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ABSTRACT

With the advance of real-world tasks that necessitate increasingly long contexts,
recent language models (LMs) have begun to support longer context windows.
One particularly complex task is repository-level code generation, where retrieval-
augmented generation (RAG) has been used as the de facto approach. Nonethe-
less, RAG may not be optimal in processing entire codebases with cross-file de-
pendencies. Therefore, we ask: can we instead leverage long-context LMs to solve
repository-level code generation problems? To answer this question, we conduct
a comparative study of LC and RAG methods using top-performing open-source
CODELLAMA 7B and closed CLAUDE-3.5-sonnet models. We evaluate on the
repository-level code completion benchmark — RepoEval (Zhang et al., 2023),
and find that LC can match or surpass RAG performance when the repository is
sufficiently small and well-structured, yet RAG still outperforms LC when the
repository grows larger or involves complex structures, dependencies, or domain-
specific implementations. We further ablate on context ordering and code snippet
chunking, and find that better ordering of input code snippets can boost both LC
results, while design choices for code snippet chunking such as size and overlaps
do not produce prominent effects. Overall, our work reveals the scenarios where
current LC methods are shown effective and fall short in repository-level code
generation, potentially offering insights for future method developments.

1 INTRODUCTION

With the recent advances of large language models (LLMs) in solving various tasks, repository-level
program generation has emerged as a critical problem in achieving automated software engineering
works (Chen et al., 2021; Jimenez et al., 2023). The repository-level code generation task provides
a natural language query (NL), and asks the model to generate programs by understanding the entire
codebase. Nonetheless, code repositories often contain hundreds of files and feature complex code
structures and long-distance dependencies across files. For most traditional LLMs with short context
window length constraints (e.g., 1k or 4k), these long codebase content poses pronounced challenges
(Liu et al., 2024).

One common approach to accommodate the short context constraints is to leverage the retrieval-
augmented generation (RAG) method (Guu et al., 2020; Lewis et al., 2020; Izacard et al., 2022),
which first retrieves a few relevant code snippets from the code repository, and then generates pro-
grams only based on the query and these pre-selected set of contexts. However, the effectiveness of
RAG heavily depends on the relatedness and organization of the retrieved content. When dealing
with large-scale repositories containing intricate module dependencies and diverse coding patterns,
the retrieval process may lack a general view of the codebase, thus often failing to capture essential
relations and producing inconsistent or incorrect programs (Zhang et al., 2023; Wang et al., 2024).

Another emerging approach that potentially avoids this imperfect context retrieval issue, is to di-
rectly input the entire code repository to an LLM that supports long context (LC). For code-specific
LMs, LC support can usually be achieved in two ways. First, at (pre-)training time by training
on longer text sequences, for example, CODELLAMA (Roziere et al., 2023) and STARCODER (Li
et al., 2023) support inputs of at most 16k tokens. Alternatively, one can apply length-extending
modules, such as Unlimiformer (Bertsch et al., 2023), Longformer (Beltagy et al., 2020), Perform-
ers (Choromanski et al., 2020) to extrapolate the input context limit at inference time. Given these
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techniques in enabling longer inputs for code LMs, however, limited work has explored using LC
to solve repository-level code generation problems, thus making it unclear how well LC methods
perform compared to RAG.

To answer this question, we first ask: Can long-context models solve repository-level code gener-
ation tasks? (§3) by comparing RAG and LC methods on the RepoEval benchmark (Zhang et al.,
2023) with rigorous execution-based evaluation (Wang et al., 2024). We experiment with (1) the top-
performing API model, CLAUDE-3.5-sonnet, and provide retrieved contexts or entire code reposi-
tory content for RAG and LC methods, respectively. In addition to closed models, we also study
the open-weight CODELLAMA model. To enable CODELLAMA for processing (e.g., with millions
of tokens) beyond its 16k-token limit, we extend its context limit to unlimited length using Unlimi-
former (Bertsch et al., 2023) and then perform similar experiments as those for Claude.

