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Abstract

LLMs’ remarkable ability to tackle a wide range of language tasks opened
new opportunities for collaborative human-Al problem solving. LLMs
can amplify human capabilities by applying their intuitions and reasoning
strategies at scale. We explore whether human guides can be simulated,
by generalizing from human demonstrations of guiding an Al system to
solve complex language problems. We introduce CoLa, a novel self-guided
learning paradigm for training automated guides and evaluate it on two
QA datasets, a puzzle-solving task, and a constrained text generation task.
Our empirical results show that CoLa consistently outperforms competitive
approaches across all domains. Moreover, a small-sized trained guide
outperforms a strong model like GPT-4 when acting as a guide. We compare
the strategies employed by humans and automated guides by conducting a
human study on a QA dataset. We show that automated guides outperform
humans by adapting their strategies to reasoners’ capabilities and conduct
qualitative analyses highlighting distinct differences in guiding strategies.

1 Introduction

The remarkable ability of Large Language Models (LLMs) to tackle a wide range of text
analysis and generation tasks without dedicated task-specific training data (Brown et al.,
2020; Raffel et al., 2020; Zhang et al., 2022; Kojima et al., 2022; Yu et al., 2022; Wei et al., 2022;
Wang et al., 2022) had a paradigm-changing impact on NLP. Their ability to adapt to new
tasks on the fly, react to human feedback, and provide explanations for their decisions has
opened the door to more natural interactions between human users and Al systems, in
which the two parties can collaborate on complex multi-step tasks, such as supporting social
dialogues, collaborative writing, puzzle solving (Lee et al., 2022a;b), data annotation (Kim
et al., 2024), and concepts discovery (Viswanathan et al., 2024; Pujari & Goldwasser, 2025).
Recent work in both the NLP and HCI communities explored these settings, investigating
how to guide and evaluate the collaboration (Amershi et al., 2019; Lee et al., 2022b; Pacheco
et al., 2023; Sharma et al., 2023; Collins et al., 2024b).

Given the promise of successful task collaboration between LLM and humans, a natural
question is can LLMSs simulate the role of humans in these interactions? The motivation for
investigating this question is two-fold. First, it can equip NLP systems for complex multi-
step tasks by capturing the high-level considerations and strategies employed by humans
when decomposing such tasks. Second, simulating humans in these interactions can reduce
the human effort needed for studying them, by investigating which strategies are effective
and how to adapt them to the reasoning capabilities of different LLM partners.

To study this question, we focus on a specific interaction style common in a wide range
of collaborative tasks, in which the role of the LLM is a Reasoner making local inferences
about the problem, in response to questions and directives from a real or simulated human
Guide. The assumption is that neither side knows the correct or optimal response; instead
the Guide helps the reasoner identify salient aspects of the input problem through multiple
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steps of interactions, with the goal of connecting these intermediate steps to the correct or
optimal solution. We present an example in the Fig. 1, where collaboration leads to a more
creative sentence.

We study this Reasoner-Guide collaboration setting in four tasks, each presenting different
challenges. Two question-answering tasks focusing on common-sense (Talmor et al., 2021)
and social situations (Sap et al., 2019), where human Guides’ intuition for reaching the correct
answer is used to lead the Reasoner. A word-puzzle problem, NYT connections (Loredo Lopez
et al., 2025), challenging for both LLMs and humans, where the Guide helps structure the
solution search process and constrained text generation (Lin et al., 2020), where the Guide
enriches the generated text while following the constraints.

From a technical perspective, our goal is to learn how to mimic human interaction strategies
with the Reasoner model and potentially even improve on these interaction strategies
by incorporating domain feedback. We describe our three-step training process in Fig. 2,
beginning with recording human interaction with the Reasoner model to identify repeating
strategies humans employ when approaching these tasks. We use that seed set to create
a larger collection of simulated interactions with few-shot prompting using a powerful
LLM, GPT-4 OpenAl (2024), on new problem instances. We refer to interaction sequences
generated by this approach, that does not include any training, as COLA-PROMPT. We apply
COLA-PROMPT to a fraction of the training data, filter out incorrect interactions and train a
simulated Guide over the surviving interactions using supervised fine-tuning (SFT). Unlike
CoLA-PrROMPT which uses a powerful LLM, the trained Guide (denoted COLA-SFT) uses a
small Language Model (LM), Llama-3B (Meta Al, 2024). Finally, we investigate adapting our
simulated Guide to the collaborative task, but instead of memorizing scripted interaction
as in COLA-SFT, our next model COLA-RL explores new interaction strategies with the
Reasoner, and rewards those leading to better task performance. We study a natural scenario
for human interactions, where Guides can improve their strategies even without labels by
observing the quality of the Reasoner’s responses. We train a reward model (Llama-1B) to
predict quality of the interactions, as the Critique and use the PPO RL algorithm (Schulman
et al., 2017) to tune the policy of the Guide model. Given the possibility of multiple strategies
to collaborate, we propose our next model COLA-RL ENS, by generating multiple beams of
interactions between the Guide and Reasoner models and using a novel ensemble-based
approach to obtain self-supervision, improving both the Guide and Critique models.

Our experiments show significant task performance improvements in all the tasks when
using the COLA framework, using self-supervision performance is improved even further.
We show that training a small LM model to act as a Guide, significantly outperforms state-
of-the-art LLMs when prompted to act as a Guide. We explored using both a powerful
LLM (GPT-4) and a small LM (Llama-3B) as the base Reasoner model, and showed that
COLA can help boost the Reasoner’s performance in both the cases, highlighted as Step 4 in
Fig. 2. We conducted an analysis to investigate the role of the Critique when fine-tuned in
COLA-RL ENS develops a better ability to predict the effectiveness of a strategy. We also
conducted a qualitative study, comparing the strategies employed by human and several
different automated Guides. We compared the usage frequency of different strategies and
approximated their effectiveness by measuring the proportion of interactions leading to
correct and incorrect outcomes. The results show that humans employ a wider range
of strategies compared to simulated Guides, however the most common-strategies are
generally similar for human and automated Guides. The same strategies, when employed
by humans are more effective compared to COLA-PROMPT, but comparable with COLA-RL.

