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Abstract
Exploration in the absence of a concrete task is a
key characteristic of autonomous agents and vital
for the emergence of intelligent behaviour. Var-
ious intrinsic motivation frameworks have been
suggested, such as novelty seeking, surprise max-
imisation or empowerment. Here we focus on
the latter, empowerment, an agent-centric and
information-theoretic measure of an agent’s per-
ceived influence on the world. By considering im-
proving one’s empowerment estimator – we call
it empowerment gain (EG) – we derive a novel
exploration criterion that focuses directly on the
desired goal: exploration in order to help the agent
recognise its capability to interact with the world.
We propose a new theoretical framework based on
improving a parametrised estimation of empower-
ment and show how it integrates novelty, surprise
and learning progress into a single formulation.
Empirically, we validate our theoretical findings
on some simple but instructive grid world envi-
ronments. We show that while such an agent is
still novelty seeking, i. e. interested in exploring
the whole state space, it focuses on exploration
where its perceived influence is greater, avoiding
areas of greater stochasticity or traps that limit its
control.

1. Introduction
In reinforcement learning (RL) we tend to give an agent
a specific task to solve, and use exploration heuristics to
speed up training. While these heuristics may be useful, bio-
logical systems have a more efficient approach. Even when
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faced with no concrete task, natural autonomous agents (like
children) explore the world playfully to acquire new skills
that may be used later. This exploratory behaviour is an au-
tonomous and active endeavour guided by intrinsic motiva-
tion which forms the core of a system for task-independent
learning (Oudeyer et al., 2007; Oudeyer & Kaplan, 2009).

Intrinsic motivations have been formalised in RL literature
in various ways (Aubret et al., 2019). In particular, the
concepts of novelty and surprise are believed to be vital to
exploration (Berlyne, 1960; Barto et al., 2013). We follow
a common distinction (Berlyne, 1960; Barto et al., 2013;
Xu et al., 2021) in defining the key difference of the terms,
although the formalisation of novelty is particularly difficult
and controversial. Following common intuition, novelty
may be defined as being a statistical outlier; something
is completely novel if we have not seen it before. One
way this has typically been formalised in machine learning
(Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al.,
2017) is

Novelty(s) ∝ − log p(s), (1)

where p(s) models the visitation frequency of state s based
on previous experience.

However, not everything that is novel is necessarily surpris-
ing. And complex states may reveal something surprising
even after having encountered them often before. Surprise
(also called contextual novelty or curiosity) requires an in-
ternal world model that formulates an expectation about
the future. The deviation between these predictions and the
observed reality quantifies the amount of surprise. One way
to fomalize this is to use the the forward model’s prediction
pξ(st+1 | st, at) for computing the inverse likelihood of the
observation st+1 (Schmidhuber, 1991a; Lopes et al., 2012;
Stadie et al., 2015; Achiam & Sastry, 2017; Pathak et al.,
2017):

Surprise(st+1 | st, at) ∝ pξ(st+1 | st, at)−1. (2)

But just seeking novelty or surprise faces a problem. Con-
sider static TV noise: it is highly entropic and unpredictable,
hence remains highly surprising and novel. To address
this, it has been suggested to consider an agent’s learning
progress (Schmidhuber, 1991a; Storck et al., 1995; Lopes
et al., 2012; Achiam & Sastry, 2017; Pathak et al., 2019).
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Since collecting more data in this environment will not lead
to better prediction of the noisy observation, an explorer
should avoid these areas. We should rather track and op-
timize the learning progress of the agent, which has been
defined as

log pξ′(st+1 | st, at)− log pξ(st+1 | st, at) (3)

where ξ′ and ξ are the updated and old parameters, after cq.
before observing some new data. A related formulation of
learning progress can be derived from a Bayesian definition
of surprise (information gain) that similarly has been used
for exploration (Houthooft et al., 2016).

