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Abstract
Theoretical efforts to prove advantages of Transformers in comparison with classical architectures
such as feedforward and recurrent neural networks have mostly focused on representational power.
In this work, we take an alternative perspective and prove that even with infinite compute, feedfor-
ward and recurrent networks may suffer from larger sample complexity compared to Transformers,
as the latter can adapt to a form of dynamic sparsity. Specifically, we consider a sequence-to-
sequence data generating model on sequences of length N , where the output at each position only
depends on q ≪ N relevant tokens, and the positions of these tokens are described in the input
prompt. We prove that a single-layer Transformer can learn this model if and only if its number
of attention heads is at least q, in which case it achieves a sample complexity almost independent
of N , while recurrent networks require NΩ(1) samples on the same problem. If we simplify this
model, recurrent networks may achieve a complexity almost independent of N , while feedforward
networks still require N samples. Our proposed sparse retrieval model illustrates a natural hierar-
chy in sample complexity across these architectures.

1. Introduction

The theoretical efforts surrounding the success of Transformers [25] have so far demonstrated vari-
ous capabilities like in-context learning [3, 7, 17, 26, 28, and others] and chain-of-thought prompting
along with its benefits [14, 16, 19, 20, and others] in various settings. There are fewer works that
provide specific benefits of Transformers in comparison with feedforward and recurrent architec-
tures. On the approximation side, there are tasks that Transformers can solve with size logarithmic
in the input, while alternative architectures require polynomial size [23, 24]. Based on these results,
[27] showed a separation between Transformers and feedforward networks by providing further op-
timization guarantees for gradient-based training of Transformers on a sparse token selection task.

While most prior works focused on the approximation separation between Transformers and
feedforward networks (FFNs), in this work we focus on a purely statistical separation, and ask:

What function class can Transformers learn with fewer samples compared to
feedforward and recurrent networks, even with infinite computational resources?

[15] approached the above problem with random features, where the query-key matrix for the at-
tention and the first layer weights for the two-layer feedforward network were fixed at random
initialization. However, this only presents a partial picture, as neural networks can learn a signif-
icantly larger class of functions once “feature learning” is allowed, i.e., parameters are trained to
adapt to the structure of the underlying task [1, 5, 6, 9, 11, 12, 21].

© .



WHEN DO TRANSFORMERS OUTPERFORM FEEDFORWARD AND RECURRENT NETWORKS?

We evaluate the statistical efficiency of Transformers and alternative architectures by character-
izing how the sample complexity depends on the input sequence length. A benign length depen-
dence (e.g., sublinear) signifies the ability to achieve low test error in longer sequences, which intu-
itively connects to the length generalization capability [4]. Our generalization bounds for bounded-
norm Transformers — along with our contrasts to RNNs and feedforward neural networks — pro-
vide theoretical insights into the statistical advantages of Transformers and lay the foundation for
future rigorous investigations of length generalization.

1.1. Our Contributions

We study the q-Sparse Token Regression (qSTR) data generating model, a sequence-to-sequence
model where the output at every position depends dynamically on a sparse subset of the input tokens.
We prove that by employing the attention layer to retrieve relevant tokens at each position, single-
layer Transformers can adapt to this dynamic sparsity, and learn qSTR with a sample complexity
almost independent of the length of input sequence N . On the other hand, we develop a new
metric-entropy-based argument to derive norm and parameter-count lower bounds for RNNs that
lead to a sample complexity lower bound of order NΩ(1) for RNNs. Further, we show that RNNs
can learn a subset of qSTR where the output is a constant sequence, which we call simple-qSTR,
with a sample complexity polylogarithmic in N . Finally, we develop a lower bound technique for
feedforward networks (FFNs) that takes advantage of the fully connected projection of the first layer
to obtain a sample complexity lower bound linear in N , even when learning simple-qSTR models.
The following theorem summarizes our main contributions.

Theorem 1 (Informal) We have the following hierarchy of statistical efficiency for learning qSTR.
• A single-layer Transformer can learn qSTR with sample complexity almost independent of N .

• RNNs can learn simple-qSTR with sample size almost independent of N , but require at least
Ω(N c) samples for some constant c > 0 to learn a generic qSTR model, regardless of their size.

• Feedforward neural networks, regardless of their size, require Ω(Nd) samples to learn even
simple-qSTR models, where d is input token dimension.

We empirically validate the intuitions from Theorem 1 in Figure 1.

2. Problem Setup

Statistical Model. In this paper, we will focus on the ability of different architectures for learning
the following data generating model.

Definition 2 (q-Sparse Token Regression) Suppose p,y ∼ P where

p =

((
x1

t1

)
, . . . ,

(
xN

tN

))
,

ti ∈ [N ]q and xi ∈ Rd for i ∈ [N ]. In the q-sparse token regression (qSTR) data generating model,
the output is given by y = (y1, . . . , yN )⊤ ∈ RN , where

yi = g(xti1 , . . . ,xtiq),

for some g : Rqd → R. We call this model simple-qSTR if the data distribution is such that ti = t
for all i ∈ [N ] and some t drawn from [N ]q.
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Figure 1: Number of samples to reach a certain test MSE loss threshold while training with online AdamW.
We consider (a) 1STR with threshold 0.7 and (b) simple-1STR with threshold 0.02, averaged
over 5 experiments. We use a linear link function, standard Gaussian input, d = 10 and de =
⌊5 log(N)⌋. Positional encodings are sampled uniformly from the unit hypercube.

The above defines a class of sequence-to-sequence functions, where the label at position i in the
output sequence depends only on a subsequence of size q of the input data, determined by the set of
indices ti. p in the above definition denotes the prompt or context. Given the large context length
of modern architectures, we are interested in a setting where q ≪ N . In this setting, the answer at
each position only depends on a few tokens, however the tokens it depends on change based on the
context. Therefore, we seek architectures that are adaptive to this form of dynamic sparsity in the
true data generating process, with computational and sample complexity independent of N . As a
special case, choosing g as the tokens’ mean recovers the sparse averaging model proposed in [23],
where the authors separate the representational capacity of Transformers and other architectures.

Throughout the paper, we put mild assumptions on the data distribution. Specifically, we assume
x is sub-Gaussian and g grows at most polynomially and is approximated up to L2 error ε2NN by a
two-layer feedforward network with width mg. These assumptions are formalized in Appendix A.

While Empirical Risk Minimization (ERM) is a standard abstract learning algorithm to use for
generalization analysis, its standard formalizations use risk functions for scalar-valued predictions.
We measure the performance of different architectures in terms of the following population risk

Rarc(Θ) :=
1

N
E

[
N∑
j=1

(ŷarc(p;Θ)j − yj)
2

]
=

1

N
E
[
∥ŷarc(p;Θ)− y∥22

]
,

where arc denotes a general architecture, and ŷarc(·;Θ) denotes the output of the model param-
eterized by weight vector Θ. In Appendix A, we formalize several notions of ERM suitable for
sequential risk formulations.

3. Transformers

A single-layer Transformer is composed of an attention and a parallel feedforward layer. We con-
sider a standard theoretical formalization of a single-layer transformer with q heads and width mg

for the feedforward units, where mg is defined in Assumption 2. We formally define the architec-
ture in Appendix B.1. We consider the following parameter class ΘTR = {∥vec(Θ)∥2 ≤ R}, and
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provide a learning guarantee for empirical risk minimizers over ΘTR, with its proof (including the
choice of R) deferred to Appendix B.2.

Theorem 3 Let Θ̂ = argminΘ∈ΘTR
R̂TR

n (Θ). Under Assumptions 1 to 3, we have

RTR(Θ̂n) ≲ ε2NN + Õ

(
C1

√
mgq(d+ q) + q3 + qd2

n

)

where C1 = R2qd, with probability at least 1− n−c for some absolute constant c > 0.
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Figure 2: Trained attention weights
match our theoretical con-
struction (6).

Note that the sample complexity above depends on N
only up to log factors. By incorporating additional structure
in the ERM solution, it is possible to obtain improved sample
complexities. A close study of the optimization dynamics
may reveal such additional structure in the solution reached
by gradient-based methods, pushing the sample complexity
closer to the information-theoretic limit of Ω(qd). Figure 2
demonstrates that the attention weights achieved through
standard optimization of a Transformer match our theoretical
constructions – see Equation (6) – even while maintaining
separate WQ and WK during training (we use the 1STR
setup of Figure 1 with N = 100). We leave the study of
optimization dynamics and the resulting sample complexity
for future work.

4. Recurrent Neural Networks

In this section, we first provide positive results for RNNs by proving that they can learn simple-
qSTR with a sample complexity only polylogarithmic in N , thus establishing a separation in their
learning capability from feedforward networks. For this upper bound, we use bidirectional RNNs
with deep transitions [22], formally introduced in Appendix C.1.

Theorem 4 (RNNs can learn simple-qSTR) Let Θ̂ = argminΘ∈ΘRNN
R̂RNN

n (Θ) (with ΘRNN de-
fined in Equation (9)). Suppose Assumptions 1 to 3 hold with the simple-qSTR model, i.e. ti = t
for all i ∈ [N ] and some t drawn from [N ]q. Then, with proper hyperparameters in ΘRNN (see
Appendix C.1), we obtain

RRNN(Θ̂) ≲ ε2NN +

√
poly(d, q,mg, ε

−1
2NN, log(nN))

n
,

with probability at least 1− n−c for some absolute constant c > 0.

As desired, the above sample complexity depends on N only up to polylogarithmic factors. The
completed proof can be found in Appendix C.

Next, we turn to general qSTR, where we provide a negative result on RNNs, proving that
to learn such models their sample complexity must scale with NΩ(1) regardless of model size,
making them less statistically efficient than Transformers. Our lower bound covers a broad notion
of bidirectional RNNs formalized in Appendix C.5, and includes the example in the upper bound.
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Theorem 5 (RNNs can not learn qSTR) Consider the 1STR model where x ∼ N (0, INd) with
a linear link function, i.e. yj =

〈
u,xtj

〉
for some u ∈ Sd−1. Further, ti is drawn independently

from the rest of the prompt and uniformly from [N ] for all i ∈ [N ]. Let Θ̂ε be the min-norm ε-ERM
of R̂RNN

n , defined in (4). Then, there exist absolute constants c1, c2, c3 > 0 such that if n ≤ O(N c1),
for any ε ≥ 0, with probability at least c2 over the training set,

1

N
E
[∥∥∥ŷRNN(p; Θ̂n,ε)− y

∥∥∥2
2

]
≥ c3.

On our way to prove this theorem, we prove a novel representational lower bound for RNNs –
Proposition 31 in Appendix C.5 – that captures both the number of parameters and the norm in the
weights. This representational lower bound implies that an RNN that generalizes on the entire data
distribution (hence approximates the 1STR model) requires a weight norm that scales with

√
N .

On the other hand, we show that overfitting on the n training samples with zero empirical risk is
possible with a poly(n) weight norm. As a result, as long as n ≤ N c1 for some small constant
c1 > 0, min-norm ε-ERM will choose models that overfit rather than generalize. The complete
proof of Theorem 5 is presented in Appendix C.7.

5. Feedforward Neural Networks (FFNs)

In this section, we consider a general formulation of a feedforward network. Our only requirement
will be that the first layer performs a fully-connected projection. The subsequent layers of the net-
work can be arbitrarily implemented, e.g. using attention blocks or convolution filters. Specifically,
the FFN implements the mapping p 7→ f(T ,Wx) where W ∈ Rm1×Nd is the weight matrix in
the first layer, x = (x⊤1 , . . . ,x

⊤
N )⊤ ∈ RNd, and f : [N ]qN × Rm1 → RN implements the rest of

the network. Unlike Transformers, here we give the network full information of T = (t1, . . . , tN ),
and in particular, it can implement arbitrary encodings of the position variables t1, . . . , tN . This
formulation covers usual approaches where encodings of t are added to or concatenated with x.

The class of algorithms we consider for training FFNs goes beyond ERM and includes stationary
points of the training loss, thus covering outputs of first-order optimization algorithms. This class
is formally introduced in Definition 38 in Appendix D.

For our negative result on feedforward networks, we can further restrict the class of qSTR
models, and only consider simple-qSTR. The following minimax lower bound, with its proof
deferred to Appendix C, shows that all algorithms in class A fail to learn even the subset of simple-
qSTR models with a sample complexity sublinear in N .

Theorem 6 Suppose x ∼ N (0, INd), and consider the simple-1STR model with ti1 = t1 for all
i ∈ [N ], where t1 is drawn independently and uniformly in [N ], and a linear link function, i.e.
y = ⟨u,xt1⟩ for some u ∈ Sd−1. Let A be the class of algorithms in Definition 38. Then,

inf
A∈A

sup
u∈Sd−1

RFFN(fA(Sn),WA(Sn)) ≥ 1− n

Nd
,

with probability 1 over the training set Sn.

The main intuition in the proof of the above theorem follows from the stationarity property of
Definition 38. With this property, the rows of the trained W will always be in the span of the
training data x(i) for i ∈ [n], and this subspace can be too small to predict y, which by randomizing
u, can depend on all Nd target directions.
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Appendix A. Detailed Assumptions and Learning Procedure

Here, we stay our precise assumptions on the data distribution.

Assumption 1 Suppose E[∥xi∥r]1/r ≤
√
Cxdr and E[|yi|r]1/r ≤

√
Cyrs for all r ≥ 1, i ∈ [N ],

and some absolute constants s ≥ 1 and Cx, Cy > 0.

Learning the qSTR model requires two steps: (i) extracting the relevant tokens at each position,
(ii) learning the link function g. We are interested in settings where the difficulty of learning is
dominated by the first step, hence we assume g can be approximated by a two-layer feedforward
network.

Assumption 2 There exist mg ∈ N, ag, bg ∈ Rmg and W g ∈ Rmg×qd, such that ∥ag∥2 ≤
ra/

√
mg, and ∥(W g, bg)∥F ≤ √

mgrw for some constants ra, rw > 0, and

sup{
∥xi∥2≤

√
Cd log(nN), ∀i∈[q]

}∣∣∣g(x1, . . . ,xq)− a⊤g σ(W g(x
⊤
1 , . . . ,x

⊤
q )
⊤ + bg)

∣∣∣2 ≤ ε2NN,

where C = 3Cxe and ε2NN is some absolute constant.

