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ABSTRACT

One-dimensional (1D) image tokenizers, such as TiTok, have achieved remarkable
breakthroughs in efficient image generation by encoding images into extremely
compact sequences of discrete tokens. However, we identify two critical, inher-
ent limitations in its architecture. First, TiTok’s single-scale encoding strategy
restricts the capability of its latent code to simultaneously capture both macro-
scopic structures and microscopic details of an image, creating a representation
bottleneck. Second, TiTok’s design, which concatenates latent tokens with image
patch sequences as a unified input to the encoder, results in a quadratic increase in
computational complexity when scaling the number of latent tokens, leading to an
efficiency bottleneck. To address both issues concurrently, we propose MsTok, a
novel, multi-scale aware, and computationally efficient 1D image tokenizer. Our
approach introduces two core innovations: 1) We constructs a hierarchical multi-
scale memory by aggregating selected intermediate ViT layers with scale embed-
dings. 2) We decouple the latent tokens from the backbone encoder and decoder,
reformulating them as a set of “query tokens” that interact with the multi-scale
memory through a separate and efficient cross-attention module after the image
encoding is complete. This decoupled design reduces the computational cost of
increasing latent tokens from a quadratic to a linear relationship. Experiments
show that MsTok not only significantly improves image reconstruction quality but
also demonstrates superior computational scalability to the number of latent to-
kens, paving the way for more powerful and efficient generative models.

1 INTRODUCTION

Image generation (Dhariwal & Nichol, 2021; Esser et al., 2021; Chang et al., 2022; Tian et al., 2024)
has achieved notable progress, largely propelled by two distinct paradigms: diffusion models (DMs),
which typically operate on continuous image representations (Rombach et al., 2022; Peebles & Xie,
2023), and autoregressive (AR) models, which model images in a discrete token space (Esser et al.,
2021; Chang et al., 2022; Yu et al., 2023a; Tian et al., 2024). For the latter, the performance of the
generative model is fundamentally influenced by the properties of the image tokenizer, as it translates
high-dimensional pixel data into a sequence of discrete tokens. This tight coupling has motivated
the community to push the boundaries of image tokenization for high-quality and efficient visual
generation. Within this context, TiTok (Yu et al., 2024a) has stood out by challenging the traditional
2D grid formulation. Instead of operating on dense spatial maps, it encodes an entire image into a
short 1D sequence of merely 32–64 tokens. This radical compression not only accelerates training
and inference but also makes large-scale generative modeling computationally feasible.

Yet, despite its impressive performance, our analysis reveals two critical, coupled limitations in
TiTok’s design that curtail further progress. The first is a representation bottleneck: by processing
visual information at a single scale, TiTok struggles to simultaneously capture both the global struc-
ture of a scene and the fine-grained details of objects within its extremely compressed token budget.
This often forces a trade-off where reconstructions sacrifice texture fidelity for structural consis-
tency, or vice versa. The second is an scalability bottleneck: TiTok’s architecture concatenates
learnable latent tokens with image patch tokens, feeding them as a unified input to its Transformer
encoder. This design couples the self-attention complexity to the number of latent tokens, causing
a quadratic explosion in computational cost when attempting to increase representational capacity.
This creates an intractable trade-off between model expressiveness and computational scalability.
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Figure 1: Overview of MsTok. (a) Performance comparison showing MsTok achieves a better trade-
off between performance (e.g., lower FID) and efficiency (e.g., higher throughput) compared to prior
arts. (b) A showcase of diverse, high-fidelity images generated by our method, demonstrating its
strong generative capability.

Recent studies (Yu et al., 2024b; Li et al., 2024) have highlighted the importance of high-quality
visual representations in image generation. Their gains often come from introducing multi-scale
features to jointly retain global layout and local texture, or leveraging stronger teacher encoders. For
a ViT tokenizer, the simplest way to obtain multi-scale signals is to aggregate intermediate layers.
This, however, yields a long hierarchical memory, posing a central challenge: how to compress it
into a very short 1D latent sequence without discarding fine, generation-relevant cues. The query
cross-attention addresses this: after the backbone finishes encoding, a small set of learnable queries
selectively pools hierarchical evidence from the multi-scale memory to form compact tokens that
still retain global structure and local detail. Simultaneously, this “encode–then–query” decoupling
keeps the backbone cost fixed and adds only a lightweight readout whose cost grows linearly with
the number of latent tokens, allowing the model to scale with minimal throughput loss.

