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ABSTRACT

Network Intrusion Detection Systems (NIDS) play a vital role in protecting digital infrastructures
against increasingly sophisticated cyber threats. In this paper, we extend ODXU, a Neurosymbolic
AI (NSAI) framework that integrates deep embedded clustering for feature extraction, symbolic
reasoning using XGBoost, and comprehensive uncertainty quantification (UQ) to enhance robustness,
interpretability, and generalization in NIDS. The extended ODXU incorporates score-based methods
(e.g., Confidence Scoring, Shannon Entropy) and metamodel-based techniques, including SHAP
values and Information Gain, to assess the reliability of predictions. Experimental results on the
CIC-IDS-2017 dataset show that ODXU outperforms traditional neural models across six evaluation
metrics, including classification accuracy and false omission rate. While transfer learning has seen
widespread adoption in fields such as computer vision and natural language processing, its potential
in cybersecurity has not been thoroughly explored. To bridge this gap, we develop a transfer learning
strategy that enables the reuse of a pre-trained ODXU model on a different dataset. Our ablation
study on ACI-IoT-2023 demonstrates that the optimal transfer configuration involves reusing the
pre-trained autoencoder, retraining the clustering module, and fine-tuning the XGBoost classifier, and
outperforms traditional neural models when trained with as few as 16,000 samples (approximately
50% of the training data). Additionally, results show that metamodel-based UQ methods consistently
outperform score-based approaches on both datasets.

Keywords: Network Intrusion Detection Systems, Neurosymbolic AI, Transfer Learning, Uncertainty Quantification,
Metamodel, Open Set Recognition

1 Introduction

As digital infrastructure expands in scale and complexity, safeguarding networked systems against malicious intrusions
remains a central challenge in cybersecurity. Network Intrusion Detection Systems (NIDS) serve as the first line of
defense by continuously monitoring network traffic to detect and classify abnormal or malicious activity [1]. While
deep learning and other neural-based models have shown success in learning complex traffic patterns, they often fall
short in generalizing to novel attack types and provide limited interpretability. These limitations hinder their deployment
in high-stakes environments where adaptability and transparency are crucial.

Neurosymbolic Artificial Intelligence (NSAI) has emerged as a promising solution to these challenges. NSAI combines
the expressive feature-learning capability of neural networks with the logical reasoning strengths of symbolic AI [2, 3].
This hybrid approach not only enhances robustness and interpretability but also enables structured decision-making
through rule-based models. In particular, decision trees, such as those implemented in XGBoost, can be interpreted as
propositional logic expressions, making them well-suited for symbolic reasoning within NSAI architectures.

https://arxiv.org/abs/2506.04454v1
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However, a major limitation in deploying NSAI-based systems across real-world intrusion detection scenarios is the
dependence on large, labeled datasets tailored to specific attack types or domains. Building a new model from scratch
for each dataset or subtask can be computationally expensive and operationally inefficient. To address this challenge,
we draw inspiration from the broader machine learning community, where transfer learning has become a widely
adopted strategy. Transfer learning allows pre-trained models to be adapted to new tasks using limited labeled data, and
has achieved notable success in domains such as computer vision [4], natural language processing [5, 6], and medical
imaging [7]. Despite its success in other domains, transfer learning remains underutilized in cybersecurity, particularly
in adapting NIDS models to new datasets and attack scenarios.

In addition, given the high-stakes nature of cybersecurity applications, it is equally important to quantify the uncertainty
of model predictions. Accurate uncertainty quantification (UQ) allows analysts to assess the confidence of the system,
especially when facing unfamiliar or borderline inputs. To this end, we integrate both score-based methods (e.g.,
Confidence Scoring and Shannon Entropy) and metamodel-based approaches, which learn to predict the correctness
of the model’s outputs based on both the classifier model’s input and augmented features. This integration not only
improves interpretability but also provides a framework for more reliable decision-making in real-time intrusion
detection.

In this work, we first extend the NSAI-based framework called ODXU, Open Set Recognition with Deep Embedded
Clustering for XGBoost and Uncertainty Quantification [2]. ODXU combines neural feature learning from packet
payloads with symbolic reasoning through XGBoost and introduces new principled mechanisms for uncertainty
quantification. We further develop a transfer learning approach that enables ODXU to be adapted efficiently to other
datasets or detection tasks, enhancing its scalability and robustness. Our contributions are as follows:

• We further investigate the ODXU framework, which integrates neural feature learning and symbolic reasoning
to improve performance and interpretability in NIDS.