Ideally, ε2NN above is a small constant denoting the approximation error. This assumption can be
verified using various universal approximation results for ReLU networks. For example, when g is
an additive model of P Lipschitz functions, where each function depends only on a k-dimensional
projection of the input, the above holds for every ε2NN > 0 and mg = Õ

(
(P/

√
ε2NN)

k
)
, ra =

Õ
(
(P/

√
ε2NN)

(k+1)/2
)
, and rw = 1 (we can always have rw = 1 by homogeneity) [6].

Before introducing the notions of ERM that we employ, we first state several sequential risk
formulations to evaluate a predictor ŷarc(·;Θ) ∈ Farc on i.i.d. training samples {p(i),y(i)}ni=1,
where arc denotes a general architecture. We define the population risk, averaged empirical risk,
and point-wise empirical risk respectively as

Rarc(Θ) :=
1

N
E

[
N∑
j=1

(ŷarc(p;Θ)j − yj)
2

]
=

1

N
E
[
∥ŷarc(p;Θ)− y∥22

]
, (1)

R̂arc
n,N (Θ) := 1

nN

∑n
i=1

∑N
j=1

(
ŷarc(p

(i);Θ)j − y
(i)
j

)2
, (2)

R̂arc
n (Θ) :=

1

n

n∑
i=1

(
ŷarc(p

(i);Θ)j(i) − y
(i)

j(i)

)2
, (3)

where {j(i)}ni=1 are i.i.d. position indices drawn from Unif([N ]).The goal is to minimize the popu-
lation risk Rarc(Θ) by minimizing some empirical risk, potentially with weight regularization. We
use three formalizations of learning algorithms to prove our results.
1. Constrained ERM minimizes an empirical risk R̂arc

n subject to the model parameters belonging
on some (e.g., norm-constrained) set Θ. Concretely, let

Θ̂ ∈ argminΘ∈Θ R̂arc
n (Θ).

Theorem 3 considers constrained ERM algorithms for bounded-weight transformers with point-
wise risk R̂TR

n (Θ), and Theorem 4 uses R̂RNN
n (Θ) for RNNs. Note that upper bounds for training

with point-wise empirical risk R̂arc
n readily transfer to training with averaged empirical risk

R̂arc
n,N .

9



WHEN DO TRANSFORMERS OUTPERFORM FEEDFORWARD AND RECURRENT NETWORKS?

2. Min-norm ε-ERM minimizes the norm of the parameters, subject to sufficiently small loss:

Θ̂ε ∈ argmin
{Θ:R̂arc

n (Θ)−min R̂arc
n ≤ε}

∥vec(Θ)∥2. (4)

Theorem 5 uses min-norm ε-ERM to place a sample complexity lower bound R̂RNN
n (Θ).

3. Beyond ERM, Theorem 6 also considers stationary points of the averaged or point-wise loss,
with ℓ2 regularization. This learning algorithm is presented in greater detail in Definition 38.

If Θ is defined by a norm constraint, then min-norm ε-ERM with a proper ε can be seen as an
instance of constrained ERM. All three formulations are motivated by practical optimization algo-
rithms that either minimize an explicitly regularized loss, or have an implicit bias towards min-norm
solutions.

Appendix B. Details of Section 3

Here we present the omitted details and proofs of Section 3. We begin by presenting the architectural
details before proving sample complexity upper bounds for Transformers.

B.1. Transformer Architectural Definition

We formally introduce the single-layer H-headed Transformer that appears in all Section 3 proofs.

Positional encoding. To break the permutation equivaraince of Transformers, we append posi-
tional information to the input tokens. Given a prompt p, we consider an encoding given by

Z(p) =

(
x1 . . . xN

enc(1, t1) . . . enc(N, tN )

)
∈ RDe×N ,

where enc : [N ]×[N ]q → Rdenc provides the encoding of the position and of ti, and De := d+denc.
We use zi to refer to the ith column above. We remark that allowing enc to take ti as input allows
specific encodings of the indices ti that take advantage of the qSTR structure; examples of this have
been considered in prior works [27]. In practice, we expect such useful encodings to be learned
automatically by previous layers in the Transformer. We remark that for a fair comparison, in our
lower bounds for other architectures we allow arbitrary processing of ti in their encoding procedure.
To specify enc, we use a set of vectors {ωi}Ni=1 in Rde that satisfy the following property.

Assumption 3 We have |⟨ωi,ωj⟩| ≤ 1
2 for all i ̸= j, and ∥ωi∥2 = 1 for all i, with de = Θ(logN).

Such a set of vectors can be obtained e.g., by sampling random Rademacher vectors from the unit
cube {±1/

√
de}de which will satisfy the assumption with high probability. We define

enc(i, ti) =
√

d/q(ωi,ωti1 , . . . ,ωtiq)
⊤ ∈ R(q+1)de ,

hence denc = (q+1)de and De = d+(q+1)de. The
√
d/q prefactor ensures that xi and enc(i, ti)

will roughly have the same ℓ2 norm, resulting in a balanced input to the attention layer.

10



WHEN DO TRANSFORMERS OUTPERFORM FEEDFORWARD AND RECURRENT NETWORKS?

Multi-head attention. Given a sequence {zi}Ni=1 where zi ∈ RDe with De as the embedding
dimension, a single head of attention outputs another sequence of length N in RDe , given by

fAttn(p;WQ,WK ,W V ) =

[
N∑
j=1

W V zj
e⟨WQzi,WKzj⟩∑N
l=1 e

⟨WQzi,WKzl⟩

]
i∈[N ]

.

Where WK ,WQ,W V are the key, query, and value projection matrices respectively. We can
simplify the presentation by replacing W⊤

QWK with a single parameterizing matrix for query-key
projections denoted by WQK ∈ RDe×De , and absorbing W V into the weights of the feedfor-
ward layer. This provides us with a simplified parameterization of attention, which we denote by
fAttn(p;WQK). This simplification is standard in theoretical works (see e.g. [2, 18, 27, 28]). Our
main separation results still apply when maintaining separate trainable projections.

We can concatenate the output of H attention heads with separate key-query projection matrices
to obtain a multi-head attention layer with H heads. We denote the output of head h ∈ [H] with
fAttn(p;W

(h)
QK). The output of the multi-head attention at position i is then given by

f
(H)
Attn(p;W

(1)
QK, . . . ,W

(H)
QK )i = (fAttn(p;W

(1)
QK)i, . . . , fAttn(p;W

(H)
QK )i)

⊤ ∈ RHDe .

We will denote by ΘQK = (W
(1)
QK, . . . ,W

(H)
QK ) the parameters of the multi-head attention.

Finally, a two-layer neural network acts on the output of the attention to generate labels. Given
input h ∈ RHDe , the output of the network is given by

f2NN(h;a2NN,W 2NN, b2NN) = a⊤2NNσ(W 2NNh+ b2NN),

where W 2NN ∈ Rm×HDe are the first layer weights, b2NN,a2NN ∈ Rm are the second layer weights
and biases, and m is the width. We also use the summarized notation Θ2NN = (a2NN,W 2NN, b2NN)
to refer to the feedforward layer weights. The prediction of the transformer at position i is given by

ŷTR(p;ΘTR)i = f2NN(f
(H)
Attn(p;ΘQK)i;Θ2NN),

where ΘTR = (ΘQK,Θ2NN) denotes the overall trainable parameters of the Transformer. We use
the notation ŷTR(p;ΘTR) = (ŷTR(p;ΘTR)1, . . . , ŷTR(p;ΘTR)N )⊤ ∈ RN to denote the vectorized
output.

B.2. Proof of Theorem 3

To prove Theorem 3, we will prove the more general theorem below.

Theorem 7 Let Θ̂ := argminΘ∈ΘTR
R̂TR

n (Θ), where

ΘTR :=
{
∥a2NN∥2 ≤ ra/

√
m, ∥(W 2NN, b2NN)∥F ≤ rw

√
m,
∥∥∥W (h)

QK

∥∥∥
2,1

≤ α ∀h ∈ [H]
}
.

Suppose H = q, m = mg, and α = Θ̃(1) (given in Lemma 8). Then, under Assumptions 1 to 3,
with probability at least 1− n−c for some absolute constant c > 0, we have

RTR(Θ̂) ≤ O(ε2NN) + Õ

(
C1

√
(mgq(d+ q) + r6zr

2
ar

2
wq

2 ∧ q(q2 + d2))

n

)
, (5)

where C1 = qr2ar
2
wr

2
z .

11
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We begin with a lemma establishing the capability of Transformers in approximating qSTR
models.

Lemma 8 Suppose Assumption 2 holds. Let rx =
√

3Cxed log(nN). Assume H = q and mg =
m. Then, there exists ΘTR such that

sup
{∥xj∥2≤rx,∀j∈[N ]}

∣∣g(xti1 , . . . ,xtiq)− ŷTR(p;ΘTR)i
∣∣ ≤ 2

√
ε2NN,

and

∥a2NN∥2 ≤
ra√
m
, ∥(W 2NN, b2NN)∥F ≤

√
mrw,

∥∥∥∥W (h)
QK

⊤
∥∥∥∥
2,1

≤ 2deq

d
log

(
2rarwrxN

√
q

ε2NN

)
,

for all h ∈ [H].

Proof In our construction, the goal of attention head h at position i will be to output ztih . Namely,
we want to achieve

fAttn(p;W
(h)
QK)i ≈ ztih .

Note that to do so, for each key token zj , we only need to compute ⟨ωtih ,ωj⟩. Therefore, most
entries in W

(h)
QK can be zero. We only require a block of de × de, which corresponds to comparing

ωj and ωtih when comparing query zi and key zj . Thus, we let

W
(h)
QK =

0(d+hde)×d 0(d+hde)×de 0(d+hde)×qde
0de×d αIde 0de×qde

0(q−h)de×d 0(q−h)de×de 0(q−h)de×qde

 (6)

Then, we have
〈
zi,W

(h)
QKzj

〉
= α⟨ωtih ,ωj⟩d/q. We can then verify that∥∥∥AfAttn(p;W

(h)
QK)i −Aztih

∥∥∥
2
≤
∑
j ̸=tih

e−αd/(2q)(∥Azj∥+ ∥Aztih∥2)

for every matrix A. We will specifically choose A to be the projection onto the first d coordinates in
the following. Hence, α will control the error in the softmax attention approximating a “hard-max”
attention that would exactly choose ztih .

To construct the weights of the feedforward layer a2NN,W 2NN, b2NN, we let a2NN = ag and
b2NN = bg from Assumption 2, and define W 2NN by extending W g with zero entries such that

W 2NN

zti1

. . .
ztiq

 = W g

xti1

. . .
xtiq

.

Then ∥W 2NN∥F = ∥W g∥F. Notice that · 7→ a⊤σ(W (·) + b) is rarw Lipschitz. As a result, for
any x with ∥x∥ ≤ rx we have∣∣g(xti1 , . . . ,xtiq)− ŷTR(p;ΘTR)i

∣∣ ≤ √
ε2NN + εAttn,

where we recall∣∣g(xti1 , . . . ,xtiq)− f2NN((zti1 , . . . ,ztiq);a2NN,W 2NN, b2NN)
∣∣ ≤ √

ε2NN,

12
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and

εAttn =
∣∣∣f2NN((zti1 , . . . ,ztiq);Θ2NN)− f2NN(f

(q)
Attn(p;ΘQK);Θ2NN)

∣∣∣
≤ rarw

√√√√ q∑
h=1

∥∥∥AfAttn(p;W
(h)
QK)i −Aztih

∥∥∥2
2

≤ 2rarwrxN
√
qe−αd/(2q),

where we recall Azj = xj . Thus, with

α = 2q log(2rarwrxN
√
q/
√
ε2NN)/d

we can guarantee the distance is at most 2
√
ε2NN.

Before proceeding to obtain statistical guarantees, we will show that we can consider the encod-
ings z(i)

j to be bounded with high probability. This will be a useful event to consider throughout the
proofs of various sections.

Lemma 9 Suppose {p(i)}ni=1 are n input prompts (not necessarily independent) drawn from the
input distribution, with tokens denoted by {(x(i)

j )Nj=1}ni=1. Under Assumption 1, for any rx > 0 we
have

P
(

max
i∈[n],j∈[N ]

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤ nNe−r

2
x/(2Cxed).

In particular, for rx =
√
3Cxed log(nN) we have

P
(

max
i∈[n],j∈[N ]

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤
√

1

nN
.

Proof Via Markov’s inequality, for any p > 0 and rx > 0, we have

P
(
max
i,j

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤

E
[
maxi,j

∥∥∥x(i)
j

∥∥∥p
2

]
rpx

≤
E
[∑

i,j

∥∥∥x(i)
j

∥∥∥p
2

]
rpx

≤ Nn(Cxpd)
p/2

rpx
.

Let p = r2x/(Cxed). Then,

P
(
max
i,j

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤ nNe−r

2
x/(2Cxed),

which proves the first statement, and the second statement follows by plugging in the specific value
of rx.

We are now ready to move to the generalization analysis of Transformers. First, we have to
formally define the prediction function class of Transformers with a notation suitable for this section.
We begin by defining the function class of attention. We have

FAttn = {p, j 7→ f
(H)
Attn(p;ΘQK)j : ΘQK ∈ ΘQK},

13
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where we will later specify ΘQK. Additionally, we define F2NN by

F2NN = {h 7→ f2NN(h;Θ2NN) : Θ2NN ∈ Θ2NN},

where Θ2NN = (a2NN,W 2NN, b2NN), and we will later specify Θ2NN. Then the class FTR can be
defined as

FTR = {p, j 7→ f2NN(fAttn(p)j) : fAttn ∈ FAttn, f2NN ∈ F2NN}.

Recall we use the Sn to denote the training set. To avoid extra indices, we will use the notation
p, j ∈ Sn to go over {p(i), j(i)}ni=1. We can then define the following distances on the introduced
function classes

dTR∞ (f, f ′) := sup
p,j

∣∣f(p)j − f ′(p)j
∣∣, ∀f, f ′ ∈ FTR

dAttn∞ (f, f ′) := sup
p,j

∥∥f(p)j − f ′(p)j
∥∥
2
, ∀f, f ′ ∈ FAttn

d2NN∞ (f, f ′) := sup
∥·∥2≤

√
Hrz

∣∣f(·)− f ′(·)
∣∣, ∀f, f ′ ∈ F2NN.

