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Abstract—As robot deployments become more commonplace, 
people are likely to take on the role of supervising robots (i.e., 
correcting their mistakes) rather than directly teaching them. 
Prior works on Learning from Corrections (LfC) have relied on 
three key assumptions to interpret human feedback: (1) people 
correct the robot only when there is significant task objective 
divergence; (2) people can accurately predict if a correction 
is necessary; and (3) people trade off precision and physical 
effort when giving corrections. In this work, we study how two 
key factors (robot competency and motion legibility) affect how 
people provide correction feedback and their implications on 
these existing assumptions. We conduct a user study (N = 60) 
under an LfC setting where participants supervise and correct 
a robot performing pick-and-place tasks. We find that people 
are more sensitive to suboptimal behavior by a highly competent 
robot compared to an incompetent robot when the motions are 
legible (p = 0.0015) and predictable (p = 0.0055). In addition, 
people also tend to withhold necessary corrections (p < 0.0001) 
when supervising an incompetent robot and are more prone to 
offering unnecessary ones (p = 0.0171) when supervising a highly 
competent robot. We also find that physical effort positively 
correlates with correction precision, providing empirical evidence 
to support this common assumption. We also find that this 
correlation is significantly weaker for an incompetent robot 
with legible motions than an incompetent robot with predictable 
motions (p = 0.0075). Our findings offer insights for accounting 
for competency and legibility when designing robot interaction 
behaviors and learning task objectives from corrections. 

Index Terms—Interactive Robot Learning; Learning from 
Corrections; Kinesthetic Teaching 

I. INTRODUCTION 

Imagine that you are developing robots that will be de-
ployed in warehouses and tasked with packing merchandise 
for shipment. These robots are pre-trained with basic abilities 
such as recognizing boxes and manipulating a range of items. 
Despite this pre-deployment training, they will inevitably make 
mistakes with identifying and manipulating novel inventory 
that is specific to the warehouse where the robot is deployed. 
Furthermore, new inventory may be introduced over time. In 
order for robots to function effectively post-deployment, they 
should learn continuously from their human co-workers and 
collaborators as novel objects and task constraints arise. 

Kinova Gen3 Robot 

Participant 

Goals 

Original Traj. 

Corrected Traj. 

Fig. 1: The robot begins moving along the yellow trajectory 
to place a shape in one of the target holes. The participant 
intervenes, guiding the robot to a different target via the green 
trajectory, leaving the dashed portion of the robot’s intended 
trajectory untraveled. 

Traditionally, robots learn from people during training ses-
sions that are distinct from its deployment/test sessions. In 
these training sessions, a person directly teaches the robot 
by providing numerous demonstrations of the desired be-
havior [1]–[5] or indicating preferences between numerous 
hypothetical robot behaviors [6]–[11]. 

There has been comparatively less work on how people 
might teach robots by supervising its behavior during deploy-
ment [12]–[15]. In a supervisory paradigm, a person observes 
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the robot’s behavior as it attempts to complete a task, interven-
ing only when necessary to avoid an impending mistake or to 
train the robot to avoid future mistakes [16]–[30]. Compared 
to traditional training sessions, this paradigm leverages the 
robot’s autonomy whenever possible and avoids the need for 
continuous teaching effort by the human during long-horizon 
tasks [31]. However, supervisory feedback might not be as 
abundant [32]; the human might not be as attentive [33], 
[34]; and the quality of human feedback might not be as 
consistent [35], [36]. 

Yet, current learning techniques do not account for these 
differences when learning from supervisory feedback, which 
may impair the robot’s ability to learn accurate and precise task 
objectives. Existing learning algorithms are designed under the 
assumption that (1) people intervene and correct the robot only 
when it is about to make a mistake; (2) people can accurately 
predict when they do or don’t need to intervene; and (3) 
people trade off precision and physical effort when providing 
corrections. Prior works have yet to explore whether these 
assumptions are valid, or what other factors may influence 
how people correct a robot during long-duration tasks. From 
a learning perspective, it is important to identify and factor 
out these influences to facilitate effective learning for the 
underlying task information. Furthermore, to design robots 
and algorithms that people will adopt into their homes and 
workplaces, we need to understand better how a person reacts 
to these factors when supervising a robot. 

