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Abstract001

Large Language Models (LLMs) have demon-002
strated strong capabilities across various do-003
mains, with recent advancements in challeng-004
ing reasoning tasks such as mathematics and005
programming. However, solving reasoning006
tasks often requires long decoding chains (of007
thoughts), which incur O(N) time and memory008
consumption, where N is the chain length. To009
mitigate O(N) time and memory consumption,010
existing sparsity-based algorithms propose re-011
taining only the most critical token’s intermedi-012
ate data (i.e., key-value cache) and discarding013
the rest. However, these existing algorithms014
struggle with the “impossible trinity” of ac-015
curacy, time, and memory. For example, the016
state-of-the-art algorithm, Quest, achieves high017
accuracy with O(L) time but O(N) memory018
(L is the cache budget, L ≪ N ). To address019
this issue, in this paper, we identify a new atten-020
tion pattern during the decode stage of reason-021
ing tasks, where milestone tokens (analogous022
to lemmas in mathematical proofs) emerge, are023
utilized, and then become unimportant after-024
ward. Based on this pattern, we propose a new025
algorithm named RaaS that identifies and re-026
tains milestone tokens only until they are no027
longer needed, achieving high accuracy with028
O(L) time and O(L) memory complexity.029

1 Introduction030

Large Language Models (LLMs) have gained031

widespread adoption due to their exceptional per-032

formance and versatility across various applica-033

tions. However, a significant challenge to large-034

scale deployment and application is the high com-035

putational cost associated with long-context infer-036

ence. LLMs must process an entire prompt during037

the prefill stage and then generate tokens autore-038

gressively during the decode stage. Both stages039

require significant processing time and memory for040

intermediate data, specifically the Key-Value (KV)041

cache. For standard attention algorithms (also re-042

ferred to as Dense (Chen et al.) algorithms), the043

time and memory complexity is O(N), where N 044

is the sequence length. For example, in the Llama 045

3.1 8B model, sequences can grow up to 128k to- 046

kens, resulting in potentially thousands of seconds 047

of processing time and 16GB of KV cache for a 048

single request. 049

There are two primary types of long-context in- 050

ference. The first type is long-prefill inference, 051

commonly encountered in Retrieval-Augmented 052

Generation (RAG) tasks, where the used LLM is 053

required to process a lengthy prompt before gen- 054

erating responses. Previous research (Hu et al., 055

2024; Zheng et al., 2024; Kwon et al., 2023; Jin 056

et al., 2024; Bai et al., 2024) has primarily focused 057

on this inference type. The second type is long- 058

decode inference, which has recently gained promi- 059

nence in reasoning tasks, such as those exempli- 060

fied by OpenAI’s models (OpenAI) (e.g., o1, o3) 061

and DeepSeek R1 (Dai et al., 2024). In reasoning 062

tasks, the decode stage accounts for 99% of the 063

Job-Completion-Time (JCT) (Figure 1), becoming 064

a critical bottleneck. 065

To mitigate high time and memory consumption 066

in long-prefill scenarios, existing sparsity-based 067

algorithms (Tang et al., 2024; Zhang et al., 2023; 068

Xiao et al., 2024b) propose retaining only the most 069

critical token’s KV and discarding the rest. How- 070

ever, when directly applied in long-decode scenar- 071

ios, these existing algorithms struggle with the “im- 072

possible trinity” of accuracy, time, and memory 073

(Figures 2 (b)(c)(d)). For example, the state-of-the- 074

art algorithm, Quest (Tang et al., 2024), achieves 075

high accuracy with O(L) time but O(N) memory, 076

where L is the cache budget and L ≪ N . 077

To achieve high accuracy and O(L) 078

time/memory complexity at the same time, 079

we analyze the attention pattern during the decode 080

stage of reasoning tasks, uncovering two key 081

characteristics. First, we identify milestone 082

tokens, which initially exhibit high attention 083

scores but gradually receive lower scores and never 084
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receive high scores again. Analogous to lemmas085