We choose the radius
√
Hrz for defining d2NN∞ since on the event of Lemma 9, this will be the norm

bound on the output of the attention layer at every position.
Recall that for a distance d∞ and a set F , an ϵ-covering F̂ is a set such that for every f ∈ F ,

there exists f̂ ∈ F̂ such that d∞(f, f̂) ≤ ϵ. The ϵ-covering number of F , denoted by C(F , d∞, ϵ),
is the number of elements of the smallest such F̂ . The following lemma relates the covering number
of FTR to those of FAttn and F2NN.

Lemma 10 Suppose f2NN is Lf Lipschitz for every f2NN ∈ F2NN. Then, for any ϵ2NN, ϵAttn > 0,
on the event of Lemma 9 we have

log C(FTR, d
TR
∞ , ϵ2NN + Lf ϵAttn) ≤ log C

(
F2NN, d

2NN
∞ , ϵ2NN

)
+ log C

(
FAttn, d

Attn
∞ , ϵAttn

)
.

Proof The proof simply follows from the triangle inequality, namely

sup
p,j

∣∣∣fTR(p;ΘTR)j − fTR(p; Θ̂TR)j

∣∣∣ ≤ sup
∥h∥2≤

√
Hrz

∥∥∥f2NN(h;ΘNN)− f2NN(h; Θ̂NN)
∥∥∥
2

+ Lf sup
p,j

∥∥∥f (H)
Attn(p;ΘQK)j − f

(H)
Attn(p; Θ̂QK)j

∥∥∥
2
.

We have the following estimate for the covering number of F2NN.

Lemma 11 Suppose ∥vec(ΘRNN)∥2 ≤ R and
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and j ∈ [N ]. Then,

log C
(
F2NN, d

2NN
∞ , ϵ

)
≲ mgHDe log(1 + poly(R)/ϵ).

This is a special case of Lemma 26, proved in Appendix C.
For the next step, define the distance

dQK
∞ (ΘQK,Θ

′
QK) := sup

p,j

∥∥∥Θ⊤QKzj −Θ′
⊤
QKzj

∥∥∥
2

14
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on ΘQK, where we recall ΘQK = (W
(1)
QK, . . . ,W

(H)
QK ) ∈ RDe×HDe . The following lemma relates

the covering number of the multi-head attention layer to the matrix covering number of the class of
attention parameters.

Lemma 12 Suppose
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all i ∈ [n] and j ∈ [N ]. Then,

log C(FAttn, d
Attn
∞ , ϵ) ≤ log C

(
ΘQK, d

QK
∞ ,

ϵ

2r2z

)
.

Proof We recall that Z ∈ RN×De denotes the encoded prompt, and softmax is applied row-wise.

For conciseness, Let ∆ := supp,j

∥∥∥f (H)
Attn(p;ΘQK)j − f

(H)
Attn(p; Θ̂QK)j

∥∥∥2
2
. Then we have

∆ = sup
p,j∈Sn

∑
h∈[H]

∥∥∥fAttn(p;W (h)
QK)j − fAttn(p; Ŵ

(h)
QK)j

∥∥∥2
2

= sup
p,j∈Sn

∑
h∈[H]

∥∥∥softmax
(
z⊤j W

(h)
QKZ

⊤)Z − softmax
(
z⊤j Ŵ

(h)
QKZ

⊤)Z∥∥∥2
2

≤ sup
p,j∈Sn

∑
h∈[H]

∥∥∥Z⊤∥∥∥2
2,∞

∥∥∥softmax(z⊤j W
(h)
QKZ

⊤)⊤ − softmax(z⊤j Ŵ
(h)
QKZ

⊤)⊤
∥∥∥2
1
,

where we used Lemma 39 for the last inequality. Moreover, by [13, Corollary A.7],∥∥∥softmax
(
z⊤j W

(h)
QKZ

⊤)⊤ − softmax
(
z⊤j Ŵ

(h)
QKZ

⊤)∥∥∥
1
≤ 2
∥∥∥ZW (h)⊤

QKzj −ZŴ
(h)⊤

QKzj

∥∥∥
∞

≤ 2
∥∥∥Z⊤∥∥∥

2,∞

∥∥∥W (h)⊤
QKzj − Ŵ

(h)⊤
QKzj

∥∥∥
2
.

Consequently,

∆ ≤ 4r4z sup
p,j∈Sn

∑
h∈[H]

∥∥∥∥W (h)
QK

⊤
zj − Ŵ

(h)⊤
QKzj

∥∥∥∥2
2

= 4r4z sup
p,j∈Sn

∥∥∥Θ⊤QKzj − Θ̂
⊤
QKzj

∥∥∥2
2
,

which completes the proof.

Further, we have the following covering number estimate for ΘQK.

Lemma 13 Suppose ΘQK = {∥ΘQK∥2,1 ≤ R2,1, ∥ΘQK∥F ≤ RF } and
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all

i ∈ [n] and j ∈ [N ]. Then,

log C
(
ΘQK, d

QK
∞ , ϵ

)
≲ min

(
r2zR

2
2,1 log(2HD2

e)

ϵ2
, HD2

e log
(
1 +

2RF rz
ϵ

))
.
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Proof The first estimate comes from Maurey’s sparsification lemma [8, Lemma 3.2], while the
second estimate is based on the inequality∥∥∥Θ⊤QKzj − Θ̂

⊤
QKzj

∥∥∥
2
≤ rz

∥∥∥ΘQK − Θ̂QK

∥∥∥
F
,

and covering ΘQK with the Frobenius norm, see e.g. Lemma 41.

Finally, we obtain the following covering number for FTR.

Proposition 14 Suppose ∥a2NN∥2 ≤ rm,a, ∥(W 2NN, b2NN)∥F ≤ Rm,w, and
∥∥∥W (h)

QK

∥∥∥
2,1

≤ rQK for

all h ∈ [H]. Further assume
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all i ∈ [n] and j ∈ [N ]. Let R := max(rm,a, Rm,w, rz).

Then,

log C(FTR, dF , ϵ) ≲mgHDe log(1 +R/ϵ)

+ min

(
r6zr

2
m,aR

2
m,wH

2r2QK log(HD2
e)

ϵ2
, HD2

e log
(
1 +

√
HrQKr

3
zrm,aRm,w

ϵ

))
.

Proof The proof follows from a number of observations. First, given the parameterization in the
statement of the proposition, we have Lf = rm,aRm,w in Lemma 10. Moreover, we have RF ≤√
HrQK and R2,1 ≤ HrQK in Lemma 13. The rest follows from combining the statements of the

previous lemmas.

Next, we will use the covering number bound to provide a bound for Rademacher complexity.
Recall that for a class of loss functions L, the empirical and population Rademacher complexities
are defined as

R̂n(L) := E

[
sup
ℓ∈L

1

n

n∑
i=1

ξiℓ(p
(i),y(i), j(i))

]
, Rn(L) := E(p,y,j)

[
R̂n(L)

]
respectively, where (ξi) are i.i.d. Rademacher random variables. Let the class of loss functions be
defined by

Lτ := {(p,y, j) 7→ (fTR(p)j − yj)
2 ∧ τ : fTR ∈ FTR}, (7)

for some constant τ > 0 to be fixed later. We then have the following bound on Rademacher
complexity.

Lemma 15 Suppose maxi∈[n],j∈[N ]

∥∥∥z(i)
j

∥∥∥
2
≤ rz . For the loss class Lτ given by (7), we have

R̂n(Lτ ) ≤ Õ

(
τ

√
C1 + (C2 ∧ C3)

n

)
,

where C1 = mgHDe, C2 = r6zr
2
m,aR

2
m,wH

2r2QK , and C3 = HD2
e .
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Proof Let C(L, dL∞, ϵ) denote the ϵ-covering number of L, where ℓ(p,y, j) = (f(p)j − yj)
2 ∧ τ

and ℓ′(p,y, j) = (f ′(p)j − yj)
2 ∧ τ . Then, for any α ≥ 0, by a standard chaining argument,

R̂n(Lτ ) ≲ α+

∫ τ

α

√
log C(L, dL∞, ϵ)

n
dϵ.

≲ α+

∫ τ

α

√
log C(F , dTR∞ , ϵ/(2

√
τ))

n

≲ α+

∫ τ

α

√
C1 log(R

√
τ/ϵ)

n
dϵ+

{∫ τ

α

√
τC2 log(HD2

e)

nϵ2
dϵ

}
∧

{∫ τ

α

√
C3 log(1 + C4

√
τ/ϵ)

n
dϵ

}

≲ α+

√
τ2C1 log(R

√
τ/α)

n
+

{√
τC2 log(HD2

e)

n
log
( τ
α

)}
∧

{√
τ2C3 log(1 + C4

√
τ/α)

n

}
,

where (Ci)
3
i=1 are given in the statement of the lemma and C4 =

√
HrQKr

3
zrm,aRm,w. Choosing

α = 1/
√
n completes the proof.

Using standard symmetrization techniques, the above immediately yields a high probability
upper bound for the expected truncated loss of any estimator in ΘTR.

Corollary 16 Let Θ̂ = argminΘ∈ΘTR
R̂TR

n (Θ), where ΘTR is described in Proposition 14. Define
rz =

√
r2x + d(1 + 1/q) where rx is defined in Lemma 9. Let C1, C2, and C3 be defined as in

Lemma 15. Then, with probability at least 1− δ − (nN)−1/2 over Sn, we have

RTR
τ (Θ̂)− R̂TR

n (Θ̂) ≤ Õ

(
τ

√
(C1 + C2 ∧ C3)

n

)
+O

(
τ

√
log(1/δ)

n

)
,

where RRNN
τ (Θ̂) := Ep,j,y

[
(ŷTR(p; Θ̂)j − yj)

2 ∧ τ
]

Proof The proof is a standard consequence of Rademacher-based generalization bounds, with the
additional observation that

1

n

n∑
i=1

(
ŷTR(p

(i); Θ̂)j(i) − y
(i)

j(i)

)2 ∧ τ ≤ R̂TR
n (Θ̂).

The last step in the proof of the generalization bound is to bound RTR(Θ̂) with RTR
τ (Θ̂). This

is achieved by the following lemma.

Lemma 17 Define κ2 := Hr2m,aR
2
m,wr

2
z . Then, under Assumption 1, for τ ≍ κ2 log(κ2N

√
n) +

log(κ2
√
n)s, we have

RTR(Θ̂)−RTR
τ (Θ̂) ≤

√
1

n
.

17



WHEN DO TRANSFORMERS OUTPERFORM FEEDFORWARD AND RECURRENT NETWORKS?

Proof For conciseness, define ∆y :=
∣∣∣ŷTR(p; Θ̂)j − yj

∣∣∣. By the Cuachy-Schwartz inequality, we
have

RTR(Θ̂) = E
[
∆2

y1
[
∆y ≤

√
τ
]]

+ E
[
∆2

y1
[
∆y >

√
τ
]]

≤ RTR
τ (Θ̂) + E

[
∆4

y

]1/2P(∆y ≥
√
τ
)1/2

.

Moreover,

E
[
∆4

y

]1/2 ≤ 2E
[
y4j
]1/2

+ 2E
[
ŷ(p; Θ̂)4j

]1/2
.

By Assumption 1, we have E
[
y4j

]1/2
≲ 1. Additionally, note that∣∣∣ŷ(p; Θ̂)j

∣∣∣ ≤ ∥a2NN∥2(
√
H∥W 2NN∥F max

l∈[N ]
∥zl∥2 + ∥b2NN∥2)

≤
√
Hrm,aRm,w(1 + max

l∈[N ]
∥zl∥2).

To bound maxl∈[N ]∥zl∥2, we use the subGaussianity of ∥xl∥2 characterized in Assumption 1.
Specifically, for all r ≥ 1

E
[
max
l∈[N ]

∥xl∥42
]
≤ E

[
max
l∈[N ]

∥xl∥4r2
]1/r

≤ E

[
N∑
l=1

∥xl∥4r2

]1/r
≤ N1/r E

[
∥x1∥4r2

]1/r
≲ N1/rC2

xd
2r2

≲ (Cxd log(N))2,

where the last inequality follows from choosing r = logN . As a result,

E
[
ŷ(p; Θ̂)4j

]1/2
≲ Hr2m,aR

2
m,wr

2
z log(N)2 =: κ2 log(N)2.

We now turn to bounding the probability. We have

P
(
∆y ≥

√
τ
)
≤ P

(
|yj | ≥

√
τ

2

)
+ P

(∣∣∣ŷ(p; Θ̂)j

∣∣∣ ≥ √
τ

2

)
≤ exp

(
−Ω(τ1/s)

)
+N exp

(
− Ω

( τ

Hr2m,aR
2
m,wr

2
z

))
,

where the second inequality follows from sub-Weibull concentration bounds for y and Lemma 9.
Choosing τ = Θ(κ2 log(κ2N

√
n) + log(κ2

√
n)s) completes the proof.

Proof of Theorem 7. The theorem follows immediately from the approximation guarantee of
Lemma 8, the generalization bound of Corollary 16, and the truncation control of Lemma 17.
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Appendix C. Details and Proofs of Section 4

Before presenting the proofs, we state the omitted setup and parameterization of the network in the
next section.

C.1. Complete Setup of RNNs in the Upper Bound

A bidirectional RNN maintains, for each position in the sequence, a forward and a reverse hidden
state, denoted by (h→i )Ni=1 and (h←i )Ni=1, where h→i ,h←i ∈ Rdh . These hidden states are obtained
by initializing h→1 = h←N = 0dh and recursively applying

h→i = Πrh

(
h→i−1 + f→h (h→i−1, zi−1;Θ

→
h )
)
, ∀i ∈ {2, . . . , N}

h←i = Πrh

(
h←i+1 + f←h (h←i+1, zi+1;Θ

←
h )
)
, ∀i ∈ {1, . . . , N − 1},

where Πrh : Rdh → Rdh is the projection Πrhh = (1 ∧ rh/∥h∥2)h, and f→h and f←h are im-
plemented by feedforward networks, parameterized by Θ→h and Θ←h respectively. Recall zi =
(x⊤i , enc(i, ti)

⊤)⊤ is the encoding of xi. We remark that while we add Πrh for technical reasons,
it resembles layer normalization which ensures stability of the state transitions on very long inputs;
a more involved analysis can replace Πrh with standard formulations of layer normalization. Addi-
tionally, directly adding h→i−1 and h←i+1 to the output of transition functions represents residual or
skip connections. The output at position i is generated by

yi = fy(h
→
i ,h←i , zi;Θy),

which is an Ly-layer feedforward network. Specifically, we consider an RNN with deep transitions
[22] and let f→h (·;Θ→h ) be an Lh-layer feedforward network, given by

f→h (·;Θ→h ) = W→
Lh

σ
(
W→

Lh−1 . . . σ(W
→
2 σ(W→

1 (·) + b→1 ) + b→2 ) . . .+ b→Lh−1
)
, (8)

with Θ→h = (W→
1 , b→1 , . . . ,W→

Lh−1, b
→
Lh−1,W

→
Lh

) and a similar equation for f←(·;Θ←h ). As will
be evident from its proof, Theorem 4 only requires Lh, Ly = O(1).