Our work aims to study how people give feedback to a 
robot in a supervisory setting. We study two factors that we 
expect are particularly important in influencing how people 
correct the robot: robot competency (i.e., the robot’s prior task 
performance) and motion legibility (i.e., the interpretability of 
the robot’s motion toward its goal). We present an between-
subject user study (N = 60) where we examine how the 
robot’s competency and legibility conditions influence how 
participants supervise it through a series of 64 pick-and-place 
actions (Fig. 1). To the best of our knowledge, our work is 
the first to identify how these features of a robot’s behavior 
affect people’s correction feedback as they supervise a robot. 
We provide the following contributions: 

• We design a learning from corrections study to measure 
how people supervise a robot’s behavior differently de-
pending on its competency and motion legibility. 

• We study how these factors influence the timing and 
perceived necessity of corrections. 

• We examine the trade-off between precision and physical 
effort as people provide corrections. 

• We propose recommendations for (1) designing robots to 
elicit better correction feedback post-deployment and (2) 
interpreting this feedback as training data. 

II. RELATED WORK 

A. Learning from Corrections 

Research in interactive robot learning has explored multiple 
modalities through which people can provide training data and 

feedback to a robot, such as rewards [37]–[39], demonstra-
tions [1]–[5], preferences [6]–[11], physical corrections [16]– 
[25], implicit feedback [40]–[42], and natural language [43]– 
[46]. These modalities differ in the role that they prescribe 
to the human and the robot during the interaction [47]. Some 
modalities position humans in a more supervisory role than 
others, such as interventions [26]–[29], negative reinforce-
ment [48]–[50], implicit feedback [40]–[42], and physical 
corrections [16]–[21], [23]–[25]. 

Correction feedback, in particular, involves a robot at-
tempting to complete a task while supervised by a human 
teacher. The teacher can intervene and modify the robot’s 
motion kinesthetically, producing a corrected trajectory that 
is assumed to be more optimal with respect to the hidden 
task objectives [16]–[21], [23]–[25]. While prior works have 
proposed methods for Learning from Corrections (LfC), they 
rely on three important assumptions. 

Assumption 1: People Correct Only When There Is 
Significant Task Objective Divergence 

Prior works in learning from interventions [27]–[29] and 
corrections [22], [23] assume that people decide to intervene 
and correct the robot only when the robot is about to make 
a mistake. Quantitatively, we can represent this decision as 
a threshold for allowable divergence between the robot’s 
behavior and the “correct” goal for its task. As an example, 
a robot that moves away from an object it should be picking 
up and toward objects that it should be avoiding is increasing 
this divergence. Prior work assumes that this threshold is either 
consistent across all users [51], is user-specific [52], [53], or 
task-specific [54], but does not consider how the robot’s own 
behavior might influence this threshold. 

Assumption 2: People Can Accurately Predict If a 
Correction is Necessary 

A person’s decision to correct a robot’s motion can be 
viewed as a label for incorrect behavior; conversely, the lack of 
an intervention can be considered to be an endorsement [48], 
[49]. Current methods for learning from human-provided la-
bels require that the human achieves optimal or near-optimal 
labelling accuracy [55], [56]. While previous works have 
attempted to design algorithms that learn from noisy human-
provided labels [57], [58], the robot’s learning performance 
will still be affected by inaccurate labels. 

Assumption 3: People Trade Off Precision and Effort 
Prior works in interactive robot learning assume that the 

teacher is incentive-driven [52], [54], [59]–[61], providing 
feedback to maximize perceived reward and minimize per-
ceived cost. Existing LfC models, in particular, assume that 
people aim to provide corrections that optimize task perfor-
mance, while being biased toward corrections that require less 
physical effort to provide [16]–[21], [23]. Yet, no prior work 
has empirically validated this trade-off. 

B. Robot Competency 

In response to these assumptions, we now consider addi-
tional factors that may influence how people correct a robot’s 
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Fig. 2: A comparison between predictable (solid lines) and 
legible motions (dashed lines) starting from S to two potential 
goals, A and B. 

behavior. Deployed robots will naturally exhibit different lev-
els of competency across various tasks based on how well their 
training data aligns with their deployment environment [62] 
or constraints of its sensor, actuator, and computational ca-
pabilities [63], [64]. Prior works have shown that the robot’s 
competency is one of the most prominent factors in shaping 
people’s trust [65], expectation [66], and preferences [67] over 
the robot’s behaviors. DelPreto et al. [68] found that when 
a robot performed a task with lower accuracy, participants’ 
trust in the robot decreased, their perception of the robot’s 
intelligence decreased, and their workload increased. Hedlund 
et al. [69] showed that an incompetent robot led people to 
lower their trust in both the robot and in their own teaching 
ability. Paepcke et al. [66] found that setting low expectations 
for the robot’s ability at a task resulted in less disappointment 
and more positive appraisals from participants. 