in mathematical proofs, milestone tokens emerge,086

are utilized, and then fade away. These tokens,087

visible as bright columns (on the attention map)088

that slowly diminish—similar to a water column in089

a waterfall (Figure 3)—must be carefully managed090

to prevent significant accuracy loss (Figure 6).091

Second, we identify phoenix tokens, which092

receive low attention scores for a period long093

enough to be evicted from the cache but later094

regain importance. These tokens typically appear095

in short prefill prompts, such as mathematical096

questions. Quest (Tang et al., 2024) retains the097

entire KV cache to avoid losing phoenix tokens,098

resulting in the O(N) memory complexity.099

Based on the preceding observations, we pro-100

pose a simple yet effective algorithm named RaaS101

that addresses the “impossible trinity” and con-102

sists of two main ideas. First, we identify and re-103

tain milestone tokens only until they are no longer104

needed, using timestamps to track their importance.105

When a token receives an attention score above α106

(e.g., α = 0.0001), we assign it the latest times-107

tamp. Milestone tokens always receive the latest108

timestamp until it becomes unimportant. When the109

cache is full, we evict tokens with the oldest times-110

tamp. Second, we retain the KV cache of all prefill111

tokens without eviction. Since prefill tokens are112

typically short and phoenix tokens almost always113

appear within them in reasoning tasks, retaining114

these tokens ensures that critical information is not115

lost during the decode stage.116

We implement RaaS with 2k lines of Python117

code. To evaluate its performance, we com-118

pare it against H2O (Zhang et al., 2023),119

StreamingLLM (Xiao et al., 2024b), and120

Quest (Tang et al., 2024) using three mathematical121

datasets on four reasoning-enabled models. Our122

experimental results demonstrate that RaaS123

achieves comparable accuracy and latency to124

Quest, while offering a significant advantage in125

memory efficiency (O(L) memory complexity).126

In this paper, we make the following three main127

contributions:128

• We identify a novel waterfall attention pattern129

in reasoning tasks, where milestone tokens130

(analogous to mathematical lemmas) emerge,131

are utilized, and then become unimportant.132

• Based on the waterfall attention pattern, we133

propose a new algorithm RaaS that achieves134

high accuracy with O(L) time and O(L) 135

memory complexity. 136

• We implement RaaS in a system, demonstrat- 137

ing constant memory usage while maintaining 138

similar accuracy and time performance com- 139

pared to the state-of-the-art Quest. 140

2 Background and Motivation 141

In this section, we overview the Large Language 142

Model (LLM) inference, highlighting the key con- 143

cepts and challenges that motivate our work. 144

2.1 Autoregressive Generation & KV Cache 145

LLMs generate tokens autoregressively, predicting 146

one token at a time based on the input. This process 147

involves two stages: the prefill stage and the de- 148

code stage. In the prefill stage, LLMs process the 149

entire input prompt (x1, x2, . . . , xn), computing 150

and caching the key and value vectors for each to- 151

ken. This stage can be slow for long inputs, and the 152

time to generate the first token is measured by the 153

Time-to-First-Token (TTFT) metric. In the decode 154

stage, LLMs generate one token at a time. The 155

model computes the probability of the next token 156

xn+1, selects the most likely token, and appends 157

its key and value vectors to the KV cache. 158

The KV cache (Pope et al., 2023), which stores 159

the key and value vectors computed by the atten- 160

tion module, accelerates generation by allowing 161

the model to process only the new token instead of 162

recalculating KV for the entire sequence. With the 163

KV cache, the attention mechanism exhibits a com- 164

putational complexity of O(N) for one decoding 165

step and a memory complexity of O(N) for storing 166

the KV cache, where N is the number of tokens or 167

the sequence length. 168

2.2 Cost Transfer: from Long-Prefill to 169

Long-Decode Inference 170

Long-context inference incurs significant costs due 171

to both memory and time requirements. First, it 172

demands substantial memory resources, reaching 173

up to 16 GB KV cache (in addition to the 16 GB 174

model parameters) for processing 128k tokens run- 175

ning the LLaMA 3.1 8B model in FP16 precision1. 176

Second, it requires considerable processing time, 177

with inference for 32k tokens taking around 20 - 178

1000 seconds on vLLM 0.6.1 using the same model 179

(Figure 1 (c)). 180

1https://huggingface.co/blog/llama31
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Figure 1: The Cumulative Distribution Function (CDF) of token lengths for the prefill (P, in dotted lines) and decode
(D, in solid lines) phases for (a) five datasets from LongBench (Bai et al., 2024) and (b) three math datasets running
on the reasoning-enabled Marco-O1 model. (c) The breakdown of prefill and decode time during the inference of
fixed 32k tokens using vLLM 0.6.1 with the LLaMA 3.1 8B model in FP16 precision. As the number of decode
tokens increases (with the number of prefill tokens being 32k minus the decode tokens), the decode time (orange
bars) rises significantly faster than the prefill time (blue bars).

Long-context inference can be categorized into181

two types: long prefill and long decode. Long182

prefill arises from extensive input prompts, as ob-183

served in prior studies such as Retrieval Augmented184

Generation (RAG) (Li et al., 2022; Jin et al., 2024;185

Gao et al., 2023; Jeong et al., 2024; Ram et al.,186

2023; Mao et al., 2021) (Figure 1 (a)). Long187

decode occurs particularly in reasoning-intensive188

tasks. Recent advancements emphasize reasoning,189

where models are guided to think, introspect, and it-190

eratively refine their outputs (OpenAI; Wang et al.,191

2024; Lightman et al., 2024; Zhao et al., 2024; Wei192

et al., 2022). This approach significantly enhances193

accuracy but shifts the computational burden to194

the decode stage. For instance, the OpenAI o1195

model (OpenAI) requires approximately tens or196

hundreds of seconds2 of “thinking time” before197

producing its final output. Given the prolonged de-198

coding time and its already substantial proportion199

of the overall inference process (Figure 1 (b)), it is200

critically important to further optimize the decode201

stage to reduce both latency and memory consump-202

tion.203

2.3 Existing Sparsity-Based Algorithms204

To reduce memory and time complexity in long-205

prefill scenarios, one line of research proposes206

sparsity-based algorithms (Xiao et al., 2024b;207

Zhang et al., 2023; Tang et al., 2024; Chen et al.).208

Sparsity-based algorithms propose retaining only209

the most critical tokens’ (fewer than 10% (Tang210

et al., 2024)) KV and discarding the rest. However,211

when directly applied in long-decode scenarios,212

existing algorithms struggle with the “impossible213

trinity” of accuracy, time, and memory (Figure 2214

2https://www.reddit.com/r/OpenAI/comments/
1frdwqk/your_longest_thinking_time_gpt4_o1_
o1mini/