While learning progress is an important insight, we would
like to offer an alternative reason as to why the noisy TV
screen is uninteresting for an exploring agent: it is really the
failure of increasing its capability to interact with the world.
While improving one’s world model is an absolutely vital
part of that process, it alone is not sufficient – the goal is
not just to become a perfect simulator. Even a predictable
pattern (e. g. a movie) remains uninteresting without mean-
ingful interaction (e. g. TV remote) or without informing the
agent about how to act in the world. As another example,
consider an agent exploring a chair. It may not be necessary
to predict every nuance of its physical appearance, but it is
crucial to find out about its important practical uses such as
exploring which surface is suitable for sitting.

One formalism to measure an agent’s capability to inter-
act with the world is called empowerment (Klyubin et al.,
2005a;b). It is an information-theoretic concept that mea-
sures the maximal flow of information over an agent’s
perception–action loop. It is formally defined as the chan-
nel capacity between reachable terminal states S′ and the
possible action sequences A1:T over a horizon T :

ET (s) = max
A1:T

I(S′, A1:T | s) (4)

where I denotes the mutual information. Intuitively, an
agent is empowered if it can predictably reach many states,
and it has low empowerment if its actions have little to no
perceived influence on the world.

In this work, we propose a novel criterion for exploratory be-
haviour in autonomous agents which we call Empowerment
Gain (EG). Its goal can be stated as follows: in the absence
of a concrete task, an agent should take those actions in
the environment which provide the most information for
improving its empowerment estimator, i. e. it should take
those actions that maximise the increase in perceived influ-
ence over its environment after observing new data. New
experiences should help me recognise my capability to in-
teract with the world. We show how EG combines and puts
into relation common notions of novelty seeking, surprise
maximisation and learning progress in a single formulation.

This formulation takes into account an agent’s limitations in
actuation and sensation as well as inherent stochasticity of
the environment. We provide a number of illustrative exper-
iments in simple and discrete environments which support
our theoretical findings and provide some more intuition
about the EG criterion. In particular, we show how EG
guides an agent towards those areas of the state and action
space where it has more potential for improving its influence
in the world. Since EG considers an extended time horizon
T instead of a single time step, we show that it tends to
avoid inescapable traps in the environment that limit its fu-
ture control. Both of these behaviours cannot be achieved by
novelty seeking, surprise maximisation or learning progress
alone.

2. Background
2.1. Empowerment

Empowerment (Klyubin et al., 2005a;b; Salge et al., 2014)
is a measurement of an agent’s perceived control over its en-
vironment. It is defined in terms of an agent’s embodiment;
the coupling of sensors and actuators via the environment
(perception–action loop).

Definition 1 Empowerment for state s is defined as the
channel capacity between terminal state distribution S′ and
the possible action sequences A1:T over a time horizon T :

ET (s) = max
A1:T

I(S′, A1:T | s) (5)

= max
A1:T

[H(S′ | s)−H(S′ | s,A1:T )] (6)

= max
A1:T

[H(A1:T | s)−H(A1:T | s, S′)] (7)

where I denotes mutual information and H denotes entropy.

Interpreting the environment as a communication channel,
the agent finds a source distribution over action sequences
A1:T such that its sensors at time T +1 can recover the most
information about them. Writing the mutual information
as differences of entropies gives an intuitive understanding.
Interpreting eq. (6), empowerment finds balance between
diversity and predictability. It wants to maximise the di-
versity of reachable states (entropy of final states S′) while
still being able to predict the outcome when conditioned
on the taken action sequence. In highly stochastic environ-
ments, our empowerment will always be relatively small,
because even though we (accidentally) reach a lot of states,
we can not predict the outcome. By symmetry of mutual
information, in eq. (7) we want to maximise the diversity of
action sequences, but every action sequence should ideally
lead to a unique final state s′ such that the action sequence
can be recovered from first and final state. For discrete and
deterministic environments, empowerment simplifies signifi-
cantly and becomes proportional to the number of reachable
states within a horizon T and the source distribution learns
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how to reach those states uniformly. In this sense, we can
view an action sequence a1:T as a skill that transforms the
world state from s to s′ and our source distribution as a
distribution over those skills.