Among experiments with varied repositories, first, we find that LC can outperform RAG when the
codebase is small (i.e., less than 40k tokens) and well-structured, often with tightly coupled mod-
ules and consistent coding patterns; this is particularly evident in CODELLAMA compared to its
stronger CLAUDE counterpart. Meanwhile, for slightly larger (80k–120k tokens) repositories with
complex modules yet rather consistent structure and coding styles, LC models can still perform on
par with the best RAG setting, suggesting certain potentials for LC to become more effective via
better understandings of complex codebases. Nonetheless, for even larger codebases beyond 120k
tokens, we find the CODELLAMA model often produces near-zero results and CLAUDE degrading
severely; both underperform RAG methods by a large margin. Expectedly, LC performance with
both models degrades to a greater extent when the codebase structure gets more complex.

Comparing two models under the LC setting, interestingly, we find the weaker, code-specialized
CODELLAMA 7B model sometimes outperforms the generally stronger CLAUDE-3.5-sonnet model,
particularly on small repositories such as amazon-science/patchcore-inspection.
However, as the repository grows larger, CODELLAMA tends to degrade severely fast while CLAUDE
appears more robust to extended contexts.

We further investigate the advantages offered by two design choices — code chunking strategy and
input snippet ordering (§4). We find that ordering contexts based on their lexical or semantically sim-
ilar to the problem brings substantial performance improvements in LC mode across all repositories.
In comparison, the chunking sizes of code snippets and their inter-overlaps do not have prominent
effects on final RAG performance, suggesting the need for deeper investigation in designing better
RAG methods.

In general, our work aims to systematically compare LC and RAG methods in generating code for
repositories with varied sizes, structures, and coding styles. We identify promises in LC models in
processing small codebases, and hope to facilitate developments in solving remaining challenges
regarding more large, complex codebases.

2 PROBLEM STATEMENT

In this section, we first introduce the RAG and LC methods adopted in our experiments (§2.1), then
provide the benchmark, evaluation, and model details (§2.2, §2.3).

2.1 METHODS

We tackle the code completion task, where each example contains an incomplete code file f , of
which the last n tokens before the incomplete region is used as the query q for the problem.

Retrieval-Augmented Generation We adopt the RAG pipeline from Zhang et al. (2023) using a
sparse bag-of-words retrieval Lu et al. (2022), which given a code repository, first chunks the repos-
itory into code snippets as the retrieval pool, performs retrieval, and augments retrieved contexts for
generation.

To create the retrieval database, we follow Zhang et al. (2023) to chunk each file f into w-line
snippets, while keeping a s-line overlap between adjacent snippets. More concretely, for file f we
get code snippets Cf = {ci | ci = f [i : i + w],∀i|(w − s) = 0}. The full retrieval database is the
union of code snippets from all files: Crepo =

⋃
f∈repo Cf .
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Figure 1: Dynamic prompt construction process for RAG.

To perform retrieval for a given problem query q (i.e., the last n tokens before the incomplete region
in the target code file), we use q as the retrieval query and find top-k relevant code snippets from
the database Crepo , Cret = topk{(c, sim(q, c)) | c ∈ Crepo}. sim(q, c) stands for the similarity
measure, which can be implemented using token-based Jaccard similarity or cosine similarity of
dense vector representations (Guo et al., 2022a).

To generate programs with retrieved code snippets, we provide the query q and top-relevant retrieved
code snippets Cret to the RAG model. We implement a dynamic prompt construction process for
adding retrieved code snippets, as illustrated in Figure 1. More specifically, given a pre-determined
maximum token count limit, we continue adding top-ranking code snippets to the input context until
it reaches the limit. We experiment with varied context lengths ranging from 4k, 8k, 16k, 32k, to
64K tokens, under the RAG setup, to analyze how context length affects the generation quality.

Long Context Model In the long-context setting, we build the input prompt by aggregating all
Python files from the repository. We traverse the repository using os.walk to collect all Python
files, where for the target file, we only include content before the target function’s starting line num-
ber (specified in the benchmark’s metadata as context start lineno). To provide a rigorous
test of LC method capabilities, we randomly shuffle the collected files to break any potentially se-
mantically correlations if intentionally ordered in other ways. At the same time, to ensure consistent
and reproducible experiments, we use a fixed random seed (i.e., 42) throughout the LC experiments.
This design choice ensures that models must truly understand and utilize the entire context rather
than relying on distance-based ordering, better aligning with LC’s fundamental premise of compre-
hensive context utilization.