In this work, we introduce MsTok, as shown in Figure 1, a novel 1D tokenizer that jointly addresses
these two bottlenecks. Our approach first constructs a hierarchical, multi-scale feature memory by
aggregating intermediate ViT layers. This explicitly provides the tokenizer with access to both high-
level semantic features (from deeper layers, for global structure) and low-level fine-grained features
(from shallower layers, for texture and detail), creating a richer source of information than a single-
scale output. To tackle the scalability bottleneck, we decouple latent token formation from the
backbone encoding process. Instead of concatenating latent tokens with image patches, a small set
of learnable query tokens retrieves information from the multi-scale memory via a lightweight cross-
attention module after the main encoding is complete. This redesign keeps the backbone complexity
unchanged and turns the cost of increasing latent tokens from quadratic to linear, enabling flexible
capacity scaling without prohibitive overhead. We further apply a symmetric query-based module
in the decoder and adopt a two-stage training schedule that selectively optimizes the query tokens to
enhance representational quality.

Our contributions are summarized as:

1. We introduce a hierarchical multi-scale feature memory built from intermediate ViT layers,
which markedly improves the tokenizer’s representational quality and directly translates
into higher downstream generative fidelity.

2. We propose a decoupled, query-based tokenization mechanism that converts the cost of
increasing latent tokens from quadratic to linear, yielding strong scalability with respect to
the latent token count and enabling exploration of larger token budgets for better generators
(e.g., superior gFID and throughput at numver of latent tokens=128).

3. We provide extensive experiments on ImageNet-1K. Our best model, MsTok-B-256,
achieves 0.86 rFID and 1.78 gFID. Furthermore, our method exhibits better scalability
with respect to the number of latent tokens.
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2 RELATED WORKS

2.1 IMAGE TOKENIZATION

Image tokenizers were pioneered by VQ-VAE (Van Den Oord et al., 2017) and VQ-VAE-2 (Razavi
et al., 2019), which introduced vector quantization to learn a discrete codebook for image repre-
sentation with variational autoencoder (Kingma & Welling, 2013). VQ-GAN (Esser et al., 2021)
enhanced reconstruction quality through adversarial training, while ViT-VQGAN (Yu et al., 2021)
further incorporated Transformer architectures (Vaswani et al., 2017) into the tokenizer design. More
recent variants such as Magvit (Yu et al., 2023a) achieved stronger performance by leveraging multi-
task learning, RQ-VAE (Lee et al., 2022) introduced residual quantization with using multiple vector
quantization steps per latent embedding, Magvit-2 (Yu et al., 2023b) and FSQ (Mentzer et al., 2023)
propose a lookup-free quantization.

Although 2D tokenizers have played a foundational role in advancing high-resolution image gen-
eration and remain useful in certain scenarios, they suffer from rigidity due to the fixed spatial
structure of latent grids, which limits flexibility and efficiency in representing semantic information.
To overcome these limitations, TiTok (Yu et al., 2024a) introduces a 1D tokenizer that provides
more compact and flexible representations, thereby achieving higher compression rates and gener-
ation efficiency. Building on this direction, SoftVQ-VAE (Chen et al., 2025) employs continuous
soft quantization to avoid discretization errors while maintaining efficiency. Subsequently, One-D-
Piece (Miwa et al., 2025) proposes a 1D discrete tokenizer with a tail token drop mechanism to
enable quality-controllable compression. Most recently, FlexTok (Bachmann et al., 2025) extends
the paradigm by introducing variable-length 1D token sequences, allowing a single model to adap-
tively operate across different compression rates and resolutions.

2.2 IMAGE GENERATION

Image generation has witnessed remarkable progress in recent years, largely driven by ad-
vances in deep generative models. Early approaches based on Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) laid the foundation for learning latent representations and synthe-
sizing realistic images. More recently, diffusion models (Ho et al., 2020) have become the dominant
paradigm, leveraging iterative denoising processes to achieve state-of-the-art fidelity and diversity.
In parallel, autoregressive (AR) models such as DALL·E (Ramesh et al., 2021), Parti (Yu et al.,
2022), and Var-Clip (Zhang et al., 2024), which generate images token by token or scale by scale,
have demonstrated strong scalability and compositionality.

Achieving high-fidelity synthesis requires latent representations that capture both high-level seman-
tics and fine-grained details, which in turn necessitates integrating visual information across multiple
scales. Early GAN-based models, such as Taming-VQGAN (Esser et al., 2021), leverage a multi-
scale design by combining a convolutional VQGAN to capture local fine details with a transformer
operating on compressed latent codes to model global structures, thereby enabling high-resolution
and semantically coherent image generation. In diffusion-based approaches (Ho et al., 2020), the
U-Net (Ronneberger et al., 2015) backbone naturally provides multi-scale pathways, where higher
layers capture global semantics while lower layers refine local textures. Recently, VAR (Tian et al.,
2024) adopts a multi-scale autoregressive prediction framework, progressively synthesizing images
across scales to achieve scalable and high-quality generation. ImageFolder (Li et al., 2024) lever-
ages a multi-scale folding strategy that transforms images into hierarchically aligned 1D sequences,
enabling autoregressive models to capture both global structures and fine-grained details.

