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Abstract
Mobile devices are producing larger and larger data streams,
such as location streams, which are consumed by machine
learning pipelines to deliver location-based services to end
users. Such data streams are generally uploaded and central-
ized to be processed by third parties, potentially exposing
sensitive personal information. In this context, existing pro-
tection mechanisms, such as Location Privacy Protection
Mechanisms (LPPMs), have been investigated. Alas, none of
them have effectively been implemented, nor deployed in mo-
bile devices to enforce user privacy at the edge of a network.
We believe that the effective deployment of LPPMs on mobile
devices faces a major challenge: the storage of unbounded
data streams.

This article introduces INTACT, a cross-platform frame-
work that leverages a piece-wise linear approximation tech-
nique, dubbed FLI, to increase the storage capacity of mobile
devices. Then, we combine this storage capability with Di-
vide & Stay, a new privacy preservation technique to execute
Points of Interest (POIs) inference. By enabling in situ POIs
inference, the sensitivity of location streams can be assessed
to better enforce user privacy. Finally, we deploy all INTACT
components on Android and iOS to demonstrate that a real
deployment of LPPMs on mobile phones is now possible.

1 Introduction

With the advent of smartphones and more generally the In-
ternet of Things (IoT), connected devices are mainstream in
our societies and widely deployed at the edge of networks.
Such constrained devices are not only consuming data and
services, such as streaming, restaurant recommendations or
more generally Location-Based Services (LBSs), but are also
key producers of data streams by leveraging a wide variety of
embedded sensors that capture the surrounding environment
of end-users, including their daily routines. Online services
are heavily relying on this crowdsourced data to improve the
user experience through machine learning, an example being
Waze [1] live-monitoring traffic. The data deluge generated
by a connected user is potentially tremendous: according to
preliminary experiments, a smartphone can generate approxi-
mately 2 pairs of Global Positioning System (GPS) samples
and 476 triplets of accelerometer samples per second, result-
ing in more than 172,800 location and 41,126,400 accelera-
tion daily samples. These data streams tend to be uploaded

(a) Cabspotting subtrace for user 0.

(b) Raw longitude trace for user 0. (c) Modeled longitude with FLI.

(d) Raw latitude trace for user 0. (e) Modeled latitude with FLI.

Figure 1: FLI compacts any location stream as a sequence of
segments, obtained from a piece-wise model.
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from mobile devices to third-party service providers to extract
the valuable information they contain. Notably, the Points
of Interest (POIs) of a user can be extracted from their GPS
traces. They represent locations where the user stopped, such
as their home, workplace or social locations; POIs provide
detailed information on people’s behavior.

This continuous data stream inevitably includes Sensitive
Personal Information (SPI) that jeopardize the privacy of
end-users, when processed by malicious stakeholders. While
machine learning algorithms are nowadays widely adopted
as a convenient keystone to process large datasets and infer
actionable insights, they often require grouping raw input
datasets in a remote place, thus imposing a privacy threat for
end-users sharing their data. This highlights the utility vs.
privacy trade-off that is inherent to any data-sharing activ-
ity [13]. On the one hand, without crowd-sourced GPS traces,
it would be hard to model traffic in real-time and recommend
itineraries. On the other hand, it is crucial to protect user
privacy when accepting to gather SPI.

To address this ethical challenge, privacy-preserving ma-
chine learning [42] and decentralized machine learning [10,
43] are revisiting state-of-the-art machine learning algorithms
to enforce user privacy, among other properties. Regarding
location privacy, several Location Privacy Protection Mecha-
nisms (LPPMs) have been developed to preserve user privacy
in mobility situations. Location reports are evaluated and
obfuscated before being sent to a service provider, hence
keeping user data privacy under control. The user no longer
automatically shares their data streams with service providers
but carefully selects what they share and make sure the data
they unveil does not contain any SPI. For example, Geo-
Indistinguishability [3] generalizes differential privacy [15] to
GPS traces, while PROMESSE [37] smooths the GPS traces—
both temporally and geographically—to erase POIs from the
input trace. LPPMs successfully preserve sensitive data, such
as POIs, while maintaining the data utility for the targeted
service.

Despite their reported effectiveness, no LPPM has ever
been implemented and deployed on mobile devices: previous
works have been simulated on the Android Debug Bridge
(ADB) [26] at best. While the extension of those works to
Android and iOS devices may seem straightforward, it is
hindered by the scarce resources of edge devices. Storage
is notably challenging, as LPPMs generally require the user
to access all their GPS traces, and sometimes the ones of
additional users. Data processing algorithms are additionally
not optimized for mobile devices.

This article demonstrates that modeling data streams en-
ables us to address these device-level storage & processing
challenges. To address the storage challenge, we first intro-
duce Fast Linear Interpolation (FLI), a time series algorithm
leveraging a Piece-wise Linear Approximation (PLA) tech-
nique to model and store data streams under memory con-
straints. Figure 1 displays FLI’s behavior: it does not store
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Figure 2: Overview of INTACT contributions.

raw data samples (Fig. 1b and 1d), but instead models their
evolution as linear interpolations (Fig. 1c and 1e) —thus offer-
ing a much bigger storage capacity at the cost of a controlled
approximation error. Then, to illustrate the processing chal-
lenge, we implement a LPPM working directly on mobile
phones—which is made possible by the increased GPS stor-
age capacity offered by FLI. However, the LPPM’s privacy
gains need to be evaluated in situ before being uploaded to ser-
vice providers: are POIs effectively obfuscated? To this end,
we also introduce a new POI attack algorithm, dubbed Di-
vide & Stay (D&S), which can extract POI from large mobility
traces stored in the device in tens of seconds. Altogether, these
components form the IN-siTu locAtion proteCTion (INTACT)
framework. Figure 2 displays its overall architecture, and how
our FLI and D&S contributions work together with LPPMs
to provide an auditable location privacy framework for mo-
bile devices. All of INTACT’s evaluations are performed
directly on Android and iOS smartphones, demonstrating its
readiness.

In the following, we first discuss the related work (Sec. 2),
before diving into the details of FLI and D&S, and how they
are combined to boost location privacy (Sec. 3). We then
present our experimental setup (Sec. 4) and the results we
obtained (Sec. 5) Finally, we discuss the limitations of our
approach (Sec. 6), before concluding (Sec. 7).

2 Related Works

2.1 Location Privacy Attacks
Raw user mobility traces can be exploited to model the users’
behavior and reveal their Sensitive Personal Information (SPI).
In particular, the POIs are widely used as a way to extract SPI
from mobility traces. In a nutshell, a POI is a place where
the user comes often and stays for a significant amount of
time: it can reveal her home, workplace, or leisure habits.
From revealed POIs, more subtle information can also be
inferred: sexual orientation from attendance to LGBT+ places,
for instance. The set of POIs can also be used as a way
to re-identify a user in a dataset of mobility traces [18, 36].
The POIs can be extracted using spatiotemporal clustering
algorithms [22, 45]. Alternatively, an attacker may also re-
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identify a user directly from raw traces, without computing
any POI [30].

2.2 Mobility Dataset Protection Mechanisms
When data samples are gathered in a remote server, one can
expect the latter to protect the dataset as a whole. In particular,
k-anonymity [38] is the property of a dataset guaranteeing that
whenever some data leaks, the owner of each data trace is
indistinguishable from at least k−1 other users contributing
to the dataset. Similarly, l-diversity [28] extends k-anonymity
by ensuring that the l users are diverse enough not to infer
SPI about the data owner. Finally, differential privacy [15]
aims at ensuring that the inclusion of a single element in a
dataset does not alter significantly an aggregated query on the
whole dataset. However, all these techniques require personal
samples to be grouped to enforce user privacy.

2.3 Location Privacy Protection Mechanisms
Rather than protecting the dataset as a whole, each data sam-
ple can also be protected individually. In the case of location
data, several protection mechanisms—called Location Pri-
vacy Protection Mechanisms (LPPMs)—have been developed.
They may be deployed in a remote server where all data sam-
ples are gathered or directly on the device before any data
exchange.