• We propose a transfer learning framework to adapt the ODXU model across different cybersecurity datasets
and tasks, enhancing scalability and deployment efficiency.

• We incorporate and evaluate both score-based and metamodel-based UQ methods, improving the transparency
and reliability of the intrusion detection system.

The remainder of this paper is organized as follows. Section 2 provides the background information and related works.
Section 3 details the ODXU architecture and transfer learning framework. Section 4 describes the experimental setup.
Section 5 presents and discusses our results. Section 6 concludes the paper and outlines future directions.

2 Background and Related Works

This section provides an overview of key components underpinning our approach, including foundational work on
NIDS, the potential of NSAI, the role of transfer learning in adapting models across domains, and the importance of UQ
for robust and interpretable cybersecurity applications. Together, these areas form the basis for our ODXU architecture
and transfer learning framework introduced in Section 3.

2.1 Network Intrusion Detection Systems

NIDS are essential components of modern cybersecurity frameworks. Their primary function is to inspect network
traffic to identify suspicious or malicious behavior that may signal an ongoing or imminent cyberattack [1]. Early
NIDS implementations, such as those introduced by Denning in 1987 [8], relied on signature-based detection, wherein
observed traffic patterns were matched against known attack signatures. Although effective against previously identified
threats, these systems are inherently limited when faced with novel or evolving attacks due to their static rule sets and
dependence on extensive labeled data.

To overcome these limitations, machine learning (ML) and deep learning (DL) models have been widely adopted for
data-driven anomaly detection [1, 2]. These models learn patterns of normal traffic and detect deviations that may
correspond to malicious activity, improving generalization to previously unseen threats. In particular, the Open Set
Recognition (OSR) framework has gained traction in the NIDS domain [9], as it enables classification of “known
known” classes (benign and known attacks) while flagging “unknown unknown” instances (potential novel attacks).

Network traffic can be analyzed using either flow-level metadata or raw packet-level data. Recent studies have
increasingly focused on packet-level payload data for its fine-grained temporal resolution and real-time detection
potential [10]. Prominent datasets supporting research in this space include University of New South Wales Network-
Based 2015 (UNSW-NB15) [11], Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CIC-IDS-2017)
[12], and Army Cyber Institute Internet of Things Network Traffic Dataset 2023 (ACI-IOT-2023) [13].
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2.2 Neurosymbolic AI

Neurosymbolic AI (NSAI) combines the high-capacity pattern recognition abilities of neural networks with the
transparent, rule-based reasoning of symbolic AI. This hybridization is particularly attractive for domains such as
cybersecurity, where models must handle vast, high-dimensional data while producing interpretable outputs. NSAI
addresses key limitations of black-box ML/DL models, most notably, the lack of interpretability, by embedding symbolic
structures like rules or trees within the learning process [3, 2].

In the context of NIDS, NSAI enables both accurate classification and human-readable explanations, providing
cybersecurity analysts with actionable insights [14]. A common symbolic implementation in NSAI is the use of
tree-based models, ranging from individual Decision Trees to boosted ensembles such as XGBoost. These models
operate through IF-THEN rules derived from decision paths, offering a natural integration point for propositional logic.
When combined with neural architectures that learn discriminative features from network payloads, NSAI enables
structured, interpretable, and adaptive intrusion detection.

2.3 Transfer Learning Techniques

Transfer learning is a well-established approach in ML that aims to improve model performance on a target task by
leveraging knowledge from related source tasks. This technique is especially beneficial when the target domain has
limited labeled data or exhibits domain shift. In fields such as computer vision, natural language processing, and
medical imaging, transfer learning has demonstrated considerable success [4, 5, 6, 7, 15, 16, 17].

Various strategies have been proposed, including:

• Surgical fine-tuning: adjusting selected layers of a neural network to align with the target distribution [15].

• Architecture pruning: as in TransTailor, which simplifies the model to better fit task-specific constraints [16].

• Adaptive fine-tuning: such as SpotTune, which dynamically determines which layers to fine-tune per instance
[17].

Despite its demonstrated efficacy, transfer learning remains underexplored in the cybersecurity domain, particularly for
tasks involving NIDS. Current NIDS models are typically retrained from scratch for each new dataset or attack type,
resulting in high resource costs and limited scalability. Integrating transfer learning with NSAI offers a promising path
forward, allowing for more adaptable, efficient, and generalizable intrusion detection frameworks.