Beyond architectural innovations, recent studies highlight the crucial role of pretrained representa-
tions in advancing image generation. Open-MAGVIT2 (Luo et al., 2024) pretrains visual tokenizers
on large-scale data via a lookup-free quantizer to achieve leading zero-shot reconstruction, and inte-
grates these representations with autoregressive models through asymmetric token factorization for
scalable visual generation. Further, REPA (Yu et al., 2024b) shows that by aligning continuous rep-
resentations into a 1D sequence, diffusion transformers can be trained more easily. LlamaGen (Sun
et al., 2024) demonstrates that large-scale autoregressive transformers, when equipped with strong
pretrained visual tokenizers, can surpass diffusion models in both scalability and image quality.
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Figure 2: Illustration of (a) image reconstruction, (b) query qttention module and (c) image genera-
tion of MsTok framework (c). MsTok comprises a ViT encoder Enc that yields multi-scale features
aggregated into a hierarchical memory, a query attention module QAMe where the learnable latent
tokens retrieve a compact 1D latent which is vector-quantized by Quant, and a symmetric decoder
Dec with QAMd that lets mask tokens attend to the quantized latent for spatial recovery.

3 METHOD

3.1 PRELIMINARY BACKGROUND

Image tokenization plays a pivotal role in modern generative models by providing a compact, dis-
crete representation of an image in a latent space. This process has evolved from traditional 2D
grid-based approaches to more recent 1D sequence-based methods, each with distinct advantages
and limitations that motivate our approach.

Traditional 2D Grid-based Tokenization. The foundational approach, exemplified by Vector-
Quantized Generative Adversarial Networks (VQ-GAN) [1], consists of three main components: an
encoder Enc, a vector quantizer Quant, and a decoder Dec. Given an input image I ∈ RH×W×3, the
encoder maps it to a grid of latent embeddings Z2D ∈ R

H
f ×W

f ×D, downsampling spatial dimensions
by factor f :

Z2D = Enc(I). (1)

The vector quantizer then maps each continuous embedding vector z ∈ RD to its nearest code ci
from a learnable codebook C ∈ RN×D:

Quant(z) = ci, where i = arg min
j∈{1,...,N}

∥z − cj∥2 (2)

Finally, the decoder reconstructs the image: Î = Dec(Quant(Z2D)). However, this rigid 2D spatial
correspondence limits the model’s ability to exploit spatial redundancies for compact representa-
tions.

1D Sequence-based Tokenization. To overcome these limitations, the Transformer-based 1-
Dimensional Tokenizer (TiTok) represents images as compact 1D sequences, decoupling latent size
from image resolution. TiTok employs a Vision Transformer (ViT) encoder that processes flattened
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image patches P ∈ R
H
f ×W

f ×D concatenated with K learnable latent tokens L ∈ RK×D:

Z1D = Enc(P ⊕ L) (3)

where only the K latent tokens are retained as the final representation. For reconstruction, a
ViT decoder processes the quantized sequence Quant(Z1D) concatenated with mask tokens M ∈
R

H
f ×W

f ×D:
Î = Dec(Quant(Z1D)⊕M) (4)

3.2 MULTI-SCALE 1D TOKENIZATION

While TiTok achieves remarkable compression (e.g., K = 32 tokens), our analysis reveals two criti-
cal limitations: (1) representation bottleneck — single-scale encoding restricts simultaneous capture
of macroscopic and microscopic image features, and (2) scalability bottleneck — concatenating la-
tent tokens with image patches creates quadratic computational complexity when scaling the num-
ber of latent tokens. To address these challenges simultaneously, we propose MsTok, as shown in
Figure 2, which introduces two core innovations: multi-scale feature extraction through multiple
features fusion and decoupled query-based tokenization that separates latent token processing from
backbone feature extraction.

Hierarchical Feature Extractor. We leverages the natural hierarchical structure of Vision Trans-
formers. Instead of treating the ViT as a monolithic encoder, we extract features from multiple layers
and concatenate them. This allows us to construct a comprehensive multi-scale feature memory M
that captures both global structures and fine details.

Given an input image I ∈ RH×W×3, we first divide it into patches P ∈ RNp×D, where Np =
H
f × W

f is the number of patches. A ViT backbone EncViT processes these patches through L

transformer layers:
{F1, F2, ..., FL} = EncViT(P ) (5)

where Fl ∈ RNp×D represents the feature map from the l-th layer, containing different levels of
semantic abstraction.

Since ViT maintains consistent feature dimensions across all layers, we can directly extract features
from multiple layers without requiring complex fusion operations. However, to ensure effective inte-
gration of features from different semantic levels, we apply normalization and scale-aware encoding
before concatenation.