Geo-Indistinguishability (GEOI) [3] implements differen-
tial privacy [15] at the trace granularity. In particular, GEOI
adjusts mobility traces with two-dimensional Laplacian noise,
making POIs more difficult to infer. Heat Map Confusion
(HMC) [29] aims at preventing re-identification attacks by al-
tering all the traces altogether. The raw traces are transformed
into heat maps, which are altered to look like another heat
map in the dataset, and then transformed back to a GPS trace.

PROMESSE [37] smooths the mobility traces, both tem-
porally and geographically, to erase POIs from the trace.
PROMESSE ensures that, between each location sample, there
is at least a given time and distance interval. In the result-
ing mobility trace, the user appears to have a constant speed.
While PROMESSE blurs the time notion from the trace—i.e.,
the user never appears to stay at the same place—it does not
alter their spatial characteristics. Yet, while POIs may be
still inferred if the user repeatedly goes to the same places, it
will be harder to distinguish such POIs from more random
crossing points.

It is also possible to combine several LPPMs to improve
the privacy of users [26, 31]. Because of potential remote
leaks, the user should anonymize her trace locally before shar-
ing it, which is how EDEN [26] operates. However, EDEN
has not been deployed: it has only been simulated on ADB.
Even more so: despite their validity and to the best of our

knowledge, no LPPM has been implemented in mobile de-
vices. This is partly due to the tight constraints of mobile
devices, memory-wise notably: HMC [29], for instance, re-
quires locally loading a large set of GPS traces to operate.

2.4 Temporal Databases & Mobile Devices
To overcome the memory constraints of mobile devices, one
needs efficient embedded temporal databases. To take the
example of Android: only few databases are available, such
as SQLITE and its derivative DRIFT [12], the cloud-supported
Firebase [39], the NOSQL HIVE, and OBJECTBOX [14]. The
situation is similar on iOS.

Relational databases (e.g., SQL) are typically designed for
OnLine Transactional Processing (OLTP) and OnLine Analyt-
ical Processing (OLAP) workloads, which widely differ from
time-series workloads. In the latter, reads are mostly con-
tiguous (as opposed to the random-read tendency of OLTP);
writes are most often inserts (not updates) and typically tar-
get the most recent time ranges. OLAP is designed to store
big data workloads to compute analytical statistics from data,
while not putting the emphasis on read nor write performances.
Finally, in temporal workloads, it is unlikely to process writes
& reads in the same single transaction [40].

Despite these profound differences, several relational
databases offer support for temporal data with industry-ready
performance. As an example, TIMESCALEDB [23] is a mid-
dleware that exposes temporal functionalities atop a relational
POSTGRESQL foundation.

INFLUXDB [24] is one of the most widely used temporal
databases. Implemented in Go, this high-performance time
series engine is designed for really fast writes to collect met-
rics and events from IoT sensors. Unfortunately, its retention
policy prevents the storage to scale in time: the oldest samples
are dumped to make room for the new ones.

To the best of our knowledge, none of the existing solutions
prioritize data compression to the extent that they would prune
raw data samples in favor of modeled approximations.

Modeling data streams While being discrete, the streams
sampled by sensors represent inherently continuous signals.
Data modeling does not only allow important memory con-
sumption gains, but also flattens sensors’ noise, and enables
extrapolation between measurements. In particular, Piece-
wise Linear Approximation (PLA) is used to model the data
as successive affine functions. An intuitive way to do linear
approximation is to apply a bottom-up segmentation: each
pair of consecutive points is connected by interpolations; the
less significant contiguous interpolations are merged, as long
as the obtained interpolations introduce no error above a given
threshold. The bottom-up approach has low complexity but
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usually requires an offline approach to consider all the points
at once. The Sliding Window And Bottom-up (SWAB) algo-
rithm [25], however, is an online approach that uses a sliding
window to buffer the latest samples on which a bottom-up
approach is applied. EMSWAB [11] improves the sliding
window by adding several samples at the same time instead
of one. Instead of interpolation, linear regression can also
be used to model the samples reported by IoT sensors [21].
For example, GREYCAT [32] adopts polynomial regressions
with higher degrees to further compress the data. Unfortu-
nately, none of those works have been implemented on mobile
devices to date.

Closer to our work, FSW [27] and the SHRINKINGCONE
algorithm [17] attempt to maximize the length of a segment
while satisfying a given error threshold, using the same prop-
erty used in FLI. FSW is not a streaming algorithm as it
considers the dataset as a whole, and does not support inser-
tion. The SHRINKINGCONE algorithm is a streaming greedy
algorithm designed to approximate an index, mapping keys
to positions: it only considers monotonic increasing func-
tions and can produce disjoints segments. FLI models non-
monotonic functions in a streaming fashion, while providing
joint segments.

3 Enforcing User Privacy at the Edge

INTACT is a framework that protects the location privacy of
its user while also being auditable in situ: directly on their
mobile phone. As shown on Figure 2, INTACT stores the
user’s mobility traces using our Fast Linear Interpolation
(FLI) module, after they have been obfuscated by a Location
Privacy Protection Mechanism (LPPM). Geolocation attacks
can be carried out to assert that no privacy leak remains. Our
privacy analysis focuses on Points of Interest (POIs): small
geographic areas where one remains for some time, thus
unveiling their personal habits (home, workplace, social activ-
ities. . . ). We deploy the PROMESSE [37] LPPM, that aims at
erasing POIs from mobility traces, and the POI-Attack [36],
which objective is to disclose POIs. We contribute an opti-
mization of the POI-Attack, called Divide & Stay (D&S), to
enable POI inference on mobile devices. The next subsection
motivates our proposal. Then, FLI is presented in details in
Sec. 3.2. Finally, we describe D&S in Sec. 3.3.

3.1 In situ Data Management
For privacy’s sake, we advocate for in situ data management
strategies—i.e., Sensitive Personal Information (SPI) should
be anonymized within the mobile device before any data
exchange. This avoids anonymizing by relying on a trusted
third party first gathering multiple users’ raw data. Such
a third party may accidentally or intentionally leak users’
data, making the adoption of such protection mechanisms
ineffective.

tM tlast

xM

xlast

ε

ε

αmin αM αmax

~sM

Figure 3: A new FLI interpolation s⃗M begins with two sam-
ples: the penultimate point pM = (tM,xM) as origin, and the
latest sample plast = (tlast,xlast) which defines the slope αM .
Two bounding gradients αmin and αmax are derived from the
configuration parameter ε, and will be used to assert whether
future inserts fit the current interpolation.

We believe that keeping the raw data where it is created—
i.e., in mobile devices—increases user privacy. However,
sharing data is required to enable location-based services,
such as traffic modeling. The user should share their mobility
traces after they have been protected using an LPPM. The
first challenge is to find which LPPM to use and which related
parameters are optimal. To tackle this issue, a public dataset
can be used to estimate the impact of an LPPM and to pick the
best option. EDEN [26] proposes a more advanced solution:
federated learning is used among the participants to learn
a model which can predict the best configuration without
sharing any mobility trace. Nonetheless, both approaches
require storing an important volume of data to successfully
protect user privacy.

The strong resource constraints of mobile devices prevent
the previous solutions to work in practice. In particular, mo-
bile ecosystems lack tooling for efficient local storage. Not
only is there no advanced database readily available on mobile
operating systems, but no native data modeling framework
is provided either. For example, EDEN was implemented
using the PYTORCH library [34], which is not available on
smartphones1: the proposal was only simulated on a server.
It is therefore crucial to deliver tools enabling the deployment
of state-of-the-art techniques on mobile devices to support
privacy-preserving strategies at the edge of a network.

3.2 Unleashing Your Device Storage with FLI
To overcome the memory constraint of mobile devices, ef-
ficient temporal storage solutions must be ported onto mo-
bile environments. In particular, we advocate the use of
data modelling, such as Piece-wise Linear Approximation
(PLA) [21, 25] or GREYCAT [32], to increase the storage ca-
pacity of constrained devices. We propose FLI, a timeseries-
modeling algorithm based on an iterative and continuous

1PyTorch allows importing and using trained models on Android and iOS,
but disallows training them locally.
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(a) Gradient of sample p remains
within [αmin,αmax].
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(b) αM , αmin and αmax are updated to
incorporate p into the current model.

