one NVIDIA
GeForce RTX 3090 GPU for 160 epochs with a batch size of 32. Adam optimizer with a learning
rate of 5.0× 10−4 and with a decay rate of 0.97 is performed.

Pre-training for TFRD-ADlet and PhysioNet datasets: Pre-trained NIERT on 2D NeSymReS is
used to fine-tune on TFRD-ADlet dataset. To deal with the problem that the data distribution is too
different between NeSymReS data and temperature field in TFRD-ADlet, we simply normalize the
data of temperature field to the value range of 2D NeSymReS data before fine-tuning.

To apply NIERT on PhysioNet dataset in which each instance has so many dependent variables with
a number of 37, we increase the number of MLPs for dependent variables to 37 in the embedding
layer to embed them separately. The pre-training instances for these tasks are correspondingly dif-
ferent. For convenience, we stack 37 random 1D functions in NeSymReS dataset as an instance
for pre-training. Although the data generated using such construction method is considerable dif-
ferent from PhysioNet data, we still observe that pre-training technique improves the interpolation
accuracy as shown in Table 4.

A.3 TRAINING ALGORITHM

The training process is depicted in Algorithm 1. Specifically, we prepare the training interpolation
tasks by first sampling functions from a distribution F and then sampling observed points O and
target points T on each function. When training NIERT, we set the loss function as the error between
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Algorithm 1 NIERT training process

Require: NIERT model Mθ with parameters θ, epoch number N , batch size B, domain X ,
function distribution F and error metric function Error(·, ·)
for k in {1..N} do

J ← 0
for b in {1..B} do

f, {xi}i ← sample a function and scatter points from F , X
{yi}i ← calculate f on {xi}i
O, T ← split and mask scatter points with values {(xi, yi)}i
{ŷi}i ←Mθ(O, T )
J ← J +

∑
i Error(ŷi, yi)

end for
Compute the gradient∇θJ and update θ

end for

the estimated values and the corresponding ground-truth. Note that errors acquired on both observed
points and target points are accounted into loss function.
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B DETAILS OF DATASETS

We evaluated NIERT approach using four datasets, including synthetic datasets NeSymReS, TFRD-
ADlet and D30, and a real-world dataset PhysioNet. We first clearly list the statistics of interpola-
tion tasks of these datasets and then introduce the datasets in detail in the following subsections.

The statistical information of the interpolation tasks used for training in each dataset is shown in
Table 6. In practice, for each instance in the training set, i.e., N scattered points from a certain
function, we randomly select n of them as observed points and the remaining N − n as target
points. For the NeSymReS dataset, we randomly select a fixed range of numbers as the number
of observed points (e.g. [5,25] for 1D NeSymReS dataset). For the real-world PhysioNet dataset,
which has a variable number of scattered points for its instances, distributed in the range of [20, 190],
we therefore select observed points from all points at a fixed rate (say 50%,70% or 90%).

Dataset Subset tag #All points N #Observed points n #Target points m

NeSymReS 1D 256 [10,50] N − n
2D/3D/4D 512 [10,50] N − n

TFR-ADlet - 40000 37 39963

D30 10D/20D/30D 256 64 192

PhysioNet
50% [20,190] 0.5×N N − n
70% [20,190] 0.7×N N − n
90% [20,190] 0.9×N N − n

Table 6: Statistics of the interpolation tasks used for training in each dataset

B.1 SYNTHETIC DATASET I: NESYMRES

We used the NeSymReS1 dataset to test the performance of NIERT for mathematical function inter-
polation. This dataset was constructed following Biggio et al. (2021) with only slight modification
for the sake of numerical interpolation. For clarity, we put the details of construction procedure in
the subsection B.1.1 below, and list the summarized characteristics of this dataset as follows.