2 Related Work

Human Interaction We draw our inspiration from Human Machine collaboration (Collins
et al., 2024a; Lee et al., 2022a;b; Collins et al., 2023; Ippolito et al., 2022; Fan et al., 2019), such
that humans interact with machine (language models in our settings), with the objective of
collaboration for solving a task. However, the key challenge is effectively scaling human
interactions, as obtaining human input is expensive. Furthermore, Lee et al. (2022b) notes
that using human interaction can also degrade the task performance. We design CoLa by
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building on only handful human interaction examples and effectively scaling them by
designing training objectives which model successful collaboration, on a wide range of tasks.

Prompting Prior works (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022; Zhang
et al,, 2022; Yu et al., 2022; Ouyang et al., 2022) have demonstrated impressive capability
of LLMs to reason through prompting. However, their nature of prompt sensitivity (Gao
et al., 2021; Zhao et al., 2021) and their reasoning ability dependent on model’s size (Wei
et al., 2022; Yu et al., 2024), have motivated works to explore prompt engineering (Ye et al.,
2024; Li et al., 2023) and knowledge transferring from larger LMs to smaller LMs (Shwartz
et al., 2020; Liu et al., 2022). But these approaches when modeling the problem as a single
step prompting to generate the task solution in one go, could fail on problems requiring
multiple steps of reasoning or continuous refinement to generate an optimal solution. We
discuss some works which tackle these two challenges and compare our CoLa framework.

Problem Decomposition Some of the works address the first challenge by decomposing
the problem into multiple steps followed by solving each step iteratively to derive the
solution (Zhou et al., 2023; Dua et al., 2022; Wang et al., 2023; Yao et al., 2023a;b), mostly
using a single LLM as a module to decompose and solve. Other works use multiple modules
to separate the decomposer and solver (Yin et al., 2024; Xu et al., 2023; Creswell et al.,,
2022). However, an error during any of these steps could lead into cascading errors. Our
work CoLa, provides the flexibility of problem decomposition through interaction where
the Guide helps by simplifying the problem for the Reasoner and our training paradigm
helps to adapt the Guide based on the Reasoner’s problem solving capability and even
refine or correct intermediate mistakes through interaction. Furthermore, CoLa supports
interactive collaboration between agents — Guide and Reasoner through dialogue acts not
plans, drawing this design inspiration from human-machine collaboration.

Iterative Refinement The second line of works addresses the challenge of iteratively
refining the LLM’s response by either using the same LLM to self-correct or multiple agents
to refine the solution (Madaan et al., 2023; Akyurek et al., 2023; Du et al., 2023). However,
this ability of correction is absent in smaller LMs (Yu et al., 2024). Our framework CoLa
refines the LLM’s response and pushes task performance for both powerful as well as
smaller LM, without touching its parameters.

3 ColLa Overview

We introduce CoLa, an interactive framework for Collaborating with Large LMs, by simulat-
ing human interaction. CoLa interactively solves a problem through collaboration between
two agents - Guide and Reasoner. The key idea is to simulate Human to collaborate with an
LLM. We model collaboration as multiple steps of interactions between Human and LLM,
where each interaction is a dialogue exchange between these agents, consisting of text in
natural language. The objective of collaboration is to employ a desired strategy to guide the
LLM to successfully solve a given problem. We define the role of LLM as a Reasoner and
focus on learning a Guide as a proxy for Human.

We map the sequence of interactions as a conversation between the Guide and Reasoner.
Essentially the Guide and Reasoner collaborate through a series of dialogues in natural
language to form a conversation. We represent a conversation as g1,71, 82,2, ..., §, ', such
that the Guide starts the conversation by generating the first dialogue (g1) which contains
the information about the input problem and the immediate next step for the Reasoner. The
Reasoner responds by generating the second dialogue (r;). This process is continued until a
maximum number of steps (2t,¢ > 1), such that r; corresponds to the problem’s solution.
Fig. 1 shows an example of a conversation between the Guide and Reasoner for a contained
text generation problem.

We assume the Reasoner is a frozen parameters LLM (we evaluate different choices for
the base Reasoner) and focus on learning how to provide guidance to it. The first three
steps in the Fig. 2 describe the high-level stages of our training protocol. Simply put, the
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User: Use all 5 words, 'cook!, 'grill, 'meat’, 'shirt, 'wear’, to generate a natural occurring sentence. Be creative but be brief,
natural, and coherent.

Assistant: | decided to wear my favorite shirt while | cook and grill some delicious meat for dinner.

Figure 1: Comparing instruction prompting (upper) and CoLa (lower) on CommonGen. CoLa uses
Llama Guide trained using RL (COLA-RL) and GPT4 Reasoner

pipeline begins with collecting human demonstrations for our four tasks (Sec. 3.1), next we
automatically create high quality interaction data using human demonstration by prompting
GPT-4 and filtering interactions that lead to incorrect decisions (Sec. 3.2). Next, we train the
Guide on this data, initially using direct fine-tuning and then using RL over unlabeled data
(Sec. 3.3). We provide details in the following sub-sections for different versions of the CoLa
framework.
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Seed: Design and Record Scale: Use seed set to Supervision: use expanded Evaluate: demonstrate real
Human Guidance Simulate Human Guidance set to train automated guide world utility by boosting
Interactions with Reasoner Interactions with Reasoner and generalize to new instances performance and investigate
using learned reward similarity to human guidance

Figure 2: CoLa framework stages. (1) Generate seed by collecting Human-GPT-4 interactions,
(2) generate interaction training data using the seed demonstrations (3) train Guide and
Critique models using SFT, and use trained Critique model for RL training on unlabeled
instances.(4) Evaluate CoLa variants and compare to human strategies.