Overall, these prior works study how the robot’s competency 
affects a person’s subjective perception of it. Yet, they do not 
evaluate how this subjective perception influences how the 
person provides feedback to the robot. From a robot learning 
perspective, other works have focused on the effect of robot 
competency in a setting where people serve as direct teachers 
(i.e., in learning from demonstration) [68], [69]. Yet, this 
remains unexplored in supervisory paradigms such as LfC. 

C. Motion Legibility 

While competency describes the robot’s past behavior, we 
now consider how the robot’s current behavior (i.e., its motion 
trajectory) influences a person’s perception of it while they su-
pervise the robot. Typical motion planning algorithms optimize 
for short and efficient trajectories between the robot’s starting 
position and its goal position. This produces a trajectory that 
is predictable; i.e., the motion that a person would expect to 
see if they already know what goal position the robot is trying 
to reach [61]. To a person who does not know the robot’s goal, 
however, it may be difficult for them predict the robot’s goal 
in real-time as the robot moves. The aim of legible motion is 
to enable an observer to quickly predict the robot’s goal from 
its early motion [61], [70]. This typically results in the robot 
exaggerating its motion toward its goal, as shown in Fig. 2. 

Prior works have verified that legible motion is more effec-
tive at conveying the robot’s intent to a human observer [61], 
[70], [71] and can elicit more informative feedback [72]–[74]. 
Furthermore, legible motion can improve a person’s perceived 
safety [75], comfort [76], trust [77], and positive affect of 
robots [78]. While prior works have focused on generating 

legible motions [61], [70] and incorporating legibility while 
modeling human feedback in task learning [23], [79], its 
nuanced effects on the nature and quality of human feedback 
remain largely unexplored. 

III. RESEARCH QUESTIONS 

Our work investigates the influence of the robot’s compe-
tency and motion legibility on how people correct its behavior. 
Our aim is to inform how we design (1) interactions for 
robots to elicit better correction feedback and (2) learning 
algorithms to interpret corrections for more accurate task 
models. We focus on the following three research questions 
(RQs) investigating how competency and legibility affect the 
validity of the assumptions described in Section II-A. 

RQ1: How do competency and legibility affect when people 
correct the robot? 

In response to Assumption 1 (Section II-A), we consider 
how competency and legibility may aggravate or attenuate a 
person’s threshold for divergence (which informs their deci-
sion of when to correct the robot). We expect that a robot 
exhibiting legible motion will enable people to infer the goal 
of its motion earlier in its trajectory execution, allowing them 
to more quickly assess whether it will be aligned with the 
correct goal (and thus, whether a correction is necessary). We 
also expect that people will trust a highly competent robot 
more, thus raising their threshold for divergence and resulting 
in later corrections. We establish the following hypotheses: 
H1A: When supervising robots with legible motion, people 
will correct the robot earlier in the trajectory (i.e., when there 
is a smaller task objective divergence). 
H1B: When supervising a highly competent robot, people will 
correct the robot later in the trajectory (i.e., will have a higher 
tolerance for task objective divergence). 

RQ2: How do competency and legibility affect people’s accu-
racy in predicting robot success/failure? 

In response to Assumption 2, we expect that people will 
distrust an incompetent robot, and thus are more likely to 
predict that it will fail (even if it would have succeeded using 
its intended trajectory). Similarly, we expect that people will 
trust a highly competent robot, and thus are more likely to 
predict that a failing robot will eventually succeed (until it is 
too late for them to provide a correction). Since legible motion 
enables a person to predict the robot’s goal sooner, we also 
expect legible motions to improve predication accuracy. We 
establish the following hypotheses: 
H2A: People are more likely to miss necessary corrections in 
high-competency conditions. 
H2B: People are more likely to provide unnecessary correc-
tions in low-competency conditions. 
H2C: Legible motions will increase prediction accuracy, re-
gardless of competency condition. 
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RQ3: How do competency and legibility affect how people 
balance precision and effort in their corrections? 