For both RAG and LC experiments, we provide the path metadata and for each of the code snippet
(either w-line chunks in RAG or full file content in LC) using the standardized prompt format. We
provide the exact prompt in §A.

2.2 DATASET

We use the RepoEval (Zhang et al., 2023) benchmark, which features the repository-level code
completion task. Unlike many benchmarks that focus on isolated code snippets, RepoEval requires
models to understand long-range contexts across multiple files in an entire code repository. RepoE-
val consists of three test splits — line, API, and function completion tasks — created from Python
repositories with diverse coding styles and domains. We adopt the function split for our experiments,
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because it is the only test split that supports rigorous execution-based evaluation. The function com-
pletion split covers six code repositories of varying lengths, from 29k tokens to 132k tokens. Table 1
shows the repositories covered in the function test split and their respective statistics.

Repository Name # files # lines # tokens # tasks
amazon-science/patchcore-inspection 16 2,532 29,179 32
deepmind/tracr 56 9,110 110,574 146
facebookresearch/omnivore 66 11,797 132,538 22
google/lightweight mmm 36 9,676 123,118 64
lucidrains/imagen-pytorch 14 7,324 83,579 67
maxhumber/redframes 49 3,881 40,672 42

Table 1: Statistics of the repositories in RepoEval function set. The repositories cover a range of
sizes, from smaller codebases (29k tokens in amazon-science/patchcore-inspection) to larger ones
(132k tokens in google/lightweight mmm), and span different domains including computer vision,
machine learning, and data processing.

Evaluation Metrics: Pass@1 We evaluate the functional correctness of model-generated pro-
grams using the pass@1 metric (Chen et al., 2021) as implemented by Wang et al. (2024). Compared
to traditional similarity metrics like Exact Match (EM) and Edit Similarity (ES), execution metrics
can more accurately reflect the functional correctness of code generation. This is because even if the
generated code differs superficially from the target code, it is still valuable in real applications if it
executes successfully and produces correct results.

2.3 MODELS

We experiment with top-performing code-specific LMs that are open-weight and closed-sourced.

Open-Weight Models We use CODELLAMA 7B (Roziere et al., 2023) as top representatives for
the open-weight code LMs. CODELLAMA 7B has a maximum context length of 16k tokens, en-
abling it to handle longer code snippets and more complex programming contexts. To handle larger
repositories that exceed this limit, we incorporate Unlimiformer (Bertsch et al., 2023) to extend its
context limit to an unlimited number of tokens.

Close Source Models We use CLAUDE-3.5-sonnet (Anthropic, 2023), one of the strongest API
LM. CLAUDE has a context limit of 200k tokens, and readily supports RAG with varying context
lengths and full-repository long-context setups.

3 RESULTS AND ANALYSIS

We conducted experiments using both CODELLAMA 7B and CLAUDE-3.5-sonnet models with RAG
and LC approaches, and report their pass@1 scores in each repository in Table 2.

First of all, comparing RAG methods with different context lengths, CODELLAMA generally
achieves the best performance at 16k-token range, aligning with its default context limit. On the
other hand, CLAUDE tends to perform better with shorter contexts, and often scores the best with 4k
token contexts.

LC Surpasses RAG on Small, Structured Codebase Surprisingly, for the weaker CODELLAMA,
on small, well-organized repositories (i.e., amazon-science/patchcore-inspection),
LC achieves the highest score 37.5% among all methods, while RAG in the best setup with 16k
achieves comparable scores. We also find code in this repository to have better modularity and con-
sistent coding styles. This indicates that, on small, well-structured repositories, CODELLAMA can
effectively consume the full repository content and produce correct programs.