2.4 Uncertainty Quantification

Uncertainty Quantification (UQ) plays a critical role in trustworthy AI systems, especially in high-stakes domains
like cybersecurity. UQ techniques assess the confidence of model predictions and are useful for flagging potentially
erroneous outputs, detecting out-of-distribution samples, or identifying novel (unknown) attack types [18]. In the
NIDS context, UQ enhances situational awareness by helping analysts differentiate between confident and uncertain
classifications. UQ approaches can be categorized into:

• Score-based methods: such as Confidence Scoring and Shannon Entropy [19, 20], which assess uncertainty
directly from classifier’s output probabilities.

• Metamodel-based methods: which involves training a secondary model to predict whether the classifier’s
prediction is likely to be correct [21, 22].

In metamodel-based methods, our work adopts post-hoc, deterministic UQ techniques, which avoid retraining the
classifier model and offer efficiency. The classifier model’s input is augmented either with output probabilities [22] or
with interpretability-derived features, such as Shapley Additive Explanations (SHAP) values [23] and Information Gain
(IG) [24], to train a secondary model that estimates prediction confidence [21].

3 Methodology

This section outlines the method for processing network data, the design of the ODXU architecture, including the
processing of raw packet-level data and the integration of Deep Embedded Clustering and XGBoost within the ODXU.
We then provide the transfer learning strategies applied to ODXU, and the UQ mechanisms.
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Figure 1: The architecture of the ODXU model
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Figure 2: General structure of (a) DEC and (b) metamodel

3.1 Network Data Processing

We use packet-level data in PCAP (Packet CAPture) format, which contains complete raw payloads and metadata.
Compared to flow-level data that only summarizes aggregated traffic features (e.g., byte counts, duration), PCAP
provides fine-grained, content-level information, allowing for more precise detection of malicious behavior in network
traffic [10, 14]. However, PCAP data is unstructured and unlabeled in most NIDS datasets.

To address this, we use Payload-Byte [10], an open-source tool that converts each packet’s payload into a standard-
ized 1500-byte feature vector, independent of protocol. Headers are discarded to focus solely on application-level
content. This process enables compatibility across datasets and facilitates learning from raw data. Payload-Byte also
automatically labels packets, which supports supervised training of downstream models.

3.2 Architecture of ODXU

Figure 1 illustrates the overall architecture of ODXU. It consists of two core components: Deep Embedded Clustering
and XGBoost.

Deep Embedded Clustering (DEC) is a neural network-based clustering technique that jointly learns low-dimensional
feature representations and cluster assignments [25]. The model consists of two phases, as shown in Figure 2a:

Phase I – Autoencoder (AE): A stacked denoising autoencoder is trained to reconstruct the original 1500-byte payload
input. The encoder compresses the input into a lower-dimensional latent representation, while the decoder reconstructs
the input from this latent space. This phase enables the encoder to learn meaningful structure in the data.

Phase II – Clustering Optimization: The decoder is discarded, and a clustering layer is attached to the encoder output.
Using the Student’s t-distribution as a kernel, the model computes soft assignments between embedded points and
centroids. An auxiliary target distribution is then defined to emphasize high-confidence assignments and refine the
encoder and cluster centers by minimizing Kullback-Leibler (KL) divergence (Eq. (2a)).

In our model, we add contrastive loss as the inverse distance between centroids (Eq. (2b)), and cross-entropy loss of
classes (Eq. (2c)), to the KL Divergence to enhance the accuracy of DEC in learning latent representations. Thus, the
DEC objective function incorporates three loss terms as follows:

L = LKL + Lcontrastive + LCE, (1)
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where

LKL = KL(P ∥ Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
, (2a)

Lcontrastive =
nc(nc − 1)∑
i,j ∥ui − uj∥2

, (2b)

LCE = − 1

N

N∑
i=1

yi log(ŷi), (2c)

where P and Q denote the auxiliary and predicted soft cluster assignments, respectively; nc is the number of centroids;
ui are cluster centroids; and yi, ŷi are ground truth and predicted class labels of sample i-th.