(b)(c)(d)). 215

The differences among existing algorithms are 216

shown in Figure 2. First, the Dense or the standard 217

attention algorithm (Vaswani et al., 2017) achieves 218

the highest accuracy but incurs the highest time and 219

memory complexity. Second, StreamingLLM or 220

Sink (Xiao et al., 2024b) retains only the KV cache 221

of the initial and final tokens, resulting in low time 222

and memory complexity, but this extreme approach 223

leads to low accuracy on reasoning tasks (and other 224

tasks (Tang et al., 2024)). Third, H2O (Zhang et al., 225

2023) theoretically offers low time and memory 226

complexity, but its inability to utilize efficient at- 227

tention kernels and the lack of page-level KV man- 228

agement makes it impractical, resulting in both low 229

accuracy and infeasibility. Fourth, Quest achieves 230

high accuracy and low time complexity but conser- 231

vatively retains all KV cache, thus O(N) memory 232

complexity. 233

3 Algorithm Design 234

When directly applied to reasoning tasks, existing 235

algorithms struggle with the “impossible trinity” 236

of accuracy, time, and memory. For example, al- 237

though the state-of-the-art Quest (Tang et al., 2024) 238

achieves promising accuracy (Figure 6) with O(L) 239

time complexity, it requires storing the entire KV 240

cache, thus O(N) memory complexity (Figure 7). 241

To break the “impossible trinity,” we analyze the 242

decoding stage of reasoning tasks and discover a 243

new attention pattern (Section 3.1), based on which 244

we design a new algorithm RaaS (Section 3.2) that 245

achieves O(L) time and memory complexity, with 246

accuracy comparable to Quest. 247

3.1 Reasoning Attention Pattern 248

By analyzing the attention map of the decoding 249

stage of reasoning tasks, we discover two key char- 250
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(a) Dense (b) StreamingLLM (Sink) (c) H2O (d) Quest
(e) RaaS

Cache/compute all tokens Cache/compute initial
and recent tokens

Cache/compute important
and recent tokens

Cache all tokens and 
compute important tokens

Computed Tokens

Current Token

Evicted Tokens Cached Tokens

All Tokens
Time: O(N)
Mem: O(N)
Acc: high

Time: O(L)
Mem: O(L)

Acc: low

Time: O*(L), O(L)
Mem: O*(L), O(L)

Acc: low, high

Time: O(L)
Mem: O(N)
Acc: high

Figure 2: Comparison of sparsity-based algorithms. N indicates the sequence length while L indicates the
cache budget where L ≪ N . H2O’s time and memory complexity are theoretical, as indicated by the asterisks.
RaaS addresses the “impossible trinity” by achieving O(L) complexity for both time and memory, with accuracy
comparable to Dense on reasoning tasks.

acteristics (Figure 3). First, we identify milestone251

tokens, which initially exhibit high attention scores252

but gradually receive lower scores and never re-253

ceive high scores again. Analogous to lemmas in254

mathematical proofs, milestone tokens emerge, are255

utilized, and then fade away. These tokens, vis-256

ible as bright columns on the attention map that257

slowly diminish — similar to a water column in a258

waterfall (Figure 3 (a)) — must be carefully man-259

aged to prevent significant accuracy loss (Figure 6).260

Second, we identify phoenix tokens, which re-261

ceive low attention scores for a period long enough262

to be evicted from the cache but later regain im-263

portance. These tokens typically appear in short264

prefill prompts, such as user queries (Figure 3265

(b)). Quest (Tang et al., 2024) retains the entire266

KV cache to avoid losing phoenix tokens, thus the267

O(N) memory complexity.268

We offer a possible explanation for the water-269

fall pattern or milestone tokens in reasoning tasks.270

First, the emergence of milestone tokens is analo-271

gous to lemmas in mathematical proofs or subcon-272

clusions in thinking steps. Once an LLM generates273

milestone tokens, subsequent tokens primarily at-274

tend to the milestone tokens rather than the preced-275

ing tokens arriving at the milestone token. Second,276

the fading attention score of a milestone token mir-277

rors the progression in mathematical reasoning. As278

reasoning advances from lower-level lemmas to279

higher-level ones, subsequent steps rely on the new280

lemmas rather than revisiting the older ones.281

To illustrate the preceding explanation, consider282

one example3 in Figure 4. First, tokens ①②③ serve283

as initial lemmas, which are crucial for subsequent284

deductions, corresponding to ①②③ columns in Fig-285

ure 3. Second, tokens ④⑤ serve as a new lemma,286

built upon ①②③, while at the same time, tokens287

3Examples abound during the investigation of reasoning
tasks, not limited to this one, and not limited to those extra
examples in the appendix.