We show a representative example in Figure 2a about implementing the forward method of the
Preprocessing class. While RAG@16k generates a partially correct but incomplete imple-
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Repository Size RAG LC
4k 16k 32k = Size

CodeLlama-7B

amazon-science/patchcore-inspection 29k 28.1 37.5 34.4 37.5
maxhumber/redframes 40k 21.4 21.4 19.1 14.3
lucidrains/imagen-pytorch 83k 49.3 59.7 56.7 1.4
deepmind/tracr 110k 34.3 37.0 35.6 0.0
google/lightweight mmm 123k 17.2 29.7 21.9 0.0
facebookresearch/omnivore 132k 18.2 27.3 18.2 0.0

Average 31.1 37.5 34.0 5.0

Claude-3.5-Sonnet

amazon-science/patchcore-inspection 29k 40.6 28.1 21.9 15.6
maxhumber/redframes 40k 33.3 38.1 35.7 31.0
lucidrains/imagen-pytorch 83k 43.3 43.3 40.3 38.8
deepmind/tracr 110k 51.4 43.8 41.8 36.3
google/lightweight mmm 123k 25.0 21.9 18.8 9.4
facebookresearch/omnivore 132k 40.9 18.2 18.2 13.6

Average 41.8 36.5 33.8 28.4

Table 2: Performance of CodeLlama and Claude under RAG and LC settings. Numbers show the
percentage of successful code completions. The best scores for each repository are bolded.

mentation that misses the crucial tensor concatenation step, LC successfully produces the correct
implementation with proper tensor operations. This case demonstrates how LC’s access to the entire
codebase helps maintain consistency with the repository’s tensor processing patterns — all similar
preprocessing modules in the codebase use torch.cat for feature aggregation. The RAG ap-
proach, despite having access to relevant snippets, fails to capture this consistent pattern, suggesting
that sometimes having the complete context helps maintain global implementation consistency.

In contrast, CLAUDE-3.5-Sonnet does not operate well in long-context mode, achieving only 15.6%
pass@1. RAG performs substantially better — scoring 40.6% with a 4k-token context; however,
as the number of retrieved snippets increases to 16k and 32k tokens, the scores drop to 28.1% and
21.9% progressively. We manually inspect the failure cases and find that CLAUDE tends to generate
more verbose and explanatory code, often adding unnecessary documentation and error handling
that deviates from the repository’s existing patterns. For example, as shown in Figure 2b, when
completing a function in the BaseSampler class, CLAUDE adds a progress bar and additional
parameter validation that are not present in similar functions within the codebase, suggesting its
tendency to over-generalize based on its pre-training rather than adhering to the specific patterns
employed by the repository at hand.

When LC Approaches RAG Performance Expectedly according to the base capabilities of
the LMs, CODELLAMA completely fails when input contexts reach 80k tokens or beyond,
in both RAG and LC settings. In contrast, the stronger Claude can still perform reason-
ably well till at least 110k tokens. Particularly on deepmind/tracr (110k tokens) and
lucidrains/imagen-pytorch (83k tokens) repositories, CLAUDE can still operate compara-
bly well, in comparison to RAG methods (36.3% and 38.8% respectively) despite the long context.
While these two repositories are larger, they have consistent internal structure and clearer module
boundaries, suggesting that well-structured codebases may offer more chances for LC to work.

When RAG Offers Clear Advantages Over LC Beyond traditional advantages in context fil-
tering and selection, RAG exhibits superior performance in domain-specific code generation com-
pared to LC. In our analysis of the Google/lightweight mmm repository, CLAUDE achieves
25.0% success rate under RAG with the shortest context length (4k), but only 9.4% in LC mode.
We identify two critical patterns in implementation accuracy. First, in mathematical implemen-
tations such as the Hill function (Figure 3a), LC produces code that is syntactically valid but se-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Task Input:

class Preprocessing(torch.nn.Module):
def forward(self, features):

# Process features with each module
and aggregate using torch.cat

processed = [module(feature)
for module, feature in
zip(self.preprocessing_modules,

features)]

return torch.cat (processed, dim=1)

CodeLlama-7B (RAG mode) [Pattern deviation]

def forward(self, features):
"""
Args: features: [NxCxWxH]
"""
processed = [module(feature)

for module, feature in
zip(self.preprocessing_modules, features)]

# Missing tensor concatenation

return processed

CodeLlama-7B (LC mode) [Pattern match]

def forward(self, features):
"""
Args: features: [NxCxWxH]
"""

return torch.cat ([

module(feature)
for module, feature in
zip(self.preprocessing_modules, features)
],
dim=1)

(a) Preprocessing module implementation.