In response to Assumption 3, we aim to confirm whether 
there is a consistent trade-off between the precision and physi-
cal effort that people expend as they correct the robot’s motion. 
H3: People’s corrections will exhibit a trade-off between 
precision and physical effort. 

IV. METHODOLOGY 

We conducted a user study with 60 participants recruited 
from our university community. Participants reported their age 
(M = 27.53 years, SD = 9.49 years) and gender (32 male, 
27 female, 1 non-binary). Each participant supervised a robot 
arm performing a series of pick-and-place tasks. The task goal 
was for the robot to place each shape into the target hole 
with the corresponding color. Participants were instructed to 
interrupt the robot’s motion and provide a correction whenever 
and however they saw fit to guide the robot toward successfully 
completing the task (Fig. 1). 

To incentivize high-quality data (as would be expected 
of a person earnestly trying to train a robot collaborator), 
participants were told that the robot was learning from their 
feedback in real-time, and that they would receive additional 
compensation based on the number of successful robot trials. 
In reality, the robot followed pre-determined waypoints based 
on the participant’s study condition (rather than learning in 
real-time), and participants received the maximum compensa-
tion (as if the robot had succeeded at every trial) to ensure 
that they were fairly compensated regardless of their study 
condition. We obtained approval for this study through our 
Institutional Review Board (IRB) and followed ethics protocol 
for debriefing participants on these hidden elements. 

A. Experimental Design 

Our experiment involved two independent variables: com-
petency (consisting of two levels) and legibility (consisting of 
three levels). Our experiment was thus a between-subject 2×3 
user study, with 10 participants assigned to each condition. In 
each condition, participants supervised 64 task trials, divided 
into 4 sub-tasks (i.e., 4 different shapes) with 16 trials each. 

Throughout this section, actual success/failure refers to 
whether the robot places a shape in the correct target. Intended 
success/failure refers to the result of the robot’s planned 
trajectory without correction. 

1) Independent Variables: In low competency conditions, 
the robot intended to succeed in only 25% of trials. Among 
the intended failures, 50% involved the robot placing the 
shape in a hole of the wrong color. The other 50% involved 
the robot missing the target holes entirely, with intended 
failure poses uniformly sampled from a neighborhood near 
the correct target. Fig. 4 illustrates the combined probability 
distribution over potential goals for an intended failure. In high 
competency conditions, the robot intended to succeed in 75% 
of trials, with intended failures also following the distribution 
shown in Fig. 4. The intended failures were distributed across 
colors and trials to minimize bias. 

Motion legibility [61] consisted of 3 levels, shown in Fig. 3: 

• Predictable motion was short and efficient; i.e., the 
default output of an RRT* motion planner. 

• Legible motion enabled the observer to quickly infer the 
robot’s end-goal. 

• Illegible motion obscured the robot’s end goal by initially 
moving toward goals that the robot did not plan to visit. 

B. Robot Control & Motion Planning 

We performed the study using a Kinova Gen3 7-DoF robot 
arm equipped with a Robotiq 2F-85 gripper as its end effector 
(EEF). The arm was mounted on a horizontal linear actuator, 
allowing it to slide along the workbench to access each of the 
four sub-tasks. We computed Cartesian waypoints for every 
trajectory for each legibility level by optimizing their legibility 
score until convergence [61]. We then used RRT* to plan the 
Cartesian waypoints into joint space trajectory [80]. We down-
sampled and interpolated the planned trajectory for improved 
efficiency and smoothness. The trajectory was then executed 
via a velocity-based PID controller running at sub-1000 Hertz. 
To avoid bias toward certain colors, we uniformly randomized 
the order in which the robot picked up shapes in each sub-task. 

We implemented admittance (inverse impedance) con-
trol [81], [82] to enable the robot to quickly follow any 
physical force exerted by the participant. We used the recursive 
Newton-Euler algorithm to compute the inverse dynamics and 
gravity compensation [83]. We collected joint encoder and 
torque sensor readings and control input at 10Hz and applied 
low pass filters to denoise the data. After the participant 
stopped applying force to the robot arm (i.e., after finishing 
the correction), the robot replanned and executed a trajectory 
from its new state to the nearest target goal, maintaining 
the EEF rotation as it was at the end of the correction. 
The participant may provide additional corrections during the 
robot’s replanned motion; regardless, we focus our analyses 
on the first correction within each trial. 