3.1 Interacting

We sample a handful number of examples for each domain (< 10) and ask a human to
interact with GPT-4! to solve each problem. We share the annotation instructions and

'We use OpenAlI GPT Playground


https://platform.openai.com/playground/
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the complete process of sampling the selected examples in Appendix A.1. The human
collaborator is unaware of the true solution of these problems, making this process as a
true reflection of our objective. This interaction step results into forming a small seed set of
conversations.

3.2 Expanding

We sample a small portion of examples from the training set for each domain, statistics in
Tab. 4. We use GPT-4 as a simulated Guide to interact with the Reasoner. We use the seed
set of conversations (Sec. 3.1), as few-shot exemplars to instruct prompt (Ouyang et al.,
2022) GPT-4 as a Guide. We use the same set of exemplars to prompt the Reasoner. We
provide all these prompts in App. A.2. We refer to this design as COLA-PROMPT which
doesn’t fine-tune any language model but relies on in context learning (Brown et al., 2020).

3.3 Learning

SFT Design We start with a pre-trained language model Llama-3B (Meta Al, 2024) as a
starting point of the Guide model. We process the generated conversations and filter into
successful and unsuccessful categories. A conversation is successful if it leads to the correct
solution, more specifically r; matches to the ground truth label of the example or satisfies all
the constraints in the case of the constrained text generation task.

We then create the training set for the Guide, by selecting each successful conversation and
unfolding it into tuples of generated dialogues. For eg, a conversation g1,71, ..., g, t+ will
result into ¢ training examples {(g1), (£1,71;82), -+ ($1,71, - 71—1;8t) }*-

We use decoder-only model and use supervised fine-tuning (SFT) to train on the target
dialogues. We refer to this model as COLA-SFT.

RL Design We explore learning without an access to the ground truth label. We draw
inspiration from Reinforcement Learning (RL) (Sutton & Barto, 2018) treating the Guide’s
parameters as a tunable policy to generate a dialogue as an action (g;), based on the context
as the state (31,71, ...,7;—1). We compute the reward of each action by training a reward
preference model - Critique. The role of the Critique is to measure the likelihood of an
interaction leading to the successful collaboration.

Similar to the SFT stage, we process the generated conversations to prepare
the training set for the Critique model in the following way. We unfold all
the conversations (successful and unsuccessful) into tuples of f training examples,
{(g1;51), (1,71,82:52), - (£1,71,82, -+ T, §t; S¢) }, where s; is the label representing success-
ful or unsuccessful in natural language text. If a conversation is successful then each s; is
successful and vice versa. Similar to SFT we fine-tune the Critique to train on these labels.
Using the Critique generation, we define the reward function for a given interaction
(1,71, .-, 7i—1, i) as an integer value, w;:

_ [+1, ifs; = successful 1)
" |-1, otherwise

We use this value to train the Guide using the PPO algorithm (Schulman et al., 2017). We
refer to this model as COLA-RL.

Ensemble Design We further explore improving the Critique model to continue improving
the interaction process. We design this iterative improvement loop using the technique of
ensemble. We draw the inspiration from the EM (expectation-maximization) algorithm,
such that in the E-step we generate multiple beams of conversations between the Guide
and Reasoner, and score each conversation based on the reward generated by the Critique
model, to compute the expected posterior label using the reward score as the weighted
ensemble. Whereas, in the M-step we use the previously generated conversations to update
the parameters of the Critique model, based on the reward score of the conversations.

2We always initialize the Guide’s input with the problem description which we omit in the notation
for compactness.
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During the start of the conversation we prompt the Reasoner to generate top-K responses.
Each response is then provided to the Guide and the interactions are run in-parallel, creating
K conversations thereafter. For a kth beam of conversation, we compute the reward for each
dialogue generated by the Guide and perform the PPO update step.

We also update the Critique model by fine-tuning on the generated interactions. In order to
construct the training set labels for Critique we use weighted ensemble to estimate (E-step)
the input’s label as a proxy for the ground truth label.

We define the weight as the average reward value for the entire conversation, @*:

k
of = S= @)

kh conversation, and wf‘ is computed

using Eq. 1. The intuition is that if " is close to 1 then then almost all the Guide interactions
for the kth beam will lead to the successful collaboration.
We extract the input label for a conversation, y* from r¥ (Reasoner’s last response) where y

maps to the label choice of the task, eg, y would be an option for the question answering
task. Now we estimate the final label using arg max over weighted voting of each beam, y:

where t¥ is the number of Guide interactions for the

Yy = arg max Z zbkyk 3)
Y k

Now that we have the estimate of the input label we compare each beam’s label, y/* against y

to determine if the k' conversation is successful or unsuccessful. This allows us to construct
the training examples for the Critique (si.‘) and update the parameters by performing SFT
(M-step). The rationale is that by generating K-fold conversations for each problem, results
in multiple rationales as solutions to the original problem, providing a rich training data for
the Critique model. This yields a better reward signal for the Guide model for the RL step,
such that both the models could improve through this iterative process.

4 Experimental Evaluation

4.1 Setup

Tasks We benchmark on four domains - two question-answering (QA) tasks, So-
ciallQA (Sap et al.,, 2019) and CSQA2 (Talmor et al., 2021), a puzzle task, NYT Connections
(Loredo Lopez et al., 2025), and a constrained text generation task, CommonGen (Lin et al.,
2020). We provide the dataset statistics in Tab. 4.

Baselines We compare CoLa against chain-of-thought style prompting approaches such
as zero-CoT (Kojima et al., 2022) and CoT (Wei et al., 2022) for the QA domains, and
instruction prompting (instruct) (Ouyang et al., 2022) for Connections and CommonGen.
We also compare CoLa against Self-Refine (refine) (Madaan et al., 2023), where the language
model has the ability to self-critique and improve its generation iteratively, and Multi Agent
Debate (MAD) (Du et al., 2023), where multiple-agents engage in debate discussion to refine
each others responses to arrive at a consensus.