Task Input:

class BaseSampler(abc.ABC):
@abc.abstractmethod
def run(self, features):

pass

Claude-3.5-Sonnet (LC mode) [Over-generalization]

class GreedyCoresetSampler(BaseSampler):
def run(self, features):

# Progress tracking for sampling
process

pbar = tqdm.tqdm(total=num samples)

# Parameter validation

if not isinstance(features, np.ndarray):

features = np.array(features)

CodeLlama-7B (LC mode) [Repository-specific pattern]

class GreedyCoresetSampler(BaseSampler):
def run(self, features):

# Direct sampling implementation

samples = self. get samples(features)

return samples

(b) BaseSampler module implementation.

Figure 2: Example completions from amazon-science/patchcore-inspection. Left:
shows the implementation of the Preprocessing class’s forward method using CODELLAMA.
In RAG mode, the solution stops after processing the features (highlighted in pink), missing the
essential tensor concatenation step; in contrast, the LC mode solution correctly aggregates the fea-
tures using torch.cat. Right: displays implementations for the BaseSampler class, where
the CLAUDE output unnecessarily adds progress tracking and type validation (highlighted in pink),
deviating from the existing class implementations, where CODELLAMA sticks to the available
self. get samples function.

mantically flawed: while dataˆslope/(dataˆslope+half max..ˆslope) appears rea-
sonable, it fails to match the canonical form 1/(1+(half max../data) ˆ slope). Sec-
ond, when handling framework-specific code (Figure 3b), LC defaults to basic implementations like
dist.Normal(0, 2), overlooking essential framework conventions such as explicit parameter
naming (dist.HalfNormal(scale=2.)) and distribution scale, potentially due to the diffi-
culty of finding targeted patterns among numerous input code files in the long context.

These findings highlight a key limitation in current code generation approaches: while domain-
specific implementations often adhere to established patterns, LC’s access to the full codebase
proves insufficient for discerning these specialized requirements. RAG, through targeted retrieval
of relevant code segments, more effectively captures and reproduces these domain-specific imple-
mentations. This suggests that comprehensive context access may actually hinder performance in
specialized coding tasks, where precise pattern recognition is crucial.

4 CODE SNIPPET ORDERING IS THE KEY

To investigate the most critical components of RAG that outperform LC method, we systemati-
cally examined the key differences between these two approaches. Our RAG retrieved 50-line code

6
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Hill Function Implementation:

LC Implementation

def hill(data, half_max_effective_concentration,
slope):

return

data**slope / (data**slope +

half max effective concentration**slope)

RAG Implementation

def hill(data, half_max_effective_concentration,
slope):

return

1 / (1 + (half max effective concentration
/ data) ** slope)

(a) Mathematical precision: RAG correctly imple-
ments the standard Hill function formula pattern,
while LC generates a mathematically similar but
functionally different implementation.

Numpyro Priors Definition:

LC Implementation

return {

_INTERCEPT: dist.Normal(0, 2) ,

_COEF_TREND: dist.Normal(0, 0.1) ,

_EXPO_TREND: dist.Normal(0, 0.1)

}

RAG Implementation

return immutabledict.immutabledict({

_INTERCEPT: dist.HalfNormal(scale=2.) ,

_COEF_TREND: dist.Normal(loc=0., scale=1.) ,

_EXPO_TREND: dist.Uniform(low=0.5, high=1.5)

})

(b) Framework-specific implementation: RAG fol-
lows numpyro’s best practices with explicit param-
eter naming and correct distribution choices, while
LC uses basic distribution calls that miss crucial
framework-specific details.

Figure 3: Examples of domain-specific implementation discrepancies between LC and RAG meth-
ods in google/lightweight mmm. While both methods produce syntactically correct code,
RAG’s ability to leverage fixed implementation patterns leads to more precise results in both math-
ematical formulas and framework-specific examples.

snippets with 5-line overlaps (denoted as RAG/w50-o5), which differs from LC in three aspects:
overlapping lines (5-line in RAG vs. no overlap in LC), smaller snippet lengths (50-line in RAG vs.
entire file in LC), and relevance-based ordering (vs. random ordering).

To isolate the impact of each factor, we conducted ablation experiments with the following se-
tups: (1) w50-o0: we remove overlapping lines between adjacent code snippets, and chunk files
into 50-line disjoint code snippets. (2) winf-o0/LC-sem: to bridge the gap between the length of
code snippets in RAG and LC settings, we perform retrieval on the file level in RAG. This setting
could also be seen as an upgraded version of LC with semantic-based file ordering (i.e., LC-sem),
compared to the random file ordering in the default LC method (i.e., LC-rdm).