Figure 4: When a new sample fits within [αmin,αmax], it is
added to the current model by updating αmin and αmax to
ensure that all previous samples fit the updated model. αM is
also updated for read queries (see alg. 2).

PLA to store approximate models of data streams on memory-
constrained devices, instead of storing all the raw data samples
as state-of-the-art temporal databases do.

FLI models one-dimensional points (or samples) p as piece-
wise linear segments (or interpolations) s⃗. It enforces the
following invariant: all samples modeled by an interpola-
tion maintain an error below the configuration parameter ε.
Its data structure D is composed of a list of selected histor-
ical points P , the latest segment’s gradient αM , and the two
bounding gradients αmin and αmax used for insertion:

D = (P ,αM,αmin,αmax) , s.t.

P = [. . . , pi, pi+1, . . . , pM]⊂ R2 & (αM,αmin,αmax) ∈ R3

Historical segments are represented by couples of consecu-
tive samples: s⃗i = [pi, pi+1]. The latest interpolation s⃗M takes
the last inserted sample pM as its origin and the gradient αM
as its slope, as displayed in Fig. 3. We first present how ob-
served points are inserted, before explaining how reading a
value is performed.

Insertion Data samples are inserted incrementally: the cur-
rent interpolation is adjusted to fit new samples until it cannot
satisfy the invariant. Upon insertion of a new sample p, the
slope α of the segment [pM, p] is compared to the interval
[αmin,αmax]: If it falls within (as shown in Fig. 4), this sam-
ple is added to the current interpolation: αmin and αmax are
updated to encompass the new sample in the check, αM is up-
dated to α (for reading), and the previous sample is dropped.
If p is outside the interval (see Fig. 5), a new interpolation
begins from the two last observed points. This approach is
lightweight memory and compute-wise, as all the needed in-
formation regarding modeled points is embedded in the above
interval, and it only takes one check per insertion to update
the model.

Algorithm 1 details a new sample’s insertion p = (t,x). As
mentioned, on lines 2-3, FLI first computes the gradient α of
the segment [pM, p]. If α is inside [αmin,αmax], p validates

tM tlast t
xM

xlast

x
> ε

α<αmin

(a) Error of p = (t,x) exceeds ε.

tM tlast

xM

xlast

(b) A new model is created from the
last two points.

Figure 5: When a new sample reports an error > ε, a new
model is created using the penultimate sample plast as pM .

Algorithm 1 FLI insertion using parameter ε ∈ R+∗

Require: D = (P ,αM,αmin,αmax) ,(tlast,xlast) ∈ R2

1: function INSERT((t,x) ∈ R2)
2: (t∆,x∆)← (t− tM,x− xM) ▷ Compute α

3: α← x∆/t∆
4: if αmin < α < αmax then
5: αM ← α ▷ Update model
6: αmin←max

(
αmin,

x∆−ε

t∆

)
7: αmax←min

(
αmax,

x∆+ε

t∆

)
8: else
9: P ← P ∪ [(tlast,xlast)] ▷ Build new model

10: (t∆,x∆)← (t− tlast,x− xlast)
11: αM ← x∆/t∆
12: αmin← (x∆− ε)/t∆
13: αmax← (x∆ + ε)/t∆
14: end if
15: (tlast,xlast)← (t,x) ▷ Update last sample
16: end function

the invariant and is thus added to the current model by updat-
ing αM , αmin and αmax (lines 5-7). This case is illustrated in
Figure 4. Graphically, we see that the resulting ‘allowed cone’
is the intersection of the model’s previous one, and that of p’s
allowed error. By recurrence, the cone materialized by pM
and [αmin,αmax] is the intersection of the error margin of ev-
ery point embedded inside the current interpolation.If α falls
outside the interval [αmin,αmax], p breaks the invariant and a
new interpolation needs to be computed, as depicted in Fig. 5.
It begins from the last two observed samples: s⃗M becomes
[plast, p]. The penultimate sample plast is thus persisted to the
list of selected points P at l. 9, and new values for αM,αmin
and αmax are derived based on the new s⃗M (lines 10-13). In
any case, the penultimate sample plast is updated on line 15.

Read In FLI, reading a value at time t is achieved by es-
timating its image using the appropriate interpolation, as is
shown in algorithm 2. If t is ulterior or equal to tM , the current
interpolation s⃗M is used (line 3), defined by pM = (tM,xM)
and αM . When t is anterior to tM , FLI reconstructs the in-
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Algorithm 2 FLI approximate read
Require: D = (P ,αM,αmin,αmax)

1: function READ(t ∈ R)
2: if tM ≤ t then
3: return αM× (t− tM)+ xM
4: end if
5: Select i s.t. ((ti,xi) ,(ti+1,xi+1)) ∈ P ∧ ti ≤ t < ti+1
6: αi← (xi+1− xi)/(ti+1− ti)
7: return αi× (t− ti)+ xi
8: end function

terpolation s⃗i in charge of approximating t by picking two
consecutive points from P (lines 5-6). In practice, the search
is made through a dichotomy search, as P stores points in
insertion order. Using that model, the interpolation of t is
computed on line 7.

The value of ε has an important impact on the performances
of FLI. Figure 6 illustrates the longitude of Fig. 1 with two
extreme values for ε. If ε is too small (Figure 6a), none of the
inserted samples fits the current model at that time, initiating
a new model each time. In that case, there will be one model
per sample, imposing an important memory overhead. The
resulting model overfits the data. On the other hand, if ε is
too large (Figure 6b), then all the inserted samples fit, and a
single model is kept. While it is the best case memory-wise,
the resulting model simply connects the first and last point
and underfits the data.

While FLI is designed for the modeling of one-dimensional
data, it straight-forwardly generalizes to multiple-dimensional
data by combining several instances of FLI. As long as the
newly inserted data samples fit the existing model, the mem-
ory footprint of FLI remains unchanged. This potentially
unlimited storage capacity makes FLI a key asset for mobile
devices, making the storage of mobility traces possible. We
claim that the use of FLI alleviates the memory constraint of
mobile devices, making the real use of LPPM possible and
paving the way for user control of SPI.

3.3 Evaluating Your Location Privacy with
D&S

In POI-Attack, the POI disclosure is done by a two-steps
algorithm: potential candidates for POIs (dubbed stays) are
first extracted, then stays are merged to avoid duplication of
similar POIs. A stay is defined as a circle with a radius lower
than dmax where a user spent a time higher than a set time
tmin. A stay is represented by its center. The two thresholds
tmin and dmax have an important impact on the type of POI ex-
tracted. Short stays will identify day-to-day patterns, such as
shopping preferences, while long stays will identify e.g. travel
preferences. In the second step, the stays whose centroids
are close enough are merged to obtain the final list of POIs.
POI-Attack [36] iterates linearly over the mobility trace and

(a) ε is too small: overfitting. (b) ε is too large: underfitting.

Figure 6: The performances of FLI are highly dependent on
the value of ε: a too-small value will result in overfitting and
a too-large one in underfitting.

compute stays as they appear. This approach is expensive for
denser mobility traces—i.e., with high frequency sampling.
It is prohibitively long on constrained devices like mobile
phones.

Our contribution Divide & Stay (D&S) instead proposes a
divide-and-conquer strategy that scales with the data density.
The intuition behind D&S is to avoid wasting time looking for
stays in portions of the trace where they are impossible, i.e.
where more than dmax has been traveled in less than tmin. For
example, a car trip at high speed in a straight line. While the
regular approach would consider each location until the end of
the trace, D&S skips it entirely. The key idea of Divide & Stay
is to recursively divide the trace until either such a stay-less
segment is found and discarded, or until a fixed size segment is
found on which the regular way to extract stays is performed.