C. Procedures 

1) Pre-Interaction Phase: Participants were pre-screened 
to meet the criteria of being at least 18 years old, fluent 
in English, able to stand for up to an hour, and not color 
blind. After the screening, the participant consented to the 
experiment and video recording. The experimenter followed a 
script to familiarize the participant with the robot, the pick-
and-place task, and their role in correcting the robot. 

2) Tutorial Phase: The researcher activated the robot’s 
admittance mode to enable the participant to practice moving 
the robot around. Once the participant was ready to proceed, 
the experimenter played two example behaviors on the robot: 
one successful placing trial (requiring no correction) and 
one unsuccessful trial (where the experimenter demonstrated 
how to intervene and correct the robot). The participant then 
administered two similar trials. 
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Circle Square Triangle Rectangle 

Fig. 3: This figure depicts the series of pick-and-place tasks performed by the robot. The tasks involved manipulating various 
shapes in sequence: circle, square, triangle, and rectangle. Each shape had 4 colors: orange, red, green, and blue. The colored 
lines illustrate the robot’s trajectories, categorized by their legibility: cyan represents legible paths, yellow represents predictable 
paths, and purple represents illegible paths. 

Fig. 4: In an intended-success trial, the robot will attempt to 
place a red square shape into the red target. In an intended-
failure trial, the robot will attempt to place the red shape into 
the wrong-colored target or onto the workbench surface. The 
yellow-shaded squares represent the distribution of possible 
locations where the robot may attempt to place the shape. 

3) Main Experiment Phase: After completing the tutorial, 
the experimenter left the participant alone to supervise and cor-
rect the robot for all 64 pick-and-place trials. The experimenter 
remained on the other side of a dividing curtain, monitoring 
the experiment for safety via a webcam and staying within 
reach of an emergency-stop button. 

4) Post-Interaction Phase: After the experiment, the partic-
ipant completed a survey on demographics, System Usability 
Scale [84], Perception of Agency [85], NASA Task Load 

Index [86], and Trust in Automation [87] measures. Finally, 
the experimenter debriefed the participant about the deception, 
explaining that the robot was not actually learning from 
them in real-time and that they would receive the maximum 
compensation regardless of the robot’s performance. 

D. Measures 

We now define the metrics we use to evaluate each RQ. 
RQ1: When do people correct the robot?: Kullback–Leibler 

divergence (KLD) [88] has been widely adopted by learning 
researchers as a metric to model the human’s perceived 
alignment between the robot’s understanding of the task and 
the actual task constraints [72]–[74], where a smaller KLD 
indicates that the human believes the robot has more accurately 
learned the task. In addition, we included two other timing-
related heuristic measures: the time elapsed prior to the 
correction and the proportion of the robot’s intended trajectory 
that remained untraveled. 

• Task Objective Divergence: We estimate the distribution 
of plausible motion goals supported by the robot’s motion 
at each timestep [89]. When the participant intervenes to 
correct the robot’s motion, we report the KLD between 
this distribution (based on the robot’s motion thus far) 
and the actual, correct motion goal. 

• Time Until Correction: The time (in seconds) between 
the start of the robot’s trajectory and the first correction. 

• Proportion of Trajectory Untraveled: The fraction of 
the trajectory that was left to be traveled at the time of 
correction (dashed trajectory in Fig. 1). 

RQ2: How well do people predict robot success/failure?: 
Since the presence or absence of human intervention can be 
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construed as a binary label for correct behavior, researchers 
have tried to leverage this data to train robots to classify correct 
behavior. We therefore categorize human prediction outcomes 
within a confusion matrix [90]: 

• Missed Correction Rate: The proportion of intended 
failures that the participant did not correct. 

• Unnecessary Correction Rate: The proportion of in-
tended successes that the participant corrected. 

• False Omission Rate: The proportion of uncorrected 
trials that were intended failures. 

• False Correction Rate: The proportion of corrected trials 
that were intended successes. 

RQ3: How do people trade-off precision and effort in their 
corrections?: Prior works in LfC have modeled the task 
objective as a linear combination of relevant features [16]– 
[23], such as goal proximity, object avoidance, and motion 
smoothness and quantified physical effort using external torque 
applied by humans on the robot [16]–[23]. 