Instance construction: We randomly sampled N points from X = [−1, 1]dx (dx represents the
point dimensionality) and calculate the values for these points with a mathematical function f . From
these points, we randomly picked n points as observed points and used the left-over as target points.
In the study, we chose different dx for constructing datasets, including 1D, 2D, 3D, and 4D. For
1D NeSymReS dataset, we set the scattered points number N as 256. For 2D/3D/4D NeSymReS
dataset, we set N as 512. We control observed points number n within the range of [5, 50].

Training set and test set: Each instance in training or test set was built using a mathematical
function f . These functions were generated using a function sampler as performed in (Biggio et al.,
2021). During the training process, 1 million instances are dynamically sampled at each epoch as
training set. We used the L2-form loss function for this dataset. We also generated 12000 instances
and used them as test set.

Dimensionality of points: We evaluated NEIRT using scatter data with various dimensionality,
including 1D, 2D, 3D, and 4D.

Approaches for comparison: We compared NIERT with five representative interpolation ap-
proaches, including radial basis function (RBF) (Powell, 1987; Fornberg & Zuev, 2007), MIR
(Wackernagel, 2003), conditional neural process (CNP)(Garnelo et al., 2018), attentive neural pro-
cess (ANP)(Kim et al., 2019) and TFR-transformer (Chen et al., 2021). Among these approaches,
RBF and MIR are classical approaches that use explicit basis functions, while CNP, ANP and TFR-
transformer use neural networks to learn how to interpolate.

1Built based on https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales.
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B.1.1 NESYMRES DATASET CONSTRUCTION

Following the study of Biggio et al. (2021), firstly, we generate equation skeletons which is refer to
the symbolic equation where numerical constants are replaced by placeholders (Biggio et al., 2021).
Each equation skeleton has the configured number (dx) of independent variables symbols. For
example, y = sin(C1x1)+C2x

2
2 is a possible generated equation skeleton which includes constants

placeholders C1 and C2 and two variables x1 and x2. Such equation skeletons are considered
expression trees during generation. Each randomly-generated expression tree has up-to 5 non-leaf
nodes, i.e, function operators. Unnormalized weighted distribution shown in Table 7 is used for
sampling each non-leaf node. Each leaf node has a probability of 0.8 of being an independent
variable and 0.2 of being an integer. Different from (Biggio et al., 2021) using almost all elementary
functions symbols including discontinuous ones like ln, arcsin, tan for symbolic regression tasks,
we only use the operators listed in Table 7 which guarantee that the generated function is continuous
in the whole domain X = [−1, 1]dx , to make it more suitable for interpolation tasks.

Operator + × − ·2 ·3 exp sin cos

Unormalized probability 10 10 5 4 2 4 4 4

Table 7: Operator and corresponding un-normalized probabilities during the generating process of
mathematical functions in NeSymReS dataset

Secondly, constants values are independently sampled from a uniform distribution U(1, 5) and we
get a set of completely-defined mathematical-expression functions. Then we normalize those func-
tions to make their values range in [0, 1] and multiply it with a random number range [0.9, 1] to
produce diversity.

After those completely-defined functions obtained, we sample interpolation task for each function
by randomly sampling a set of support points {xi}i in X , evaluating the function and get the corre-
sponding {yi}i, and then splitting those data points into a observed points set and a target points set.
512 scatter points are sampled using each function, of which a random number (ranging in [5, 50])
of points are set up as the observed points and the rest are set up as the target points.

During the generation of interpolation tasks, results with invalid values (NaN or inf) are removed.
For dx in configurations {1, 2, 3, 4}, we generate datasets separately and use them for training and
testing. In particular, when dx is configured, we generate 150 equation skeletons set for testing
and 1 million skeletons set for training. Each skeleton in the training set existing in the test set has
been removed. At training time, interpolation tasks are sampled using equation skeletons from the
training set in real time. At testing time, we use an interpolation task set containing 10000 instances,
which are generated by the testing skeletons set.