For a fair comparison we use the same number of steps for refine and number of debate
rounds for MAD, as the maximum number of interaction steps for CoLa for each domain,
statistics Tab. 4. We use two agents for the MAD framework for a fair comparison against
our setup of two models - Guide and Reasoner. For MAD, we use the Agent 1’s response as
the final response.

We also compare CoLa against fully-supervised (sup) approach in which a model as the
same size as the Guide model (Llama-3B) is trained with the same amount of labeled used
to train COLA-SFT.

Model Choices We benchmark two pre-trained language models - GPT-4-0-mini (GPT)
(OpenAl, 2024) and Llama 3.2 3B instruct-chat (Llama) (Meta Al, 2024) as our choice for the
Reasoner models. Similarly we choose GPT and Llama 3.2 3B instruct-chat (Llama) as our
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Guide models, where learning is performed for the Llama Guide model. We use Llama 3.2
1B instruct-chat as our Critique model. We only evaluate COLA-RL ENS for the QA domains,
as the other domains have a larger space of label choices, leaving it as a future work.

Implementation We implemented all the learning algorithms using TRL (von Werra et al.,
2020) in Huggingface (Wolf et al., 2020). We use temperature (Holtzman et al., 2020) for
Guide as 0.2 and for Reasoner as 0.1 for all our generations. For COLA-RL ENS, we use
K = 5and K = 3 as the top-K for SociallQA and CSQAZ2 respectively.

Evaluation For the QA and Connections tasks, we evaluate the LLM’s response against
the ground truth label of the input examples. For each system we prompt the underlying
Reasoning LLM to generate the final answer based on it’s reasoning or final reasoning step
(for CoLa, MAD, and refine), similar to (Kojima et al., 2022). For the QA tasks, we compare
the final answer against the ground truth option choice and compute the average percent of
accuracy across the test split (Acc, ideal value: 100).

For Connections the final response contains groupings of the puzzle words, and we use the
following 3 metrics:

1. Acc: measures the full correctness of each puzzle’s solution and we compute the
average percent across the test split (ideal value: 100).

2. G-Acc: measures the number of groups (out of 4) correctly discovered (entirely)
and we report the average across the test split (ideal value: 4).

3. Purity: measures how many words in each group are correctly clustered, we com-
pute the percent value for each puzzle and average across the entire test split (ideal
value: 100). Note that a completely randomized solution will always have a Purity
of at least 25%.

For CommonGen we have human written reference for the test split. We use GPT-4 as a
judge (Zheng et al., 2023) to compare the coherence and creativity of human reference vs
LLM generated sentences. We prompt GPT-4 to pick a winner (or tic). We report the Win+Tie
average percent across the test split (Acc, ideal value: 100). We also measure how many
words from the givent input set were used while generating the sentence as Coverage and
report the average percent.

4.2 Results

QA Results We show the results for the QA tasks in Tab. 1. We notice that COLA-
PROMPT performs competitive against the baselines except under-performs against MAD.
This overall shows the importance of multi-step interactions against prompting techniques.
Furthermore, stronger Guide and Reasoner contribute to higher performance. We notice
that when a stronger Reasoner is paired with a smaller Guide model (Llama ® GPT COLA-
PROMPT), it significantly hurts the performance. However, with training this completely
changes the result and the same Guide (after SFT) out-performs the strong Guide (when
prompted), Llama ® GPT COLA-SFT vs GPT @ GPT COLA-PROMPT. Additionally, COLA-
SFT outperforms all the baselines including MAD.

We also notice that a trained Guide (COLA-SFT) boosts performance for both a stronger Rea-
soner (GPT) as well as smaller Reasoner (Llama), interestingly benefiting smaller Reasoner
by a larger margin. We suspect this could be due to the reason that baseline performance on
these QA tasks is already high, therefore less room for improvement.

We also show for Llama Reasoner that COLA-SFT performs better than the fully-supervised
model, with the same amount of labeled data.

With RL, the performance continue to increase, COLA-RL ENS achieving the best results for
for GPT and LLama Reasoners, demonstrating an effective technique for interaction.

NYT Connections We show the results for the puzzle task in Tab. 2. The first observation
is the difficulty of the task showing state-of-the-art GPT-4 model struggling on the task
and Llama performing quite poorly. We notice that COLA-PROMPT out-performs all the



Published as a conference paper at COLM 2025

Model | SociallQA | CSQA2 Model | SociallQA | CSQA2
GPT (zero-CoT) 79.1 82.1 Llama (zero-CoT) 68.2 63.8
GPT (CoT) 79.8 80.8 Llama (CoT) 69.1 61.2
GPT (refine) 80.6 81.9 Llama (refine) 65.7 62.7
GPT (MAD) 82.0 83.4 Llama (MAD) 73.1 64.9
GPT ® GPT Llama ® Llama

COLA-PROMPT 80.4 82.0 COLA-PROMPT 71.0 62.1
Llama ® GPT Llama ® Llama

COLA-PROMPT 765 780 COLA-SFT 756 68.1
Llama ® GPT Llama ® Llama

COLA-SFT 83.1 84.6 COLA-RL 77.0 70.2
Llama ® GPT Llama ® Llama

COLA-RL 85.6 86.1 COLA-RL ENS 77.7 71.9
Llama ® GPT Llama (su 73.8 64.8
Col ARL ENS 86.8 88.3 (sup) [ l

Table 1: Evaluating on the QA tasks. CoLa framework for Guide ® Reasoner.

baselines, demonstrating the usefulness of step by step interaction for effective collaboration.
We observe that with SFT the performance is significantly improved for COLA-SFT models.
For GPT as a Reasoner, Llama @ GPT COLA-SFT out-performs GPT ® COLA-PROMPT,
which is a quite motivating result because Llama as an individual model (non-CoLa systems)
performs quite worse when compared against the performance of GPT, but post-training the
same model as a Guide out-performs GPT, demonstrating its capability to be a successful
collaborator as a Guide even in the domain where it struggles as an individual solver.
Furthermore, with a trained Guide, Llama even as a Reasoner out-performs the powerful
GPT as a Reasoner (Llama ® Llama COLA-SFT vs GPT ® GPT COLA-PROMPT), making
a point that even with a smaller LM a trained Guide can outperform a powerful system.
Additionally, Llama as a Reasoner as part of the COLA-PROMPT model, significantly out-
performs the fully supervised model, proving the usefulness of interaction as opposed to
only labeled data.