3. Empowerment Gain (EG)
In this section, we develop an exploration criterion based on
expected improvement of an agent’s empowerment estima-
tor. We show how it encapsulates and relates other intrinsic
motivations such as novelty seeking, surprise maximisa-
tion, learning progress and information gain. We start out
by looking at the components that make up empowerment
estimation:

ÊTθ (s) = max
ωφ(a1:T |s)

Eωφ(a1:T |s)pξ(sT+1|s,a1:T )
[

(8)

log pξ(sT+1 | s, a1:T )− log pφ,ξ(sT+1 | s)
]
.

This estimation consists of 3 distributions, the source dis-
tribution ωφ(a1:T | s), the transition or forward model
pξ(sT+1 | s, a1:T ) and the final state marginal distribu-
tion pφ,ξ(sT+1 | s) where we have split our parameters
θ = {φ, ξ}.

The idea of empowerment gain is that an agent should act
such that it maximises its expected improvement of its em-
powerment estimator. Concretely, in any given state s, it
should perform action a∗ such that it maximises its expected
improvement of its empowerment estimator ÊTθ (s) after up-
dating the parameters θ using the newly collected data d .
Formally, the objective is defined as

a∗ = argmax
a

Ed=(s,a,s′∼p(s′|s,a))

[
ÊTθ′(s)− ÊTθ (s)

]
(9)

where θ′ are the updated parameters after observing new
data d . By rewriting this objective in various ways, we
develop a deeper understanding and discover that novelty
seeking and learning progress of a forward or inverse model
are already contained as part of the EG objective.

3.1. Empowerment Gain in a Maximum Likelihood
Setting

Let us rewrite EG in a setting that is broadly applicable to
any parametrised estimate of one’s empowerment:

ÊTθ′(s)− ÊTθ (s) (10)

≈H
(
Sφ
′,ξ′

T+1

∣∣∣ s)−H
(
Sφ,ξT+1

∣∣∣ s) (11)

+ Eω∗
φ′ (a1:T |s)

[
(12)

KL(pξ′(sT+1 | s, a1:T ) || pξ(sT+1 | s, a1:T ))
]

where Sφ
′,ξ′

T+1 is defined by pdf∫
ω∗φ′(a1:T | s)pξ′(sT+1 | s, a1:T ) da1:T

where the approximation is relatively tight for small updates
of φ and ξ (for derivation see Appendix C). We see that
the empowerment estimate can be improved in two distinct
ways. First by (local) novelty seeking, i. e. by increasing
reachable state entropy (eq. (10)), which can be achieved by
either detecting new states or by realising how to reach them
more uniformly. Second, by improving the forward model
(learning progress) in eq. (12). Different to other methods
focussing on learning progress on a forward model, the di-
vergence between current and past forward model is put
into context by the empowerment-realising source distribu-
tion ωφ′(a1:T | s). That is, the improvement of the forward
model is weighted in so far as it helps the agent realise its
influence in the world. So even if learning progress of a for-
ward model is large, if it does not help the agent in attaining
states more reliably, empowerment gain may still be small.
Inversely, a small update in the forward model can still lead
to a large empowerment gain if the improved transition is
central to many skills (samples of ωφ′(a1:T | s)). Jointly
optimising these two terms results in a tradeoff between
novelty seeking and learning progress.