①②③ fade. Third, the final answer (token ⑥) only 288

attend to tokens ④⑤. 289

3.2 Design of RaaS 290

Based on the preceding observations, we propose 291

RaaS, a simple yet effective algorithm that ad- 292

dresses the “impossible trinity” and consists of two 293

main ideas. First, we identify and retain milestone 294

tokens until they are no longer needed, using times- 295

tamps to track their importance. When a token re- 296

ceives an attention score above α (e.g., α = 0.01), 297

we assign it the latest timestamp. Milestone to- 298

kens always receive the latest timestamp until it 299

becomes unimportant. When the cache is full, we 300

evict tokens with the oldest timestamp. Second, we 301

retain the KV cache of all prefill tokens without 302

eviction. Since prefill tokens are typically short 303

and phoenix tokens almost always appear within 304

them in reasoning tasks, retaining these tokens en- 305

sures that critical information is not lost during the 306

decoding process. 307

To illustrate RaaS step by step, consider Figure 5. 308

In the first five steps, the cache size limit is not 309

reached (we can store at most 5 tokens). In the 4-th 310

row, the second token is cached and computed, but 311

its timestamp is not updated because its attention 312

score is below α, which we consider insufficient for 313

influencing the final result. However, in the 5th row, 314

the second token’s attention score exceeds α, and it 315

is assigned the latest timestamp, 5. In the last three 316

steps, the cache is full. In the 6th row, we evict 317

the third token (the third column becomes gray) 318

since it has the oldest timestamp. We then compute 319

the remaining tokens and update their timestamps. 320

A similar process is followed in the seventh and 321

eighth rows. 322

The Choice of α. The choice α affects the dis- 323

tribution of tokens’ timestamps. If α is small, too 324

many tokens receive the latest timestamp, prevent- 325

ing effective differentiation of milestone tokens. 326
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(a) Waterfall pattern (20%-25%) (b) Pheonix pattern (1%-2%) (c) StreamingLLM pattern (> 70%)

Milestone token Pheonix token
in prompts

①

②
③

④
⑤⑥

Figure 3: A “waterfall pattern,” emerges in reasoning tasks. We manually inspect attention maps across 28 layers
and 28 heads of Qwen2.5-Math-7B (Yang et al., 2024) on 100 MATH500 (Hendrycks et al., 2021) data points. We
find (a) 20% to 25% maps with milestone tokens, (b) 1% to 2% maps with phoenix tokens that remain inactive for
more than 128 decoding steps before becoming active again, (c) more than 70% “lazy” (Zhang et al., 2022) maps
with StreamingLLM pattern. We used our best effort to balance the clarity and completeness of attention maps.

To convert the point \((0,3)\) from rectangular coordinates to 
polar coordinates, we need to find the values of \(r\) and 
\(\theta\). The formulas for converting from rectangular 
coordinates \((x,y)\) to polar coordinates \((r,\theta)\) are: 
 
\[ r = \sqrt{x^2 + y^2} \] ① 
\[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] ② 
 
Given the point \((0,3)\), we have \(x = 0\) and \(y = 3\). Let's 
calculate \(r\) first: ③ 
\[ r = \sqrt{0^2 + 3^2} = \sqrt{9} = 3 \] 
 
Next, we need to find \(\theta\). The formula \(\theta = 
\tan^{-1}\left(\frac{y}{x}\right)\) is not directly useful here 
because it involves division by zero, which is undefined. 
Instead, we need to consider the position of the point \((0,3)\) 
in the coordinate plane. The point \((0,3)\) lies on the positive 
\(y\)-axis. Therefore, the angle \(\theta\) is \(\frac{\pi}{2}\). 
 
So, the polar coordinates of the point \((0,3)\) are: ④ 
\[ (r, \theta) = \left(3, \frac{\pi}{2}\right) \] ⑤ 
 
Thus, the final answer is: ⑥ 
\[ \boxed{\left(3, \frac{\pi}{2}\right)} \] 
 
 
 

Figure 4: We input the prefill tokens, “...Convert the
point (0, 3) to polar coordinates...”, to Qwen 2.5 Math
7B Instruct and obtain the corresponding decode tokens
in the figure. The red tokens represent the milestone
tokens or “water columns” in the attention map.

Conversely, if α is large, most tokens are deemed327

irrelevant, potentially leading to the loss of mile-328

stone tokens. To address this dilemma, we propose329

to assign the latest timestamp to r = 50% tokens330

with the highest attention scores in each decoding331

step, where α ≈ 0.0001 (The parameters α and r332

are two sides of the same coin) and This method333

provides effective results (Figure 9). Due to page334

limitations, we leave further exploration of the op-335

timal α/r and its theoretical justification to future336

work.337

3.3 Page-Based RaaS338

Directly applying the version of RaaS in Sec-339

tion 3.2 presents two challenges. First, manag-340

1
2 2

3
4

5
6

7
8

33
34 4
55 4 5
56 4 5
77 4 5
88 4 5 85 8

5
5 7

Computed Tokens

(Timestamp) Updated tokens

Evicted Tokens Cached Tokens

All Tokens

Cache Size = 5

Figure 5: Illustration of RaaS by using an example that
decodes eight tokens.

ing KV caches at the token level is inefficient, as 341

small gaps in the cache complicate memory man- 342

agement and hinder GPU computation. Second, 343

RaaS requires the attention scores of all tokens to 344

update timestamps, but retrieving these scores is 345

incompatible with optimized attention kernels like 346

FlashAttention (Dao et al., 2022; Dao, 2024). As 347

with H2O, bypassing fast kernels in favor of RaaS 348

could result in degraded performance. 349

To address these challenges, we propose a page- 350

based version of RaaS4. First, we introduce a page- 351

based caching system with a fixed page size of 352

page_size = 16. The timestamp management, as 353

well as cache retention and eviction, is handled at 354

the page level as in most of the modern inference 355

engine (Kwon et al., 2023; Zheng et al., 2024). Sec- 356

ond, before using optimized attention kernels, we 357

add a lightweight step to retrieve a representative 358

attention score for each page to update its times- 359

tamp, similar to Quest. We select a representative 360

key (K) for each page, and the query (Q) of the new 361

decoding token attends to these representative keys 362

to compute a single attention score per page. Based 363

on this attention score, we update the timestamp 364

for each page and make eviction decisions at the 365

page level. Various methods exist for selecting a 366

representative K, such as those used in Quest (Tang 367

4From now on, whenever we use RaaS we refer to page-
based RaaS.
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et al., 2024) and ArkVale (Chen et al.). For fairness,368