COLA-SFT boosts performance for both the Reasoners, but in this domain we observe that
it benefits the stronger Reasoner by a larger margin, proving stronger LLM more effective
for a complex domain when paired with a trained collaborator.

Finally we notice that COLA-RL further increase the performance, achieving the best results
for both the Reasoners and more than twice accurate as compared to the best baseline
(MAD).

CommonGen We show the results for the constrained text generation task in Tab. 2. We
observe that satisfying constraint is quite easy (Coverage), however, the challenge is to
generate a more creative and coherent sentence when compared against human reference.
We notice that COLA-PROMPT out-performs all the baselines except refine. Post training
COLA-SFT out-performs the refine model, the difference of improvement further increases
after RL phase COLA-RL. We notice that stronger Reasoner model GPT benefits more
through collaboration, which we suspect is due to the fact that output of smaller LMs is
more challenging to improve (Yu et al., 2024).

As a note when GPT is used as the prompting or Reasoning model we see the Win+Tie rate
over 50, meaning GPT generated sentences are ranked higher than human references, based
on the judge. We also manually compared generated sentences for few randomly sampled
examples to verify annotation agreement with GPT-4. We observe that this reason is due to
the prompt construction, as the LLM is asked to generate a creative sentence, which was not
the case when humans annotated this dataset (Lin et al., 2020).

4.3 Critique Analysis

Given the impressive performance of the CoLa models we perform an analysis of the role of
Critique. For the QA domains, we obtain the generated response of Llama (CoT), Llama ®



Published as a conference paper at COLM 2025

Model Connections CommonGen
Acc  G-Acc Purity || Win+Tie Coverage

GPT (instruct) 11.2 1.1 67.8 51.7 98.3
GPT (refine) 13.8 1.3 68.7 59.2 99.3
GPT (MAD) 15.1 1.4 70.1 53.7 98.6
GPT ® GPT COLA-PROMPT 15.7 1.4 71.4 54.1 98.7
Llama ® GPT COLA-PROMPT 10.8 1.0 62.9 46.4 98.1
Llama @ GPT COLA-SFT 27.0 25 87.6 60.1 99.8
Llama @ GPT COLA-RL 324 2.7 89.8 64.7 99.9
Llama (instruct) 4.7 0.6 49.3 224 90.6
Llama (refine) 5.8 0.7 54.6 27.1 95.8
Llama (MAD) 8.7 0.9 61.7 24.8 92.3
Llama ® Llama COLA-PROMPT | 7.1 0.8 59.8 243 92.7
Llama @ Llama COLA-SFT 18.1 1.8 72.8 29.6 97.2
Llama @ Llama COLA-RL 20.2 1.9 74.1 324 98.9
Llama (sup) 11.0 1.0 64.1 28.0 96.1

Table 2: Evaluation on NYT Connections (Acc, G-Acc, Purity) and CommonGen (Win+Tie,
Coverage) using CoLa framework for Guide ® Reasoner.

Llama COLA-PROMPT, and Llama ® Llama COLA-RL ENS, on the test set. We then apply a
Critique model to judge if the generated response is correct. We test three types of Critique
model - critique as a pre-trained Llama-1B, and our trained Critique models obtained post
SFT (SFT critique) and post RL ensemble (RL ens critique).

For the positive class i.e. the true answer choice of the test set examples, we measure the
ability of different critique models to predict if a response corresponds to the true labels or
not. We report the precision (P), recall (R), F scores on the positive class in Tab. 3.

We first observe that model producing better quality response COLA-RL ENS, mostly has
the highest F scores for any type of critique. This is a promising result because the critique
not trained on any CoLa conversation, is still able to judge the correctness through the
quality of the response. This also explains higher recall by trading precision, as the critique
mostly judges CoLa responses as correct.

Second as the Critique is fine-tuned on CoLa conversations, it develops a better ability to
judge the responses against the ground truth, with performance increasing for COLA-RL
ENS model.

Model + Critique SocialIQA CSQA2
P R FH P R[F

Llama + critique 0.91 [ 0.85 | 0.88 | 0.86 | 0.79 | 0.82
Llama @ Llama COLA-PROMPT + critique 077 | 094 | 0.85 | 0.76 | 0.94 | 0.84
Llama ® Llama COLA-RL ENS + critique 0.81 | 093 | 0.86 | 0.85 | 0.88 | 0.86
Llama @ Llama COLA-PROMPT + SFT critique 0.84 | 0.87 | 0.85 | 0.89 | 0.95 | 0.92
Llama ® Llama COLA-RL ENS + SFT critique 0.87 | 0.96 | 0.91 | 0.86 | 0.98 | 0.92
Llama ® Llama COLA-PROMPT + RL ens critique | 0.88 | 0.89 | 0.88 | 0.93 | 0.89 | 0.91
Llama ® Llama COLA-RL ENS + RL ens critique | 0.95 | 0.97 | 0.96 | 0.95 | 0.95 | 0.95

Table 3: Critique Success. CoLa - Guide ® Reasoner

5 Human Interaction

We conduct a study to understand how effective is our CoLa simulated Guide when com-
pared to actual human guides. Our primary goal is to observe the similarities and differences
between the interactions of a human vs a simulated human with an LLM. For this we pro-
pose an interactive experiment between Guide and Reasoner. We fix the Reasoner model
to Llama-3B, and the Guide could either be a human or CoLa Guide. We provide the
experiment details in A.3. We analyze the interactions of humans with the Reasoner model
and compare against the CoLa interactions.