Algorithm 3 depicts the pseudo-code of D&S. It scrutinizes
the GPS trace T ∈ (R×G)n, composed of n samples. For
each i ∈ J0,n− 1K, T [i] .t represents the ith sample’s times-
tamp, while T [i] .g is its position in whatever geographical
space G equipped with a distance function distG. D&S has
three configuration parameters: the aforementioned tmin and
dmax representing the time and space limits of a POI, and
smax: the sub-trace size threshold below which the divide-and-
conquer approach for POI inference is abandoned in favor of
the iterative one. Three indices are manipulated, all called i
with a self-explanatory subscript. The D&S function takes
ifirst and ilast as arguments, being the bounds of the sub-trace
under study. On the first call, the whole input space is pro-
vided: ifirst is 0 and ilast takes n− 1. Subsequent recursive
calls provide either the first half of the input sub-trace, or the
second, until an iterative search is preferred.

On lines 2 to 4, the size of the input sub-trace is checked
against the threshold smax. If the trace is smaller, then a linear
search for stays is performed à la POI-Attack [36]. On l. 6,
the indices space in split: isplit is set to the midpoint between
ifirst and ilast. Lines 7-11 check whether the left sub-trace
T
[
ifirst..isplit

]
is susceptible to contain stays, in which case

D&S is recursively called. Its output fills the list of stays S.
As already mentioned, a sub-trace cannot contain any stay
if a distance of more than dmax was traveled in less than tmin.
Lines 11 to 16 perform the same check for the right sub-trace
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Algorithm 3 Divide & Stay (D&S) using parameters
(tmin,dmax,smax) ∈ R3+

Require: T ∈ (R×G)n

1: function D&S((ifirst, ilast) ∈ J0,n−1K2)
2: if ilast− ifirst ≤ smax then ▷ Iterative case
3: return getStays(T [ifirst..ilast])
4: end if
5: S← /0

6: isplit← ⌊(ifirst + ilast)/2⌋
▷ Left sub-trace recursion

7: t∆← T
[
isplit

]
.t−T [ifirst] .t

8: d∆← distG
(
T [ifirst] .g,T

[
isplit

]
.g
)

9: if ¬(d∆ > dmax∧ t∆ ≤ tmin) then
10: S← D&S

(
ifirst, isplit

)
11: end if

▷ Right sub-trace recursion
12: t∆← T [ilast] .t−T

[
isplit

]
.t

13: d∆← distG
(
T
[
isplit

]
.g,T [ilast] .g

)
14: if ¬(d∆ > dmax∧ t∆ ≤ tmin) then
15: S← S∪D&S

(
isplit, ilast

)
16: end if
17: return S
18: end function

T
[
isplit..ilast

]
, in which case the result of the recursive call

is added to S. Finally, S is returned. POI-Attack’s merge of
stays into POIs must be subsequently performed.

The more discarded segments, the faster compared to the
regular approach. Stays around the midpoints isplit could be
missed, but D&S ignores them because a POI is a cluster
of several stays: it is very unlikely to miss them all. D&S
can be implemented sequentially or concurrently, to leverage
multi-core processors.

4 Experimental Setup

This section presents observed indicators used to affirm the
value of FLI’s contribution to mobile machine learning on
time series. We then introduce datasets that were used to
assert FLI’s storage capabilities. Next, we present competing
solutions that were also implemented in benchmark appli-
cations to compare with FLI’s performances. Finally, we
discuss experimentation settings.

4.1 Key Performance Metrics
To evaluate how our approach performs, we use two classes of
key performance metrics: system metrics and privacy-related
metrics. Concerning privacy-related experiments, we only
measure the computation time when evaluating Divide & Stay.
Those metrics highly depend on the chosen algorithms, while
the use of FLI has no impact. Since our objective is to demon-
strate that FLI can help to port state-of-the-art LPPM tech-

niques on constrained devices, we do not discuss privacy-
related metrics for other experiments.

Memory footprint The key objective of FLI is to reduce
the memory footprint required to store an unbounded stream
of samples. More specifically, we explore two metrics: (i)
the number of 64-bit variables required by the model and (ii)
the size of the model in the device memory. To do so, we
compare the size of the persistent file with the size of the
vanilla SQLITE database file. We consider the number of
64-bit variables as a device-agnostic estimation of the model
footprint.

I/O throughput Another key system metric is the I/O
throughput of the temporal databases. In particular, we mea-
sure how many write and read operations can be performed
per second.

We will compare POI-inference algorithms, and POIs com-
puted by the same algorithm using different data backends.
For that reason, we need two metrics to compare the sets of
POIs returned in the different cases: the distance between
POIs, and the sets’ sizes.

Measuring the quality of inferred POIs is difficult, as there
is no acknowledged definition of how to compute POIs. We
consider as our ground truth the POIs inferred by the state-of-
the-art POI-attack [36], which we refer to as the ‘raw’ POIs.
The existence of such a ‘ground-truth’ is however debatable,
as two different—but close—POIs can be merged by the
algorithm into a single POI. As an example, if a user visits
two different shops separated by a road, but their distance
is lower than Dmax, those will be merged into a single POI
located at the center of the road.

Distance between POIs As the POI definition is mainly
algorithmic, we compute the distance of each obtained POI
to its closest raw POI as the metrics assessing the quality of
new POIs. These distances are reported as a Cumulative Dis-
tribution Function (CDF). If FLI does not alter significantly
the locations of the mobility traces it captures, the computed
distances should be short.

Number of POIs In addition to the distances between POIs,
we are also considering their returned quantity as a metric.
In our previous example, visiting the two shops may result
in two different POIs because they have been slightly shifted
by FLI. Beyond the numbers, we expect that PROMESSE
successfully anonymizes mobility traces by returning a total
of zero POI.

4.2 Mobility Datasets
In the following, we will focus on mobility traces. We be-
lieve that mobility traces are a good candidate for FLI as the
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storage of user mobility traces may require a lot of storage
space. A mobility trace is an ordered sequence T of pairs
(t,g) where t is a timestamp and g is a geolocation sample, a
latitude-longitude pair for example. The trace is ordered in
chronological order and we assume that reported timestamps
are unique.

Datasets CABSPOTTING [35] is a mobility dataset of 536
taxis in the San Francisco Bay Area. The data was collected
during a month and is composed of 11 million records, for a
total of 388 MB. PRIVAMOV [33] is a multi-sensors mobility
dataset gathered during 15 months by 100 users around the
city of Lyon, France. We use the full GPS dataset, which
includes 156 million records, totaling 7.2 GB. Compared
to CABSPOTTING, PRIVAMOV is a highly-dense mobility
dataset.

Drifts Figure 7 characterizes the evolution of longitude and
latitude samples for all the traces stored in the CABSPOTTING
and PRIVAMOV datasets. In particular, we plot the GPS of
the drift d observed along two consecutive values (x1,y1) and
(x2,y2), which we compute as d = |(y2−y1)/(x2−x1)|. One
can observe that CABSPOTTING and PRIVAMOV datasets
report on a drift lower than 1× 10−4 and 2×10−5 for 90%
of the values, respectively. Furthermore, due to the high
density of locations captured by PRIVAMOV, half of the drifts
are equal to 0, meaning that the consecutive longitudes and
latitudes are unchanged. Our preliminary analysis of both
datasets highlights that mobility traces are relevant candidates
for FLI. The following sections will focus on the evaluation
of FLI on those datasets to study the benefits of adopting FLI
to capture real-world metrics in mobile devices.

4.3 Storage Competitors
SQLITE is the state-of-the-art solution to persist and query
large volumes of data on Android devices. SQLITE provides a
lightweight relational database management system. SQLITE
is not a temporal database, but is a convenient and standard
way to store samples persistently on a mobile device. Inser-
tions are atomic, so one may batch them to avoid one memory
access per insertion.

Sliding-Window And Bottom-up (SWAB) [25] is a linear
interpolation model. As FLI, the samples are represented
by a list of linear models. In particular, reading a sample is
achieved by iteratively going through the list of models until
the corresponding one is found and then used to estimate the
requested value. The bottom-up approach of SWAB starts
by connecting every pair of consecutive samples and then
iterates by merging the less significant pair of contiguous
interpolations. This process is repeated until no more pairs
can be merged without introducing an error higher than ε.