B.2 SYNTHETIC DATASET II: TFRD-ADLET

TFRD-ADlet2 (Chen et al., 2021) is a synthetic dataset for 2D temperature field reconstruction where
each instance represents a simulated 2D temperature field containing several heat source components
and a specific Dirichlet conditioned boundary. The goal of each task instance is to reconstruct the
whole temperature field according to a limited number of observed points with measured tempera-
ture. We use the TFRD-ADlet dataset to test the performance of NIERT for 2D temperature field
reconstruction. The characteristics of this dataset are summarized as follows.

Instance construction: Each instance has 200 × 200 regular grid points that represent the temper-
ature field in a 0.1m × 0.1m square area. Among these grid points, 32 points have their temperate
known and used as observed points. The other 3968 points are used as target points.

Training set and test set: We have a total of 10,000 training instances and 10,000 test instances.
For the sake of fair comparison, we also use L1-form loss function for this dataset as performed in
Ref. (Chen et al., 2021).

Dimensionality of points: The grid points are in a 2D plane.

2TFRD-Alet is downloadable at https://pan.baidu.com/s/14BipTer1fkilbRjrQNbKiQ, password: ‘tfrd’.
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Approaches for comparison: For this dataset, we compared NIERT with three neural network-
based interpolation approaches, including conditional neural process (CNP)(Garnelo et al., 2018),
attentive neural process (ANP)(Kim et al., 2019) and TFR-transformer (Chen et al., 2021). We also
compared NIERT with its enhanced version that was pre-trained using the NeSymReS dataset.

B.3 SYNTHETIC DATASET III: D30

In order to verify the scalability of NIERT on higher dimensional data, we specially constructed a
synthetic dataset (called D30 dataset) containing three subsets whose dimensionalities are 10, 20
and 30 respectively.

Instance construction: Each function for sampling one interpolation task is obtained by the sum-
mation of K randomly sampled dx-dimensional Gaussian functions, which can be formalized as

f(x) =

K∑
k=1

Ak exp

(
−1

2

(x− ck)
2

σ2
k

)
.

We fix K as 5. For each Gaussian function using in each function, we uniformity sampled the center
ck from [−1, 1]dx , weight Ak from [−1, 1] and width σk from [σdx , 2σdx ] where σdx is configured
as 1, 2 and 4 when dx is 10, 20 and 30 respectively.

Training set and test set: For each dimensionality of 10, 20 or 30, we created a training set contain-
ing 256K instances and a test set containing 512 cases from this function distribution. Each instance
includes 64 observed points and 192 target points, which are uniformly sampled from [−1, 1]dx .

Dimensionality of points: The data points in three subsets have the dimension of 10, 20 and 30
respectively.

Approaches for comparison: On D30, we compared NIERT with five representative interpolation
approaches, including radial basis function (RBF) (Powell, 1987; Fornberg & Zuev, 2007), MIR
(Wackernagel, 2003), conditional neural process (CNP)(Garnelo et al., 2018), attentive neural pro-
cess (ANP)(Kim et al., 2019) and TFR-transformer (Chen et al., 2021).

B.4 REAL-WORLD DATASET: PHYSIONET

PhysioNet3, excerpted from the PhysioNet Challenge 2012 (Silva et al., 2012), is a real world dataset
collected from intensive care unit (ICU) records for time-series data interpolation. Each point in an
instance represents a measurement at a specific time, where each measurement contains up to 37
physiological indices. It should be pointed out that this dataset is a representative of hard interpola-
tion tasks due to the sparsity and irregularity of the records.

Instance construction: Each instance consists of multiple points, each of which represents a mea-
surement of a patient at a specific time. Following the study (Shukla & Marlin, 2021), we randomly
divided the points into observed points and target points. We also set the ratio of observed points
at five levels, i.e., 50%, 70%, and 90%, and trained and evaluated NIERT using the thus-acquired
datasets.

Training set and test set: We randomly divided the 8,000 instances acquired from the PhysioNet
Challenge 2012 into training set and test set with a ratio of 4:1. For the sake of fair comparison, we
use L2-form loss function for this dataset as performed in (Shukla & Marlin, 2021).