Published as a conference paper at COLM 2025

Human ® Llama Llama ® Llama ColLa-Prompt Llama ® Llama ColLa-RL ens

5.1% (100:0%).
19.0%)(53.3%)

80.0%)

30.0% (80.6%)

46.0% (69.0%)

26.7% (68.8%)

Strategy
correcting step in a reasoning chain asking word sense disambiguation asking to enumerate all possible options
propagating reasoner's response leading to contradiction «  asking to focus only on i . ifying order of
asking the original question based on new context for i as i referencing to the option required to solve the problem
asking for justification of unsupported claim asking to compare options ©  metaphorical thinking
clarifying quantifier

Figure 3: CSQAZ2 Interactions Strategy Pie Chart

Human vs. CoLa: who is a better guide? We observe the quantitative results in Tab. 5.
The results positively demonstrate how training a Guide is more effective at guidance
when compared against humans. However, these QA tasks itself are not challenging for
humans, so we further investigate the interactions to discover the reason for humans not
out-performing the CoLa guides. We observe that humans mostly have an idea of the correct
answer, however, they interact using complex reasoning strategies on which the Reasoner
finds challenging to adapt. Whereas, the CoLa guides were specifically trained with the
Reasoner model, making the adaptation process easier.

Do Humans and CoLa guide differently? Our next experiment compares the fine grain
strategies employed by humans vs the CoLa guides. We select the CSQA2 task and qual-
itatively analyze the strategies. We sample few interactions and come up with a strategy
for each sampled interaction. We then use these as few-shot exemplars to generate the
remaining strategies for each interaction, by prompting GPT4-o-mini (OpenAl, 2024).

We show the distribution of these strategies for each Guide in Fig 3 and Tab 6 — with the
frequency of a strategy along with its correctness i.e. how often does a given interaction’s
strategy lead to the correct answer at the end of the conversation. We observe that hu-
mans employ a wide range of strategies following a long tail distribution, with most of the
common ones present across CoLa models as well. A common strategy shared by all the
Guides is correcting intermediate reasoning steps through the interactions (correcting step
in a reasoning chain). We show that COLA-PROMPT is ineffective by over-generalizing this
strategy, whereas COLA-RL ENS effectively employs this strategy, even better than humans.
A key observation is that a common strategy used by humans while guiding Reasoner for
QA is first providing some information and then asking the original question based on this
new information (asking the original question based on new context), is completely absent
in CoLa models. We believe this as a unique cognitive level understanding of the needs
of a problem and assessing when enough information is available to answer the question;
proposing this a motivation for future work to improve collaboration in automated systems.

6 Conclusion

Drawing inspiration from human machine collaboration we propose CoLa, a framework to
simulate human guidance for LLMs with the goal of solving a wide range of language tasks.
CoLa provides guidance to LLMs by generating dialogues and engaging in a multi-turn
conversation leading to the task solution. We discuss various training approaches to learn
to simulate the human guidance, and propose a novel self-supervision learning paradigm
based on Reinforcement Learning, which out-performs competitive baselines. We also
conduct a human analysis to study the differences between human guidance and CoLa
guidance, observing that humans employ wide range of guidance strategies, whereas CoLa
when trained can out-perform human guidance and perform some of the guidance strategies
better than humans.
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A Appendix

A.1 Seed Set Conversation Gneration

SociallIQA SociallQA is a Question Answering task, such that for a given Situation, the
reader has to answer a multiple-choice question using social commonsense. We observe that
some examples have answer choices which require nuanced social commonsense reasoning.
Therefore the objective for conducting human interaction is to guide the Reasoner model
why certain choice is more appropriate than the other choices. We want to have broad
representative examples as part of the few example seed set. Therefore, we first run the
Reasoner model on a train subset (around 100 examples) by prompting it in a zero-CoT
setting. In this way we collect examples which the Reasoner model answers correctly and
incorrectly, using the ground-truth labels. For the examples which the Reasoner model
failed to solve in the zero-CoT setting, we sample a small set (around 10) examples for the
human interaction process.

We start the interaction process by presenting the Reasoner model with the example and
prompting it in zero-CoT setting as part of the default initial Guide prompt (g;), and based
on the response (1), the Human acts as a Guide by proving a feedback (g2). If the Guide
believes that the reasoning and the answer in the initial attempt of the Reasoner model
is correct, then they provide a positive feedback and the interaction process terminates,
generating g1,71, 2 as a short conversation. However, if they feel that the reasoning or the
answer has some error then they provide a feedback (g2) with the objective of addressing
that error. The Reasoner takes the Guide feedback into account to re-generate the solution
(r2). Based on the new response, the Guide again provides a feedback (g3). This interaction
process continues until g; is a positive feedback or the conversation reaches a maximum
depth (t — gt).

During this entire collaboration process we collect interactive conversations between Human
acting as the Guide and GPT4m acting as the Reasoner. This generates conversations as
81,71, ..., 1t, ¢ such that ¢ > 1. We finally prompt the Reasoner to generate the answer choice
based on the conversation to produce g1,71, ..., tt, gt, '+. We then filter the conversations by
only keeping the ones which arrived to the final solution, by comparing r; with the ground
label.

Common Sense Question Answering (CSQA2) CSQA2 is a question answering task, such
that given a Question, the reader has to use commonsense to answer it in yes or no. Some of
the questions require retrieval, arithmetic operations, ordering between actions, etc. This nature
of problem might require complex reasoning skills, therefore the objective of collaboration
would be to provide feedback based on the skill(s) required to correctly answer a question.
We conduct the interaction process similar to the above SociallQA domain, to generate the
set of conversations.

Connections Connections is a word puzzle game featured in NYT. We crawl the puzzle
from this link and use the unlimited archive as our training set containing, 500 puzzles,
whereas select NYT featured puzzles from the dates: June-6-2024 to Nov-26-2024 to collect
321 puzzles as part of test.