Specifically, we extract features from m different selected scales (e.g., layers l1, l2, · · · , lm). For
each scale s ∈ {l1, l2, · · · , lm}, we first apply Layer Normalization LN to stabilize the feature
distributions. Then, we add learnable scale embeddings Es ∈ R1×D to help the model distinguish
between different semantic levels:

F̂s = LN(Fs) + Es (6)

Finally, we construct our multi-scale feature memory through concatenation:

M = F̂l1 ⊕ F̂l2 ⊕ · · · ⊕ F̂lm ∈ RmNp×D (7)

This approach elegantly exploits the uniform feature dimensionality of ViT while capturing hierar-
chical visual information at different semantic levels. The resulting multi-scale feature memory M
effectively preserves both coarse structures from deeper layers and fine details from intermediate
layers, enabling the subsequent tokenization process to generate more expressive latent codes.

Decoupled Query-based Latent Representation. In TiTok, latent tokens are concatenated with
image patches before being fed to the encoder. This results in computational complexity of O((Np+
K)2 ·D), creating a quadratic growth bottleneck when scaling the number of latent tokens K.

Our method decouples the tokenization process from the backbone feature extraction. We intro-
duce K learnable query tokens Q ∈ RK×D that are independent of the ViT encoding process.
These query tokens interact with the pre-computed multi-scale feature memory M through a cross-
attention based query attention module QAMe:

Z ′
1D = QAMe(Query = Q,Context = M) (8)

5
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This operation can be intuitively understood as each query token “asking a question” to the entire
feature memory and aggregating information based on relevance scores. The output Z ′

1D ∈ RK×D

is our final 1D latent representation.

Symmetric Query-based Decoding. To align with our encoder design and further improve recon-
struction quality, we introduce the QAM module in the decoder stage as well. This design enhances
decoding efficiency for both image reconstruction and generation tasks, optimizing scalability with
respect to the number of latent tokens.

Specifically, after obtaining the quantized latent representation Quant(Z ′
1D), we use the quantized

tokens as context and learnable mask tokens M ∈ RNp×D as queries in our QAMd module to obtain
decompressed representations:

M ′ = QAMd(Query = M,Context = Quant(Z ′
1D)) (9)

The decompressed representations M ′ are then directly processed by the ViT decoder for final image
reconstruction:

Î = DecViT(M
′) (10)

This symmetric design ensures that both encoding and decoding processes maintain linear scalability
with respect to the number of latent tokens, while the cross-attention mechanism allows mask tokens
to dynamically attend to relevant information in the quantized representation and decompress it into
full spatial representations, leading to improved reconstruction fidelity and generation efficiency
compared to TiTok’s direct concatenation approach.

3.3 TWO-STAGE TRAINING STRATEGY WITH QUERY TOKEN OPTIMIZATION

Following TiTok’s approach, we recognize that training 1D VQ models presents significant chal-
lenges due to the sensitivity of the training process and the complexity of loss functions involved.
The multi-scale nature of our MsTok introduces additional complexity in balancing features from
different semantic levels. To address these challenges while leveraging our multi-scale architecture
effectively, we adopt a two-stage training paradigm similar to TiTok.

In the first stage, we follow TiTok’s proxy code strategy but adapt it for our multi-scale architecture.
Instead of directly regressing RGB values with complex loss functions, we train our model using
discrete codes generated by an off-the-shelf MaskGIT-VQGAN Chang et al. (2022) model as proxy
targets. During this stage, the ViT encoder is trained to extract meaningful multi-scale features
while the QAMe module processes these features to generate a compact 1D latent representation.
The decoder, including the QAMd module for mask token processing, is trained to reconstruct proxy
codes rather than RGB values. These generated proxy codes are then passed through the same off-
the-shelf VQGAN decoder to produce the final RGB image outputs.

The second stage introduces our another design: while TiTok only unfreezes the decoder, we addi-
tionally unfreeze the query tokens Q in the encoder’s QAMe module. This selective optimization
strategy allows the model to learn optimal query representations for extracting information from the
multi-scale feature memory without significantly increasing computational overhead. During this
stage, the learnable query tokens Q ∈ RK×D are optimized to extract the most informative and
reconstruction-friendly features from the multi-scale memory M. The decoder’s QAMd module
is jointly optimized to better utilize the learned query representations for high-fidelity reconstruc-
tion. The two-stage approach ensures stable training progression from proxy codes to end-to-end
optimization, while the selective unfreezing prevents destabilization of pre-learned features. The
optimized queries enable the decoder to receive more informative latent representations, leading to
improved reconstruction fidelity compared to fixed query approaches.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We conduct image reconstruction and class-conditional image generation experiments on
ImageNet-1K (Deng et al., 2009) at 256×256 resolution. Images are center-cropped and resized to