XGBoost is the symbolic reasoning component in ODXU [26], a high-performance gradient boosting tree algorithm.
XGBoost operates on the latent representation outputs from DEC and performs multiclass classification to assign each
packet to a specific known attack or benign class. Its tree-based logic provides interpretable IF-THEN rules, making it
suitable for integration into NSAI frameworks.

3.2.1 Evaluation Metrics

To evaluate the performance of attack classification tasks in NIDS, we use the following metrics:

• Multiclass Classification Accuracy: The number of correctly classified samples divided by the total number of
samples.

• Binary Classification Accuracy: The accuracy of the model when determining if the samples are of “any type
of known attack” or “benign.”

• Misclassified Positive Rate: The proportion of attacks correctly flagged as an attack but misclassified as to
which specific attack type.

• False Omission Rate: The proportion of attacks incorrectly classified as benign.
• F1 Score: The F1 Score in the binary case - any type of known attack, or benign.
• Competence: The sum of the certainty scores of the true positives minus the false positives, divided by a

number of total positives, in the binary case.

These are referenced from [20], and provide a comprehensive assessment of our system’s classification performance on
NIDS datasets.

Table 1: Transfer Learning Scenarios; FT: fine-tune

ODXU Components Case
1 2 3 4 5 6

AE FT As is As is FT As is As is
Clustering Train FT Train Train FT Train
Classifier (XGBoost) Train Train Train FT FT FT

3.3 Transfer Learning of ODXU

To enable ODXU to generalize across different datasets or intrusion detection tasks, we propose a transfer learning
framework that explores the reuse and adaptation of its components. We pose two research questions:

1. Which components of the ODXU architecture (e.g., AE, clustering, XGBoost) should be fine-tuned or trained
for effective transfer learning?

2. How many labeled samples are required to outperform baseline machine learning models such as Fully
Connected Neural Networks (FcNN) or 1D Convolutional Neural Networks (1D-CNN)?

To answer these questions, we designed an experiment using the six transfer learning scenarios as shown in Table 1.
The AE has two options: “As is,” where the pre-trained AE from a source dataset is loaded and used without any further
training, and “FT” (fine-tune), where the pre-trained AE is loaded and then further trained on a target dataset. The
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clustering component also considers two options: In the “FT” option, it loads a pre-trained clustering model from the
source dataset and fine-tunes it on the target dataset. In the “Train” option, it loads the parameters of the pre-trained
AE instead of the pre-trained clustering model and trains these parameters on the target dataset1. The classifier has
two options: “FT,” where a pre-trained classifier is loaded and fine-tuned on the target dataset, and “Train,” where the
classifier is trained entirely from scratch.

3.4 Uncertainty Quantification Methods

We employ five different uncertainty quantification (UQ) methods in our analysis, including two scoring-based methods,
Confidence Scoring and Shannon Entropy [27], as well as three variants of metamodel-based approaches.

The metamodel-based UQ framework builds upon a base classifier b(.) and a secondary binary classifier m(.), which
is trained to predict the reliability of the base model’s outputs. The metamodel input, denoted XMetaUQ, comprises
the original feature set Xb along with augmented features derived from the base model. The target label for training
the metamodel, ym, indicates whether the base classifier’s prediction is correct (label 0) or incorrect (label 1), and is
defined as:

ym =

{
0 if b(xb) = yb
1 if b(xb) ̸= yb,

(3)

where yb is the ground truth label and b(xb) is the predicted output for sample xb.

The metamodel m(.) learns to estimate z = m(xm) by minimizing the discrepancy between its output and the true
correctness label ym. The resulting value z can be interpreted as the probability that the base classifier’s prediction is
correct, thereby serving as an estimate of prediction confidence. A general interface of the metamodel-based approach
is shown in Figure 2b.

3.4.1 Confidence Scoring

Confidence scoring offers a lightweight and direct method for approximating prediction certainty. This score is derived
by taking the difference between the top two predicted class probabilities:

zconf(x) = p(k) − p(k−1), (4)

where zconf(x) represents the confidence score for input x, and p(k) and p(k−1) are the highest and second highest
probabilities in the set of class probabilities p, respectively. A larger difference reflects higher model confidence,
whereas a smaller value indicates increased uncertainty.