• Precision: A linear combination of EEF position and 
rotation features with respect to the correct goal at the end 
of the first correction (details in Appendix Sec. VIII-A). 

• Physical Effort: The L2-norm of the time-integrated 
torque for the first correction. 

V. RESULTS 

For RQ1 and RQ2, we conducted a two-way Analysis 
of Variance (ANOVA) [91] with competency and legibility 
predicting each relevant measure in Section IV-D. The main 
effects were ignored if the interaction effect was significant. 
A post-hoc Tukey’s honestly significant difference (HSD) test 
was administered if the legibility main effect or interaction 
effect was significant. Although it is generally advisable to 
transform the data so that it follows a normal distribution, 
Blanca et al. have shown that the ANOVA and F-test are robust 
to non-normal data [92]. For RQ3, we examined the pairwise 
condition difference in correlation between task precision and 
physical effort. We measured statistical significance using a 
threshold of α < .05 and applied the Benjamini–Hochberg 
procedure for multiple testing corrections [93]. In all figures, 
asterisks (*) are used to denote statistical significance: a single 
asterisk indicates p < 0.05; double asterisks indicate p < 0.01; 
and triple asterisks indicate p < 0.001. 

By default, a robot’s motion planner will produce pre-
dictable (i.e., efficient) trajectories, which we considered as the 
baseline legibility. Hence, all pairwise comparisons included 
predictable vs. legible and predictable vs. illegible conditions. 

A. Analysis of RQ1 

A two-way ANOVA examining the effect of competency 
and legibility on task objective divergence showed an in-
teraction effect of (F (2, 1944) = 4.8242, p = 0.0081). A 
Tukey test found that 1) in legible conditions (p = 0.0015), 
people choose to correct the robot when the task objec-
tive divergence was smaller in high-competency conditions 
(M = 0.0047, SD = 0.0073) than in low competency-
conditions (M = 0.0075, SD = 0.0090), 2) in predictable 

(p = 0.0055) conditions, people choose to correct the robot 
when the task objective divergence was smaller in high-
competency conditions (M = 0.0051, SD = 0.0064) than 
in low-competency conditions (M = 0.0078, SD = 0.0092). 
A two-way ANOVA examining the effect of competency 
and legibility on time until correction (Fig. 6) showed an 
interaction effect of (F (2, 1944) = 23.3877, p < 0.0001). 
A Tukey’s test showed that 1) when motions were legible 
(p < 0.0001), people correct a competent robot earlier in high-
competency conditions (M = 13.5968, SD = 3.3740) than in 
low-competency conditions (M = 14.7866, SD = 2.0448), 
2) when motions were predictable (p = 0.0020), people cor-
rect a competent robot earlier in high-competency conditions 
(M = 13.4841, SD = 2.0831) than in low competency-
conditions (M = 14.2968, SD = 1.7970). A two-way 
ANOVA examining the effect of proportion of trajectory to 
be traveled (Fig. 7) showed an interaction effect for compe-
tency and legibility of (F (2, 1944) = 34.7386, p < 0.0001). 
A Tukey’s test showed that 1) when motions were legible 
(p < 0.0001), robots were corrected later in the trajectory 
in low-competency (M = 0.0435, SD = 0.1136) than 
high-competency conditions (M = 0.1610, SD = 0.2265) 
2) when motions were predictable (p < 0.0001), robots 
were corrected later in the trajectory in in low-competency 
(M = 0.0457, SD = 0.0902) than high-competency condi-
tions (M = 0.1422, SD = 0.1849). 

B. Analysis of RQ2 

A two-way ANOVA examining the effect of competency 
and legibility on missed correction rate (Fig. 8) showed 
a competency main effect of (F (1, 54) = 17.4059, p < 
0.0001), indicating that, in low-competency conditions (M = 
0.1127, SD = 0.1057), people were more likely to with-
hold necessary corrections than in high-competency conditions 
(M = 0.0281, SD = 0.0322). A two-way ANOVA examin-
ing the effect of competency and legibility on unnecessary 
correction rate (Fig. 9) showed a competency main effect of 
(F (1, 54) = 6.0503, p = 0.0171), suggesting that, in high-
competency conditions (M = 0.0983, SD = 0.1695), people 
were more likely to offer unnecessary corrections than in low-
competency conditions (M = 0.0202, SD = 0.0401). From a 
robot-centric perspective, a two-way ANOVA examining the 
effect of competency and legibility on false omission rate 
(Fig. 10) showed a competency main effect of (F (1, 54) = 
5.5637, p = 0.0220), implying that, in high-competency 
conditions (M = 0.0708, SD = 0.0586), failures were more 
likely when corrections were missed than in low-competency 
conditions (M = 0.0410, SD = 0.0404). A two-way ANOVA 
on false omission rate (Fig. 11 in the Appendix) showed no 
significant effect of competency or legibility. 