Contrarily to FLI, this bottom-up approach is an offline one,
requiring all the samples to be known. SWAB extends the
bottom-up approach by buffering samples in a sliding window.
New samples are inserted in the sliding window and then
modeled using a bottom-up approach: whenever the window
is full, the oldest model is kept and the captured samples are
removed from the buffer.

One could expect that the bottom-up approach delivers
more accurate models than the greedy FLI, even resulting in a
slight reduction in the number of models and faster readings.
On the other hand, sample insertion is more expensive than
FLI due to the execution of the bottom-up approach when
storing samples. Like FLI, SWAB ensures that reading stored
samples is at most ε away from the exact values.

GREYCAT [32] aims at compressing even further the data
by not limiting itself to linear models. GREYCAT also mod-
els the samples by a list of models, but these models are
polynomials. The samples are read the same way.

When inserting a sample, it first checks if it fits the model.
If so, then nothing needs to be done. Otherwise, unlike FLI
and SWAB which directly initiate a new model, GREYCAT
tries to increase the degree of the polynomial to make it fit
the new sample. To do so, GREYCAT first regenerates d +1
samples in the interval covered by the current model, where
d is the degree of the current model. Then, a polynomial
regression of degree d +1 is computed on those points along
the new one. If the resulting regression reports an error higher
than ε

2d+1 , then the model is kept, otherwise, the process is re-
peated by incrementing the degree until either a fitting model
is found or a maximum degree is reached. If the maximum
degree is reached, the former model is stored and a new model
is initiated. The resulting model is quite compact, and thus
faster to read, but at the expense of an important insertion
cost.

Unlike FLI and SWAB, there can be errors higher than ε

for the inserted samples, as the errors are not computed on
raw samples but on generated ones, which may not coincide.
Furthermore, the use of higher-degree polynomials makes the
implementation subject to overflow: to alleviate this effect,
the inserted values are normalized.

4.4 Experimental Settings
For experiments with unidimensional data—i.e. memory and
throughput benchmarks—we set ε = 10−2. The random sam-
ples used in those experiments are following a uniform dis-
tribution in [−1,000;1,000]: it is very unlikely to have two
successive samples with a difference lower than ε, hence re-
flecting the worst case conditions for FLI. For experiments
on location data, and unless said otherwise, we set ε = 10−3

for FLI, SWAB and Greycat. For GREYCAT, the maximum
degree for the polynomials is set to 14. For POI computations,
we use tmin = 5 min and a diameter of Dmax = 500 m for both
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Figure 7: CDF of latitude and longitude drifts of successive location samples in CABSPOTTING and PRIVAMOV datasets. From
one location sample to the next, latitude and longitude deviations are small.

Table 1: Mobile devices used in the experiments.
Model OS CPU Cores RAM Storage
Lenovo Moto Z Android 8 Snapdragon 820 4 4GB 32GB
Fairphone 3 Android 11 Snapdragon 632 8 4GB 64GB
Pixel 7 Pro Android 13 Google Tensor G2 8 12GB 128GB
iPhone 12 iOS 15.1.1 A14 Bionic 6 4GB 64GB
iPhone 14 Plus iOS 16.0.1 A15 Bionic 6 6GB 128GB

the standard approach and D&S. Similarly, we use δ = 500 m
for PROMESSE: it should remove all the POIs from the traces.

The experiments evaluating the throughput were repeated
four times each and the average is taken as the standard de-
viation was low. All the other experiments are deterministic
and performed once.

4.5 Implementation Details
We implemented INTACT using the Flutter Software Develop-
ment Kit (SDK) [20]. Flutter is Google’s UI toolkit, based on
the Dart programming language, that can be used to develop
natively compiled apps for Android, iOS, web and desktop
platforms (as long as the project’s dependencies implement
cross-compilation to all considered platforms). Our imple-
mentation includes FLI, its storage competitors, the POI-
attack with and without our D&S extension, and PROMESSE.
This implementation is publicly available [5].

For our experiments, we also implemented several mobile
applications based on this library. To demonstrate its ca-
pability of operating across multiple environments (models,
operating systems, processors, memory capacities, storage
capacities), all our benchmark applications were installed and
executed in the listed devices, as summarized in Table 1.

5 Experimental Results

In this section, we evaluate our implementation of FLI on
Android and iOS to show how it can enable in-situ data man-
agement on mobile devices. We first show that using FLI
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Figure 8: Insertion of 1,000,000 samples, random (R) or
constant (C), in both SQLITE and FLI.

paves the way for storing a tremendous quantity of samples,
by comparing it to SQLITE and reporting its performances
when storing samples generated by the accelerometer. Then,
we deploy the PROMESSE LPPM directly on mobile thanks
to FLI. Still, on the mobile phones, we evaluate traces using
our POI-attack Divide & Stay (D&S): to assess the precision
of the GPS time series modeled by FLI, and the privacy gain
of the LPPM.

5.1 Memory Benchmark
As there is no temporal database, such as INFLUXDB, avail-
able on Android, We first compare FLI’s performances with
SQLITE, as it is the only database natively available on An-
droid.

To compare the memory consumption of the two ap-
proaches, two same operations are performed with both
SQLITE and FLI: (i) the incremental insertion of random
samples and (ii) the incremental insertion of constant samples.
The memory footprint on the disk of both solutions is com-
pared when storing timestamped values. As FLI models the
inserted samples, random values are the worst-case scenario it
can face, while inserting constant values represents the ideal
one. One million samples are stored and, for every 10,000 in-
sertion, the size of the file associated with the storage solution
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is saved. The experiments are done with a publicly available
application [7].

Figure 8 depicts the memory footprint of both approaches.
On the one hand, the size of the SQLITE file grows linearly
with the number of inserted samples, no matter the nature
(random or constant) of the samples. On the other hand, the
FLI size grows linearly with random values, while the size
is constant for constant values. In particular, for the constant
values, the required size is negligible. The difference between
vanilla SQLITE and FLI is explained by the way the model
is stored: while SQLITE optimizes the way the raw data is
stored, FLI is an in-memory stream storage solution, which
naively stores coefficients in a text file. Using more efficient
storage would further shrink the difference between the two.
As expected, the memory footprint of a data stream storage
solution outperforms the one of a vanilla SQLITE database in
the case of stable values. While random and constant values
are extreme cases, in practice data streams exhibit a behavior
between the two scenarios which allows FLI to lower the
memory required to store those data streams.

Beyond the above synthetic dataset, we compare SQLITE
and FLI to store the entire PRIVAMOV dataset (7.2GB). FLI
only requires 25MB compared to more than 5GB for SQLITE,
despite the naive storage scheme used by FLI. Furthermore,
on mobile devices, loading the raw dataset in memory crashes
the application, while FLI fits the whole dataset into mem-
ory (cf. Table 1).

5.2 Throughput Benchmark

We compare FLI with its competitors among the temporal
databases: SWAB and GREYCAT. We study the throughput of
each approach, in terms of insertions and readings per second.
For the insertions, we successively insert 1M random samples
in the storage solution (random values are used as a worst-
case situation for FLI, due to its way of modeling data). For
the reads, we also incrementally insert 1M samples before
querying 10,000 random samples among the inserted ones.
GREYCAT is an exception: due to its long insertion time, we
only insert 10,000 random values and those values are then
queried. Our experiment is done using a publicly available
application [8].

Figure 9 shows the throughput of the approaches for se-
quential insertions and random reads. Note the logarithmic
scale. On the one hand, FLI drastically outperforms its com-
petitors for the insertions: it provides a speed-up from ×133
against SWAB up to ×3,505 against GREYCAT. The inser-
tion scheme of FLI is fast as it relies on a few parameters.
On the other hand, GREYCAT relies on a costly procedure
when a sample is inserted: it tries to increase the degree of
the current model until it fits with the new point or until a
maximum degree is reached. GREYCAT aims at computing a
model as compact as possible, which is not the best choice for
fast online insertions. While SWAB performs better, it cannot
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Figure 9: Throughput for insertions and reads using FLI,
SWAB, and GREYCAT (log scale). FLI drastically outper-
forms its competitors for insertions and reads.

compare to FLI because of the way SWAB inserts a sample:
when its sliding window is full and a new sample does not fit
the current model, a costly bottom-up approach is triggered
over the entire window.