3.4.2 Shannon Entropy

Shannon entropy is a fundamental concept in information theory, which is often utilized to assess uncertainty. This
method computes the entropy for each sample based on the predicted probabilities across all classes produced by the
base classifier. The entropy of a specific sample x is determined using the formula below:

zentropy(x) = −
∑

pi log(pi), (5)

where pi is the predicted probability of class i, and the summation spans all possible classes. Unlike confidence score,
higher entropy values denote greater uncertainty, while lower values suggest more confident predictions.

3.4.3 MetaUQ

The MetaUQ approach utilizes a metamodel that is augmented with additional information beyond the original features,
enabling it to infer uncertainty from patterns not explicitly available to the base classifier. In this paper, we considered
three metamodels:

MetaUQprob In this metamodel, we augmented the base classifier input with both the sorted class probabilities p′ and
the confidence score from Eq. (4). While the confidence score captures the gap between the top two class probabilities,
the full sorted vector reflects the distribution across all classes, potentially revealing ambiguous or flat distributions that
indicate uncertainty [28]. The augmented input to the MetaUQprob is thus:

XMetaUQprob
= [Xb,p

′, zconf]. (6)
1Note: As depicted in Figure 2a, the clustering module is initialized either from its pre-trained parameters of source dataset or

from the encoder of the AE. Therefore, if the AE is fine-tuned, the clustering cannot be initialized from its pre-trained checkpoint, as
the encoder has changed. As a result, combinations such as FT-FT-Train or FT-FT-FT are invalid and excluded from our experiments.
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MetaUQSHAP Shapley Additive Explanations (SHAP) [23] were originally introduced in cooperative game theory to
assign value to individual contributors within a coalition. In recent years, SHAP has gained widespread use in machine
learning as a tool for interpreting model predictions [29]. In this approach, each feature in the input vector x is viewed
as a player in a coalition, and the goal is to quantify its individual contribution to the model’s output.

For decision tree-based models such as XGBoost, SHAP values can be computed in polynomial time using algorithms
that exploit the tree structure [30]. This enables the generation of local explanations, i.e., the impact of each feature on
a specific prediction, without relying on sampling or approximations. In our implementation, we compute SHAP values
for each input sample x as follows [23]:

ϕi(b, x) =
∑

S⊆I\{i}

|S|!(|I| − |S| − 1)!

|I|!
[b(S ∪ {i})− b(S)] , (7)

where ϕi(b, x) is the SHAP value for feature i with respect to the base classifier b(.) and input x. The operator ! denotes
factorial, and | · | indicates the size of a set. The set I contains all input features, while S ⊆ I \ {i} represents a subset
of features excluding i. The term b(S ∪ {i})− b(S) reflects the marginal effect of including feature i in subset S.

Following class-specific interpretation practices [29], we then extract SHAP values corresponding to the predicted class.
The final augmented input to the MetaUQSHAP is thus:

XMetaUQSHAP
= [Xb,ϕ(b, x)]. (8)

MetaUQIG Information Gain (IG) quantifies how much predictive uncertainty is reduced when splitting on a given
feature. In tree models like XGBoost, the gain from a split is calculated as [26]:

Lsplit =
1

2

[ (∑
i∈IL

gi
)2∑

i∈IL
hi + λ

+

(∑
i∈IR

gi
)2∑

i∈IR
hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ, (9)

where IL and IR are the left-hand side and right-hand side child nodes, gi and hi are the Gradient and Hessian of the
loss for sample i, and λ and γ are regularization hyperparameters. The cumulative gain for each feature across all splits
can be computed as:

Gain(f) =
∑

# splits using f

Lsplit. (10)

These scores are replicated to all features and samples, forming a matrix IGmatrix. We also append the sorted class
probabilities p′ to form the final augmented input:

XMetaUQIG
= [Xb,p

′, IGmatrix]. (11)

3.4.4 UQ Evaluation Metrics

We assess the performance of UQ methods on two primary tasks: detecting misclassifications and OSR. For the
misclassification task, we assigned each test sample a binary label: 0 if correctly classified, and 1 if misclassified. We
then use an Area Under the Receiver Operating Characteristic (AUROC) curve to measure how well uncertainty scores
can distinguish between the two [31].

For the OSR task, we exclude certain attack types from training and treat them as “unknown” during inference. We
label these unknowns as 1 and known types as 0, and again evaluate AUROC using the uncertainty scores [18].

In addition to AUROC, we report True Positive at a fixed True Negative rate of .95 (TP@TN=.95), which quantifies
detection performance under a rigorous false positive constraint, reflecting operational needs in cybersecurity settings
[32].