Results of all settings are shown in Table 3.

Window Size and Overlap are Not Critical When using 50-line code snippets, comparing 5-line
and zero overlap between adjacent snippets, we find that for most repositories and context lengths,
there is no significant difference. This indicates that snippet overlap is not critical for chunking code
snippets yet increases context lengths by about 20%. Comparing RAG using 50-line snippets and
full code files, we also do not find substantial differences between them, suggesting that window
size is not a decisive factor for RAG behavior as well.

Context Organization Matters Lastly, to investigate the impact of context organization, we com-
pared file ordering by semantic relevance (LC-sem) and random ordering (LC-rdm). Based on LC’s
approach of randomly shuffling files with a fixed seed, we introduced max token constraints to sim-
ulate prompts of varying lengths for RAG, enabling a direct and fair comparison between semantic-
relevance-based and random file ordering. As shown in Table 3, random ordering leads to large
performance degradation across all repositories, implying that proper sequential organization of
context information is crucial for code generation quality.

To further validate the importance of context organization, we also compared RAG’s performance
under the default setting (50-line snippets with 5-line overlap, RAG/w50-o5), additionally with
randomly-shuffled snippet ordering (RAG (random)). As shown in Table 4, augmenting code snip-
pets in random ordering consistently underperforms its semantic-ordered counterpart, i.e., the de-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Repository Method 4k 8k 16k 32k 64k

amazon-science/patchcore-inspection

RAG 28.1 31.3 37.5 34.4 25.0
w50-o0 28.1 34.4 34.4 34.4 34.4
LC-sem 31.3 28.1 28.1 28.1 28.1
LC-rdm 18.8 28.1 31.3 28.1 25.0

maxhumber/redframes

RAG 21.4 19.1 19.1 19.1 7.1
w50-o0 19.1 14.3 19.1 14.3 11.9
LC-sem 26.2 16.7 26.2 21.4 16.7
LC-rdm 9.5 14.3 9.5 11.9 11.9

lucidrains/imagen-pytorch

RAG 49.3 52.2 59.7 56.7 44.8
w50-o0 52.2 58.2 59.7 44.8 29.9
LC-sem 43.3 46.3 56.7 41.8 29.9
LC-rdm 3.0 4.4 7.5 10.4 1.5

deepmind/tracr

RAG 34.3 36.3 36.3 35.6 26.0
w50-o0 33.6 39.0 37.0 32.2 20.6
LC-sem 37.7 37.0 35.6 39.7 26.7
LC-rdm 18.5 19.2 19.9 22.6 18.5

google/lightweight mmm

RAG 15.6 21.9 29.7 23.4 15.6
w50-o0 17.2 20.3 21.9 20.3 7.8
LC-sem 15.6 21.9 23.4 18.8 12.5
LC-rdm 12.5 7.8 17.2 12.5 7.8

facebookresearch/omnivore

RAG 18.2 18.2 27.3 18.2 18.2
w50-o0 22.7 31.9 31.8 22.7 13.6
LC-sem 18.2 18.2 18.2 22.7 13.6
LC-rdm 18.2 18.2 13.6 22.7 4.5

Table 3: CodeLlama performance with different ablation setups under varying context lengths from
4k to 64k. We bold the best method for each context length.

fault RAG method. This result reinforces our finding that semantic-based ordering plays a crucial
role in code generation, as in §4.

Repository RAG RAG (Random)
4K 16K 32K 4K 16K 32K

amazon-science/patchcore-inspection 28.13 37.50 34.38 25.00 31.25 28.13
maxhumber/redframes 21.43 21.43 19.05 14.29 7.14 14.29

lucidrains/imagen-pytorch 49.25 59.70 56.72 22.39 38.81 38.81
deepmind/tracr 34.25 36.99 35.61 31.51 31.51 28.77

google/lightweight mmm 17.19 29.69 21.88 15.63 26.56 18.75
facebookresearch/omnivore 18.18 27.27 18.18 18.18 18.18 22.73

Table 4: CODELLAMA performance when using semantically (left) and randomly ordered code
snippets in retrieval-augmented generation.