we adopt the same representative selection method369

as in Quest.370

4 Evaluation371

4.1 Experiment Setup372

We implement RaaS based on Hugging Face (Hug-373

ging Face) and Quest (Tang et al., 2024) with 2K374

lines of code. We port Quest from their public375

repository5. Next, we discuss the datasets, models,376

metrics, and the environment in which we carry out377

experiments.378

Dataset. We take the first 200 questions379

from each of the following three open-sourced380

datasets for our benchmarks: GMS8k (Cobbe et al.,381

2021), MATH500 (Hendrycks et al., 2021), and382

AIME (AIME), to test the reasoning ability of lan-383

guage models. First, GMS8k (Cobbe et al., 2021)384

contains 8.5k high-quality, linguistically diverse385

grade school math word problems. These human-386

written problems need solutions that involve multi-387

step reasoning and a series of basic arithmetic oper-388

ations. Second, MATH500 (Hendrycks et al., 2021)389

contains 500 challenging problems sourced from390

high school mathematics competitions with five391

distinct levels based on the Art of Problem Solv-392

ing (AoPS) framework, ranging from level 1 to393

level 5. Third, AIME (AIME) is a math problem394

dataset collected from the AIME (American Invita-395

tional Mathematics Examination) competition from396

1983 to 2024, designed to challenge the most ex-397

ceptional high school mathematics students in the398

United States. These problems cover various fields,399

such as algebra, geometry, and number theory.400

Metrics. We use two metrics to evaluate perfor-401

mance and model accuracy. First, Job Completion402

Time (JCT) is the time from when users send a re-403

quest (a prompt) to LLMs to when users receive404

a complete response. A smaller JCT indicates a405

faster algorithm. Second, Accuracy (Wang et al.,406

2024) measures the mathematical equivalence be-407

tween an LLM’s output and the ground-truth an-408

swer. For each data point, it is either correct or409

incorrect, and the overall accuracy is reported as410

the percentage of correctly solved problems across411

the entire dataset.412

Models. We evaluate our algorithm using four413

popular models: Marco o1 (Zhao et al., 2024),414

Qwen2.5 Math 7B (Wang et al., 2024), Mistral415

5https://github.com/mit-han-lab/Quest. Accessed
on Oct 2024.

Math 7B (Wang et al., 2024), and DeepScaleR 416

1.5B6. They are four of the most powerful open- 417

sourced LLMs with long-reasoning capabilities. 418

Baselines. We compare RaaS’s accuracy with 419

Dense, H2O, StreamingLLM, and Quest. We im- 420

plement H2O and StreamingLLM using the Hug- 421

gingFace Cache class. We compare RaaS’s latency 422

and memory consumption with only Dense and 423

Quest because StreamingLLM and H2O achieve 424

too low accuracy to be included. We use Quest’s 425

official repo with page_size = 16. 426

Environment. We run experiments on a sin- 427

gle NVIDIA A100 server with one A100-80GB 428

GPU available. It has 128-core Intel(R) Xeon(R) 429

Platinum 8358P CPU@2.60GHz with two hyper- 430

threading and 1TB DRAM. We use Ubuntu 20.04 431

with Linux kernel 5.16.7 and CUDA 12.6. Un- 432

less stated otherwise, we set α = 0.0001 and 433

page_size = 16. 434

4.2 Accuracy and Cache Budget Trade-off 435

We evaluate five algorithms across three datasets 436

and four models, yielding three key insights from 437

the experimental results (Figure 6). First, H2O and 438

StreamingLLM exhibit poor accuracy under fixed 439

cache budgets compared to others. StreamingLLM 440

indiscriminately discards important tokens, includ- 441

ing milestone tokens. H2O, on the other hand, 442

overemphasizes accumulated historical attention 443

scores, leading it to retain outdated milestone to- 444

kens for too long while discarding newer, relevant 445

ones. Second, Quest and RaaS achieve the best ac- 446

curacy. Quest retains all KVs while RaaS optimizes 447

memory usage by specifically handling milestone 448

tokens and using only O(L) memory (Figure 7). 449

Across these datasets, a cache budget of 1024 to- 450

kens is generally sufficient to match Dense’s accu- 451

racy. Third, when the cache budget is small, RaaS 452

underperforms because RaaS retains all prefill to- 453

kens, and with a limited cache budget, most of the 454

budget is allocated to prefill tokens, causing almost 455

all decoding tokens to be discarded, which nega- 456

tively impacts accuracy. For small cache budgets or 457

long-prefill scenarios, we recommend using Quest 458

for prefill tokens and RaaS for decode tokens. 459

4.3 Latency/Memory vs. Decoding Length 460

We evaluate the Dense, Quest, and RaaS in terms 461

of their latency and memory consumption, yield- 462

6https://pretty-radio-b75.notion.site/DeepScaleR-
Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-
19681902c1468005bed8ca303013a4e2
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represents varying cache budgets: 64, 128, 256, 512, and 1024.
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Figure 7: Latency and memory consumption of five al-
gorithms running on Mistral Math 7B, using workloads
with a fixed prefill length (128 tokens) and varying de-
code length (from 0 to 8k tokens).