4. Experiments
In our experiments we investigated the exploratory be-
haviour of an EG-maximising agent in various simple but
illustrative grid world scenarios. We looked at the effect of
various types of action noise, the shape of the state space,
traps (sinks in the state space the agent cannot get out of)
and empowerment’s computation horizon. We compared
this to an agent maximising its information gain on a for-
ward model (IG explorer) and to a surprise-based explorer
maximising the prediction error (PE explorer). Our main
goal was to illustrate and compare what these exploration
criteria would do in a perfect information setting, but it
should be noted that efficient and scalable algorithms may
be developed on top of existing work on empowerment
approximation (Mohamed & Rezende, 2015; Karl et al.,
2019). This, however, is not the focus of our work. Thus,
for our purposes we remain in a simple grid world setting
that allows for exact computation of empowerment gain, in-
formation gain and closed-form solutions for model updates.
This setting also leads to the exploration algorithm (see Al-
gorithm 1 in Appendix A) where we made some simplifying
assumptions. In particular, when we explore, we first try
out each action an agent could take in the real world, update
our parametrised model(s), and compute either expected
empowerment gain or information gain. Then we only ex-
ecute and count the best action according to the respective
criterion. While this is impractical, we think this study is
very illustrative of the behaviour induced by the various
exploration criteria and gives and intuitive understanding of
the theoretical results of the previous section.
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Our grid worlds, built on top of MiniGrid (Chevalier-
Boisvert et al., 2018), have a discrete state space S and
action space A. The agent may perform five different ac-
tions that move to a neighbouring cell (left, right, up, down)
or keep the agent where it is (stay). An action that leads
into a wall has no effect on the agent’s position. As obser-
vations we use the global x and y coordinates unless stated
otherwise.

For estimating EG and IG, we maintain a Bayesian for-
ward model. For each cell, the forward model is realised
by a Categorical distribution with a Dirichlet prior. The
parametrisation of the forward model is, of course, essential
to the resulting behaviour of these exploration criteria and
should be taken into account when interpreting the results.
With our choice, the agent cannot generalise information
among states as would be the case with e. g. a neural net-
work. We use the iterative Blahut-Arimoto algorithm to
directly compute an empowerment estimate, including the
distribution parameters of the source ωφ(a1:T | s) and in-
verse model pψ(a1:T | s, sT+1). Information gain can be
computed in closed form since the Dirichlet distribution is
a conjugate prior to the Categorical distribution. For more
details, we refer to Appendix A.

4.1. Deterministic Environments

(a) IG. (b) EG.

(c) EG, horizon T = 1. (d) EG, horizon T = 2.

Figure 1: Comparison of state visitation frequencies of the
EG and IG explorer in deterministic environments.

We start out by discussing the fully observable and deter-
ministic setting. For IG, in every state an agent performs
each action uniformly which also leads to a uniform visi-
tation frequency of every state (see Figure 1a). In contrast,
rather than performing each action uniformly, the EG ex-
plorer, from any state, visits each reachable state uniformly.
This leads to a visitation frequency that qualitatively resem-
bles the empowerment landscape for the environment in

that more empowered states (centre of the room) are visited
more frequently during exploration than less empowered
states (bordering walls). Importantly, the EG explorer still
makes sure to visit every state and does not remain strictly
on high empowered states, it just shifts the exploration focus
towards them. This remains true for more complicated wall
structures and is also affected by the empowerment horizon
as shown in Figures 1c and 1d. Since a state being more
empowerment means having more ways to interact with
the world, exploring these states more thoroughly should in
general be more helpful for downstream tasks.

4.2. Sinks in the State Space

(a) Environment. (b) IG.

(c) EG, horizon T = 3.

EG-3

EG-2

EG-1

IG 1

1.16

0.84

0.6

Relative Lava
visitation frequency

(d) Comparison plot.

Figure 2: (b) IG does not avoid lava, its visitation frequency
skews away from the lava in so far as the random walk resets
randomly whenever the agent enters the lava. Similarly, EG
over horizon T = 1 cannot foresee and avoid the lava trap.
(c) EG over horizon T = 3 actively avoids the lava trap to
some extent. (d) shows how often lava states are visited
compared to all other states (normalized by the ratio of the
IG explorer).