Dinsionality of points: Each point in an instance represents a measurement at a specific time and
each measurement contains up to 37 physiological indices; thus, the independent variable x is 1D
while the dependent variable y has a dimensionality of 37.

Approaches for comparison: On this dataset, we compared NIERT with four representative ap-
proaches designed for time-series data interpolation, including RNN-VAE (Chung et al., 2014),
L-ODE-RNN (Chen et al., 2018), L-ODE-ODE(Rubanova et al., 2019), and mTAND-Full(Shukla
& Marlin, 2021). The details of these approaches are provided in Section C. We also compared
NIERT with its enhanced version that was pre-trained using the NeSymReS dataset.

3PhysioNet is downloadable at https://physionet.org/content/challenge-2012/1.0.0/.
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C APPROACHES FOR COMPARISON

Radial basis function (RBF) RBF is one of the most commonly-used scattered data interpolation
methods. It adopts a specific type of radial basis functions on observed points and uses their linear
combination to represent the target function. We use the RBF interpolation implementation in SciPy
(Virtanen et al., 2020) and multiquadric function as basis function type for the experiments.

MIR MIR 4 is another multivariate interpolation and regression method for scattered data sets
proposed by (Wang et al., 2010). MIR represents the approximation error with Taylor expansions
and minimizes the approximation error to find the basis functions.

Conditional nerual process (CNP) CNP proposed by (Garnelo et al., 2018) is an neural model
able to learn to predict distributions of target points values given a series of observed points. In
order to fully verify the accuracy of interpolation, we let CNP to predict the values of target
only and the training criteria function is set to be the prediction error of values of target points
in the experiments. We borrowed the parameter settings from the comparison experiments in
the work of Chen et al. (2021), where the intermediate layer dimensions of the MLP encoder are
[dx + dy, 128, 128, 256, 512], and these of MLP decoder are [512 + dx, 256, 256, 128, 128, dy].

Attentive nerual process (ANP) ANP (Kim et al., 2019) leverages attention mechanism in CNP
and improves the prediction performance. In the experiments, the criteria function are fixed as same
as CNP above. We borrowed the parameter settings from Chen et al. (2021), where the hidden
dimension is 512, attention head number is 4, and the encoder and decoder have two attention layers
respectively.

Bootstrapping attentive nerual process (BANP) BANP (Lee et al., 2020b) employs bootstrap
technique to further improve the performance of ANP. In the experiments, the criteria function are
fixed as same as CNP and ANP above. We set its hyperparameters to be the same as ANP, except
for its unique hyperparameter, i.e., the number of samples, which is set to 2 for computational cost
considerations.

TFR-Transformer Transformer (Kim et al., 2019) is originally proposed to solve tasks in natu-
ral language processing. Chen et al. (2021) adopts Transformer in 2-dimensional temperature field
reconstruction using scattered observations. Compared with vanilla transformer, TFR-Transformer
removes positional encoding, encodes the observations using encoder, using cross-attention mecha-
nism between observations’ encoding and target points to represents targets’ features at decoder, and
using a MLP to map targets’ features to values. We set its hidden space dimension, the number of
attention layers and the number of attention heads in each experiment to be the same as our method
NIERT. These hyperparameters are listed in Table 5.

RNN-VAE RNN-VAE is a VAE-based model where the encoder and decoder are standard RNN
models. Gated Recurrent Unit (GRU) (Chung et al., 2014) module is configured as the recurrent
network.

L-ODE-RNN L-ODE-RNN refers to latent neural ODE model where the encoder is an RNN and
decoder is a neural ODE proposed in (Chen et al., 2018).