ing two key observations from the experimental463

results (Figure 7). First, as the number of decode464

tokens increases, Dense’s latency grows quadrat-465

ically, while both RaaS and Quest exhibit linear466

latency growth. This is because Dense has O(N2)467

computation time, whereas RaaS and Quest have468

O(NL) computation time, reducing each decod-469

ing step to O(L). Second, as the number of de-470

code tokens increases, the memory consumption471

of Dense and Quest grows linearly, while RaaS472

initially increases linearly but plateaus once the473

number of decode tokens exceeds its cache budget.474

In summary, while Dense and Quest have O(N)475

memory complexity, RaaS achieves O(L) memory476

complexity. With a smaller memory footprint, in-477

ference engines using RaaS are likely to achieve478

significantly higher throughput. 479

4.4 Micro-Benchmarks 480

The Impact of Discarding Milestone Tokens. Fig- 481

ure 8 shows that discarding milestone tokens, as 482

in H2O-128 and Sink-128, increases the decod- 483

ing lengths. Analysis of the outputs reveals that 484

while the model initially reasons correctly for the 485

first few tokens (e.g., green tokens in Figure 8), it 486

loses track (orange tokens) of the reasoning pro- 487

cess when milestone tokens are discarded, leading 488

to repeated attempts at re-reasoning (red tokens), 489

which ultimately results in the model getting stuck 490

indefinitely. 491

Figure 8: Decoding lengths of five algorithms us-
ing Qwen 2.5 Math 7B with 4k context length, on
MATH500. Using H2O-128 (cache budget of 128 to-
kens) always reaches the 4k limit. On the right, we show
a decoding example of H2O-128.

The Impact of α. The choice of α affects the dis- 492

tribution of tokens’ timestamps, with α = 0.0001 493
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Figure 9: Accuracy of RaaS with different cache bud-
gets and αs.