What happens if we have detrimental states in the envi-
ronment that severely limit control? Avoiding such states
should generally be helpful for exploration. We investigated
the extreme scenario of perfect sinks where an agent, once
entered, cannot get out again. In our grid world, we model
these states as lava cells (Figure 2a). We can see in Fig-
ure 2b that, while the IG explorer skews away from the lava
cells to some degree, this is just due to the random walk
being reset randomly whenever an agent enters the lava. For
the EG explorer, avoidance of lava is actively pursued for
an empowerment horizon greater than 1. One may ask: why
is EG not fully avoiding the lava since the agent’s empower-
ment in this state is 0 as its actions have no influence at all?
This is because the lava cell is still a state in and of itself,
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and it is still more empowering to know that you can reach
that state more reliably. However, improving empowerment
after having entered a lava cell is impossible and hence the
increase of the estimated empowerment for the rest of the
trajectory is 0. That’s why a horizon of 1 is not enough
to realise the detrimental effect and longer horizon skew
more and more away from the lava as shown in Figure 2d.
Interestingly, a purely novelty seeking agent would still aim
for a uniform visitation frequency, visiting lava cells even
more frequently than the IG explorer.

4.3. Actions of Varying Reliability

Next, we investigated the influence of varying action noises,
i. e. in any state different actions are augmented with dif-
ferent level of noise. Concretely, when taking action a,
there is a probability pa that a random action a′ ∈ A is
performed instead. We share the same action noise model
for every state in the environment. For IG exploration, we
observe that the more noisy action is taken more frequently
(Figure 3). This is because occasionally we observe an un-
expected event which leads to a bigger change to the model
and thus to high information gain. Similarly, surprise-based
exploration (PE explorer) prefers the noisy action as well
because the prediction error for noisy actions remains larger
than for less noisy ones. Interestingly, expected EG skews in
the opposite direction, generally preferring the more reliable
actions as they have greater potential of increasing one’s
empowerment estimate. This effect augments the results we
found in the deterministic setting and also depends on the
empowerment’s horizon, which push the agent away from
the walls (see Figures 3b to 3d). Again, we argue that this
exploration behaviour is more desirable as exploring the
actions that have a more reliable effect should in general be
more helpful for interacting with the world.

4.4. State-Dependent Action Noise

Let us now look at state-dependent action noise, in which all
actions in one state share the same noise model, but differ
amongst different states. For the IG and PE explorer we
observe the same behaviour as in the deterministic setting,
as these criteria cannot see ahead enough; after all, all ac-
tions in any state have an identical effect (except next to
a wall). Conversely, we found that an EG explorer skews
towards the part of the state space with less noise (Figure 4).
While it still explores the whole state space, it focuses more
on areas with greater potential for influencing the world.
However, as with the previously discussed sinks (lava), EG
needs to be computed over at least a horizon of 2 in order to
realise that going towards the less noisy region helps us with
increasing our empowerment estimate to a greater degree.
For this experiment, we used a slightly different objective
that considered the impact of action sequences on the em-
powerment estimate instead of just an individual actions as

(a) IG, small noise. (b) EG, small noise.

(c) EG, medium noise. (d) EG, large noise.

Figure 3: Comparison of different action noises, there is no
noise for actions going down and right, but there is noise
going up (with probability pa) and left (with probability
2pa). (a) IG is much more attracted in performing the more
noisy actions. (b) When introducing a bit of noise, EG
prefers going to the bottom right, but still stays away from
the walls as in the deterministic setting. (c, d) When noise
on the actions is increased even further, at some point this
effect dominates.

we detail in Appendix B.

(a) IG. (b) EG, horizon T = 2.

Figure 4: (a) - (b) The left half of the room is without noise,
while the right half is augmented by linearly increasing
state-dependent action noise, i. e. the column right of the
center line has noise probability pa = 0.1 and the rightmost
column of the room pa = 0.4. State visitation frequency for
EG is skewed towards the less noisy part of the state space
while IG exploration cannot account for this effect.

5. Related work
Numerous ways of motivating exploration have been sug-
gested over the years. Among the first was Schmidhuber
(1991b) which based reward signals on prediction errors of
predictive models. This prediction error has been used in
various ways using function representation learning (Stadie
et al., 2015; Pathak et al., 2017). Focussing purely on pre-
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diction error has the downside of being attracted unpre-
dictable traps (static TV noise problem), where the error
remains large even if it has been observed countless times.
Hence, learning progress of a predictive model has been
suggested and formalised in various works (Schmidhuber,
1991a; Lopes et al., 2012; Stadie et al., 2015; Achiam &
Sastry, 2017). Houthooft et al. (2016) formulates learning
progress in a Bayesian setting as information gain. More
recently, ensembles of predictors have been used to form
some kind of internal disagreement metric as opposed to
directly comparing to the real world difference (Pathak et al.,
2019; Shyam et al., 2019; Sekar et al., 2020).