L-ODE-ODE Rubanova et al. (2019) proposes ODE-RNN model which generalize RNNs to have
continuous-time hidden dynamics defined by ODEs. L-ODE-ODE refers to the model where the
encoder is an ODE-RNN and decoder is a neural ODE.

mTAND-Full Shukla & Marlin (2021) proposes mTAND-Full for interpolation and classification
of sparse, irregularly sampled, and multivariate time series data. mTAND-Full performs time atten-
tion mechanism to learn temporal similarity and Bidirectional RNNs to encode temporal features.
Mask mechanism makes the representation of missing data and target points convenient and easy
to parallel. For the experiments of RNN-VAE, L-ODE-RNN, L-ODE-ODE, and mTAND-Full
approaches, we use the same hyperparameter settings as Shukla & Marlin (2021).

4MIR’s implementation can be found at http://web.mit.edu/qiqi/www/mir/.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL CASE STUDIES

Cases from 1D & 2D NeSymReS test set

In each example of 1D interpolation task extracted from NeSymReS test set, the blue curve repre-
sents the ground-truth function while the red curves represent the interpolation functions reported
by NIERT and the existing approaches.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
RBF

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.54e-6

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MIR

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 2.19e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 2.10e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.4e-4

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
BANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
TFR-transformer

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 6.69e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
NIERT (Ours)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.81e-6

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
RBF

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 4.27e-6

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MIR

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 5.15e-4

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.35e-4

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 4.33e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
BANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.12e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
TFR-transformer

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.39e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
NIERT (Ours)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.08e-6

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
RBF

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 6.58e-2

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MIR

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 2.87e-2

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.88e-2

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.11e-2

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
BANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.19e-2

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
TFR-transformer

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 4.46e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
NIERT (Ours)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.84e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
RBF

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 6.9e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MIR

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 2.98e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.14e-2

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 7.52e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
BANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 7.4e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
TFR-transformer

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 8.48e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
NIERT (Ours)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.84e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
RBF

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 8.24e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MIR

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 2.2e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CNP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.67e-3

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 3.e-4

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
BANP

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 9.75e-5

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
TFR-transformer

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.2e-4

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
NIERT (Ours)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4
MSE: 1.96e-5

Figure 8: Additional cases from 1D NeSymReS test set
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Figure 9: Additional cases from 1D NeSymReS test set
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Figure 10: Additional cases from 2D NeSymReS test set
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Figure 11: Additional cases from 2D NeSymReS test set
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Figure 12: Additional cases from TFRD-ADlet test set
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D.2 CONTRIBUTION ANALYSIS OF OBSERVED POINTS FOR INTERPOLATION

As supplements to Figure 6, all observed points’ attention weights extracted from the final attention
layer of NIERT and TFR-transformer are visualized in Figure 13.
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Figure 13: All observed points and the corresponding extracted attention response

The contributions by observed points are quit imbalanced using TFR-transformer. In particular, the
intensity and area of the contributions of the five observed points 0,2,6,16,19 cover almost the entire
domain, while the remaining 17 observed points only produce negligible contribution. In contrast,
when using NIERT, contributions by an observed point are much more local and thus targeted and
all observed points have contributions to interpolation. This shows that NIERT can fully exploit the
relationship between observed points and target points.

D.3 ADDITIONAL ABLATION STUDIES

The effects of different model depths

We carried out experiments on 2D NeSymReS dataset using NIERT with hyper-parameter L varying
from 3 to 7. Then evaluate the models on the 2D NeSymReS test dataset. Accuracy are listed in
below Table 8. The results show that NIERT with 7 transformer layers has the best accuracy on
the test set, and NIERT with 6 transformer layers has reached a comparable level. Therefore, in the
experiments on NeSymReS data set, we use L = 6 to balance efficiency and accuracy.

The effects of different hidden dimensions
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Interpolation
approach

Number of transformer layers L

3 4 5 6 7

NIERT 66.812 60.133 52.098 45.319 44.043

Table 8: The interpolation accuracy of NIERT (MSE ×10−5) under various settings of transformer
layer number L on 2D NeSymReS dataset

We also carried out experiments on 2D NeSymReS dataset using NIERT with smaller hidden di-
mensions dmodel, say from 256, 128 and 64. Then evaluate the models on the 2D NeSymReS test
dataset. Accuracy are listed in below Table 9. The results show that when the hidden dimension is
within 512, NIERT’s interpolation accuracy is higher when the hidden dimension is larger.