C. Analysis of RQ3: Task and Effort Trade-Off 

Two Shapiro-Wilk tests [94] showed that task precision 
(W = 0.8776, p < 0.001) and physical effort (W = 0.7188, 
p < 0.001) were not normally distributed. We, therefore, 
used the Spearman correlation [95] to study the relationships 
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Fig. 5: Task Objective Divergence: The 
KLD between the estimated robot’s task 
belief distribution and the actual, correct 
motion goal. 

Fig. 6: Time Until Correction: The time 
(measured in seconds) between the start 
of the robot’s trajectory and the first cor- 
rection. 

Fig. 7: Proportion of Trajectory Untrav-
eled: The fraction of the trajectory that 
was left to be traveled at the time of 
correction.

Fig. 8: Missed Correction Rate: The pro- 
portion of intended failures that the par- 
ticipant did not correct. 

Fig. 9: Unnecessary Correction Rate: The 
proportion of intended successes that the 
participant corrected. 

Fig. 10: False Omission Rate: The pro-
portion of uncorrected trials that were 
intended failures. 

between these two variables. Overall, the trend in each con-
dition exhibited a weak positive correlation (Table I in the 
Appendix). After adopting a Fisher z-transformation on the 
correlations [96], [97], we conducted a pairwise Z-test to 
examine how competency and legibility affect these positive 
correlations (Table II in the Appendix). We found that, for an 
incompetent robot with legible motions, the positive correla-
tion of task and effort was significantly weaker compared to 
an incompetent robot with predictable motions (p = 0.0075). 

VI. DISCUSSION 

Addressing RQ1, we find that, for legible and predictable 
motions, people chose to intervene as soon as they perceive 
a minor error in the robot’s behavior in high-competency 
conditions; in low-competency conditions, people were more 
tolerant of the robot deviating from optimal behavior. This 
which strongly supports the inverse of H1B; that is, people 
corrected the robot earlier in the trajectory when supervising a 
highly competent robot (with legible and predictable motions). 
We find no evidence supporting or disproving H1A. 

Corrections are most informative when they reflect the con-
straints of the task. Therefore, it is advantageous for learning 
algorithms if people correct the robot only when it is about 
to make a mistake. To achieve this, robots should avoid devi-
ating from optimal behaviors when highly competent. From 
a learning perspective, algorithms should not automatically 
assume that pre-correction trajectories are always informative 

(particularly for an incompetent robot). Instead, they should 
primarily leverage the correction trajectory. 

For RQ2, we find that competency significantly influences 
people’s ability to accurately predict robot success and failures. 
Our evidence does not support H2A and H2B, but strongly 
supports their inverse: when supervising an incompetent robot, 
people are more likely to miss necessary corrections; people 
are more likely to give corrections when not needed while 
supervising a highly competent robot. 

We find no evidence supporting or disproving H2C; legibil-
ity does not significantly affect humans’ prediction accuracy. 
Note that, although both false omissions and false corrections 
are both incorrect labels, the former are more deleterious than 
the latter from a learning perspective; false corrections still 
reflect the correct task constraints, whereas false omissions 
can cause a robot to mistakenly interpret failures as correct 
behaviors. Therefore, to improve task learning, it is reasonable 
to design robot behaviors to minimize missed corrections, even 
if it also results in people providing more unnecessary ones. 

For RQ3, we find that physical effort positively correlates 
with correction precision, providing empirical evidence to 
support the assumed trade-off between precision and physical 
effort (H3). However, when supervising an incompetent robot 
with legible motions, human corrections exhibited a much 
weaker correlation than when supervising a robot with pre-
dictable motions, hinting that learning researchers should rely 
less on the heuristics that greater effort suggests more precise 
task correction. A weaker correlation indicates that extra 
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effort is not necessarily converted to more precise corrections. 
Therefore, in this condition, solely relying on the task and 
effort trade-off to model human correction feedback is rather 
insufficient, and additional features should be explored. 