For the reads (Fig. 9b), FLI also outperforms SWAB. Our
investigation reports that the gain reported by FLI largely
benefits from the time index it exploits to fetch the models:
SWAB browses the list of models sequentially until the good
model is found while FLI relies on a dichotomy search, both
lists having roughly the same size as random samples were
added. SWAB has a complexity linear in the size of the
models’ list, while FLI has a logarithmic one. GREYCAT
has the same approach as SWAB and this is why it is not
represented in the results: with only 10,000 insertions instead
of 1M, its list of models is significantly smaller compared to
the others, making the comparison unfair. Nevertheless, we
expect GREYCAT to have a better throughput as its model list
shall be shorter.

Note that those results have been obtained with the worst-
case: random samples. Similarly unfit for FLI are periodical
signals such as raw audio: our tests show a memory usage
similar to random noise. Because FLI leverages linear in-
terpolations, it performs best with signals that have a linear
shape (e.g. GPS, accelerometer). We expect SWAB to store
fewer models than FLI thanks to its sliding window, resulting
in faster reads. However, the throughput obtained for FLI is
minimal and FLI is an order of magnitude faster than SWAB
for insertions, so it does not make a significant difference.
We can conclude that FLI is the best solution for storing an
unbounded stream of samples on mobile devices.

5.3 Privacy Benchmark

5.3.1 Location privacy

Location data is not only highly sensitive privacy-wise, but
also crucial for location-based services. While LPPMs have
been developed to protect user locations, they are generally
used on the server where the data is aggregated. The data
is thus exposed to classical threats, such as malicious users,
man in the middle, or database leaks. To avoid such threats,
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the best solution is to keep the data in the device where it
is produced until it is sufficiently obfuscated to be shared
with a third party. With GPS data, this protection mechanism
must be undertaken by a device-local LPPM. Evaluating
the privacy of the resulting trace must also be performed
locally, by executing attacks on the obfuscated data. Both
processes require storing all the user mobility traces in the
mobile device. While existing approaches have simulated this
approach [26], no real deployment has ever been reported. In
this section, we show that using FLI enables overcoming one
of the memory hurdles of constrained devices. We use FLI to
store entire GPS traces in mobile devices, execute POI attacks,
and protect the traces using the LPPM PROMESSE [37].

PROMESSE [37] is an LPPM that intends to hide POIs
from a mobility trace by introducing a negligible spatial error.
To do so, PROMESSE smooths the trajectories by replacing
the mobility trace with a new one applying a constant speed
while keeping the same starting and ending timestamps. The
new trace T ′ is characterized by the distance δ between two
points. First, additional locations are inserted by considering
the existing locations one by one in chronological order. If
the distance between the last generated location T ′[i] and
the current one T [c] is below δ, this location is discarded.
Otherwise, T ′[i+ 1] is not defined as the current location
T [c], but the location between T ′[i] and T [c], such that the
distance between T ′[i] and T ′[i+1] is equal to δ. Once all the
locations included in the new mobility trace are defined, the
timestamps are updated to ensure that the period between the
two locations is the same, keeping the timestamps of the first
and last locations unchanged. The resulting mobility trace
is protected against POI attacks while providing high spatial
accuracy.

Our experiments are performed using a publicly available
application [6].

Enforcing privacy on CABSPOTTING Using FLI, we store
the entire CABSPOTTING dataset’s latitudes and longitudes in
memory, using both ε = 10−3 and ε = 2×10−3 (representing
an accuracy of approximately a hundred meters). For each
user, we compute the gain in terms of memory we save by
modeling the dataset instead of storing the raw traces.

Figure 10 reports on the gain distribution as a CDF along
with the average gain on the entire dataset. One can observe
that most of the user traces benefit from using FLI, and FLI
provides an overall gain of 21% for ε = 10−3 on the entire
dataset, and a gain of 47.9% for ε = 2×10−3. Nonetheless,
the mobility of a few users imposes an important cost: for
them, using FLI is counter-productive. Fortunately, this does
not balance out the gain for the other users.

To better understand how the ε parameter introduced by
FLI affects the utility of the resulting traces, we study the
POIs inferred from the modeled traces. We compute the POIs
of the trace both with and without using FLI. To estimate
the relevance of the obtained POIs, we compute the distance
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Figure 10: Memory gain distribution when storing CABSPOT-
TING with FLI. Using FLI with ε = 10−3 reports on a gain of
21%, while ε = 2×10−3 reaches a gain of 48%.

of each POI reported while using the trace modeled by FLI
to the closest POI among the POIs in the raw trace. Fig-
ure 11 depicts the distribution, as a CDF, of this distance
between "modeled" and "raw" POIs. Figure 11a shows that
the distance is short: with ε = 10−3, 99.5% of the distances
are lower than 2,425 meters and 99% are lower than 1,700
meters. Figure 11b zooms on this distribution, focusing on
distances lower than 1,000 meters. With ε = 10−3, 90% of
the obtained POIs using FLI are at a distance lower than 510
meters to a POI inferred from the raw trace. By construction,
POIs are the center of spheres of a diameter of 500 meters
where the user has stayed more than 5 minutes. The vast
majority of the obtained POIs using FLI being within 500
meters of raw POIs, which means that FLI delivers relevant
approximations. With ε = 2× 10−3, 90% of the obtained
POIs using FLI are at a distance lower than 826 meters to a
POI inferred from the raw trace: the gain in memory has an
impact on the utility of the resulting trace.

Figure 12 reports on the sensibility analysis of ε, both in
terms of gains and distances. As expected, the higher ε, the
better the gains, but the longest the distances. Regarding the
gains (Fig. 12a), a low ε can induce a memory overhead. In-
deed, if the model is used only for one data point, it generates
a memory overhead similar to Figure 8, in this case, 50%.
We, therefore, recommend using ε = 10−3 as the minimal
tolerated error to observe a gain. Regarding the distances,
Figure 12b reports on the distribution of distances below
1,000 meters, as the higher values follow the same tendency
as Figure 11a. Except for a few extreme values, most of the
distances remain short, even for high ε values.

Processing Benchmark For dense datasets, e.g. with more
than two GPS samples per second, the gain becomes even
more significant. For example, storing the entire PRIVAMOV
dataset using FLI with ε = 10−3 results in a memory gain of
99.87%. Compared to sampling, FLI stores all the samples,
instead of discarding a part of them. However, the large
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Figure 11: Distances distribution when using FLI on CAB-
SPOTTING. The distances are computed between the POIs
obtained using the modeled traces and their closest counter-
parts, obtained with the raw traces. Except for a few extreme
values, the values are close: 90% of the POIs are at a distance
lower than 510 meters from the ground truth. The use of FLI
does not alter the utility of the traces.
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Figure 12: Distances distribution for different ε when using
FLI on CABSPOTTING. Distances and memory gain are com-
puted from the modeled traces with different values for ε.
The higher ε, the higher the gain, but the longer the distances
between the inferred and raw POI.
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Table 2: Computation times of raw POIs for PRIVAMOV
user 1 on different platforms. Divide & Stay (D&S) is at
least 100 times faster than state-of-the-art approaches.

Platform POI-attack D&S Speed-up
Desktop 59 min 20 s 32 s ×111

iOS 1 h 00 min 01 s 22 s ×164
Android 1 h 58 min 04 s 59 s ×120

number of samples can be a hindrance to many approaches,
including the extraction of POI. To be able to port LPPMs
onto constrained devices, other bottlenecks of the systems
should be resolved, in addition to storage.