We denote the complete output of the RNN via

ŷRNN(p;ΘRNN) = (fy(h
→
1 ,h←1 , z1;Θy), . . . , fy(h

→
N ,h←N , zN ;Θy)) ∈ RN .

We now define the constraint set of this architecture. Let

ΘRNN =
{
Θ : ∥vec(Θ)∥2 ≤ R,

∥∥W→
Lh

∥∥
op

. . .
∥∥W→

1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op

. . .
∥∥W←

1,h

∥∥
op

≤ αN

}
,

(9)
where W→

1,h contains the first dh columns of W→
1 , and the conditions above are introduced to

ensure f→h and f←h are at most αN -Lipschitz with respect to the hidden state input. One way to
meet this requirement is to multiply W→

1,h by a factor of αN/
∏Lh

l=2∥W
→
l ∥op in the forward pass.

Without this Lipschitzness constraint, current techniques for proving uniform RNN generalization
bounds will suffer from a sample complexity linear in N , see e.g. [10].

For Theorem 4 we only require αN ≤ N−1. In particular, we can choose αN = 0 and fix
W→

1,h = W←
1,h = 0, which would simplify the parameterization of the network. Namely, in our

construction f→ and f← do not need to depend on h→ and h← respectively.
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C.2. Overview of the Proof of Theorem 4

The following is the roadmap we will take for the proof of Theorem 4. The goal here is to implement
a bi-directional RNN in such a way that

h→i ≈
(
xt11[t1 < i], . . . ,xtq1[tq < i]

)
,

and
h←i ≈

(
xt11[t1 > i], . . . ,xtq1[tq > i]

)
.

Throughout this section, we will use the notation

Ψ(x, t, i) = (x⊤1[t1 = i], . . . ,x⊤1[tq = i])⊤.

We can obtain the hidden states above through the following updates

h→i+1 = h→i +Ψ(xi,ωt,ωi),

and
h←i−1 = h←i +Ψ(xi,ωt,ωi).

where

Ψ(xi,ωt,ωi)l =
xiσ(⟨ωi,ωtl⟩ − δ)

1− δ
= xi1[tl = i], ∀ l ∈ [q]

where we recall ωt = (ωt1 , . . . ,ωtq), and σ is ReLU. As a result, our network must approximate

f→h (h→i ,xi,ωt,ωi;Θ
→
h ) = f←h (h←i ,xi,ωt,ωi;Θ

←
h ) ≈ Ψ(xi,ωt,ωi).

A core challenge in this approximation is that if we simply control

∥f→h (h→i , zi;Θ
→
h )−Ψ(xi,ωt,ωi)∥2 ≤ ε, (10)

this error will propoagte through the forward pass, and we will have∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj ,ωt,ωj)

∥∥∥∥∥∥
2

≲ Nε.

As a result, we would like an implementation that satisfies the following

∥f→h (h→i , zi;Θ
→
h )l −Ψ(xi,ωt,ωi)l∥2 ≤

{
0 tl ̸= i

ε tl = i.
(11)

Note that

h→i =
i−1∑
j=1

f→h (h→j , zj ;Θ
→
h ).

Since for each l ∈ [q], tl = j is possible for at most one j ∈ [N ], (11) implies∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj ,ωt,ωj)

∥∥∥∥∥∥
2

≤ √
qε,
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for all i ∈ [N ], hence, we can avoid dependence on N .
We can implmenet f→h to satisfy (10) with a depth three network, where the first two layers

implements
〈
ωi,ωtj

〉
(as a sum of Lipschitz 2-dimensional functions, an example of their approx-

imation is given by [6, Proposition 6]), and the third performs coordinate-wise product between xi

and σ(
〈
ωi,ωtj

〉
− 1/2) (which for each coordinate is a Lipschitz two-dimensional function). To

ensure f→h satisfies (11), we can pass the outputs to a fourth layer which rectifies its input near zero
to be exactly zero using ReLU activations.

To generate yi from h→i and h←i , we first calculate

hi = fhh(h
→
i ,h←i ,xi,ωi,ωt)

≈ h→i + h←i +Ψ(xi,ωt,ωi)

≈ (xt1 , . . . ,xtq).

Finally, yi can be generated from hi by applying the two-layer neural network from Assumption 2
that approximates yi = g(xt).

Note that the construction above has a complexity poly(d, q, log(nN)) (both in terms of num-
ber and weight of parameters), only depending on N up to log factors. As a result, by a simple
parameter-counting approach, the sample complexity of regularized ERM would also be (almost)
independent of N . We also simply use the encoding

zi = (xi,ωi,ωti1 , . . . ,ωtiq)
⊤,

for the RNN positive result. The scaling difference with the encoding for Transofrmers is only made
to simplify the exposition, as we no longer keep explicit dependence on d and q.

C.3. Approximation Upper Bounds for RNNs

As explained above, to implement f→h we first construct a depth three neural network (with two
layers of non-linearity) which approximately performs the following mapping

h
x
ωi

ωt1
...

ωtq


7→


x

⟨ωi,ωt1⟩
...〈

ωi,ωtq

〉
 7→

2xσ(⟨ωi,ωt1⟩ − 1/2)
...

2xσ(
〈
ωi,ωtq

〉
− 1/2)

.

The first mapping will be provided by

χ1 = A1σ(W 1χ0 + b1),

where χ0 = (h⊤,x⊤,ω⊤i ,ω
⊤
t1 , . . . ,ω

⊤
tq)
⊤ ∈ Rdh+d+(q+1)de , W 1 ∈ Rm1×(dh+d+(q+1)de), b1 ∈

Rm1 , and A1 ∈ R(d+q)×m1 , with m1 as the width of the first layer. We will use the notation

χ1 = (χx
1 , χ

ω
1 (1), . . . , χ

ω
1 (q))

to refer for the first d coordinates and the rest of the q coordinates of χ1 respectively, thus ideally
χx
1 = x and χω

1 (l) = ⟨ωi,ωtl⟩. The second mapping is provided by

χ2 = A2σ(W 2χ1 + b2),
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where W 2 ∈ Rm2×(d+q), b2 ∈ Rm2 , and A2 ∈ Rdq×m2 . We will similarly use the notation
χ2 = (χ2(1), . . . ,χ2(q)), where our goal is to have χ2(l) ≈ 2xσ(⟨ωi,ωtl⟩ − 1/2). To implement
the first mapping, we rely on the following lemma.

Lemma 18 Let σ be the ReLU activation. For any ε > 0 and positive integer de, there exists
m = O(d3e(log(de/ε)/ε)

2), a ∈ Rm, W ∈ Rm×2de , and b ∈ Rm, such that

sup
ω1,ω2∈Sde−1

∣∣∣∣⟨ω1,ω2⟩ − a⊤σ

(
W

(
ω1

ω2

)
+ b

)∣∣∣∣ ≤ ε,

and
∥a∥2 ≤ O

(
d5/2e (log(de/ε)/ε)

3/2/
√
m
)
,
∥∥∥W⊤

∥∥∥
1,∞

≤ 1, ∥b∥∞ ≤ 1.

Proof Consider the mapping e1j , e2j 7→ e1je2j . Note that when |e1j | ≤ 1 and |e2j | ≤ 1, this
mapping is

√
2-Lipschitz, and the output is bounded between [−1, 1]. Then, by Lemma 42, for

every εj > 0, there exists mj ≤ O((1/εj log(1/εj))
2), aj ∈ Rmj ,W j ∈ Rmj×2de , and bj ∈ Rmj ,

such that

sup
|e1j |≤1,|e2j |≤1

∣∣∣∣∣e1je2j −
m∑
l=1

ajlσ
(〈

wjl, (ω
⊤
1 ,ω

⊤
2 )
⊤
〉
+ bjl

)∣∣∣∣∣ ≤ εj ,

∥aj∥2 ≤ O
(
(log(1/εj)/εj)

3/2/
√
mj

)
, ∥bj∥∞ ≤ 1, and ∥wjl∥1 ≤ 1. Specifically, the only non-

zero coordinates of wjl are the jth and de + jth coordinates.
Let εj = ε/de and m =

∑de
j=1mj = O(d3e(log(de/ε)/ε)

2). Construct a, b ∈ Rm and W ∈
Rm×2de by concatenating (aj), (bj), and (W j) respectively. The resulting network satisfies

sup
ω1,ω2∈Sde−1

∣∣∣∣⟨ω1,ω2⟩ − a⊤σ

(
W

(
ω1

ω2

)
+ b

)∣∣∣∣ ≤ ε,

while ∥a∥2 ≤ O
(
d
5/2
e (log(de/ε)/ε)

3/2/
√
m
)
, ∥b∥∞ ≤ 1, and

∥∥W⊤∥∥
1,∞ ≤ 1, completing the

proof.

We can now specify A1,W 1, and b1 in our construction.

Lemma 19 For any ε > 0, let m̄1 = O(d3e(log(de/ε)/ε)
2) and m1 = 2d+ qm̄1. Then, there exist

A1 ∈ R(d+q)×m1 , W 1 ∈ Rm1×(dh+d+(q+1)de), and b1 ∈ Rm1 , given by Equations (12) to (16),
such that

χx
1 = x, |χω

1 (l)− ⟨ωi,ωtl⟩| ≤ ε,

for all h ∈ Rdh , x ∈ Rd, ωi, (ωtj )j∈[q] ∈ Sde−1, and l ∈ [q]. Furthermore, we have the following
guarantees∥∥∥W⊤

1

∥∥∥
1,∞

≤ O(1), ∥b1∥∞ ≤ O(1),
∥∥∥A⊤1 ∥∥∥

1,∞
≤ O(d5/2e (log(de/ε)/ε)

3/2).

Proof We define the decompositions

W 1 =

(
W 11

W 12

)
, b1 =

(
b11
b12

)
, A1 =

(
A11

A12

)
, (12)
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where W 11 ∈ R2d×(dh+d+de), W 12 ∈ Rqm̄1×(dh+d+de), b11 ∈ R2d, b12 ∈ Rqm̄1 , A11 ∈ Rd×m1 ,
and A12 ∈ Rq×m1 . Let v1, . . . ,vd denote the standard basis of Rd, and notice that σ(z)−σ(−z) =
z. Therefore, we can implement the identity part of the mapping by letting

W 11 =


0dh v⊤1 0⊤(q+1)de

0dh −v⊤1 0⊤(q+1)de
...

...
0dh v⊤d 0⊤(q+1)de

0dh −v⊤d 0⊤(q+1)de

, (13)

as well as

b1 = 02d, and A11 =


1 −1 0 0 . . . 0 0⊤qm̄1

0 0 1 −1 . . . 0 0⊤qm̄1

...
...

...
...

...
...

...
0 . . . 0 0 1 −1 0⊤qm̄1

 (14)

Notice that
∥∥W⊤

11

∥∥
1,∞ = 1 and

∥∥A⊤11∥∥1,∞ = 2. To implement the inner product part of the
mapping, we take the construction of weights, biases, and second layer weights from Lemma 18,
and rename them as W̃ 1 ∈ Rm̄1×2de , b̃1 ∈ Rm̄1 , and ã1 ∈ Rm̄1 . Let us introduce the decomposition
W̃ 1 =

(
W̃ 11 W̃ 12

)
, where W̃ 11, W̃ 12 ∈ Rm̄1×de . With this decomposition, we can separate

the projections applied to the first and second vectors in Lemma 18. We can then define

W 12 =


0m̄1×(dh+d) W̃ 11 W̃ 12 0m̄1×de . . . 0m̄1×de
0m̄1×(dh+d) W̃ 11 0m̄1×de W̃ 12 . . . 0m̄1×de

...
...

...
...

...
...

0m̄1×(dh+d) W̃ 11 0m̄1×de 0m̄1×de . . . W̃ 12

, (15)

as well as

b12 =

b̃1
...
b̃1

, and A12 =


0⊤2d ã⊤1 0⊤m̄1

. . . 0⊤m̄1

0⊤2d 0⊤m̄1
ã⊤1 . . . 0⊤m̄1

...
...

...
...

...
0⊤2d 0⊤m̄1

. . . 0⊤m̄1
ã⊤1

. (16)

From Lemma 18, we have
∥∥W⊤

12

∥∥
1,∞ ≤ 1, ∥b12∥∞ ≤ 1, and∥∥∥A⊤12∥∥∥

1,∞
= ∥ã1∥1 ≤ O(d5/2e (log(de/ε)/ε)

3/2),

which completes the proof.

To introduce the construction of the next layer, we rely on the following lemma which estab-
lishes the desired approximation for a single coordinate, the proof of which is similar to that of
Lemma 18.

Lemma 20 Let σ be the ReLU activation. Suppose |h| ≤ rh∞, |x| ≤ rx∞ and |z| ≤ 1. Let

R :=

√
1 + rx∞

2 + rh∞
2. For any ε > 0, there exists m = O(R6(log(R/ε)/ε)3), a ∈ Rm,
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W ∈ Rm×2, and b ∈ Rm, such that

sup
|h|≤rh∞,|x|≤rx∞,|z|≤1

∣∣∣h+ 2xσ(z − 1/2)− a⊤σ
(
W (h, x, z)⊤ + b

)∣∣∣ ≤ ε

and
∥a∥2 ≤ O

(
R6(log(R/ε)/ε)2/

√
m
)
,
∥∥∥W⊤

∥∥∥
1,∞

≤ R−1, ∥b∥∞ ≤ 1.