6
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Table 1: Comparison of generative models on the ImageNet-1K 256 × 256 benchmark. All FID
scores are calculated using the ADM evaluation script (Dhariwal & Nichol, 2021). †: model pre-
trained on OpenImages (Kuznetsova et al., 2020). ‡: model pretrained on external datasets including
OpenImages and LAION (Schuhmann et al., 2022). P, S, and T denote generator parameters, infer-
ence sampling steps, and throughput (samples/sec on A100 GPU), respectively.

tokenizer #tokens codebook size rFID↓ generator gFID↓ P↓ S↓ T↑
diffusion-based generative models

Taming-VQGAN† 1024 16384 1.14 LDM-8 7.76 258M 200 –
VAE† 4096×3 – 0.27 LDM-4 3.60 400M 250 0.4

VAE‡ 1024×4 – 0.62
UViT-L/2 3.40 287M 50 1.1
UViT-H/2 2.29 501M 50 0.6
DiT-XL/2 2.27 675M 250 0.6

transformer-based generative models
Taming-VQGAN 256 1024 7.94 Taming-Transformer 15.78 1.4B 256 7.5

RQ-VAE 256 16384 3.20 RQ-Transformer 8.71 1.4B 64 16.1
7.55 3.8B 9.7 –

MaskGIT-VQGAN 256 1024 2.28 MaskGIT-ViT 6.18 177M 8 50.5
ViT-VQGAN 1024 8192 1.28 VIM-Large 4.17 1.7B 1024 0.3
LlamaGen 256 16384 2.19 LlamaGen-L 3.80 343M 256 –
MAGVIT-v2 256 262144 1.16 MAGVIT 1.78 307M 256 –
OpenMAGVIT2 256 262144 1.17 OpenMAGVIT2-B 3.08 343M 256 –
One-D-Piece-B 256 4096 1.11 MaskGIT-ViT 2.70 177M 8 –
FlexTok 1-256 64000 1.45 LlamaGen 1.86 1.33B 32 34.5
TiTok-L-32 32 4096 2.21 MaskGIT-ViT 2.77 177M 8 101.6
TiTok-B-64 64 4096 1.70 MaskGIT-ViT 2.48 177M 8 89.8

TiTok-S-128 128 4096 1.71 MaskGIT-UViT-L 2.50 287M 8 53.3
1.97 64 7.8

MsTok-L-32 (ours) 32 4096 2.16 MaskGIT-ViT 2.65 177M 8 100.5
MsTok-B-64 (ours) 64 4096 1.65 MaskGIT-ViT 2.35 177M 8 88.7
MsTok-B-128 (ours) 128 4096 1.11 MaskGIT-UViT-L 1.87 287M 64 8.2
MsTok-B-256 (ours) 256 4096 0.86 MaskGIT-UViT-L 1.78 287M 64 4.1

256×256 and normalized following the preprocessing used by the proxy tokenizer (Chang et al.,
2022). Results are reported on the 50k validation set.

Tokenizer setup. All models are trained on 256×256 images. We use the open-source MaskGIT-
VQGAN (Chang et al., 2022) to provide discrete proxy codes during training. Following TiTok (Yu
et al., 2024a), both the tokenizer and de-tokenizer adopt a patch size of f=16, and the proxy code-
book has size N=1024 with code dimensionality 256. We primarily evaluate two standard model
capacities MsTok-B/L with approximately 95M, and 320M parameters in the encoder and decoder,
respectively. The number of query tokens K is set to 64 by default, with ablation studies exploring
values from 64 to 256. We extract features from 3/6, 6/12, 9/18, and 12/24-th layers of MsTok-B/L
for the multi-scale features construction.

Evaluation metrics. We evaluate using a broad set of measures spanning both reconstruction and
generation quality: reconstruction FID (rFID) and generation FID (gFID) (Heusel et al., 2017) on the
ImageNet dataset. We also report training and inference throughput to enable a direct comparison
of generative model efficiency as a function of latent size. In addition, because a 1D VQ tokenizer
naturally serves as a compact image compressor, we assess semantic retention via linear probing
under the MAE protocol (He et al., 2022). Complete details of the training and testing protocols
(e.g., hyperparameters and compute) are provided in Appendix B.