Each puzzle contains 16 words and the task is to cluster all the words into 4 different
clusters, with each cluster containing unique 4 words. The clustering is performed based on
a common theme shared by a group of 4 words. A theme could be simple, for eg, words
sharing theme of “Lead Singers of "70s Rock Bands: Ferry, Mercury, Nicks, Plant” or as
abstract as words being “Palindrome”. We observe this is a challenging task for language
models, even for powerful models like GPT4m. We model this task as a clustering task
such that the Reasoner should attempt to step-by-step cluster words and the Guide should
provide hint(s) or feedback for each step such that all the words could be clustered correctly.
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To design the interaction process for this task on a given puzzle with random order of 16
words, the first two prompts are fixed. The first prompt (g1) asks the Reasoner to enumerate

all possible unique word pairs for the 16 words candidate, generating % = 120 word
pairs as the response (r1). The second prompt (g2) asks to find all the possible connections
between each pair.

Based on the last response of all the possible word connections (r2), Guide starts the interac-
tion process by providing hint(s) using the common themes to start clustering the words.
This is performed iteratively such that the Guide provides hint at each step (g;) with the
objective of producing correct clusters satisfying the puzzle requirements. Finally when
the Guide observes that the Reasoner has clustered all the words in a given response (r;_1),
they prompt the Reasoner with a fixed final question (g;). This ensures that the Reasoner
generates the puzzle solution (r;) which can be easily verified for correctness.

We collect a set of interactions and only select the conversations which produced the correct
final answer. We observe despite language models struggling on this complex task and
even humans facing challenge while solving this task, using this interaction process is quite
effective, meaning most of the collected conversations resulted into full correctness. So we
only select one conversation as an example for the collaboration process for this domain.
Furthermore the length of conversation for this domain is much longer than the length of
conversation for the other domains, therefore, we limit to selecting only one conversation
for Connections, to budget the computational cost.

CommonGen CommonGen is a constrained text generation task, such that given a set of
words one must generate a coherent sentence using all the words. This domain observes
that language models struggle to generate coherent sentences when compared against the
ability of humans to generate sentences. Therefore, the objective for collaboration in this
domain would be to ensure Reasoner generates coherent sentences satisfying the constraint
of utilizing all the words. Furthermore, we also focus on another objective of crafting these
sentences as creative while being coherent at the same time.

For this task, given an input example with the set of words, the Guide first interacts with
the Reasoner by asking for the scenarios where these words will naturally occur, with a
crafted prompt (g1) for the specific input. The Reasoner responds by suggesting the possible
scenarios (r2). The Guide then selects a specific scenario and also suggests creative additions
to the given scenario (g2). In this interactive process, the Reasoner finally comes with a
creative scenario (r;_1) utilizing the input words. The Guide finally asks (g¢) the Reasoner
to produce the final sentence (g;).

Data | SFT Train | RL Train | Test | Max Steps (1)
SociallQA 3k 8k standard test 3
CSQA2 2k 4k standard dev 3
NYT A.1 250 250 321 7
CommonGen 700 700 standard test 5

Table 4: Dataset details with training and evaluation splits.
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A.2 Prompts

SociallQA

Context: Sydney kept Lee apart from family after gaining custody through a long
divorce settlement.

Question: Why did Sydney do this?

A. Spite the family

B. Build a new life

C. Move on from the divorce

Let’s think step by step.

Assistant: To analyze why Sydney might have kept Lee apart from the family after
gaining custody, we can consider the motivations behind such a decision.

A. ”Spite the family” suggests that Sydney’s actions were driven by a negative desire
to hurt the family, which could be plausible given the contentious nature of divorce,
but it doesn’t necessarily imply a constructive outcome.

B. ”Build a new life” implies that Sydney wants to establish independence and create
a new environment for Lee. This can be a common motivation after a divorce, where
one seeks to redefine family structures and personal circumstances.

C. "Move on from the divorce” indicates that keeping Lee apart could be seen as a
step toward healing and creating closure, allowing both Sydney and Lee to transition
emotionally.

Considering the context of a long divorce settlement, it seems more likely that
Sydney’s actions are motivated by B or C rather than simply out of spite. However,
“building a new life” (B) seems to capture the proactive nature of creating a fresh
start. Given this reasoning, I would select B. build a new life.

User: But in order to build a new life isn’t the first step to move on?

Assistant: You bring up a good point. Moving on from the divorce is indeed an
essential first step in order to successfully build a new life. If Sydney is keeping
Lee apart to move on, it could be part of the process to eventually create that new
life. Therefore, considering your feedback, “move on from the divorce” (C) could be
interpreted as a foundational step leading to the ultimate goal of building a new life
(B). It emphasizes the emotional transition before tangible changes take place. With
this in mind, I would revise my choice to C. move on from the divorce.

User: What is the final answer A, B, or C? Provide the answer in

Answer. Eg,

AnswerA.

AnswerC

Context: Jordan wasted a day playing video games at home.

Question: What will Jordan want to do next?

A. Play more

B. Sleep

C. Eat

Let’s think step by step.

Assistant: Given that Jordan wasted a day playing video games, it’s likely that he
might want to continue that activity. Therefore, the most logical choice is: A. play
more.

User: But the context mentions he wasted the entire day so wouldn’t he now consider
resting given it might be night?

Assistant: That’s a valid point. If Jordan spent the whole day playing video games,
he might feel tired by the end of the day, which would lead him to want to rest.
This suggests that: B. sleep could indeed be the correct choice. Thank you for the
clarification!

User: What is the final answer A, B, or C? Provide the answer in

Answer. Eg,

AnswerA.

AnswerB
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CSQA2

Question: Egypt comes before causes alphabetically.

Let’s think step by step.

Assistant: To determine if “Egypt” comes before “causes” alphabetically, we compare
the first letters: 'E’ comes before ’c” in the alphabet. Therefore, "Egypt” does come
before “causes.” So the answer is yes.

User: But ‘¢’ comes before 'E” alphabetically.

Assistant: You are correct. 'C’ comes before “E’ in the alphabet. Therefore, “Egypt
does not come before “causes.” The answer is no.