4 Experimental Setup

4.1 Datasets

CIC-IDS-2017. The Canadian Institute for Cybersecurity Intrusion Detection Systems 2017 dataset [12] is a large-
scale benchmark that closely resembles real-world network traffic scenarios. It comprises approximately 8 million
labeled samples, encompassing both benign and a diverse range of contemporary cyberattacks, including DDoS, DoS
Hulk, Port Scan, Brute Force, and others (a total of 15 classes). The descriptive statistics of CIC-IDS-2017 are presented
in Table 2.
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Table 2: Descriptive statistics of class distribution in the CIC-IDS-2017 dataset.
Class Number of Samples Percent (%)
Benign 3,328,591 43.52
DoS Hulk 2,219,061 29.03
DDoS 618,544 8.09
SSH-Patator 181,147 2.37
FTP-Patator 110,636 1.45
Infiltration 41,725 .55
Heartbleed 41,283 .54
DoS GoldenEye 34,293 .45
Web Attack – Brute Force 28,920 .38
DoS slowloris 20,877 .27
DoS Slowhttptest 9,778 .13
Web Attack – XSS 6,767 .09
Bot 5,143 .07
PortScan 946 .01
Web Attack – Sql Injection 45 .00
Total 7,647,755 100.00

ACI-IoT-2023. The Army Cyber Institute Internet of Things Network Traffic Dataset 2023 [33] provides recent and
comprehensive coverage of intrusion scenarios in IoT environments, making it a strong benchmark for evaluating
model generalization in cross-domain settings. It includes ten classes, featuring a dominant share of benign alongside
several rare but critical attack types such as DNS Flood, Vulnerability Scan, and OS Scan. The class distribution of
ACI-IoT-2023 is shown in Table 3.

Table 3: Descriptive statistics of class distribution in the ACI-IoT-2023 dataset.
Class Samples Percent (%)
Benign 601,868 95.31
DNS Flood 18,577 2.94
Dictionary Attack 4,645 .74
Slowloris 2,974 .47
SYN Flood 2,113 .33
Port Scan 582 .09
Vulnerability Scan 445 .07
OS Scan 156 .02
UDP Flood 68 .01
ICMP Flood 58 .01
Total 631,486 100.00

4.2 Computational Environment

All experiments were conducted on a system equipped with dual Intel® Xeon® Gold 5218R CPUs (2.10 GHz),
providing 80 logical threads and 754 GiB of system memory. Model training and inference were accelerated using a
single NVIDIA A40 GPU (Ampere architecture, 48 GB memory) out of eight available. Runtime was monitored to
evaluate computational efficiency and scalability.

4.3 Attack Recognition

To prepare the CIC-IDS-2017 dataset, raw PCAP files were parsed using the Payload-Byte tool to extract 1500-byte
payload representations per packet. To mitigate class imbalance, Benign and DoS Hulk classes were downsampled
by 90%, and DDoS by 67%. The resulting dataset was split 50/50 into DEC-Train and DEC-Test. A DEC model was
trained on DEC-Train (split into 75/25 for training and validation) to infer a 12-dimensional latent representation, which
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Table 4: Results of six metrics across models of the CIC-IDS-2017 dataset.
Measure FcNN 1D-CNN ODXU (Ours)

Multiclass Accuracy .934 .939 .969
Binary Accuracy .946 .951 .971

Misclassified Positive Rate .020 .034 .020
False Omission Rate .253 .192 .092

F1 Score .967 .971 .983
Competence .961 .925 .944

was then applied to DEC-Test. This reduced set was further split equally into XGBoost-Train and XGBoost-Test to train
the XGBoost classifier and ensure no data leakage. For baseline comparisons, FcNN and 1D-CNN models were trained
on the original Payload-Byte format using the combined DEC-Train and XGBoost-Train sets. The FcNN consisted of
three fully connected layers of sizes [1024, 512, 68], totaling 2,097,743 parameters. The 1D-CNN had convolutional
layers with channels [32, 64, 128] (kernel size 3) and a dense layer of 75 neurons, totaling 185,759 parameters.