For example, computing POIs with the traditional POI
attacks may lead to unpractical computation time. Our pre-
liminary investigation reported that computing the POIs of the
user 1 of PRIVAMOV takes 2hours: computing the POIs for
the entire dataset is far too costly. We cannot expect end-users
to execute processes with such computation time on their
mobile phone: while FLI has removed the memory constraint,
computation time is still a hurdle. Divide & Stay is a way,
in this case, to decrease the complexity of POI computation.
Table 2 displays PRIVAMOV user 1 POIs’ computation time
on different platforms. It shows that applying Divide & Stay
to the user 1 mobility trace decreases the computation from
2hours to 59seconds on Android, providing a ×120 speed-
up; speed gain even reaches ×164 on iOS, computation time
decreasing from 1hour to 22seconds. Divide & Stay makes
the in-situ use of POI attacks and the corresponding LPPM
possible.

In addition to speed, the quality of the inferred POIs is
the most salient concern about Divide & Stay. We assess the
quality by computing the distances to the POIs obtained from
the POI-attack on CABSPOTTING. We choose CABSPOTTING
because computing it on PRIVAMOV is prohibitive in terms
of computation time. Figure 13 depicts the distribution of the
distances below 100 meters: more than 68% are the same and
90% of the POIs are at a distance lower than 22 meters from
actual ones. Therefore, Divide & Stay provides an important
speed-up without altering the quality of POIs. Note that FLI
was not used in this case, as the performances of Divide & Stay
are orthogonal to the use of a temporal database to model the
samples.

Bringing back privacy to the user. By using both FLI and
D&S we can perform POI-attacks and use LPPMs directly
on the user’s device. We consider the POIs of user 0 of
CABSPOTTING with and without FLI, D&S, and PROMESSE,
see Table 3.

The use of FLI and D&S alters the number of POIs, which
explains the extreme values obtained in the distribution of the
distances (Fig. 11 and 12b): it corresponds to POIs that have
no counterpart and may be far away from other POIs. The use
of D&S corroborates the results of Figure 13: an important
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Figure 13: Distances distribution when using Divide & Stay
on CABSPOTTING. The distances between the POIs are ob-
tained using Divide & Stay and their closest counterparts, ob-
tained with the traditional POI attack. Except for a few ex-
treme values, the values are close: more than 68% are the
same and 90% of the POIs are at a distance lower than 22
meters than a "real" one.

Table 3: Impact of FLI and D&S on the number of inferred
POIs from user 0 trace in CABSPOTTING. Thanks to FLI
and D&S, PROMESSE succeeds to protect user privacy at the
edge.

without PROMESSE with PROMESSE︷ ︸︸ ︷ ︷ ︸︸ ︷
Algorithm Raw POIs FLI Raw POIs FLI
POI-attack 30 31 0 0

D&S 30 30 0 0
POI-attack ∩ D&S 21 20 - -

part of the inferred POIs look similar to the raw ones. On the
other hand, even though the number of POIs is similar, none
of the POIs obtained using FLI is equal to the original one,
with or without D&S, despite being very close.

To conclude, our implementation of the data stream stor-
age solution, FLI, enables the effective deployment of more
advanced techniques, such as EDEN [26] or HMC [29]. This
may require new algorithms, such as Divide & Stay, but it
enables in situ data privacy protection before sharing any
sensitive information. We believe that this is a critical step
forward towards improving user privacy as all LPPMs experi-
ments until today were either centralized or simulated.

5.4 Stability Benchmark

We further explore the capability of FLI to capture stable mod-
els that group as many samples as possible for the longest
possible durations. Figure 14 reports on the time and the
number of samples covered by the models of FLI for the
CABSPOTTING and PRIVAMOV datasets. One can observe
that the stability of FLI depends on the density of the con-
sidered datasets. While FLI only captures at most 4 samples
for 90% of the models stored in CABSPOTTING (Fig. 14a),
it reaches up to 2,841 samples in the context of PRIVAMOV
(Fig. 14c), which samples GPS locations at a higher frequency
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Figure 14: Stability of the inferred models when using FLI
on PRIVAMOV and CABSPOTTING with ε = 10−3.

than CABSPOTTING. This is confirmed by our observations of
Figures 14b and 14d, which report a time coverage of 202 ms
and 3,602 ms for 90% of FLI models in CABSPOTTING and
PRIVAMOV, respectively. Given that PRIVAMOV is a larger
dataset than CABSPOTTING (7.2 GB vs. 388 MB), one can
conclude that FLI succeeds to scale with the volume of data
to be stored.

5.5 Beyond Location Streams
While INTACT explores the use of FLI for location streams,
we believe that FLI can also be used for other types of data
streams, which can threaten user privacy. We, therefore, be-
lieve that LPPMs can benefit from FLI to store other types of
data streams, such as timestamps, accelerations, or any other
signals captured by IoT devices.

Storing timestamps In all the previous experiments, the
timestamps were not modeled by FLI, as we expect the user
to query the time at which she is interested in the samples.
However, it is straightforward to store timestamps using FLI:
we store couples (i, ti) with ti being the ith inserted timestamp.
Unlike other sensor samples, the nature of the timestamps
makes them a good candidate for modeling: their value keeps
increasing in a relatively periodic fashion. To assess the
efficiency of FLI for storing timestamps, we stored all the
timestamps of the user 1 of the PRIVAMOV dataset with
ε = 1—i.e., we tolerate an error of one second per estimate.
The 4,341,716 timestamps were stored using 26,862 models
for a total of 80,592 floats and an overall gain of 98%, with
a mean average error (MAE) of 0.246 second. Hence, not
only the use of FLI results in a dramatic gain of memory, but
it provides very good estimations.

Storing accelerations To assess that FLI is suitable for stor-
ing unbounded data streams, we use FLI to store accelerome-
ter samples. While storing random samples is of little benefit,
accelerometer samples are used in practice to model user mo-
bility. Coupled with other sensors’ data, such as GPS values,
we can infer if the user is walking, biking or taking a car for
example [16, 41, 44]. However, the accelerometer produces
more than 15 samples per second, hence challenging the stor-
age of such a data stream. Our implementation is publicly
available [4].

We store 10,000 consecutive accelerometer samples with
FLI and, for every 100 insertions, we report on the size of
the file and the relative gain. We use FLI with ε = 1 as the
accelerometer has high variability, even when the mobile is
stationary. FLI reports a constant memory whenever station-
ary, and a small gain (>×1.39) when walking. FLI is thus a
suitable solution to store data streams produced by the sensors
of mobile devices.

We also observed that the performances of FLI may differ,
depending on device configurations (cf. Table 1). As older
hardware’s accelerometers are noisier and produce fewer sam-
ples than newer sensors, FLI’s gain appears as higher on
latter-generation hardware. For instance, inserting 10k sam-
ples with a Pixel 7 Pro (Android 13) smartphone is completed
in 21 seconds, while doing the same on a Moto Z (Android 8)
lasts for 49 seconds. Regarding iOS, latest iPhone 14 Plus
(iOS 16.0.1) takes up 1 minute 39 seconds to store same sam-
ples count.

6 Perspectives

While the combination of FLI and D&S succeeds to embed
LPPMs within mobile devices and increasing user privacy, our
results might be threatened by some variables we considered.

The hardware threats relate to the classes of constrained de-
vices we considered. In particular, we focused on the specific
case of smartphones, which is the most commonly deployed
mobile device in the wild. To limit the bias introduced by
a given hardware configuration, we deployed both FLI and
D&S on both recent Android and iOS smartphones for most of
the reported experiments, while we also considered the impact
of hardware configurations on the reported performances.

Another potential bias relates to the mobility datasets we
considered in the context of this paper. To limit this threat, we
evaluated our solutions on two established mobility datasets,
CABSPOTTING and PRIVAMOV, which exhibit different char-
acteristics. Yet, we could further explore the impact of these
characteristics (sampling frequency, number of participants,
duration and scales of the mobility traces). Beyond mobility
datasets, we could consider the evaluation of other IoT data
streams, such as air quality metrics, to assess the capability
of FLI to handle a wide diversity of data streams. To miti-
gate this threat, we reported on the storage of timestamps and
accelerations in addition to 2-dimensional locations.