Different from these surprise based approaches, various
ways of novelty seeking have similarly been formalised over
the years. Bellemare et al. (2016) (extended by Ostrovski
et al. (2017)) proposed using a pseudo-count using density
estimation for novelty estimation in high-dimensional state
spaces. Tang et al. (2017) suggested a computationally sim-
ple but effective generalization of count-based approaches
using hashing. Lee et al. (2019) recast exploration as a prob-
lem of state marginal matching, where they aim to learn a
policy for which the state marginal distribution matches a
given target state distribution (often a uniform distribution).
Savinov et al. (2018) defines novelty through reachability
within a certain time horizon from observations in a mem-
ory.

However, there are also other exploration approaches based
on skill acquisition that are related to our method. Sharma
et al. (2019) encourages novel skill acquisition via mutual
information maximisation between skills and states. DIAYN
(Eysenbach et al., 2018) encourages exploration by incen-
tivising different skills that lead to distinguishable outcomes.
Empowerment (Klyubin et al., 2005a;b) as an intrinsic mo-
tivation has been gaining a more attention over the recent
years and various ways of approximation have been sug-
gested (Mohamed & Rezende, 2015; Gregor et al., 2016;
Karl et al., 2019; Zhao et al., 2021).

6. Conclusion
In this work, we propose a novel framework for embodiment
driven exploration. Building on the universally applicable
and information-theoretic measure of an agent’s perceived
influence in the world – empowerment – we suggest an
exploration criterion based on the expected improvement
of one’s estimation thereof. Theoretically, we show that it
captures and puts into relation many previously suggested
exploration criteria such as novelty seeking, surprise max-
imisation and learning progress. Different to the use of these
individual criteria, EG accounts for the agent’s current capa-
bilities and boundedness, and focuses directly on what we
are interested in – recognising one’s capability to interact
with the world. In various discrete grid world environments

featuring different noise models, we showcase our theoreti-
cal findings where an agent’s exploration is focused on areas
with greater potential for increasing its influence. For future
work, the focus will be on smart approximations that can
capture the spirit of EG while being scalable to scenarios of
interest for current state of the art research.

References
Achiam, J. and Sastry, S. Surprise-based intrinsic moti-

vation for deep reinforcement learning. arXiv preprint
arXiv:1703.01732, 2017.

Aubret, A., Matignon, L., and Hassas, S. A survey on
intrinsic motivation in reinforcement learning. arXiv
preprint arXiv:1908.06976, 2019.

Barto, A., Mirolli, M., and Baldassarre, G. Novelty or
surprise? Frontiers in psychology, 4:907, 2013.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul,
T., Saxton, D., and Munos, R. Unifying Count-Based
Exploration and Intrinsic Motivation. In Advances in
Neural Information Processing Systems 29, pp. 1471–
1479, 2016.

Berlyne, D. E. Conflict, arousal, and curiosity. 1960.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for openai gym. https://
github.com/maximecb/gym-minigrid, 2018.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
February 2018.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
Intrinsic Control. arXiv preprint arXiv:1611.07507, 2016.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., and Abbeel, P. Vime: Variational information
maximizing exploration. May 2016.

Karl, M., Becker-Ehmck, P., Soelch, M., Benbouzid, D.,
van der Smagt, P., and Bayer, J. Unsupervised Real-Time
Control through Variational Empowerment. In Interna-
tional Symposium on Robotics Research, 2019.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. Empow-
erment: A universal agent-centric measure of control.
In Evolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 1, pp. 128–135. IEEE, 2005a.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. All else
being equal be empowered. In European Conference on
Artificial Life, pp. 744–753. Springer, 2005b.