A. Alternatives for Trust-Based Hypotheses 

Several of our hypotheses (H1B, H2A, and H2B) are 
founded on the idea that people correct the robot based on their 
trust in it. Yet, we found strong evidence for the inverse of 
these hypotheses. We now propose an alternative explanation 
for these findings: that people develop high expectations for a 
highly competent robot, and intervene in the robot’s behavior 
when there is any indication that the robot may not meet this 
high expectation. On the other hand, people may be giving an 
incompetent robot the “benefit of the doubt”, waiting until the 
robot is clearly about to fail before correcting it. Participants 
being more strict and demanding of highly-competent robots 
is consistent with previous findings [66], [98]. 

B. Feedback Accuracy Over Time 

To assess the potential effect of people “calibrating” to 
the robot’s competency level, we repeated the analysis from 
Sec. V-B, excluding the first 4, 8, 16, and 32 trials. Further 
details are provided in Table III in the Appendix. Our anal-
ysis confirms the consistency of both human-centric findings 
across tasks. However, from a robot-centric perspective, no 
significant differences were observed in whether robots can 
reliably interpret uncorrected trials as failures later in the 
experiment, suggesting that this difference is most pronounced 
when humans are calibrating their expectations of the robot’s 
competency. Additionally, we partitioned the data into the 
early and late halves of the experiment and conducted a 
three-way ANOVA on the relevant measures, with the third 
independent variable representing the data segment (early 
or late). Results revealed that participants were more likely 
to miss corrections during the early half of the experiment 
compared to the later half (F (1, 108) = 6.9635, p = 0.0095). 

C. Takeaway Messages 

We summarize key takeaways for two audiences: interaction 
designers—who program robot interactions to elicit human 
feedback best aligned with LfC assumptions—and learning 
researchers—who develop algorithms to enhance learning out-
comes, even when feedback diverges from these assumptions. 

Implications for Interaction Designers: 
• A highly competent robot should avoid deviative behav-

ior, while explorative behavior is more acceptable for a 
robot that makes mistakes. 

• Consider how occasionally making deliberate, low-stakes 
mistakes could reduce human workload from giving fre-
quent, unnecessary corrections. 

• To incentivize greater effort and better correction pre-
cision, consider making motions predictable rather than 
legible for an incompetent robot. 

Implications for Learning Researchers: 

• When designing algorithms for an incompetent robot 
that leverages pre-correction trajectories to learn task 
constraints, consider weighting them less (due to their 
potential for misalignment with the task goal) and as-
signing a higher weight to the correction trajectory itself. 

• For active learning researchers, consider allowing more 
exploratory behavior for a low-competency robot, and 
less exploration for a highly competent robot. 

• When interpreting humans’ supervision of a highly com-
petent robot, the lack of a correction should be less 
reliably interpreted as an endorsement of its behavior. 

D. Limitations 

Despite collecting over 1,950 correction samples during 
3,840 pick-and-place trials, our study’s overall sample size 
remains relatively small (60 participants), with only 10 par-
ticipants per condition. This limited sample size may have 
reduced the statistical power for some hypotheses (H1A, H2C) 
and contributed to the lack of significance observed. For 
analyses on RQ1 and RQ3, we assume each trial data point 
from each participant as independent to fully leverage the large 
volume of correction data. However, this assumption may have 
inflated the degrees of freedom in the statistical tests, as the 
data points could exhibit high within-participant correlations. 

VII. CONCLUSION 

In this paper, we presented a user study exploring the effects 
of a robot’s competency and motion legibility on how people 
supervise and correct its behavior. We found that when the 
robot followed predictable or legible motions, people were 
more sensitive to potential failures by a highly-competent 
robot compared to an incompetent robot. Additionally, peo-
ple were more likely to withhold necessary corrections in 
low-competency conditions and were more prone to offering 
unnecessary ones in high-competency conditions. Finally, we 
empirically supported the assumed trade-off between task 
precision and human effort when giving corrections. However, 
we highlighted that this trade-off should be less reliably 
assumed when modeling humans supervising an incompetent 
robot with legible motions. These findings offer valuable in-
sights for robot interaction designers and learning researchers 
working with LfC systems and, more broadly, in robot learning 
scenarios where humans act in a supervisory role. 
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