14



Submitted to the Journal of Systems Research (JSys) 2023

Although FLI increases storage capacity through data mod-
eling, it might still reach the storage limit of its host device if
using a constant ε parameter (which drives the compression
rate). To address this issue, we could dynamically adapt data
compression to fit a storage size constraint. Toward this end,
An et al. [2] propose an interesting time-aware adaptive com-
pression rate, based on the claim that data importance varies
with its age.

Beyond the current implementation reported in this article,
one could envision a native integration of INTACT in the
Android and iOS operating systems to enable LPPMs for any
legacy application. This technical challenge mostly consists
of packaging FLI and D&S as a new LocationProvider
in Android [19] and a new CLLocationManager in iOS [9].
Interestingly, such a native integration of INTACT can allow
end users to configure the list of enabled LPPMs and their
related settings through the operating system control panel.

The increased storage capacity offered by FLI not only
allows for unlimited mobility data storage but also allows
applying in-situ LPPMs requiring lots of data to work, for in-
stance, those offering k and l-anonymity guarantees by hiding
user among others [28, 38].

Our implementations of FLI and D&S may suffer from
software bugs that affect the reported performances. To limit
this threat, we make the code of our libraries and applications
freely available to encourage the reproducibility of our results
and share the implementation decisions we took as part of the
current implementation.

Finally, our results might strongly depend on the param-
eters we pick to evaluate our contributions. While FLI per-
formances (gain, memory footprint) vary depending on the
value of the ε parameter, we considered a sensitive analysis of
this parameter and we propose a default value ε = 10−3 that
delivers a minimum memory gain that limits the modeling
error.

7 Conclusion

While LBS are mainstream applications, they are also a major
threat to user privacy if user locations are not properly pro-
tected. While LPPMs are a promising solution to protect user
locations, they are not widely deployed in practice, mostly be-
cause of their high computational cost, which is prohibitive on
mobile devices. We, therefore, proposed INTACT, a software
framework that enables LPPMs on mobile devices by lever-
aging the increased storage capacity of mobile devices. The
contributions of this INTACT are threefold: we introduced
i) a compact storage system based on a piece-wise linear
model dubbed FLI, ii) a new way to compute POIs, called
Divide & Stay, and finally iii) demonstrated how FLI could
unlock device-local privacy protections on time series while
using machine learning. Our extensive evaluations, based on
real mobile applications available for Android and iOS, high-
light that FLI drastically outperforms its competitors in terms

of insertion throughput—FLI is more than 130 times faster
than the traditional SWAB—and read throughput—FLI reads
1,800 times faster than SWAB. While FLI can store tremen-
dous data on mobile devices, Divide & Stay provides an im-
portant speed-up to reduce the total computation time of POI
attacks by several orders of magnitude, making them suitable
for mobile computing. By sharing this INTACT framework
with mobile developers, our contribution is an important step
forward towards the real deployment of LPPMs and, more
generally, privacy-friendly data-intensive workloads at the
edge (e.g., federated learning on mobile phones).
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A Methodological Transparency & Reproducibility Appendix

A.1 Tools setup
Our benchmarking applications are developed with Flutter, an open-source framework by Google for building multi-platform
applications (installation instructions: https://docs.flutter.dev/get-started/install); we used Flutter version 3.3.4:
to ensure you are using the correct version, check the flutter --version command output:

user@computer:~$ flutter --version
Flutter 3.3.4 • channel stable • https://github.com/flutter/flutter.git
Framework • revision eb6d86ee27 • 2022-10-04 22:31:45 -0700
Engine • revision c08d7d5efc
Tools • Dart 2.18.2 • DevTools 2.15.0

To run the applications, you can use smartphones (i.e. real Android or iPhone devices) or emulators, though performances will
be poorer with the latter. In both cases, you will need to install the Android Studio IDE: https://developer.android.com/
studio.

If you own an Android smartphone, it can be used to test our applications: you need to plug it into your computer using
USB and set up development mode: https://developer.android.com/studio/run/device. Otherwise, Android Studio
contains the Android emulator component: if you need to set up one emulator, instructions can be found here: https:
//developer.android.com/studio/run/emulator.

In both situations, your device should appear in the adb devices command output:

user@computer:~$ adb devices
List of devices attached
13241JEC208547 device

A.2 Applications
Results and figures presented in this article were obtained using four experimental applications:

• Accelerometer [4]

• Benchmarking memory space [7]

• Benchmarking throughput [8]

• In-situ LPPM [6]

A.2.1 TemporalBDDFlutter

(installation time: 2 minutes, run experiment duration: 2 minutes)
The core library of our contribution, temporalbddflutter includes all classes used to model data; this package also includes

a toy application modeling accelerometer data with FLI in real-time.
To run the experiment, click the “Launch XP: no movement” button (and do not move your phone if it is a physical device).

This will start listening to your device’s accelerometer and store its values in FLI models. The “no movement” part of this
experiment shows that FLI saves memory space by modeling data instead of storing discrete records, providing an important
space gain. You can also try the “move” experiment while moving your phone around: you will see that size gain is lower than
the previous experiment, due to data randomness. This experiment has values count and time bounds to stop it automatically
after 10k inserted values or 2 elapsed minutes, depending on which limit is reached first.

A.2.2 Benchmarking memory space

(installation time: 2 minutes; run experiment duration: 5 minutes)
This application allows comparing data sizes of random or constant values, using an SQLITE database or a FLI model.
This application allows you to store 1 million values in the phone’s memory, using either random or constant values, and either

using SQLITE or FLI; once an experiment is finished, you can read the size of the file in which values are stored. It demonstrates
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that FLI modeling performances are approximately the same as SQLITE regarding random values, but are superior while storing
constant values.

Results obtained by this benchmark are reported in Figure 8.

A.2.3 Benchmarking throughput

(installation time: 2 minutes; run experiment duration: 10 minutes)
This application allows comparing speeds of inserting or reading values, using FLI, SWAB or Greycat modeling.
Results obtained by this benchmark are reported in Figure 9.

A.2.4 In-situ LPPM

(installation time: 10 minutes; run experiment duration: 3 hours)
This application allows you to model location datasets when varying the tolerated errors and to execute the in-situ POI search

on stored data.
As it uses existing datasets (namely CABSPOTTING and PRIVAMOV), you need to load those to your test device before running

experiments:

1. Download datasets from https://drive.google.com/file/d/1Z1ccze31-uCfmiSouxp6SwhFzz5ihtfS

2. Extract them

3. Upload dataset files on your phone in the app directory using the file device explorer (documentation: https://developer.
android.com/studio/debug/device-file-explorer) (app path is something alike
/data/data/package_name.in_situ_lppm/files, you’ll have to create a datasets folder there)

4. Run experiments

Since those experiments compute POIs on entire datasets, they take some time to run; runtime metrics we obtained from a
Pixel 4a device (Android 13) are summarized in Table 4.

Experiments output results on the phone directly, in the directory results/ (at the same place where you stored the datasets).
Results are then used to plot Figures 11, 12 and 13.

Table 4: Computation times of LPPM experiments on a Pixel 4a using Android 13.

Experiment Description Elapsed time

CABSPOTTING: storage +
POI + Promesse

Applies Promesse on each CABSPOTTING user, compares Promesse-
computed POIs with raw POIs 3 min 35 s

CABSPOTTING: changing
the error

Applies Promesse on each CABSPOTTING user with varying tolerated
error (0.0001, 0.0005, 0.001, 0.002, 0.005, 0.01), compares Promesse-
computed POIs with raw POIs

21 min 07 s

CABSPOTTING: using our
new POI attack

Computes POIs with D&S attack for each CABSPOTTING user, com-
pares results with raw POIs 3 min 55 s

Compute POI on
PRIVAMOV user #1

Computes POIs with D&S attack for first PRIVAMOV’s user, compares
results with raw POIs 1 h 47 min

Load PRIVAMOV full
dataset Model all PRIVAMOV’s users with FLI modelling 6 min 19 s
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