These ablation studies reveal that proper context ordering can effectively boost long-context method
performance across all repositories under various context lengths. The fact that performance is
sensitive to context organization but not to window size or overlap suggests that future improvements
in repository-level code generation might benefit more from better context planning strategies than
from chunking optimizations.
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5 RELATED WORK

Repository-Level Code Completion Code generation has gradually shifted from single-snippet
to more complex repository-level code generation (Zhang et al., 2023), as the increasing demand for
automating software development with neural models (Jimenez et al., 2023). Despite the progress
in code LMs such as StarCoder (Li et al., 2023) and DeepseekCoder (Guo et al., 2023) , repo-level
code generation still poses numerous challenges, such as processing large-scale codebase content
and understanding complex, cross-file dependencies.

Retrieval-Augmented Generation (RAG) RAG (Lewis et al., 2020) has been adopted as an ef-
fective approach for augmenting LM knowledge (Karpukhin et al., 2020) or alleviating LLM context
limitations (Zhou et al., 2023; Zhang et al., 2023). RAG retrieved only top-relevant code snippets
from the large-scale codebase, encouraging the model to focus on presumably relevant content, of-
ten boosting model performance while reducing computational costs. However, for long, complex
code repositories, existing RAG methods face certain limitations (Wang et al., 2024), suggesting for
more explorations in optimal RAG settings and alternative methods such as LC models.

Long-Context Language Models LLMs that support increasingly long contexts are showing in-
creasing promises across a wide range of tasks, including repository-level code generation, that
particularly stresses long, complex codebase input. Some works focus on pre-training LMs to sup-
port tens of thousands of tokens out-of-the-box (Beltagy et al., 2020; Guo et al., 2022b; Chen et al.,
2023), while auxiliary modules are designed to further extrapolate model context limits during in-
ference (Bertsch et al., 2023). Recent advances in API models such as GPT (OpenAI, 2023) or
Claude (Anthropic, 2023) further push the context boundary to millions of tokens, offering potential
in solving repo-level code generation. Built on these successes in LC models, we investigate the
possibility of solving repo-level code generation with LC models.

6 CONCLUSION

Our comprehensive study demonstrates that long-context models can effectively solve repository-
level code generation, but their success is highly contingent upon repository characteristics. In suf-
ficiently small, well-structured repositories, LC models can match or outperform RAG approaches.
However, LC performance deteriorates significantly in larger repositories with more complex struc-
tures, where RAG’s selective context augmentation offers more advantages. Through ablation stud-
ies, we find that proper context organization, rather than specific chunking strategies, is fundamental
to RAG performance. These findings provide clear guidelines for choosing between LC and RAG
approaches based on repository properties, while highlighting the importance of adaptive context
processing strategies in repository-level code generation systems.

7 DISCUSSIONS AND FUTURE DIRECTIONS

While our study provides valuable insights into the capabilities of long-context and retrieval-
augmented models for repository-level code generation, there still exists some room for future inves-
tigation. First, although our experiments cover 373 code generation tasks, the best available source
only allows us to perform analysis on 6 repositories, which may not offer sufficient diversity com-
pared to the full spectrum of code repositories. This limited size also poses somewhat challenges for
us in conducting robust, large-scale quantitative testing. Alternatively, we focus on qualitative anal-
ysis. We consider the findings in this work as preliminary insights to bootstrap larger-scale studies
in the future.

Second, our comparison between LC and RAG approaches relies on semantic-based retrieval meth-
ods. While this provides strong baseline performance, more advanced neural retrieval approaches
for code repositories developed in the future may yield different results, particularly in capturing
complex dependencies across repository components.

The above areas suggest opportunities for future work to validate our findings with larger-scale
repository analysis, and extend them with more advanced RAG and LC techniques.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. Claude. https://www.anthropic.com/, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. In
ArXiv preprint arXiv:2004.05150, 2020.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R Gormley. Unlimiformer: Long-range
transformers with unlimited length input. arXiv preprint arXiv:2305.01625, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tomas
Sarlos, et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.

Daya Guo, Shuo Ren, Shuai Lu, Zhi Feng, Duyu Tang, Nan Duan, Ming Zhou, Pengcheng Yin, and
Daxin Jiang. UniXcoder: Unified cross-modal pre-training for code representation. In Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 7212–7225,
2022a.