generally yielding optimal results, as shown in Fig-494

ure 9. First, when α is small, too many tokens495

are assigned the latest timestamp, preventing effec-496

tive differentiation of milestone tokens. Second,497

when α is large, most tokens are deemed irrelevant,498

potentially leading to the loss of milestone tokens.499

5 Related Work500

Several approaches have been proposed to reduce501

the computation and memory footprint of the KV502

cache during long-context inference. These can503

be categorized into two types: one that requires504

modifying model architecture, and the other that is505

more plug-and-play.506

5.1 Model Architecture507

Two types of approaches have emerged for alter-508

ing model architecture. First, some approaches509

modify the inner workings of the Transformer510

while retaining its overall structure. For exam-511

ple, Muti-Query Attention (MQA) (Shazeer, 2019)512

and Group-Query Attention (GQA) (Ainslie et al.,513

2023) reduce the number of KV heads, achiev-514

ing similar accuracy to full-head configurations.515

Second, some efforts discard the Transformer ar-516

chitecture entirely in favor of alternative models.517

Approaches such as Linear Attention and RNN-518

based models, including RWKV (Peng et al., 2023),519

RetNet (Sun et al., 2023), and Mamba (Gu and520

Dao, 2023), offer lower computational and mem-521

ory costs. However, these models typically under-522

perform compared to Transformer-based models in523

long-context scenarios.524

5.2 KV Compression525

The change of model architecture often requires526

significant pretraining or fine-tuning, whereas plug-527

and-play approaches, such as KV compression,528

are typically preferred in major application scenar-529

ios. Two primary types of KV compression have530

emerged: KV quantization and KV pruning.531

KV Quantization. KV quantization ap- 532

proaches (Xiao et al., 2023; Yao et al., 2022; 533

Dettmers et al., 2022) map higher precision KVs 534

into lower ones, trading accuracy for savings in 535

computation and memory. Recent studies have 536

shown that due to the distinct element distributions 537

in the KV cache, key and value caches require 538

different quantization strategies to optimize perfor- 539

mance on complex tasks (Zirui Liu et al., 2023). 540

KV Pruning. KV pruning approaches focus on 541

leveraging attention sparsity (Zhang et al., 2023; 542

Ge et al., 2024; Jiang et al., 2024; Cai et al., 2024; 543

Fu et al., 2024; Xiao et al., 2024a), which posits 544

that only around 5% of tokens are crucial during 545

LLM inference. Thus, evicting less important to- 546

kens from the KV cache is a key strategy for reduc- 547

ing memory usage and accelerating inference. For 548

example, StreamingLLM (Xiao et al., 2024b) and 549

LM-Infinite (Han et al., 2024) evict fixed-position 550

tokens, retaining only the initial and recent window 551

tokens. H2O (Zhang et al., 2023), SnapKV (Li 552

et al., 2024), ScissorHands (Liu et al., 2023) and 553

TOVA (Oren et al., 2024) keeps the recent tokens 554

and the top-k important tokens based on the atten- 555

tion score calculated within a local window. More 556

recent works, such as Quest (Tang et al., 2024) and 557

ARKVALE (Chen et al.), manage the KV cache at 558

the page level, selecting the top-k important pages 559

during each generation step to reduce computa- 560

tional time. 561

Our work presents a new trial of applying KV 562

pruning in reasoning tasks, where the inference 563

pattern is characterized by a short prefill and a long 564

decode with a waterfall attention pattern. For the 565

first time, it achieves true O(L) time and memory 566

complexity with high accuracy. 567

6 Conclusion 568

In this paper, we have identified a new waterfall at- 569

tention pattern observed in the decode stage of rea- 570

soning tasks. Leveraging this pattern, we have pro- 571

posed a sparsity-based algorithm named RaaS that 572

achieves high accuracy while maintaining O(L) 573

time and O(L) memory complexity. Our exper- 574

iments, conducted across three datasets and four 575

reasoning-enabled models, demonstrate that RaaS 576

delivers comparable accuracy and latency to the 577

state-of-the-art Quest, but with constant memory 578

consumption. The key to RaaS’s success lies in the 579

handling of milestone tokens, which represent in- 580

termediate conclusions leading to the final output. 581
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Limitations582

Our work in this paper has the following major583

limitations.584

Limited applicability of RaaS. RaaS is specifi-585

cally designed for traditional reasoning tasks where586

a question is short (e.g., a mathematical query) but587

its answer is lengthy (e.g., a chain of reasoning588

followed by a final answer). The waterfall atten-589

tion pattern primarily occurs during the decode590

stage, and phoenix tokens are frequently found in591

the question (prefill tokens). Thus, RaaS may lose592

crucial information when applied in other scenarios593

where the number of prefill tokens exceeds a cer-594

tain threshold. In this case, we recommend using595

the combination of Quest (on prefill tokens) and596

RaaS (on decode tokens).597

Evaluation on a limited set of models. Our598

evaluation is based on only four models. The599

presented results may be specific to these mod-600

els and may not generalize to others. Although601

there are models with larger context lengths, such602

as Qwen2.5-Max and DeepSeek-r1, conducting a603

comprehensive evaluation across all such models604

is time- and resource-intensive. As noted by previ-605

ous work (Zhong et al., 2024), if decoding a single606

token takes around 30 ms, decoding 16k tokens (a607

relatively small request) requires approximately 8608

minutes on a single A100-80GB GPU. Evaluating609

200 data points would take more than one day, be-610

ing infeasible with only one available A100 GPU.611

Nonetheless, we believe that the core idea—the612

waterfall pattern and its underlying rationale— re-613

mains broadly applicable, and we plan to conduct614

additional experiments in the future.615

Evaluation on limited inference lengths. Due616

to resource and time constraints, we are unable617

to conduct experiments with extremely long in-618

ference lengths, as this experimental setup would619

require months to complete end-to-end evaluations.620

However, through small-scale experiments, we ob-621

serve that the waterfall attention pattern is universal622

across varying inference lengths.623

Lack of exploration of representative selec-624

tion for pages. For a fair comparison with Quest,625

we adopt the same representative selection algo-626

rithm used in Quest. However, given the distinct627

objectives of RaaS, there may be opportunities628

to design a more tailored representative selection629

algorithm that better handles false positives and630

negatives, potentially improving RaaS’s accuracy.631

Nonetheless, more sophisticated representative se-632

lection algorithms may introduce additional compu- 633

tational overhead. Therefore, we have not explored 634

this aspect in our work described in this paper but 635

plan to investigate the impact of different represen- 636

tative selection algorithms in future work. 637
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A More Examples for Milestone Tokens963

This section presents more examples of milestone964

tokens in Figure 10 and Figure 11. For all exam-965

ples, we input the prefill tokens to Qwen 2.5 Math966

7B Instruct and obtain the corresponding decode to-967

kens, as shown in the figure. The tokens marked red968

represent the milestone tokens or “water columns” 969

in the attention map. Although we only show a few 970

examples here, the milestone tokens or waterfall 971

patterns abound in reasoning tasks. 972

Prompt: Define 
\[p = \sum_{k = 1}^\infty \frac{1}{k^2} \quad \text{and} \quad q = 
\sum_{k = 1}^\infty \frac{1}{k^3}.\]Find a way to write 
\[\sum_{j = 1}^\infty \sum_{k = 1}^\infty \frac{1}{(j + k)^3}\]in terms of 
$p$ and $q.$ 
 