Additionally, if rh∞ = 0, we have the improved bounds

m = O
(
R4(log(R/ε)/ε)2

)
, ∥a∥2 ≤ O

(
R5(log(R/ε)/ε)3/2/

√
m
)

Proof Note that (h, x, z) 7→ h+2xσ(z− 1/2) is 2R-Lipschitz, and |h+ 2xσ(z − 1/2)| ≤ R. The
proof follows from Lemma 42 with dimension 3 when rh∞ ̸= 0 and dimension 2 otherwise.

With that, we can now construct the weights for the second mapping in the network.

Lemma 21 Suppose ∥χx
1 ∥∞ ≤ rx and maxl|χω(l)| ≤ 1. Let R :=

√
1 + r2x. Then, for every

ε > 0 and absolute constant δ ∈ (0, 1), there exists m̄2 ≤ O(R4(log(R/ε)/ε)3/2), m2 := qdm̄2,
and A2 ∈ Rdh×m2 , W 2 ∈ Rm2×(d+q), and b2 ∈ Rm2 given by Equations (17) and (18) such that

∥χ2(l)− 2χx
1σ(χ

ω
1 (l)− 1/2)∥∞ ≤ ε,

for all such χ1 and l ∈ [q], where we recall χ2 = A2σ(W 2χ1 + b2). Moreover, we have∥∥∥A⊤2 ∥∥∥
1,∞

≤ O(R4(log(R/ε)/ε)3/2),
∥∥∥W⊤

2

∥∥∥
1,∞

≤ R−1, ∥b2∥∞ ≤ 1.

Proof Let W̃ =
(
w̃21 w̃22

)
, b̃, and ã be the weights obtained from Lemma 20, where w̃21, w̃22, b̃, ã ∈

Rm̄2 . To construct W 2 and b2, we let

W 2 =



W 2(1, 1)
...

W 2(1, d)
...

W 2(q, 1)
...

W 2(q, d)


, b22 =



b2(1, 1)
...

b2(1, d)
...

b2(q, 1)
...

b2(q, d)


. (17)

where W 2(l, j) ∈ Rm̄2×(d+q) is given by

W 2(l, j) =
(
0m̄2×(j−1) w̃21 0m̄2×(d−j) 0m̄2×(l−1) w̃22 0m̄2×(q−l)

)
,

and b2(l, j) = b̃2. Consequently,
∥∥W⊤

2

∥∥
1,∞ ≤ 1 and ∥b2∥∞ ≤ 1. Finally, we have

A2 =


ã⊤2 0⊤m̄2

. . . 0⊤m̄2

0⊤m̄2
ã⊤2 . . . 0⊤m̄2

...
...

...
...

0⊤m̄2
. . . 0⊤m̄2

ã⊤2

. (18)

Consequently, we obtain
∥∥A⊤2 ∥∥1,∞ ≤ O(R4(log(R/ε)/ε)3/2), completing the proof.

We are now ready to provide the four-layer feedforward construction of f→(h,x, t;Θ→h ).
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Proposition 22 Let z = (x,ωi,ωt1 , . . . ,ωtq). Then, for every ε > 0, there exists a feedforward
network with Lh = 4 layers given by

f→(h, z;Θ→h ) = W Lh
σ
(
. . . σ

(
W 2σ

(
W 1(h

⊤, z⊤)⊤ + b1
)
+ b2

)
. . .
)

where W i ∈ Rmi×mi−1 , bi ∈ Rm
i for i ∈ {2, . . . , Lh − 1}, W 1 ∈ Rm1×dh+d+(q+1)de , b1 ∈ Rm1 ,

and W Lh
∈ Rdh×mLh−1 that satisfies the following:

1. If tl = i, then ∥∥∥f→(h, z; Θ̂
→
h )l − x

∥∥∥
2
≤ ε

2. Else f→(h, z; Θ̂
→
)l = 0d,

for all l ∈ [q], h ∈ Rdh and ∥x∥2 ≤ rx. Additionally ∥W i∥F ≤ poly(rx, De, ε
−1) for all i ∈ [Lh]

and mi, ∥bi∥2 ≤ poly(rx, De, ε
−1) for all i ∈ [Lh − 1], where we recall De = d+ (q + 1)de.

Proof Let Ã1 ∈ R(d+q)×m1 , W̃ 1 ∈ Rm1×(dh+d+(q+1)de), b̃1 ∈ Rm1 be given by Lemma 19 with
error parameter ε1 and Ã2 ∈ Rdh×m2 , W̃ 2 ∈ Rm2×(d+q), b̃2 ∈ Rm2 be given by Lemma 21 with
error parameter ε2. Recall that

χ1 = Ã1σ
(
W̃ 1χ0 + b̃1

)
, χ2 = Ã2σ

(
W̃ 2χ1 + b̃2

)
.

By the triangle inequality,∥∥∥Ψ(x, t, i)− Ã2σ
(
W̃ 2χ1 + b̃2

)∥∥∥
∞

≤
∥∥∥Ψ(x, t, i)− Ã2σ

(
W̃ 2χ̄1 + b̃2

)∥∥∥
∞

+
∥∥∥Ã2σ

(
W̃ 2χ̄1 + b̃2

)
− Ã2σ

(
W̃ 2χ1 + b̃2

)∥∥∥
∞

≤ε2 +
∥∥∥Ã⊤2 ∥∥∥

1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

∥χ1 − χ̄1∥∞

≤ε2 +
∥∥∥Ã2

∥∥∥
1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

ε1,

where χ̄1 = (x⊤, ⟨ωi,ωt1⟩, . . . ,
〈
ωi,ωtq

〉
)⊤. By letting ε2 = ε/4, we obtain

m2,
∥∥∥Ã2

∥∥∥
F
,
∥∥∥W̃ 2

∥∥∥
F
,
∥∥∥b̃2∥∥∥

2
≤ poly(rx, De, ε

−1).

Similarly, we can let ε1 = ε/
(
4
∥∥∥Ã2

∥∥∥
1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

)
, which yields

m1,
∥∥∥Ã2

∥∥∥
F
,
∥∥∥W̃ 2

∥∥∥
F
,
∥∥∥b̃2∥∥∥

2
≤ poly(rx, De, ε

−1).

Let

W 2 = W̃ 2Ã1, W 1 = W̃ 1, b1 = b̃1, b2 = b̃2.

Then,
χ2 = Ã2σ(W 2σ(W 1(h

⊤z⊤)⊤ + b1) + b2),
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satisfies ∥χ2 −Ψ(x, t, i)∥∞ ≤ ε/2 for all ∥x∥2 ≤ rx.
Recall that when tl ̸= i for some l ∈ [q], we would like to guarantee the output of the network

to be equal to Ψ(x, t, i)l = 0d. To do so, we rely on the fact that z 7→ σ(z− b)−σ(−z− b) is zero
for |z| ≤ b, and has an L∞ distance of b from the identity, i.e. |z − σ(z − b) + σ(−z − b)| ≤ b.
This mapping needs to be applied element-wise to χ2. Let W̃ 3 ∈ R2dh×dh , b3 ∈ R2dh , and
W 4 ∈ Rdh×2dh via

W̃ 3 =


v⊤1
−v⊤1

...
v⊤d
−v⊤d

, b3 = −ε

2
12dh , W 4 =

1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
0 0 0 0 . . . 1 −1

.

As a result, χ3 = W 4σ(W̃ 3χ2 + b3) satisfies

|(χ3)j − (χ2)j | ≤

{
0 |(χ2)j | ≤ ε/2

ε/2 |(χ2)j | > ε/2
, ∀j ∈ [dh]. (19)

We thus make two observations. First, ∥χ3 − χ2∥∞ ≤ ε/2, and consequently ∥χ3(l)−Ψ(x, t, i)l∥∞ ≤
ε for all l ∈ [q]. Second, when tl ̸= i, we have Ψ(x, t, i)l = 0d and |χ2(l)j | ≤ ε/2 for all j ∈ [d]
since ∥χ2(l)−Ψ(x, t, i)l∥∞ ≤ ε/2. Consequently, by the first case in (19), we have χ3(l)j = 0
for all j ∈ [d]. We can summarize these two observations as follows

∥χ3(l)−Ψ(x, t, i)l∥∞ ≤

{
0 tl ̸= i

ε tl = i
,

which completes the proof.

With the above implementation of f→(h, z;Θ→h ), we have the following guarantee on h→i for
all i ∈ [N ].

Corollary 23 Let f→h be given by the construction in Proposition 22, and suppose rh ≥ √
q(rx +√

dε). Then, h→i satisfies the following guarantees for all i ∈ [N ] and l ∈ [q]:

1. If tl ≥ i, then h→i (l) = 0d

2. If tl < i, then ∥h→i (l)− xtl∥∞ ≤ ε.

Proof We can prove the statement by induction. Note that it holds for i = 1 since h→1 = 0d. For
the induction step, suppose it holds up to some i, and recall

h→i+1 = h→i + f→h (h→i , zi;Θ
→
h ).

• If tl ≥ i+ 1, then h→i (l) = 0d and f→h (h→j , zi;Θ
→
h ) = 0d by Proposition 22.

• If tl < i < i+1, then ∥h→i (l)− xtl∥∞ ≤ ε by induction hypothesis, and f→h (h→j , zj ;Θ
→
h ) =

0d.
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• Finally, if tl = i < i+ 1, then h→i (l) = 0 and ∥f→h (h→i , zi;Θ
→
h )− xtl∥∞ ≤ ε.

Note that since
∥∥h→j ∥∥2 ≤ rh for all j ∈ [N ], the projection Πrh will always be identity through the

forward pass, concluding the proof.

By symmetry, the same construction for f←h would yield a similar guarantee on h←j .
The last step is to design fy(h

→,h←, z;Θy) such that

fy(h
→,h←, zi;Θy) ≈ g

(
h→ + h← + (x⊤i 1[t1 = i], . . . ,x⊤i 1[tq = i])⊤

)
.

The following proposition provides the end-to-end RNN guarantee for approximating simple qSTR
models.

Proposition 24 Suppose g satisfies Assumption 2. Then there exist RNN weights ΘRNN with
vec(ΘRNN) ∈ Rp (i.e. with p parameters) and rh ≥ √

qrx +
√
ε2NN/(rarw), such that

sup
i∈[N ]

∣∣g(xt1 , . . . ,xtq)− ŷ(p;ΘRNN)i
∣∣2 ≤ 4ε2NN (20)

for all t ∈ [N ]q and ∥xj∥2 ≤ rx for all j ∈ [N ]. Additionally, we have

∥vec(ΘRNN)∥2 ≤ poly(rx, De, rw, ra, ε
−1
2NN), p ≤ poly(rx, De,mg, rw, ra, ε

−1
2NN), (21)

and f→h , f←h do not depend on h→ and h←, namely the first dh columns of W→
1 and W←

1 that are
multiplied by h→ and h← respectively are zero.

Proof As the proof of this proposition mostly follows from the previous proofs in this section, we
only state the procedure for obtaining the desired weights.

Let (vj)
dh
j=1 denote the standard basis of Rdh . Since σ(z)− σ(−z) = z, we can implement the

identity mapping in Rdh via a two-layer feedforward network with the following weights

W id =


v⊤1
−v⊤1

...
v⊤dh
−v⊤dh

, bid = 02dh ,Aid =

1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
0 0 0 0 . . . 1 −1

,

where W id ∈ R2dh×dh , bid ∈ R2dh , and Aid ∈ Rdh×2dh . Let W 1, b1, Ã1, W̃ 2, b2, Ã2 be given
as in the proof of Proposition 22, for achieving an L∞ error of ε̃, to be fixed later. Recall zi =
(x⊤i ,ω

⊤
i ,ω

⊤
t1 , . . . ,ω

⊤
tq)
⊤. In the following, we remove the zero columns of W 1 corresponding

to the h part of the input (see Lemma 19), which does not change the resulting function. Our
construction can then be denoted by

h→i
Aidσ(W id·)−−−−−−−→ h→i

Aidσ(W id·)−−−−−−−→ h→i ↘

h←i
Aidσ(W id·)−−−−−−−→ h←i

Aidσ(W id·)−−−−−−−→ h←i → h→i + h←i + χ2

a⊤
g σ(W g ·+bg)−−−−−−−−−→ ŷRNN(p;ΘRNN)i

zi
Ã1σ(W 1·+b1)−−−−−−−−−→ χ1

Ã2σ(W̃ 2·+b2)−−−−−−−−−→ χ2 ↗
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Note that the addition above can be implemented exactly by using the fact that σ(z1 + z2 + z3) −
σ(−z1 − z2 − z3) = z1 + z2 + z3. Specifically, the weights of this layer are given by

W add =


v⊤1 v⊤1 v⊤1
−v⊤1 −v⊤1 −v⊤1

...
...

...
v⊤dh v⊤dh v⊤dh
−v⊤dh −v⊤dh −v⊤dh

, badd = 02dh , Aadd = Aid,

where W add ∈ R2dh×3dh , badd ∈ R2dh , Aadd ∈ Rdh×2dh .
Let Θ→h (and similarly Θ←h ) be given by Proposition 22 with corresponding error εh. Using the

shorthand notation xt = (xt1 , . . . ,xtq) ∈ Rdq and x̂t = h→i + h←i + χ2, we have

∥h→i + h←i + χ2 − x̂t∥2 ≤

∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj , t, j)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥h←i −
i+1∑
j=N

Ψ(xj , t, j)

∥∥∥∥∥∥
2

+ ∥χ2 −Ψ(xi, t, i)∥2

≤
√

qd(2εh + ε̃),

which holds for all input prompts p with ∥xj∥2 ≤ rx for all j ∈ [N ]. Finally, we have

sup
∥xj∥2≤rx, ∀j∈[N ]

∣∣∣g(xt)− a⊤g σ(W gx̂t + bg)
∣∣∣ ≤ sup

∥xj∥2≤rx, ∀j∈[N ]

∣∣∣g(xt)− a⊤g σ(W gxt + bg)
∣∣∣

+ sup
∥xj∥2≤rx, ∀j∈[N ]

∣∣∣a⊤g σ(W gxt + bg)− a⊤g σ(W gx̂t + bg)
∣∣∣

≤
√
ε2NN + rarw

√
qd(2εh + ε̃).

Choosing εh =
√
ε2NN/(4

√
qdrarw) and ε̃ =

√
ε2NN/(2

√
qdrarw), we obtain RNN weights that

saitsfy ∥vec(ΘRNN)∥2 ≤ poly(rx, De, ra, rw, ε
−1
2NN), completing the proof.