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid


Exploration via Empowerment Gain

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine,
S., and Salakhutdinov, R. Efficient exploration via state
marginal matching. 2019.

Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y.
Exploration in model-based reinforcement learning by
empirically estimating learning progress. In Neural Infor-
mation Processing Systems (NIPS), 2012.

Mohamed, S. and Rezende, D. J. Variational information
maximisation for intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing
Systems, pp. 2125–2133, 2015.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R.
Count-based exploration with neural density models. In
International conference on machine learning, pp. 2721–
2730. PMLR, 2017.

Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation?
a typology of computational approaches. Frontiers in
neurorobotics, 1:6, 2009.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. Intrinsic
motivation systems for autonomous mental development.
IEEE transactions on evolutionary computation, 11(2):
265–286, 2007.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
pp. 2778–2787. PMLR, 2017.

Pathak, D., Gandhi, D., and Gupta, A. Self-supervised ex-
ploration via disagreement. In International Conference
on Machine Learning, pp. 5062–5071. PMLR, 2019.

Salge, C., Glackin, C., and Polani, D. Empowerment–an
introduction. In Guided Self-Organization: Inception, pp.
67–114. Springer, 2014.

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Polle-
feys, M., Lillicrap, T., and Gelly, S. Episodic curiosity
through reachability. arXiv preprint arXiv:1810.02274,
2018.

Schmidhuber, J. Curious model-building control systems. In
Proc. international joint conference on neural networks,
pp. 1458–1463, 1991a.

Schmidhuber, J. A possibility for implementing curiosity
and boredom in model-building neural controllers. In
Proc. of the international conference on simulation of
adaptive behavior: From animals to animats, pp. 222–
227, 1991b.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised

world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K.
Dynamics-aware unsupervised discovery of skills. arXiv
preprint arXiv:1907.01657, 2019.
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A. Experiments
Algorithm 1 describes the exploration procedure in pseu-
docode form. We usually perform just one long rollout
without resetting the environment, however in the scenario
with lava, we reset the agent randomly once the agent is
stuck (the agent can not observe this reset). Overall, the
agent takes 50, 000 steps in the environment in a whole
experiment. For IG exploration the algorithm works analo-
gously, but naturally we compute information gain instead
of empowerment gain in line 11. To limit the effect of ran-
domness in stochastic environments, we collect 10 instead
of just 1 sample in line 8 to collect data for the model up-
date. For all experiments, we executed 10 separate runs to
ensure reproducible results. As the results are quite stable
across runs and our results are mostly qualitative in nature,
we picked representative plots from individual runs mostly
at random. Where quantitative measures are mentioned,
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Algorithm 1 Exploration Algorithm

1: Initialise forward model m = pξ(sT+1 | s, a1:T ) with
Dirichlet(α) prior, α = 0.01.

2: for each episode do
3: s = env.reset()
4: for t=1..T do
5: empow = blahut_arimoto(m)
6: for a in Actions do
7: # Try out all actions
8: s’ = env.step(a)
9: m’ = m.update(s, a, s’)

10: empow’ = blahut_arimoto(m’)
11: gain[a] = empow’ - empow
12: end for
13: # Perform the best action for exploration
14: a = argmaxa gain
15: s’ = env.step(best_action)
16: m = m.update(s, a, s’)
17: end for
18: end for

they are averaged across runs. For the environments in
Section 4.3, the noise levels are: small noise pa = 0.05,
medium noise pa = 0.1 and large noise pa = 0.2. There is
noise when performing action "up" (with probability pa) and
"left" (with probability 2pa). The forward model of each cell
is modelled by a Categorical distribution with a Dirichlet(α)
prior with α = 0.01. For empowerment estimation, Blahut-
Arimoto is run until the change of empowerment from one
iteration to the next is less than 1e−6 or after at most 1000
iterations, whichever comes first.