For the ACI-IoT-2023 dataset, the benign class was downsampled by 95%, while rare attack classes like ICMP Flood
and UDP Flood were upsampled by 200%. The dataset was then split 50/50 into DEC-Train and DEC-Test. We used
four training configurations (10%, 25%, 50%, and 75% of DEC-Train) to analyze data efficiency. Each subset was also
split into 75/25 for training and validation. The DEC-Test set, transformed into 12 latent features by DEC, was split
equally into XGBoost-Train and XGBoost-Test for classifier training. Here, FcNN used [1024, 512, 100] layers with
2,115,180 parameters; the 1D-CNN used [32, 64, 128] channels (kernel size 3) and a 50-neuron dense layer, totaling
181,904 parameters.

4.4 Misclassification Detection and Open Set Recognition

In the CIC-IDS-2017 experiments, DoS attack samples were held out as unknowns and removed from the main
dataset. The remaining data was balanced such that benign and known attack samples were equally represented, and
split 50/50 into DEC-Train and DEC-Test. The DEC was trained on DEC-Train and used to infer latent features for
DEC-Test and the held-out DoS set. The DEC-Test set was then divided into XGBoost-Train and XGBoost-Test as
an attack recognition task. To train the UQ metamodel, we labeled each sample in XGBoost-Test as 0 if correctly
predicted and 1 if misclassified, and then subsampled class 0 to five times the size of class 1. This formed a balanced
Metamodel-Train/Metamodel-Test split (80/20). For OSR evaluation, we created the XGBoost-OSR set by mixing equal
samples from the DoS Holdout and Metamodel-Test sets.

In the ACI-IoT-2023 setting, the Slowloris class was designated as the unknown class. The remaining data was balanced
and processed in the same pipeline as above: DEC was trained on DEC-Train, which excluded Slowloris, and used to
transform DEC-Test and the Slowloris samples. The resulting latent features were split equally for XGBoost training
and testing. Again, we generated the metamodel labels on XGBoost-Test and formed the training/test split using a 5:1
correct-to-incorrect ratio. The final OSR test set consisted of an equal mix of Slowloris and Metamodel-Test samples.

5 Results and Discussion

In this section, we evaluate the effectiveness of the ODXU model and its transferability across NIDS datasets. We
employ a two-phase experimental framework: first, ODXU is developed and validated on the CIC-IDS-2017 dataset;
then, its generalizability is assessed on the ACI-IoT-2023 dataset using transfer learning techniques. Additionally, we
assess UQ methods to detect misclassifications and OSR in both datasets.

5.1 Results with CIC-IDS-2017 dataset.

The ODXU model was trained from scratch on the CIC-IDS-2017 dataset [2]. The results show that the ODXU model
outperforms both FcNN and 1D-CNN on the CIC-IDS-2017 dataset across multiple evaluation metrics. As shown in
Table 4, ODXU achieves the highest multiclass accuracy at .969 (96.9%), compared to .934 (93.4%) and .939 (93.9%)
for FcNN and 1D-CNN, respectively. This improvement is also evident in binary accuracy (.971 for ODXU vs. .946
and .951 for the neural-based models), indicating ODXU’s strong ability to distinguish between benign and attacks.

The advantage of ODXU is particularly clear when examining the False Omission Rate (FOR). ODXU achieves a
FOR of just .092, a reduction of over 50% compared to FcNN (.253) and 1D-CNN (.192). This substantial decrease
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Table 5: Multiclass accuracy of transfer learning across varying training data portions.
Portion (%) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

10 .9666 .9616 .9764 .9680 .9659 .9784
25 .9690 .9679 .9789 .9736 .9706 .9802
50 .9805 .9799 .9827 .9813 .9808 .9841
75 .9824 .9809 .9836 .9833 .9816 .9845

suggests that ODXU is far less likely to overlook actual attacks, making it more reliable for operational cybersecurity
deployment.

Additionally, ODXU maintains a strong F1 Score of .983, indicating balanced precision and recall. While the
Misclassified Positive Rate is tied between ODXU and FcNN (both at .02), the 1D-CNN underperforms slightly at .034,
which could lead to more false alarms.

However, the Competence score is slightly higher for FcNN (.961) than for ODXU (.944). This supports that while
ODXU is more accurate overall, it may be marginally less calibrated regarding predictive certainty. Nonetheless, the
trade-off strongly favors ODXU due to its superior accuracy and significantly reduced error in critical classifications.

These results highlight ODXU’s robustness, especially in detecting hard-to-identify attacks such as Bot, DoS Hulk, DOS
slowloris, Heartbleed, PortScan, and Web Attacks, which contribute most to its performance gains, refer to Table 10 for
more information.