C.4. Generalization Upper Bounds for RNNs

Recall the state transitions

h→j+1 = Πrh

(
h→j + f→h (h→j , zj ;Θ

→
h )
)

h←j−1 = Πrh

(
h←j + f←(h←, zj ;Θ

←)
)
.

We will use the notation h→j (p;Θ→h ) and h←j (p;Θ←j ) to highlight the dependence of the hidden
states on the prompt p and parameters Θ→h and Θ←h . We then define the prediction function as
F (p;Θ→h ,Θ←h ,Θy) where

F (p;Θ→h ,Θ←h ,Θy)j = fy(h
→
j (p;Θ→h ),h←j (p;Θ←h ), zj ;Θy).

We can now define the function class

FRNN = {p, j 7→ F (p;Θ→h ,Θ←h ,Θy)j : Θ→h ,Θ←h ,Θy ∈ ΘRNN}.
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We can then define our distance function by going over {p, j ∈ Sn},

d∞(F, F̂ ) = sup
p,j∈Sn

∣∣∣F (p;Θ→h ,Θ←h ,Θy)j − F (p; Θ̂
→
h , Θ̂

←
h ,Θy)j

∣∣∣.
We will further use the notation

fy(·;Θy) = W y
Ly
σ
(
W y

Ly−1 . . . σ(W
1
L1
(·) + by1) . . .+ byLy−1

)
∈ Fy

NN,Ly
,

and
f→h (·;Θ→h ) = W→

Lh
σ(W→

Lh−1 . . . σ(W
→
1 (·) + b→1 ) . . .+ b→Lh−1) ∈ F→NN,Lh

.

We similarly define F←NN,Lh
. The covering number of FRNN can be related to that of Fy

NN,Ly
,

F→NN,Lh
, and F→NN,Ly

, through the following lemma.

Lemma 25 Suppose for every Θ→h ,Θ←h ,Θy ∈ ΘRNN we have∥∥∥W y
Ly

. . .W y
1

∥∥∥
op

≤ Cy
W ,

∥∥W→
Lh

∥∥
op

. . .
∥∥W→

1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op

. . .
∥∥W←

1,h

∥∥
op

≤ αN ,

where αN ≤ N−1. Then,

log C(FRNN, d∞, ϵ) ≤ log C(Fy
NN,Ly

, d∞, ϵ/2) + log C
(
F→NN,Lh

, d∞,
ϵ

4eCy
wN

)
+ log C

(
F←NN,Lh

, d∞,
ϵ

4eCy
wN

)
Proof Throughout the proof, we will use the shorthand notation h→j = h→j (p;Θ→h ) and ĥ

→
j =

h→j (p; Θ̂
→
h ), with similarly define h←j and ĥ

←
j . We begin by observing

sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ;Θy)− fy(ĥ
→
j , ĥ

←
j , zj ; Θ̂y)

∣∣∣ ≤ E1 + E2

where

E1 := sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ;Θy)− fy(h
→
j ,h←j , zj ; Θ̂y)

∣∣∣
E2 := sup

p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ; Θ̂y)− fy(ĥ
→
j , ĥ

←
j , zj ; Θ̂y)

∣∣∣.
Then, we observe that E1 = d∞(fy(·;Θy), fy(·; Θ̂y)).Thus, we can ensure E1 ≤ ϵ/2 with a cover-
ing {Θ̂y} of size C(Fy

NN,Ly
, d∞, ϵ/2). Hence, we move to E2.

Using the Lipschitzness of fy, we obtain

E2 ≤
∥∥∥W y

Ly
. . .W y

1

∥∥∥
op

(
sup
p,j

∥∥∥h→j − ĥ→j

∥∥∥
2
+ sup

p,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2

)

≤ Cy
W

(
sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
+ sup

p,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2

)
.
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Further, by Lipschitzness of Πrh , we have

sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
≤ sup

p,j

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
+ sup

p,j

∥∥∥f→h (h→j−1, zj−1; Θ̂
→
h )− f→h (ĥ

→
j−1, zj−1; Θ̂

→
h )
∥∥∥
2︸ ︷︷ ︸

=:Eh1

+ sup
p,j

∥∥∥f→h (h→j−1, zj−1;Θ
→
h )− f→h (h→j−1, zj−1; Θ̂

→
h )
∥∥∥
2︸ ︷︷ ︸

=:Eh2

.

By the Lipschitzness of f→h , for the second term we have

Eh
1 ≤

∥∥∥Ŵ→
Lh

. . . Ŵ
→
1,h

∥∥∥
op

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
≤ αN

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
.

Moreover, we have Eh
2 ≤ d∞(f→h (·;Θ→h ), f→h (·; Θ̂→h )). Consequently, we obtain

sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
≤ (1 + αN ) sup

p,j

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
+ d∞(f→h (·;Θ→h ), f→h (·; Θ̂→h ))

≤
j−2∑
l=0

(1 + αN )ld∞(f→h (·;Θ→h ), f→(·; Θ̂→h ))

≤ (1 + αN )j−1 − 1

αN
d∞(f→h (·;Θ→h ), f→h (·; Θ̂→h ))

≤ eNd∞(f→h (·;Θ→h ), f→h (·; Θ̂→h )).

We can similarly obtain an upper bound on supp,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2
. Hence, we have

E2 ≤ eCy
wN
{
d∞(f→h (·;Θ→h ), f→h (·; Θ̂→h )) + d∞(f←h (·;Θ←h ), f←h (·; Θ̂←h ))

}
.

Therefore, by constructing ϵ/(2eCy
wN) coverings {Θ̂→h } and {Θ̂←h } which have sizes

C(F→NN,Lh
, ϵ/(4eCy

wN)), and, C(F←NN,Lh
, ϵ/(4eCy

wN))

respectively, we complete the covering of FRNN.

The next step is to bound the covering number of the class of feedforward networks, as per-
formed by the following lemma.

Lemma 26 Let

FNN,L = {x 7→ W Lσ(W L−1σ(. . .W 2(σ(W 1x+ b1) . . .+ bL−1) : ΘNN ∈ ΘNN},

where ΘNN = (W 1, b1, . . . ,W L−1, bL−1,W L) and vec(ΘNN) ∈ Rp. Further, define the distance
function

d∞(f, f ′) = sup
∥x∥≤R

∣∣f(x)− f ′(x)
∣∣, ∀f, f ′ ∈ FNN,L.

Suppose ∥W l∥F, ∥bl∥2 ≤ R for all l. Then, for any absolute constant depth L = O(1), we have

log C(FNN,L, d∞, ϵ) ≤ p log(1 + poly(R)/ϵ).
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Proof Let x0 = x, xl = σ(W lxl−1 + bl) for l ∈ [L − 1], and xL = W LxL−1. Also let (x̂l)
be the corresponding definitions under weights and biases (Ŵ l) and (b̂l). First, we remark that for
l ∈ [L− 1],

∥xl∥2 ≤ ∥W l∥op∥xl−1∥2 + ∥bl∥2 (22)

≤
l∏

i=1

∥W i∥op∥x0∥2 +
l−1∑
i=0

∥bl−i−1∥2
i∏

j=0

∥W l−j∥op + ∥bl∥2

≤ poly(R), (23)

where we used the fact that L is an absolute constant. Next, for l ∈ [L− 1], we have

∥xl − x̂l∥2 ≤
∥∥∥W lxl−1 − Ŵ lx̂l−1

∥∥∥
2
+
∥∥∥bl − b̂l

∥∥∥
2

≤ ∥W l∥op∥xl−1 − x̂l−1∥2 + ∥x̂l−1∥2
∥∥∥W l − Ŵ l

∥∥∥
op

+
∥∥∥bl − b̂l

∥∥∥
2

≤ poly(R)
{
∥xl−1 − x̂l−1∥2 +

∥∥∥W l − Ŵ l

∥∥∥
F
+
∥∥∥bl − b̂l

∥∥∥
2

}
.

Once again, using the fact that L is an absolute constant and by expnaind the above inequality, we
obtain

∥xl − x̂l∥2 ≤ poly(R)

{
l∑

i=1

∥∥∥W i − Ŵ i

∥∥∥
F
+
∥∥∥bi − b̂i

∥∥∥
2

}
.

Finally, we have the bound

∥xL − x̂L∥2 ≤ ∥W L∥op∥xL−1 − x̂L−1∥2 + ∥x̂L−1∥2
∥∥∥W L − Ŵ L

∥∥∥
op

≤ poly(R)
∥∥∥vec(ΘNN)− vec(Θ̂NN)

∥∥∥
2
.

Consequently, we have

log C(FNN,L, d∞, ϵ) ≤ log C({Θ ∈ Rp : ∥Θ∥2 ≤ poly(d, q)}, ∥·∥2, ϵ/poly(R))

≤ p log(1 + poly(R)/ϵ),

where the last inequality follows from Lemma 41.

Therefore, we immediately obtain the following bound on the covering number of FRNN.

Corollary 27 Suppose ΘRNN ⊆ {Θ ∈ Rp : ∥vec(Θ)∥2 ≤ R} and
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and

j ∈ [N ]. Then,
log C(FRNN, d∞, ϵ) ≤ p log(1 + poly(R)N/ϵ).

We can now proceed with standard Rademacher complexity based arguments. Similar to the
argument in Appendix B.2, we define a truncated version of the loss by considering the loss class

LRNN
τ = {(p,y, j) 7→ (fRNN(p)j − yj)

2 ∧ τ : fRNN ∈ FRNN},

where the constant τ > 0 will be chosen later. We then have the following bound on the empirical
Rademacher complexity of LRNN

τ .
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Lemma 28 In the same setting as Corollary 27 and with τ ≥ 1, we have

R̂n(LRNN
τ ) ≤ O

τ

√
p log(RNnτ

)
n

.

Proof By a standard discretization bound for Rademacher complexity, for all ϵ > 0 we have

R̂n(LRNN
τ ) ≤ ϵ+ τ

√
2 log C(LRNN

τ , d∞, ϵ)

n

≤ ϵ+ τ

√
2 log C(FRNN, d∞, ϵ/(2

√
τ))

n

≤ ϵ+ τ

√
2p log(1 + poly(R)N

√
τ/ϵ)

n
,

where the second inequality follows from Lipschitzness of (·)2 ∧ τ . We conclude the proof by
choosing ϵ = 1/

√
n.

We can directly turn the above bound on the empirical Rademacher complexity into a bound on
generalization gap.

Corollary 29 Let Θ̂ = argminΘ∈ΘRNN
R̂RNN

n (Θ). Suppose ΘRNN ⊆ {Θ ∈ Rp : ∥vec(Θ)∥2 ≤
R}, and additionally

√
3Cxed log(nN) + q + 1 ≤ R. Then, for every δ > 0, with probability at

least 1− δ − (nN)−1/2 over the training set, we have

RRNN
τ (Θ̂)− R̂RNN

τ (Θ̂) ≤ O

(
τ

√
p log(RNnτ)

n
+ τ

√
log(1/δ)

n

)
.

Proof We highlight that for the specified R, Lemma 9 guarantees
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and

j ∈ [N ] with probability at least 1 − (nN)−1/2. Standard Rademacher complexity generalization
arguments applied to Lemma 28 complete the proof.

Note that R̂RNN
τ (Θ̂) ≤ R̂RNN

n (Θ̂) which is further controlled in the approximation section by
Proposition 24. Therefore, the last step is to demonstrate that choosing τ = poly(d, q, log n) suf-
fices to achieve a desirable bound on RRNN(Θ̂) through RRNN

τ (Θ̂).

Lemma 30 Consider the setting of Corollary 29, and additionally assume R ≥ rh. Then, for some
τ = poly(R, log n), we have

RRNN(Θ̂)−RRNN
τ (Θ̂) ≤

√
1

n
.

.

Proof The proof of this lemma proceeds similarly to the proof of Lemma 17. By defining

∆y :=
∣∣∣ŷRNN(p; Θ̂)j − yj

∣∣∣
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and following the same steps (where we recall j ∼ Unif([N ])), we obtain

RRNN(Θ̂) = E
[
∆2

y1[∆y ≤
√
τ ]
]
+ E

[
∆2

y1[∆y >
√
τ ]
]

≤ RRNN
τ (Θ̂) + E

[
∆4

y

]1/2P(∆y ≥
√
τ
)1/2

,

where

E
[
∆4

y

]1/2 ≤ 2E
[
y4j
]1/2

+ 2E
[
ŷRNN(p; Θ̂)4j

]1/2
and

P
(
∆y >

√
τ
)
≤ P

(
|yj | ≥

√
τ

2

)
+ P

(∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≥ √
τ

2

)
From Assumption 1, we have E

[
y4j

]1/2
≲ 1 and P(|yj | ≥

√
τ/2) ≤ e−Ω(τ1/s). For the prediction

of the RNN, we have the following bound (see (23) for the derivation)

∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≤ Ly∏
l=1

∥∥W y
l

∥∥
op

∥∥(h→j ,h←j , zj)
∥∥
2
+

Ly−1∑
i=0

∥∥∥byLy−i−1

∥∥∥
2

i∏
l=0

∥∥∥W y
Ly−l

∥∥∥
op
.

As a result, ∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≤ poly(R)(1 + rh + ∥zj∥).

As a result, by the fact that rh ≤ R and Assumption 1, after taking an expectation, we immediately
have

E
[
ŷRNN(p; Θ̂)4j

]1/2
≤ poly(R).

On the other hand, from Lemma 9 (with n = N = 1), we obtain

P
(∣∣∣ŷRNN(p; Θ̂)

∣∣∣ ≥ √
τ

2

)
≤ e−Ω(τ/poly(R))

Therefore, for some τ = poly(R, log n) we can obtain the bound stated in the lemma.

We can summarize the above facts into the proof of Theorem 4.