B. An alternative formulation
As an alternative objective to eq. (9), we want to discuss
a different formulation that focuses on action sequences
instead of individual actions:

a∗1:T = argmax
a1:T

Ed=(s1,a1,...,aT ,sT+1)

[
ÊTθ′(s1)− ÊTθ (s1)

]
.

Different to the original formulation, here we are comparing
and choosing the best action sequence over an horizon T
that matches the empowerment’s horizon. Intuitively, as we
compute the empowerment over a specific horizon, it might
be helpful to consider how execution of a whole skill over
the same horizon instead of a single action impacts our em-
powerment estimate. In particular when our forward model
does not have the capacity to generalise over the state-action
space, comparing EG after and before experiencing a single
state action transition modifies empowerment only in so
far as it changes the transition probabilities from the start-
ing state. While choosing among skills may be desirable,
it problematically comes with greater computational cost.

Naively computing the argmax becomes exponentially more
expensive with the horizon T as we now need to compare
all possible action sequences instead of individual actions.
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C. Derivations
The approximation of eq. (10) is relatively tight for small
updates of ω∗φ(a1:T | s) and pξ(sT+1 | s, a1:T ):

ÊTθ′(s)− ÊTθ (s)

= max
ωφ′ (a1:T |s)

∫
a1:T

∫
sT+1

ωφ′(a1:T | s)pξ′(sT+1 | s, a1:T )

log
pξ′(sT+1 | s, a1:T )
pφ′,ξ′(sT+1 | s)

− max
ωφ(a1:T |s)

∫
a1:T

∫
sT+1

ωφ(a1:T | s)pξ(sT+1 | s, a1:T )

log
pξ(sT+1 | s, a1:T )
pφ,ξ(sT+1 | s)

ω∗φ′(a1:T | s) and ω∗φ(a1:T | s) be the resp. max. dist.

=

∫
a1:T

∫
st+1

ω∗φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

log pξ′(sT+1 | s, a1:T ) +H
(
Sφ
′,ξ′

T+1

∣∣∣ s)
−

(∫
a1:T

∫
sT+1

ω∗φ(a1:T | s)pξ(sT+1 | s, a1:T )

log pξ(sT+1 | s, a1:T ) +H
(
Sφ,ξT+1

∣∣∣ s))
=H

(
Sφ
′,ξ′

T+1

∣∣∣ s)−H
(
Sφ,ξT+1

∣∣∣ s)
+

∫
a1:T

∫
sT+1

ω∗φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

log pξ′(sT+1 | s, a1:T )

−
∫
a1:T

∫
sT+1

ω∗φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

[
ω∗φ(a1:T | s)pξ(sT+1 | s, a1:T )
ω∗φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

log pξ(sT+1 | s, a1:T )

]

with α =
ω∗φ(a1:T | s)pξ(sT+1 | s, a1:T )
ω∗φ′(a1:T | s)pξ′(sT+1 | s, a1:T )

=H
(
Sφ
′,ξ′

T+1

∣∣∣ s)−H
(
Sφ,ξT+1

∣∣∣ s)
+

∫
a1:T

ω∗φ′(a1:T | s)
∫
sT+1

pξ′(sT+1 | s, a1:T )
[

log pξ′(sT+1 | s, a1:T )− α log pξ(sT+1 | s, a1:T )
]

=H
(
Sφ
′,ξ′

T+1

∣∣∣ s)−H
(
Sφ,ξT+1

∣∣∣ s)
+ Eω∗

φ′ (a1:T |s)
[KL(pξ′(sT+1 | s, a1:T ) || pξ(sT+1 | s, a1:T ))]

+ Eω∗
φ′ (a1:T |s)pξ′ (sT+1|s,a1:T )[(α− 1) log pξ(sT+1 | s, a1:T )]

≈H
(
Sφ
′,ξ′

T+1

∣∣∣ s)−H
(
Sφ,ξT+1

∣∣∣ s)
+ Eω∗

φ′ (a1:T |s)
[KL(pξ′(sT+1 | s, a1:T ) || pξ(sT+1 | s, a1:T ))]
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