Decode 
To find a way to write the double sum \(\sum_{j=1}^\infty 
\sum_{k=1}^\infty \frac{1}{(j+k)^3}\) in terms of \(p\) and \(q\), we start 
by considering the sum in a different form. We can rewrite the double 
sum by changing the order of summation. Instead of summing over 
\(j\) and \(k\) directly, we sum over \(n = j+k\) and then over the 
possible values of \(j\) and \(k\) that satisfy \(j+k=n\). ① 
The sum \(\sum_{j=1}^\infty \sum_{k=1}^\infty \frac{1}{(j+k)^3}\) can be 
rewritten as: 
\[ \sum_{n=2}^\infty \sum_{j=1}^{n-1} \frac{1}{n^3}. \] ② 
Here, the inner sum \(\sum_{j=1}^{n-1} \frac{1}{n^3}\) is simply 
\(\frac{n-1}{n^3}\) because there are \(n-1\) terms in the sum, each 
equal to \(\frac{1}{n^3}\). Therefore, the double sum becomes: 
\[ \sum_{n=2}^\infty \frac{n-1}{n^3} = \sum_{n=2}^\infty \left( 
\frac{1}{n^2} - \frac{1}{n^3} \right). \] ③ 
We can split this into two separate sums: 
\[ \sum_{n=2}^\infty \frac{1}{n^2} - \sum_{n=2}^\infty \frac{1}{n^3}. \] 
The first sum \(\sum_{n=2}^\infty \frac{1}{n^2}\) is the same as \(p - 1\) 
because \(p = \sum_{n=1}^\infty \frac{1}{n^2}\). The second sum 
\(\sum_{n=2}^\infty \frac{1}{n^3}\) is the same as \(q - 1\) because \(q = 
\sum_{n=1}^\infty \frac{1}{n^3}\). Therefore, the expression becomes: 
\[ (p - 1) - (q - 1) = p - q. \] ④ 
Thus, the double sum \(\sum_{j=1}^\infty \sum_{k=1}^\infty 
\frac{1}{(j+k)^3}\) in terms of \(p\) and \(q\) is: ⑤ 
\[ \boxed{p - q}. \] 
 Figure 10: Milestone example.

B System Implementation 973

We implement RaaS based on Hugging Face (Hug- 974

ging Face) and Quest (Tang et al., 2024). Our 975

implementation extends the standard transformer 976

architectures (Dense) by incorporating the follow- 977

ing additional components. 978

First, for each page in the KV cache, a repre- 979

sentative key is selected to compute the estimated 980

attention score between the page and the query. To 981

ensure consistency in evaluation, our page-based 982

RaaS adopts the same representative selection al- 983

gorithm as that used in Quest. 984

Second, a timestamp is associated with each KV 985

page to record the last time at which the page re- 986

ceived an estimated attention score exceeding the 987

threshold α (e.g., α = 0.01). The term time here 988

refers to any monotonically increasing attribute. In 989

our implementation, we use the number of tokens 990

(including both prefill and decode tokens) as this 991

attribute. 992

Third, when the KV cache reaches its maximum 993

capacity, an eviction algorithm evicts the KV page 994

with the earliest recorded time. Pages correspond- 995

ing to prefill tokens are exempt from eviction. 996
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Prompt: If $f(x) = \\frac{3x-2}{x-2}$, what is the value of $f(-2) 
+f(-1)+f(0)$? Express your answer as a common fraction. 
 
Decode:  
To find the value of \( f(-2) + f(-1) + f(0) \) for the function \( f(x) = 
\frac{3x-2}{x-2} \), we need to evaluate \( f(x) \) at \( x = -2 \), \( x = -1 
\), and \( x = 0 \) separately and then sum the results. ① 
 
First, let's evaluate \( f(-2) \): 
\[ f(-2) = \frac{3(-2) - 2}{-2 - 2} = \frac{-6 - 2}{-4} = \frac{-8}{-4} = 2 \] ② 
 
Next, let's evaluate \( f(-1) \): 
\[ f(-1) = \frac{3(-1) - 2}{-1 - 2} = \frac{-3 - 2}{-3} = \frac{-5}{-3} = 
\frac{5}{3} \] ③ 
 
Then, let's evaluate \( f(0) \): 
\[ f(0) = \frac{3(0) - 2}{0 - 2} = \frac{-2}{-2} = 1 \] ④ 
 
Now, we sum the values of \( f(-2) \), \( f(-1) \), and \( f(0) \): 
\[ f(-2) + f(-1) + f(0) = 2 + \frac{5}{3} + 1 \] ⑤ 
 
To add these numbers, we need a common denominator. The 
common denominator for 2, \(\frac{5}{3}\), and 1 is 3. We convert 2 
and 1 to fractions with a denominator of 3: 
\[ 2 = \frac{6}{3} \quad \text{and} \quad 1 = \frac{3}{3} \] 
 
Now we can add the fractions: ⑥ 
\[ \frac{6}{3} + \frac{5}{3} + \frac{3}{3} = \frac{6 + 5 + 3}{3} = 
\frac{14}{3} \] ⑦ 
 
Therefore, the value of \( f(-2) + f(-1) + f(0) \) is \(\boxed{\frac{14}{3}}\). 

Figure 11: Milestone example.

The selection of representative keys and the com-997

putation of estimated attention scores are inter-998

leaved with the self-attention computation in each999

layer, aligning with Quest’s implementation. The1000

updates of timestamps and the eviction of KV pages1001

are performed after each autoregressive iteration,1002

with all layers processed in a batched manner, re-1003

sulting in negligible time overhead, as shown in1004

Figure 7.1005

C Checklist-Related Issues1006

Three datasets GSM8k (MIT), MATH500 (MIT),1007

AIME (MIT), and four models Mistral Math 7B1008

(No licence), Qwen 2.5 Math 7B Instruct (apache-1009

2.0), Marco o1 (apache-2.0), DeepScaleR 1.5B Pre-1010

view (MIT) are used with their intended usage sce-1011

narios. We retrieve all models and datasets from1012

Hugging Face7, where detailed documentation, in-1013

cluding parameter sizes and model architectures,1014

is provided. We manually checked the data and1015

believe there is no personal information misused.1016

We used ChatGPT to check the grammar of the1017

texts.1018

To the best of our knowledge, we believe our1019

work does not pose risks that harm any subgroup1020

of our society.1021

7https://huggingface.co/
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