Proof of Theorem 4. From the approximation bound of Proposition 24, we know that for some
R = poly(d, q, ra, rw, ε

−1
2NN, log(nN)) and the constraint set

ΘRNN =
{
Θ : ∥vec(Θ)∥2 ≤ R,

∥∥W→
Lh

∥∥
op

. . .
∥∥W→

1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op

. . .
∥∥W←

1,h

∥∥
op

≤ αN

}
with any αN ≤ N−1, we have R̂RNN(Θ̂) ≲ ε2NN. The proof is then completed by letting rh =√
qrx +

√
ε2NN/(rarw), invoking the generalization bound of Corollary 29, and the bound on trun-

cation error given in Lemma 30, with R = poly(d, q, ra, rw, ε
−1
2NN, log(nN)).
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C.5. RNN Lower Bound Formulation and Details

For our lower bound, we will consider a broad class of recurrent networks, without restricting to a
specific form of parametrization. Specifically, we consider bidirectional RNNs chracterized by

h→i+1 = projrh
(
f→h (h→i ,xi, ti, i)

)
, ∀ i ∈ {1, . . . , N − 1}

h←i−1 = projrh
(
f←h (h←i ,xi, ti, i)

)
, ∀ i ∈ {2, . . . , N}

yi = fy(U
→h→i ,U←h←i ,xi, ti, i), ∀i ∈ [N ]

where fy : Rdh × Rdh × Rd × [N ]q+1 → R, f→h , f←h : Rdh × Rd × [N ]q+1 → Rdh , U→,U← ∈
Rdh×dh , dh is the width of the model, and rh > 0 is some constant. Moreover, projrh : Rdh → Rdh

is any mapping that guarantees
∥∥projrh(·)∥∥2 ≤ rh. As mentioned before, this operation mirrors

the layer normalization to ensure that hi remains stable. Further, we assume fy(·,x, t) is L/rh-
Lipschitz for all x ∈ Rd and t ∈ [N ]q. This formulation covers different variants of (bidirectional)
RNNs used in practice such as LSTM and GRU, and includes the RNN formulation of Theorem
4 as a special case. Define U := (U→,U←) ∈ Rdh×2dh for conciseness. Note that in practice
fy, f

→
h , f←h are determined by additional parameters. However, the only weight that we explicitly

denote in this formulation is U , since our lower bound will directly involve this projection, and we
keep the rest of the parameters implicit for our representational lower bound.

Our technique for proving the RNN lower bound differs significantly from that of FFNs. In
particular, we will control the representation cost of the qSTR model, i.e., a lower bound on the
norm of ΘRNN.

We will now present the RNN lower bound, with its proof deferred to Section C.6.

Proposition 31 Consider the 1STR model where x ∼ N (0, INd) with a linear link function, i.e.
yj =

〈
u,xtj

〉
for some u ∈ Sd−1. Further, ti is drawn independently from the rest of the prompt

and uniformly from [N ] for all i ∈ [N ]. Then, there exists an absolute constant c > 0, such that

1

N
E
[
∥y − ŷRNN(p)∥

2
]
≤ c,

implies

dh ≥ Ω
( N

log(1 + L2∥U∥2op)

)
, and ∥U∥2op ≥ Ω

( N

L2 log(1 + dh)

)
.

Remark 32 Note that the unboundedness of Gaussian random variables is not an issue for approx-
imation here, since (g(x1), . . . , g(xN )) is highly concentrated around SN−1(

√
N). In fact, one can

directly assume (g(x1), . . . , g(xN )) ∼ Unif(SN−1(
√
N)) and derive a similar lower bound. The

choice of Gaussian above is only made to simplify the presentation of the proof.

The above proposition has two implications. First, it has a computational consequence, imply-
ing that any RNN representing the qSTR models requires a width that grows at least linearly with
the context-length N . A similar lower bound in terms of bit complexity was derived in [23] using
different tools. More importantly, the norm lower bound ∥U∥F ≥ Ω̃(

√
N) has a generalization

consequence, which we discuss below.
To translate the above representational cost result to a sample complexity lower bound, we now

introduce the parametrization of the output function fy. The exact parametrization of the transition
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functions will be unimportant, and we will use the notation f→h (h,x, t;Θ→h ) to denote a general
parameterized function (similarly with f←). We will assume fy is given by a feedforward network,

fy(U
→h→,U←h←,x, t;Θy) = W Lyσ

(
. . . σ(W 2σ(Uh+W yz + by) + b2) . . .

)
,

where h = (h→,h←) ∈ R2dh , z = (xi, fE(ti, i)) ∈ Rd+dE . Here, fE(ti, i) is an arbitrary
encoding function with arbitrary dimension dE . Then Θy = (U ,W y, by,W 2, b2, . . . ,W Ly),
and ΘRNN = (U ,Θy,Θ

→
h ,Θ←h ). Note that thanks to the homogeneity of ReLU, we can always

reparameterize the network by taking h̄ = h/rh, W̄ y = W y/rh, b̄y = by/rh, and W̄ 2 = W 2/rh
without changing the prediction function. Thus, in Theorem 5, we take rh = 1 without losing the
expressive power of the network. We now state the rigorous version of Theorem 5.

Theorem 33 Consider the 1STR model of Proposition 31. Suppose the size of the hidden state, the
depth of the prediction function, and the weight norm respectively satisfy dh ≤ eN

c
, 2 ≤ Ly ≤ C,

and ∥vec(ΘRNN)∥2 ≤ eN
c/Ly for some absolute constants c < 1 and C ≥ 2, and recall we set

rh = 1 due to homogeneity of the network. Let Θ̂ε be the min-norm ε-ERM of R̂RNN
n , defined in (4).

Then, there exist absolute constants c1, c2, c3 > 0 such that if n ≤ O(N c1), for any ε ≥ 0, with
probability at least c2 over the training set,

1

N
E
[∥∥∥ŷRNN(p; Θ̂n,ε)− y

∥∥∥2
2

]
≥ c3.

C.6. Proof of Proposition 31

The crux of the proof of Proposition 31 is to show the following position, which provides a lower
bound on the prediction error at any fixed position in the prompt.

Proposition 34 Consider the same setting as in Proposition 31. There exists an absolute constant
c > 0, such that for any fixed j ∈ [N ], if

E
[
(ŷRNN(p)j − yj)

2
]
≤ c,

then
dh ≥ Ω

( N

log(1 + L2∥U∥2op)

)
, and ∥U∥2op ≥ Ω

( N

L2 log(1 + dh)

)
.

We shortly remark that the statement of Proposition 31 directly follows from that of Proposi-
tion 34.

Proof of Proposition 31. Let c be the constant given by Proposition 34. Suppose that

1

N
E
[
∥ŷRNN(p)− y∥22

]
≤ c.

Then,

min
j∈[N ]

E
[
(ŷRNN(p)j − yj)

2
]
≤ 1

N

N∑
j=1

E
[
(ŷRNN(p)j − yj)

2
]
≤ c.

As a result, there exists some j ∈ [N ] such that E
[
(ŷRNN(p)j − yj)

2
]
≤ c. We can then invoke

Proposition 34 to obtain lower bounds on dh and ∥U∥op, completing the proof of Proposition 31.

We now present the proof of Proposition 34.
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Proof of Proposition 34. Let hj = (U→h→j ,U←h←j ) ∈ R2dh , and define

Φ(hj) :=
(
fy(hj ,xj , (1), j), . . . , fy(hj ,xj , (j−1), j), fy(hj ,xj , (j+1), j), . . . , fy(hj ,xj , (N), j)

)⊤
∈ RN−1.

In other words, Φ : R2dh → RN−1 captures all possible outcomes of ŷRNN(p)j depending on the
value of tj (excluding the case where tj = j). Ideally, we must have fy(hj ,xj , (k), j) ≈ g(xk).

Let p(1), . . . ,p(P ) be an i.i.d. sequence of prompts, then modify them to share the jth input
token, i.e. x(i)

j = x
(1)
j for all i ∈ [P ], with P to be determined later. Note that by our assumption on

prompt distribution, this operation does not change the marginal distribution of each p(i). Similarly,
define

g(i) := (g(x
(i)
1 ), . . . , g(x

(i)
j−1), g(x

(i)
j+1), . . . , g(x

(i)
N ))⊤ ∈ RN−1

for each prompt. We also let h(i)→
j ,h(i)←

j be the corresponding hidden states obtained from passing

these prompts through the RNN, and define h
(i)
j using them. Note that g(1), . . . , g(P ) is an i.i.d.

sequence of vectors drawn from N (0, IN−1).
We now define two events E1 and E2, where

E1 =
{
∀ i ̸= k,

∥∥∥g(i) − g(k)
∥∥∥
2
≥ εg

√
N − 1

}
,

and

E2 =

{
P∑
i=1

1

[∥∥∥Φ(h(i)
j )− g(i)

∥∥∥
2
≥ ε

√
N

δ

]
≤ 2δ2P

}
,

where δ ∈ (0, 1) will be chosen later. In other words, E1 is the event in which g(i) are “packed”
in the space, while E2 is the event where the RNN will be “wrong” at position j on at most 2δ2

fraction of the prompts. We will now attempt to lower bound P(E1 ∩ E2).

Note that g(i) − g(k) (d)
=

√
2g where g ∼ N (0, IN−1). By a union bound we have

P
(
EC

1

)
≤
∑
i ̸=k

P
(∥∥∥g(i) − g(k)

∥∥∥
2
≤ εg

√
N − 1

)
≤ P 2P

(√
2∥g∥2 ≤ εg

√
N − 1

)
≤ P 2P

(
∥g∥2 − E[∥g∥2] ≤

( εg√
2
− c
)√

N − 1

)
≤ P 2e−(c−εg/

√
2)2(N−1)/2,

for all εg ≤ c
√
2, where c > 0 is an absolute constant such that c

√
N − 1 ≤ E[∥g∥], and the last

inequality holds by subGaussianity of the norm of a standard Gaussian random vector. From here on,
we will choose εg = c/

√
2 (and simply denote εg ≍ 1), which implies P

(
EC

1

)
≤ P 2e−c

2(N−1)/8.
To lower bound P(E2), consider a random prompt-label pair p,y and the corresponding g.

Note that in the prompt p, the index tj is drawn independently of the rest of p, and has a uniform
distribution in [N ]. Let p[tj 7→ k] denote a modification of p where we set tj equal to k, and let
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y[tj 7→ k] be the labels corresponding to this modified prompt. We then have

1

N
∥Φ(hj)− g∥22 =

1

N

∑
k ̸=j

(
ŷRNN(p[tj 7→ k])j − g(xk)

)2
≤ 1

N

N∑
k=1

(
ŷRNN(p[tj 7→ k])j − y(p[tj 7→ k])j

)2
= Etj

[
(ŷRNN(p)j − yj)

2
]

As a result, via a Markov inequality, we obtain

P
(

1

N
∥Φ(hj)− g∥22 ≥

ε2

δ2

)
= P

(
Etj

[
(ŷRNN(p)j − yj)

2
]
≥ ε2

δ2

)
≤

δ2 E
[
(ŷRNN(p)j − yj)

2
]

ε2

≤ δ2.

Going back to our lower bound on P(E2), define the Bernoulli random variable

z(i) = 1

[∥∥∥Φ(h(i)
j )− g(i)

∥∥∥
2
≥ ε

√
N

δ

]
.

Note that (z(i)) are i.i.d. since h
(i)
j and g(i) do not depend on xj . Then, by Hoeffding’s inequality,

P
(
EC

2

)
= P

 P∑
j=1

z(i) ≥ 2δ2P

 ≤ e−2Pδ4 .

We now have our desired lower bound on P(E1 ∩ E2), given by

P(E1 ∩ E2) ≥ 1− P
(
EC

1

)
− P

(
EC

2

)
≥ 1− e−2Pδ4 − P 2e−c

2(N−1)/8.

Suppose δ ≥ e−c
′N for some absolute constant c′ > 0. Then, choosing P = ⌊ec′′N⌋ for some

absolute constant c′′ > 0 would ensure P(E1 ∩ E2) > 0, and allows us to look at this intersection.
Let I = {i : z(i) = 0}. On E1, and for i, k ∈ I with i ̸= k we have∥∥∥Φ(h(i)

j )− Φ(h
(k)
j )
∥∥∥
2
≥
∥∥∥g(i) − g(k)

∥∥∥
2
−
∥∥∥Φ(h(i)

j )− g(i)
∥∥∥
2
−
∥∥∥Φ(h(k)

j )− g(k)
∥∥∥
2

≥ εg
√
N − 1− 2ε

√
N

δ
=: L

√
Nεh.

Note that from the Lipschitzness of fy, we have
∥∥∥Φ(h(i)

j )− Φ(h
(k)
j )
∥∥∥
2
≤ L

√
N

rh

∥∥∥h(i)
j − h

(k)
j

∥∥∥
2
.

As a result, the set
{
h
(i)
j : i ∈ I

}
is an rhεh-packing for {h : ∥h∥2 ≤

√
2∥U∥oprh}. Using

Lemma 41, the log packing number can be bounded by

log I ≤

{
dh log

(
1 +

2
√
2∥U∥op
εh

)}
∧

{
2∥U∥2op

ε2h

(
1 + log

(
1 +

Mε2h
2∥U∥2op

))}
.
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On E1 ∩ E2, we have I ≥ (1 − 2δ2)P ≥ (1 − 2δ2)ecN for some absolute constant c > 0.
Therefore,

log(1− 2δ2) + cN

log(1 + 2
√
2∥U∥op/εh)

≤ dh,

and
ε2h
(
log(1− 2δ2) + cN

)
2 + 2 log(1 + dhε

2
h/(2∥U∥2op))

≤ ∥U∥2op.

Choosing δ = 1/2 and recalling εg ≍ 1, we obtain εh ≳ (1 − Cε)/L for some absolute constant
C > 0, which concludes the proof.

C.7. Proof of Theorem 5

We first provide an estimate for the capacity of two-layer feedforward networks to interpolate n
samples.

Lemma 35 Suppose {x(i)}ni=1
i.i.d.∼ N (0, Id) and let y(i) = ⟨u,xti⟩ for arbitrary ti ∈ [N ] and

u ∈ Sd−1. Then, there exists an absolute constant c > 0 such that for all m ≥ n and with
probability at least c, there exist data dependent weights a, b ∈ Rm and W ∈ Rm×d, such that

a⊤σ(Wx(i) + b) = y(i), ∀ i ∈ [n]

and
∥a∥22 + ∥W ∥2F + ∥b∥22 ≤ O(n3).

Proof The proof of Lemma 35 is an immediate consequence of two lemmas.

1. Lemma 36 shows that the inputs x(1), . . . ,x(n) can be projected to sufficiently separated
scalar values with a unit vector v.