Implementation Details. Our tokenizer training protocol largely mirrors that of TiTok (Yu et al.,
2024a). We train on ImageNet for 1.5M steps using a batch size of 256 (equivalent to 300 epochs),
applying standard augmentations like random cropping and horizontal flipping. The AdamW opti-
mizer (Loshchilov & Hutter, 2017) is used with a 1e-4 learning rate and 1e-4 weight decay. The
learning rate schedule includes a warm-up period followed by cosine decay, and we clip gradients
at a threshold of 1.0. To stabilize training and enhance quality, we employ several techniques: an
Exponential Moving Average (EMA) with 0.999 decay is applied to the model weights, and all
reported results are from the EMA model. We also incorporate a discriminator loss (Esser et al.,
2021) and utilize proxy codes from MaskGIT (Chang et al., 2022). During the final 500k steps, we
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freeze the encoder and train only the decoder. For the downstream generation task, the generator’s
configuration is aligned with MaskGIT. It is trained for 500k steps with a batch size of 2048, using
the AdamW optimizer and a constant 1e-4 learning rate. Random horizontal flipping is the only data
augmentation used. An EMA with a 0.999 decay is also applied. During inference, we use either 8
or 64 sampling steps and employ classifier-free guidance to boost image quality.

4.2 MAIN RESULTS

Tokenizer Comparison. We first assess the multi-scale representational quality of MsTok on the
image reconstruction task. MsTok is compared against the original TiTok (used as our baseline)
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Figure 3: Scalability of MsTok. (a) Stage-2 train-
ing time vs. latent token count K for TiTok and
MsTok. (b) Sampling speed (images/s) of TiTok
and MsTok at generation time under different K.

and several state-of-the-art tokenizers. We re-
port the key rFID of each method, as sum-
marized in Table 1. Compared with baseline
TiTok, introducing multi-scale features leads to
superior reconstruction fidelity. In particular,
MsTok-B-64 and MsTok-L-32 obtain rFID of
1.65 and 2.16, respectively. Because MsTok de-
couples latent tokens from feature extraction, it
scales more gracefully with the number of to-
kens. Accordingly, we further evaluate lengths
128 and 256: MsTok-B-128 and MsTok-B-256
reach rFID 1.11 and 0.86 with substantially
smaller efficiency degradation than TiTok. Fig-
ure 3 further demonstrates the efficiency advan-
tage of our method over TiTok during tokenizer
pretraining. Compared to TiTok, whose train-
ing time grows rapidly as the latent length K in-
creases, MsTok maintains nearly constant pre-
training throughput across a wide range of K, demonstrating strong scalability with respect to the
latent token length.

Class-conditional image generation. The quality of the learned discrete tokens directly im-
pacts the performance of downstream generative models. We evaluate this by training a class-
conditional generator on the tokens produced by MsTok, with results summarized in Table 1.

Table 2: Linear probing results on
ImageNet-1K. We report top-1 classifica-
tion accuracy by training a linear classifier
on frozen latent tokens from different tok-
enizers.

Method L-32 B-64 B-128 B-256

TiTok 60.0 53.9 53.6 52.1
MsTok 61.7 57.3 56.4 54

Compared to the baseline TiTok, our method demon-
strates superior generation quality and efficiency.
Specifically, MsTok-L-32 and MsTok-B-64 achieve
gFID scores of 2.65 and 2.35, respectively, which rep-
resent improvements of 0.12 and 0.13 over their TiTok
counterparts while maintaining a considerable lead in
throughput. Furthermore, thanks to our design that de-
couples latent tokens from the feature extraction of
backbone, MsTok exhibits superior scalability when
increasing the number of latent tokens. For instance,
our MsTok-B-128 not only achieves a better gFID than
TiTok-S-128 (1.87 vs. 1.97) but also boasts a higher
throughput (8.2 vs. 7.8 samples/sec), fully validating
the excellent scalability of our approach. By further increasing the token count, MsTok-B-256
achieves a state-of-the-art gFID of 1.78, highlighting the effectiveness and scalability of our method.

Representation Quality. A high-quality tokenizer should not only enable faithful reconstruction
but also produce latent tokens that retain the core semantic content of the image. To assess this
“semantic retention,” we employ linear probing, a standard method for evaluating the quality of
learned representations. Following the protocol from MAE He et al. (2022), we freeze our pre-
trained MsTok encoder and use its output latent tokens as fixed feature representations for each
image in the ImageNet dataset. A single linear classification layer is then trained on top of these
frozen tokens to predict the image class. As shown in Table 2, MsTok achieves significantly higher
top-1 classification accuracy compared to the TiTok baseline. This result strongly indicates that our
latent tokens are not just compressed data points but are semantically meaningful representations.
The superior performance can be attributed to our core design: the multi-scale feature memory
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Table 3: Ablation studies on the ImageNet-1K benchmark. We analyze the impact of MsTok’s core
components, the number of feature scales, and different module designs for feature aggregation and
querying. The final settings are labeled in gray.

(a) MsTok configuration. Results
reported in an cumulative manner.

Method rFID↓ IS↑
Baseline (TiTok) 1.70 194.0
+ Decoupled Querying 1.73 196.7
+ Unfreeze Query Tokens 1.71 197.7
+ Multi-Scale Features 1.66 201.8
+ Scale Embeddings 1.65 202.9

(b) Effect of number of feature
scales used for memory.