User: What is the final answer yes or no? Provide the answer in \Answer{}. Eg,
\Answer{yes}.

Assistant: \ Answer{no}.

Question: Touch screens became part of Xerox’s commercially available products in
the 1980s.

Let’s think step by step.

Assistant: Yes, Xerox developed early touch screen technology in the 1970s, and by
the 1980s, they incorporated it into their products, making it commercially available.
User: Maybe Xerox developed early touch screen products but were they also first to
commercialize them?

Assistant: No, Xerox was not the first to commercialize touch screen technology,
although they developed it. Other companies, like IBM, also worked on touch screen
technology during that era and brought it to market.

User: What is the final answer yes or no? Provide the answer in \Answer{}. Eg,
\Answer{yes}.

Assistant: \ Answer{no}.

7
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CommonGen

You will be given a set of words and asked to generate a sentence using all the words.
You should generate a sentence that is coherent and natural.

A User will guide you step by step to form ideas to generate a natural sentence using
the given words. Once all the ideas are ready, the User will ask you to generate the
sentence. You should only then generate the sentence.

Only generate one sentence using all the words. Be creative but also make sure the
sentence is brief, coherent, and natural.

Example 1: Set: ‘desk’, ’keyboard’, "laptop’, ‘'monitor’, ‘'mouse’

User: Think of an underlying setting where these devices will naturally occur.
Assistant: A common setting where a desk, keyboard, laptop, monitor, and mouse
would naturally occur is a home office or a workspace. This environment typically
includes a work desk where a person uses a laptop connected to a monitor, with a
keyboard and mouse for input. Would you like to explore more ideas related to this
setting?

User: Ok, let’s focus on an office setting. Now be creative and generate the sentence
using all these 5 words.

Assistant: In the bustling office, I sat at my desk, typing away on the keyboard of
my laptop, while glancing at the monitor and using my mouse to navigate through
the endless streams of information.

Example 2: Set: ‘carrot’, ‘corn’, ‘meat’, ‘plate’, ‘potato’

User: Think of an event where these food items will be present.

Assistant: A family barbecue or picnic would be a great event where these food
items could be present.

User: How about Thanksgiving?

Assistant: Thanksgiving is an excellent choice! It often features a variety of dishes,
including roasted meats and side dishes like mashed potatoes, corn, and even carrot-
based dishes.

User: Ok, generate a sentence focusing on a Thanksgiving celebration with all these
5 food items.

Assistant: During the Thanksgiving celebration, the table was beautifully set with
a plate piled high with succulent meat, creamy mashed potatoes, sweet corn, and
glazed carrots, making it a feast to remember.

A.3 Human Analysis

We sample a few examples from the test split of the QA tasks, around 200 examples from
CSQAZ?2 and 50 examples from SociallQA, and ask humans to interact with LLama-3B in
a similar style as CoLa. We share the same instructions and guidelines as mentioned in
App A.1 and analyze their responses. Tab. 5 shows the performance of different interactive
systems when using different Guide with the same Reasoner model. We also compute the
average number of interaction rounds (Rounds), and relevance (Rel) of each interaction
by prompting GPT-4 with the contextualized conversation and ground truth label to ask if
the given Guide interaction is relevant or not. We observe that COLA-SFT and COLA-RL
ENS out-perform humans when acting as Guide, a positive result of learning to interact
effectively.

A.4 Limitations

CoLa is designed for solving any language based task, however we note the importance of
domain specific training to boost the task performance, over general purpose prompting
or multi-agent approaches. Although the Reasoner model is general purpose and not fine-
tuned, however, we require the Guide model to be trained in order to effectively pair with
the Reasoner model as a collaborative partner. Furthermore, the starting point for designing
the guidance steps is obtained through human interactions — forming the initial step for
interactive conversation templates, although we only require a handful of these human
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Model SocialIQA CSQA2

Acc [ Rounds [ Rel | Acc | Rounds | Rel
Llama (zero-CoT) 50.0 - - 271 - -
Human ® Llama 58.3 1.4 84.8 | 65.5 1.8 88.7

Llama ® Llama COLA-PROMPT | 69.1 1.5 87.4 | 49.2 1.5 76.2
GPT ® Llama COLA-PROMPT 69.7 1.5 88.6 | 64.7 1.5 84.9
Llama ® Llama COLA-SFT 70.0 15 92.6 | 68.9 15 90.4
Llama ® Llama COLA-RL ENS 75.0 1.4 949 | 71.0 1.4 91.6

Table 5: Human Analysis on QA domains. CoLa - Guide ® Reasoner.

Llama @ Llama Llama @ Llama

Strategy Human ® Llama | COLA-PROMPT COLA-RL ENS

Freq% Acc% | Freq% Acc% Freq% Acc%
correcting step in a reasoning chain 11.7 57.1 68.4 48.1 39.7 80.0
propagating reasoner’s response leading to contradiction | 30.0 80.6 19.0 53.3 46.0 69.0
asking the original question based on new context 26.7 68.8 - - - -
asking for justification of unsupported claim 7.5 77.8 13 100.0 32 0.0
clarifying quantifier 5.0 66.7 2.5 0.0 3.2 50.0
asking to focus only on question 0.8 100.0 2.5 50.0 4.8 100.0
asking word sense disambiguation 1.7 50.0 5.1 100.0 - -
clarifying order of sequence 2.5 66.7 1.3 100.0 1.6 100.0
asking to enumerate all possible options 42 80.0 - - - -
asking to compare options 4.2 100.0 - - - -
formulating statement as question 42 60.0 - - - -
referencing to the option required to solve the problem 0.8 100.0 - - 1.6 100.0
metaphorical thinking 0.8 100.0 - - - -
Total Interactions 120 79 63

Table 6: Strategy distribution for different Guides on CSQA2 Human Analysis

interaction examples. Reflecting on these limitations we think it would be an interesting
future work to design general purpose guides, which can be paired with any LLM as the
collaborative partner, without additional supervision.
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