2. Lemma 37 perfectly fits n univariate samples using a two-layer ReLU neural network. When
invoking this lemma, we use ∥z∥2 = O(

√
n) and ϵ = Ω(1/n2) as given by Lemma 36.

The only missing piece is to upper bound ∥y∥2 appearing in the final bound of Lemma 37. To that
end, we apply the following Markov inequality,

P
(
∥y∥22 ≥ 6n

)
≤

E
[
∥y∥22

]
6n

≤ 1

6
.

As the statement of Lemma 36 holds with probability at least 1
3 , this suggests that the statement of

Lemma 35 holds with probability at least 1
6 , concluding the proof.

Lemma 36 Suppose {x(i)}ni=1
i.i.d.∼ N (0, Id). Then, with probability at least 1/3, there exists some

v ∈ Sd−1 (dependent on {x(i)}) such that for all i ̸= j,∣∣∣v⊤x(i) − v⊤x(j)
∣∣∣ = Ω

(
1

n2

)
. (24)

and
∑n

i=1(v
⊤x(i))2 = O(n).
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Proof The proof follows the probabilistic method. Sample v ∼ Unif(Sd−1) independent of {x(i)}.
For each i ̸= j, let

ai,j = u⊤(x(i) − x(j))

and note that ai,j |v ∼ N (0, 2). We apply basic Gaussian anti-concentration to place a lower bound
on the probability of any ai,j being close to zero,

P(∃i, j s.t. |ai,j | ≤ ϵ) ≤
∑
i ̸=j

P(|ai,j | ≤ ϵ) =
∑
i ̸=j

E[P(|ai,j | ≤ ϵ |v)] ≤ n2ϵ√
π
≤ 1

3
,

where the last inequality follows by taking ϵ =
√
π/(3n2). Furthermore,

P

(
n∑

i=1

(v⊤x(i))2 ≥ 3n

)
≤
∑n

i=1 E
[
(v⊤x(i))2

]
3n

=
1

3
,

by Markov’s inequality. Combining the two events completes the proof.

Lemma 37 Consider some z = (z(1), . . . , z(n))⊤ ∈ Rn and y = (y(1), . . . , y(n))⊤ ∈ Rn, such
that

∣∣z(i) − z(j)
∣∣ ≥ ϵ for all i ̸= j. For simplicity, assume ϵ ≤ 1. Then, there exists a two-layer

ReLU neural network

g(t) =
m∑
j=1

ajσ(wjt+ bj)

that satisfies g(z(i)) = y(i) for all i ∈ [n], m = n, and

∥a∥22 + ∥w∥22 + ∥b∥22 = O

∥y∥2
√

n+ ∥z∥22
ϵ

. (25)

Proof Without loss of generality, we assume that z(1) ≤ · · · ≤ z(n). Then, we define the neural
network g as follows:

g(t) =

n∑
i=1

a′iσ(w
′
it− b′i) = y(1)σ(t− z(1) + 1) +

(
y(2) − y(1)

z(2) − z(1)
− y(1)

)
σ(t− z(1))

+

n∑
i=3

(
y(i) − y(i−1)

z(i) − z(i−1)
− y(i−1) − y(i−2)

z(i−1) − z(i−2)

)
σ(t− z(i−1)).

One can verify by induction that g(z(i)) = y(i) for every i by noting that the slope of g is

(y(i) − y(i−1))/(z(i) − z(i−1))

between (z(i−1), y(i−1)) and (z(i), y(i)). From the above, we have w′i = 1,
∥∥b′∥∥2

2
≲ ∥z∥22 + 1, and

∥a′∥22 ≲ ∥y∥22/ϵ2. For α =
(
(∥z∥22 + n)ϵ2/∥y∥22

)1/4, let u = αu′, w = w′/α, and b = b′/α. By
homogeneity, the neural network with weights (u,w, b) has identical outputs to that of (u′,w′, b′)
and satisfies (25), completing the proof.

We are now ready to present the proof of the sample complexity lower bound for RNNs.
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Proof of Theorem 5. First, consider the case where dh < n. Note that as a function of Uh =
(U→h→,U←h←), fy is L-Lipschitz with

L =
∥∥W Ly

∥∥
op

∥∥W Ly−1
∥∥
op

. . . ∥W 2∥op.

Using the AM-GM inequality,(
L2∥U∥2op

)1/Ly

≤ 1

Ly
∥vec(Θ)∥22 ≤ eN

c/Ly .

As a result, we have L∥U∥op ≤ eN
c/2. By invoking Proposition 22, to obtain population risk less

than some absolute constant c3 > 0, we need

dh ≥ Ω

(
N

log(1 + L2∥U∥2op)

)
≥ Ω(N1−c).

This implies n ≥ dh ≥ Ω(N1−c). By taking c1 in the theorem statement to be less than 1 − c, we
obtain a contradiction. Therefore, we must have either a population risk at least c3 or dh ≥ n.

Suppose now that dh ≥ n. We show that with constant probability, we can construct an RNN
that interpolates the n training samples with norm independent of n. We simply let Θ→h = 0,
Θ←h = 0, U = 0, and describe the construction of W Ly , . . . ,W 2,W y, and (bl) in the following.
Using the construction of Lemma 35, we can let

W y =

(
W 0n×dE

0(m−n)×d 0(m−n)×dE

)
, b1 =

(
b

0m−n

)
, W 2 =

 a⊤ 0⊤m−n
−a⊤ 0⊤m−n

0(m−2)×n 0(m−2)×(m−n)

,

where W ∈ Rn×d, and a, b ∈ Rn are given by Lemma 35. Then,

W⊤
2 σ(W yx

(i)

j(i)
+ by) = (y

(i)

j(i)
,−y

(i)

j(i)
, 0, . . . , 0)⊤.

For (W l)
Ly−1
l=3 , we let (Wl)11 = (Wl)22 = 1, and choose the rest of the coordinates of W l to be

zero. Therefore, the output of the lth layer is given by

(σ(y
(i)

j(i)
), σ(−y

(i)

j(i)
), 0, . . . , 0)⊤.

For the final layer, we let W Ly = (1,−1, 0, . . . , 0). Using the fact that σ(z) − σ(−z) = z, we
obtain

fy(U
→h→j ,U←h←j , z

(i)

j(i)
;Θy) = y

(i)

j(i)

We have found Θ such that R̂RNN
n (Θ) = 0 and ∥vec(Θ)∥22 ≤ O(n3) (recall that Ly ≤ O(1)). As a

result, Θ̂ε must also satisfy
∥∥∥vec(Θ̂ε)

∥∥∥2
2
≤ O(n3).

On the other hand, notice that as a function of Uh = (U→h→,U←h←), fy is L-Lipschitz with

L =
∥∥W Ly

∥∥
op

∥∥W Ly−1
∥∥
op

. . . ∥W 2∥op.
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From Proposition 31, using the fact that ∥·∥op ≤ ∥·∥F and the AM-GM inequality, we obtain

1

Ly
∥vec(Θ)∥22 ≥

(
L2∥U∥2op

)1/Ly

≥ Ω

((
N

log dh

)1/Ly
)

to achieve population risk less than some absolute constant c3 > 0. Recall that log dh ≤ N c for
some c < 1. The proof is completed by noticing that unless n ≥ Ω(N c1) for some absolute constant
c1 > 0,

∥∥∥vec(Θ̂ε)
∥∥∥
2

will always be less than the lower bound above, with some absolute constant
probability c2 > 0 over the training set.

Appendix D. Details of Section 5

We first define the class of algorithms considered in Theorem 6. Importantly, this lower bound holds
regardless of the loss function used for training; for some arbitrary loss ℓ : R × R → R, we define
the empirical risk of the FFN as

L̂FFN(f,W ) :=
1

nN

n∑
i=1

N∑
j=1

ℓ(y
(i)
j , f(T (i),Wx(i))j),

where T (i) = (t
(i)
1 , . . . , t

(i)
N ). We still use RFFN(f,W ) for expected squared loss. Our lower bound

covers a broad set of algorithms, characterized by the following definition.

Definition 38 Let ASP denote the set of algorithms that return a stationary point of the regularized
empirical risk. Specifically, for every A ∈ ASP, A(Sn) returns fA(Sn), WA(Sn), such that

∇W L̂FFN(fA(Sn),WA(Sn)) + λWA(Sn) = 0,

for some λ > 0 depending on A. Sn above denotes the training set. Let AERM denote the set of
algorithms that return the min-norm approximate ERM. Specifically, every A ∈ AERM returns

A(Sn) = argmin
{f,W :L̂FFN(f,W )≤ε}

∥W ∥F,

for some ε ≥ 0. Define A := ASP ∪ AERM.

In particular, A goes beyond constrained ERM in that it also includes the (ideal) output of first-order
optimization algorithms with weight decay, or ERM with additional ℓ2 penalty on the weights.

D.1. Proof of Theorem 6

Let u be sampled uniformly from Sd−1 independently from p = (t1,x), and note that we have

sup
u∈Sd−1

E
[
(yj − fA(Sn)(t1,WA(Sn)x)j)

2
]
≥ Eu∼Unif(Sd−1),j,y,p∼P

[
(yj − fA(Sn)(t1,WA(Sn)x)j)

2
]
,

for all A ∈ A. From this point, we will simply use f for fA(Sn) and W for WA(Sn). Next, we
argue that the output weights of any algorithm in A satisfy

wk =

n∑
i=1

α
(i)
k x(i), ∀k ∈ [m1],
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for some coefficients (α(i)
k )i∈[n],k∈[m1]. This is straightforward to verify for A ∈ ASP, as

∇wk
L̂FFN(f,W ) ∈ span(x(1), . . . ,x(n)).

For A ∈ AERM, note that L̂FFN only depends on wk through its projection on span(x(1), . . . ,x(n)).
As a result, any minimum-norm ε-ERM would satisfy wk ∈ span(x(1), . . . ,x(n)).

Note that for n ≤ Nd, the span of x(1), . . . ,x(n) is n-dimensional with probability 1 over Sn.
Let v(1), . . . ,v(n) denote an orthonormal basis of span(x(1), . . . ,x(n)), and let V = (v(1), . . . ,v(n))⊤ ∈
Rn×Nd. Recall that for the simple-1STR model considered here, yj = y =

〈
u,xtq

〉
for j ∈ [N ].

Then,

Eu,y,j,p

[
(yj − f(t1,Wx)j)

2
]
≥ Eu,t1,V x[Var(y |u, t1,V x)] = Eu,t1,V x[Var(⟨P t1u,x⟩ |u, t1,V x)],

where P t1 ∈ RNd×d has the form
(
0d, . . . , Id︸ ︷︷ ︸

t1

, . . . ,0d
)⊤. The conditioning above comes from the

fact that via training, f and W can depend on u, but the prediction depends on x only through V x.
Consequently, we replace the predicition of the FFN by the best predictor having access to u, t1, and
V x. Note that t1, u, and V x are jointly independent, and the joint distribution

(
⟨P t1u,x⟩,V x

)
is given by N

(
0,

(
1 V P t1u

u⊤P⊤t1V
⊤ In

))
, thus we have

Var(⟨P t1u,x⟩ |u, t1,V x) = 1− ∥V P t1u∥
2.

In particular,

Eu[Var(⟨P t1u,x⟩ |u, t1,V x)] = 1− 1

d

n∑
i=1

∥∥∥P⊤t1v(i)
∥∥∥2,

and

Eu,t1 [Var(⟨P t1u,x⟩ |u, t1,V x)] = 1− 1

Nd

N∑
t1=1

n∑
i=1

∥∥∥P⊤t1v(i)
∥∥∥2

= 1− 1

Nd

n∑
i=1

∥∥∥v(i)
∥∥∥2 = 1− n

Nd
.

Appendix E. Auxiliary Lemmas

Lemma 39 Suppose A ∈ Rd1×d2 and B ∈ Rd2×d3 . Then, for all r, s ≥ 1 and p, q ≥ 1 such that
1/p+ 1/q = 1, we have

∥AB∥r,s ≤ ∥A∥r,p∥B∥q,s.

Proof First, we note that for any vector b ∈ Rd2 we have

∥Ab∥r =

∥∥∥∥∥∥
d2∑
j=1

bjA:,j

∥∥∥∥∥∥
r

≤
d2∑
j=1

|bj |∥A:,j∥r ≤ ∥A∥r,p∥b∥q,

42



WHEN DO TRANSFORMERS OUTPERFORM FEEDFORWARD AND RECURRENT NETWORKS?

where the last inequality holds for all conjugate indices p, q and follows from Hölder’s inequality.
We now have

∥AB∥sr,s =
d3∑
j=1

∥AB:,j∥sr ≤
d3∑
j=1

∥A∥sr,p∥B:,j∥sq = ∥A∥r,p∥B∥q,s.

The next lemma follows from standard Gaussian integration.

Lemma 40 Suppose x ∼ N (µ,Σ). Then Var(∥x∥2) = 2 tr(Σ⊤Σ) + 4µ⊤Σµ.

The following lemma combines two different techniques for establishing a packing number over
the unit ball, the first construction uses volume comparison, whereas the second construction uses
Maurey’s sparsification lemma, both of which are well-established in the literature.

Lemma 41 Let P denote the ϵ-packing number of the unit ball in Rd. We have

logP ≤
{
d log

(
1 +

2

ϵ

)}
∧
{

1

ϵ2
(1 + log(1 + 2dϵ2))

}
.

Finally, the lemma below allows us to approximate arbitrary Lipschitz functions with two-layer
feedforward networks.

Lemma 42 ([6, Propositions 1 and 6]) Suppose f : Rd → R satisfies |f(x)| ≤ LR and |f(x)− f(x′)| ≤
L∥x− x′∥2 for all x,x′ ∈ Rd with ∥x∥2 ≤ R and ∥x′∥2 ≤ R and some constants L,R > 0. Then,
for every ε > 0, there exists a positive integer m and W ∈ Rm×d, b ∈ Rm, and a ∈ Rm, such that

sup
∥x∥2≤R

∣∣∣f(x)− a⊤σ(Wx+ b)
∣∣∣ ≤ ε.

Additionally, we have

m ≤ Cd

(LR(1 + log(LR/ε))

ε

)d
,
∥∥∥W⊤

∥∥∥
2,∞

≤ 1

R
, ∥b∥∞ ≤ 1, ∥a∥2 ≤

CdLR√
m

·
(
LR(1 + log(LR/ε))

ε

)d+1
2

.
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