Feature Levels rFID↓ IS↑
1 1.71 197.7
2 1.68 199.0
3 1.65 202.9
4 1.65 203.3

(c) Feature aggregation and query-
ing module selection.

Module Configuration rFID↓ IS↑

WeightedAdd + Linear 1.80 187.1
Concat + Linear 1.78 185.2
WeightedAdd + XAttn 1.68 198.6
Concat + XAttn 1.65 202.9

allows the model to capture a richer hierarchy of visual concepts, while the decoupled querying
mechanism enables the model to distill this information more effectively into the final compact
tokens. This demonstrates that MsTok produces a more structured and semantically aware latent
space, making it highly suitable for downstream understanding tasks in addition to generation.

4.3 ABLATION STUDIES

We conduct comprehensive ablation studies to validate our design choices in Table 3.

Impact of Core Components. Table 3a shows the cumulative impact of each core component of
MsTok. Starting from the TiTok baseline (rFID 1.70), we incrementally add our proposed modules.
Decoupling the querying mechanism and unfreezing the query tokens slightly degrades the rFID to
1.71, suggesting that without access to richer features, the decoupled design alone is insufficient.
However, the introduction of multi-scale features significantly improves performance, lowering the
rFID to 1.66. Finally, adding learnable scale embeddings, which help the model distinguish between
hierarchical features, provides the last boost, reaching our final rFID of 1.65. This step-by-step
analysis demonstrates that our performance gains are a result of the synergistic combination of all
proposed components, with multi-scale feature integration being the most critical factor.

Effect of Multi-Scale Feature Levels. We investigate how the number of feature levels used to
construct the memory affects reconstruction quality in Table 3b. A single-scale model (equivalent to
a decoupled TiTok) yields a rFID of 1.71. Performance steadily improves as we increase the number
of feature levels to 2 (rFID 1.68) and 3 (rFID 1.65). Increasing the number of levels to 4 results
in similar performance, indicating that the benefits begin to saturate. However, since the Inception
Score (IS) continues to improve, we select 4 levels as our default configuration.

Feature Aggregation and Querying Design. Table 3c validates our architectural choices for feature
aggregation and querying. We compare two aggregation methods (WeightedAdd vs. Concat) and
two querying mechanisms (Linear vs. Cross-Attention). The results show that the querying mech-
anism is the dominant factor. Models using a simple linear projection perform poorly (rFID 1.80
and 1.78), regardless of the aggregation method. In contrast, employing cross-attention (XAttn)
for querying yields a substantial performance boost (rFID 1.68 and 1.65). Between the aggrega-
tion methods, simple concatenation slightly outperforms weighted addition when paired with cross-
attention. Our final design, combining feature concatenation with cross-attention, achieves the best
performance (rFID 1.65), confirming the effectiveness of our chosen modules.

5 CONCLUSION

We presented MsTok, a 1D discrete image tokenizer that couples a hierarchical multi-scale feature
memory with a decoupled query-based latent formation mechanism. By aggregating intermediate
ViT layers into a scale-aware memory and deferring latent extraction to a lightweight cross-attention
readout, MsTok alleviates the representation bottleneck of single-scale designs while converting la-
tent scaling cost from quadratic to linear. A symmetric query module in decoding and a two-stage
schedule with selective query optimization further improve reconstruction fidelity and semantic re-
tention. Experiments on ImageNet-1K show consistent gains in rFID, gFID, linear probing accuracy,
and demonstrate graceful scaling as latent length increases.
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Reproducibility Statement. The core MsTok source code is included in the supplementary mate-
rials. All hyper-parameters for training tokenizer and generator are specified in the main paper and
Appendix B. Together these resources enable faithful reproduction of our results.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS(LLMS)

We acknowledge the use of large language models (LLMs) as writing assistants only for gram-
maticaand style. LLMs are not employed in the core research methodology, experimental design,
dataanalysis, or generation of research findings presented in this paper. All textual content has
beerrigorously reviewed and verified by the authors to ensure accuracy and authenticity of the re-
searchcontributions.