Daya Guo, Qiang Zhu, Dongyu Yang, et al. DeepSeek-Coder: When the large language model
meets programming–the rise of code intelligence. arXiv preprint arXiv:2301.14196, 2023.

Mandy Guo, Joshua Ainslie, David C Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and
Yinfei Yang. LongT5: Efficient text-to-text transformer for long sequences. In Findings of the
Association for Computational Linguistics: NAACL 2022, pp. 724–736, 2022b.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
language model pre-training. In International Conference on Machine Learning, pp. 3929–3938.
PMLR, 2020.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with re-
trieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Carlos E Jimenez, John Yang, Alexander Wettig, et al. SWE-bench: Can language models resolve
real-world GitHub issues? In The Twelfth International Conference on Learning Representations,
2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answer-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 2020. URL https://
aclanthology.org/2020.emnlp-main.550/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A STANDARDIZED PROMPT FORMAT

The prompt consists of two main parts: (1) a context section containing relevant code snippets from
the repository, and (2) the incomplete code to be completed. The prompt data is structured as a
JSON object with the following format:

{
"prompt": "# Here are some relevant code fragments:

# -------------------------------------------
# the below code fragment can be found in:
# src/utils.py
# -------------------------------------------
# def process_input(data): (1)
# return data.to(device)
# -------------------------------------------

def forward(self, x): (2)
x = self.layer1(x)", (3)

}

Figure 4: Example prompt format. Notes: (1) Retrieved context with # prefix, (2) Incomplete code
without prefix, (3) Completion point.

The prompt contains:

• A context section with relevant code snippets (prefixed with #)
• The incomplete code to be completed (without # prefix)

B LC FAILS UNDER COMPLEX MODULE INTERDEPENDENCIES

On repositories with complex module interactions — such as those with extensive auxiliary docu-
mentation and intricate multimodal processing — the LC mode struggles to maintain proper code
organization. As shown in Figure 5, when completing the CkptExcludeKernel class’s call
method, LC mode mistakenly embeds additional utility function definitions within the class method.
This scope confusion highlights LC’s fundamental limitation in filtering and selecting relevant con-
text in large, interdependent codebases, whereas RAG mode, by focusing on the essential filtering
logic, manages to preserve concise and correctly structured implementations.
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Repository Context (Input):

class CkptExcludeKernel:
"""
Removes the keys from the given model state_dict
that match the key_pattern.
Args:

key_pattern: Patterns used to select the keys
in the state_dict that are eligible for this kernel.

"""
def __init__(self, key_pattern: List[str]):

self.key_pattern = key_pattern
def call(self, state_dict: Dict):

"""
Args:

state_dict: A dictionary representing
the given checkpoint's state dict.

"""

Claude-3.5-Sonnet (RAG mode) (1) (Focused implementation)

exclude_keys = unix_pattern_to_parameter_names(
self.key_pattern, state_dict.keys()

)
new_state_dict = {}
for key in state_dict:

if key not in exclude_keys:
new_state_dict[key] = state_dict[key]

return new_state_dict

Claude-3.5-Sonnet (LC mode) (2) (Unnecessary complexity)

def unix_pattern_to_parameter_names(
constraints: List[str], parameter_names: List[str]

) -> Set[str]:
"""Converts unix patterns to parameter names
Args:

patterns: List of unix patterns to match.
parameter_names: List to match against.

Returns:
Set of matched parameter names.

"""
matched_names = set()
for pattern in constraints:

for name in parameter_names:
if fnmatch.fnmatch(name, pattern):

matched_names.add(name)
return matched_names

exclude_keys = unix_pattern_to_parameter_names(
self.key_pattern, state_dict.keys())

new_state_dict = {}
for key in state_dict:

if key not in exclude_keys:
new_state_dict[key] = state_dict[key]

return new_state_dict

Figure 5: Comparison of model outputs for the checkpoint kernel implementation. (1) RAG mode
directly implements the core filtering logic without unnecessary overhead. (2) LC mode includes
redundant function definition and documentation, making the code more complex without adding
functionality. This demonstrates how RAG’s focused context helps maintain code conciseness.
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