In this experiment, we fix other super parameters, say model depth L as 6 and number of heads as 8.

Interpolation
approach

Different hidden dimensions dmodel

64 128 256 512

NIERT 106.193 72.107 51.153 45.319

Table 9: The interpolation accuracy of NIERT (MSE ×10−5) under various settings of hidden di-
mension dmodel on 2D NeSymReS dataset

The effects of prediction error of observed points in loss function

To verify the contribution of re-predicting values of the observed points to the interpolation task,
we conducted an experiment that puts the prediction error of observed points in the loss function,
i.e. only minimizes the estimation error of target points. The results are shown in Table 10 which
demonstrates that only minimizing estimation error of target points make NIERT performing poorly.
This indicates that re-predicting the value of observed points helps NIERT to predict the value of
target points more accurately.

Loss contains prediction error of Only target points All points

MSE (×10−5) 48.931 45.319

Table 10: Interpolation accuracy (MSE ×10−5) of NIERT trained with loss only containing the
prediction error of the target points

D.4 PREDICTION ACCURACY GAP BETWEEN OBSERVED POINTS AND TARGET POINTS

Prediction
accuracy on

MSE (×10−5) on NeSymReS test sets

1D 2D 3D 4D

Observed points 1.301 4.862 3.775 2.662
Target points 8.964 45.319 77.664 72.025

Table 11: Prediction accuracy gap between observed points and target points on NeSymReS test set

We carried out an extra experiment for prediction accuracy analysis on observed points and target
points. Figure 11 shows that on the observed points, the MSE of prediction is relatively smaller
when compared with it of target points as expected.

D.5 COMPUTATIONAL TRADE-OFF

Our work focuses on improving the accuracy of scattered data interpolation. Considering the
practical scenario of efficient computational interpolation, we compare and analyze the accuracy-
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computation time trade-off between our approach and previous approaches. We collected the av-
erage computation time and MSE per interpolation task for all approaches on the 2D NeSymReS
testset, which contains 10,000 test interpolation tasks, and visualize the results in Figure 14. Fig-
ure 14, the lower the method the higher the accuracy and the more left the method the more efficient
the calculation.
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Figure 14: Computational trade-off comparison on 2D NeSymReS testset

From Figure 14, we can see that RBF is the most computationally efficient, but it is also the least
accurate. Our approach NIERT has the highest computational accuracy, and its computational effi-
ciency is only slightly reduced compared to the next best approach, TFR-transformer.

It should be noted that the traditional interpolation approach RBF and MIR are tested using Intel(R)
Xeon(R) Gold 5218R CPU @ 2.10GHz with 40 cores and the data-driven approaches including
CNP, ANP, BANP, TFR-transformer, and NIERT were evaluated on an NVIDIA GeForce RTX
3090 GPU. Here we set the batch size to 1 for evaluation to keep the comparison fair.

For the training times of these different methods, we collected and put them into the Table 12. We
used two NVIDIA GeForce RTX 3090 GPUs for training. On a 2D NeSymReS training set dataset
containing one million functions, 160 epochs of training were performed. It should be noted that
traditional interpolation methods such as RBF and MIR do not require training.

Interpolation approach Training time (h)

RBF -
MIR -
CNP 14.9
ANP 18.3

BANP 21.1
TFR-transformer 17.5

NIERT 19.1

Table 12: Training time comparison on 2D NeSymReS training set

Table 12 indicates that the training times of these data-driven approaches do not differ much. Among
them, CNP has the shortest training time (14.9 h) and BANP has the longest training time (21.1 h).
The training time of our approach NIERT is 19.1 hours.
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