B EXPERIMENTAL DETAILS

Tokenizer and Generator Training. In our experiments, we mostly follow the TiTok settings (Yu
et al., 2024a) as detailed in Table 4 for both model architecture and training configurations: All
models are trained on ImageNet-1K at 256 × 256. We adopt MaskGIT-VQGAN (Chang et al.,
2022) proxy codes (codebook size N=1024, code dim 256) following TiTok (Yu et al., 2024a).
Tokenizer and de-tokenizer use patch size f=16. We evaluate two capacities (MsTok-B / MsTok-
L) with roughly 95M / 320M encoder+decoder parameters. The number of latent tokens is
K ∈ {64, 128, 256}. For multi-scale memory, we extract normalized intermediate layer features
from layers {3,6,9,12} (B) and {6,12,18,24} (L), forming 4 scales with learnable scale embeddings.
Tokenizer training runs 1.5M steps (300 epochs) with batch size 256, AdamW (lr=1e−4, weight
decay=1e−4), linear warm-up then cosine decay, gradient clipping at 1.0, and EMA (decay 0.999)
whose weights are used for reporting. Standard data augmentation: random resized crop + horizon-
tal flip. A discriminator loss (Esser et al., 2021) is included. The first 1M steps follow the stage 1
training. During the final 500k steps, the encoder is frozen and only the decoder and latent tokens
are updated. For downstream class-conditional generation we use the MaskGIT generator config-
uration: 500k steps, batch size 2048, AdamW with constant lr=1e−4, horizontal flip only, EMA
0.999. Inference uses 8 or 64 sampling steps with classifier-free guidance.

Linear Probing Hyperparameters. In our experiments, we follow the MAE settings (He et al.,
2022) as detailed in Table 4: For linear probing we freeze the entire tokenizer (ViT encoder +
multi-scale memory + query cross-attention) and extract the continuous query outputs before vector
quantization (default K={32, 64, 128, 256}). Unless stated, we mean-pool the K latent vectors
after LayerNorm to obtain a single 1×D representation. A linear classifier is trained upon the
representation on ImageNet-1K train split for 90 epochs using LARS optimizer, with 10 warmup
epochs, batch size 16384 and label smoothing 0, weight decay 0. Initial learning rate follows the
MAE scaling rule: lr = 0.1 × batch/256. We use cosine decay for lr schedule. Weight decay
1× 10−4, no gradient clipping. A batchNorm layer is added before the linear head. We allpy simple
RandomResizedCrop as the data augmentation.
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Table 4: Hyperparameters for tokenizer MsTok (left) and generator MaskGIT (right). These hyper-
parameters almost follow TiTok settings.

(a) MsTok hyperparameters.

Item Value

Model
Codebook Size 4,096
Token Size 12
Model Size ViT base / large
Patch Size 16
Latent Tokens 64,128,256 / 32
Layer Selection {3,6,9,12}/{6,12,18,24}
Feature Levels 4

Training
Stage1 Epochs 200
Stage2 Epochs 100
Stage1 Batch Size 256
Stage2 Batch Size 256
Dataset ImageNet-1K
Augmentation Rand. Crop / Flip

Losses
Stage1 Pretrained MaskGIT tokenizer
Target Codebook Size 1024
Recon Weight 1.0
Quantizer Weight 1.0
Stage2 Disc. Weight 0.01
Perceptual Model ConvNeXT-S
Perceptual Weight 0.1
Commit Weight 0.25
Codebook Loss W. 1.0

Optimizer
Optimizer AdamW
LR 1× 10−4

Beta1 / Beta2 0.9 / 0.99
Weight Decay 1× 10−4

Epsilon 1× 10−8

Scheduler
Type Cosine
Warmup Steps 10,000
End LR 1× 10−5

(b) MaskGIT hyperparameters.

Item Value

Model
Architecture MaskGIT-ViT / UViT-L
Hidden Dim 768 / 1024
Hidden Layers 24 / 20
Attn Heads 16 / 16
Dropout 0.1
Class Label Drop 0.1
Class Count 1000
Latent Tokens 256

Training
Epochs 800
Batch Size 2048
Dataset ImageNet-1K
Augmentation Random Flip

Losses
Loss CrossEntropy
Label Smoothing 0.1
Unmasked Token Loss 0.1

Optimizer
Optimizer AdamW
Learning Rate 2× 10−4

Beta1 / Beta2 0.9 / 0.96
Weight Decay 0.03

Scheduler
Type Cosine
Warmup Steps 10,000
End LR 1× 10−5

C VISUALIZATION

We provide the visulization of generated images from our MsTok with MaskGIT (Chang et al., 2022)
across random ImageNet classes in Figure 5 and with some specific ImageNet class.

D LIMITATIONS

Our work now rely on fixed layer selection and manual token count. Our future work may explore
adaptive scale weighting, dynamic latent allocation, and extension to video or multimodal genera-
tion.
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Table 5: Hyperparameters for linear probing evaluation. These hyperparameters fully follow MAE
settings.

Item Value

optimizer LARS (You et al., 2017)
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Figure 4: Visualization of generated images from MsTok-B-256 with MaskGIT (Chang et al., 2022)
across random ImageNet classes.
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Figure 5: Visualization of generated images from MsTok-B-64, MsTok-B-128 and MsTok-B-256
with MaskGIT (Chang et al., 2022) with specific ImageNet classes.
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