5.2 Transferred learning with the ACI-IoT-2023 dataset.

Table 5 presents the multiclass accuracy of transfer learning models trained on different portions of the ACI-IoT-2023
dataset, based on the configurations defined in Table 1. When examining the impact of different DEC configurations, we
observe the following performance trend: accuracy improves from models using a fixed pre-trained AE and fine-tuned
clustering (e.g., Case 2), to those that fine-tune the AE and train the clustering (e.g., Case 1), and obtains the highest
when using a pre-trained AE combined with clustering trained from scratch (e.g., Case 3). For example, with 50% of
the training data, Case 2 achieves an accuracy of .9799, Case 1 improves slightly to .9805, and Case 3 achieves the
highest score of .9827.

Additionally, when comparing models with identical AE and clustering configurations, we find that fine-tuning the
classifier (Cases 4 to 6) consistently obtains higher accuracy than training the classifier from scratch (Cases 1 to 3). For
example, with 75% of the training data, Case 3 achieves .9836 accuracy, whereas Case 6, with a fine-tuned classifier,
achieves a higher accuracy of .9845. These results underscore the importance of classifier initialization. Starting from a
well-initialized classifier helps to achieve better generalization and performance, emphasizing the advantage of transfer
learning. Figure 3 demonstrates the consistent superior role of fine-tuning the classifier XGBoost in all cases and the
success of transfer learning, manifesting in keeping the AE as is.

Transfer learning configurations show superior performance when compared to neural-based models such as FcNN
(.9808) and 1D-CNN (.9679). Specifically, Cases 3 to 6 outperform both baselines with as little as 50% of the training
data (approximately 16,000 samples), while Cases 1 and 2 surpass the baselines when trained on 75% (approximately
23,000 samples)2. Given that Case 6 (AE: As is, Clustering: Train, Classifier: FT) delivers the best overall accuracy, it
is selected for further experimentation in the following sections.

Early Stopping Optimization Initially, all models were trained for the same number of epochs. However, we
observed rapid improvements early in training, followed by diminishing returns. To avoid unnecessary computation, we
introduced an early stopping mechanism using two hyperparameters: the number of stopping rounds (η) and thresholds
for changes in loss (δ). If the loss during AE pretraining or clustering optimization phases fails to improve by more than
δ over η consecutive epochs, training is halted.

We evaluated Case 6 using early stopping rounds η ∈ [10, 15, 20], and two thresholds: δAE ∈ [.0005, .001] and
δCluster ∈ [.005, .01]. These experiments were conducted with both 50% and 75% training data portions.

As shown in Table 6, nearly all hyperparameter configurations for both the 50% and 75% training portions outperform
the FcNN baseline accuracy of .9808, with the exception of Experiment 1. Notably, Experiment 6, featuring the highest

2These results are based on an ablation study evaluating several portions of data.
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Figure 3: The Accuracy Interaction Plot for different configurations of the ODXU model. For “FT” AutoEncoder
settings, the plotted accuracy corresponds to the “Train” Clustering accuracy from Table 5. For “As is” AutoEncoder
settings, the plotted accuracy is the average of the “FT” and “Train” Clustering accuracies.

Table 6: Multiclass accuracy, Precision, Recall, and F1 Score across hyperparameter configurations.
Metric Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

η 10 10 15 15 20 20
δAE .001 .0005 .001 .0005 .001 .0005

δCluster .01 .005 .01 .005 .01 .005
Accuracy (50%) .9807 .9817 .9815 .9819 .9820 .9824
Accuracy (75%) .9791 .9820 .9806 .9831 .9829 .9834
Precision (50%) .9806 .9815 .9813 .9815 .9818 .9823
Precision (75%) .9790 .9818 .9809 .9827 .9828 .9834

Recall (50%) .9807 .9818 .9815 .9819 .9820 .9824
Recall (75%) .9791 .9820 .9811 .9831 .9829 .9834

F1 Score (50%) .9805 .9815 .9813 .9815 .9818 .9823
F1 Score (75%) .9791 .9818 .9809 .9827 .9827 .9834

Training Time (50%) 0:23:07 0:25:00 0:27:32 0:29:10 0:39:02 0:49:39
Training Time (75%) 0:20:09 0:28:48 0:21:38 0:37:01 0:42:46 1:02:50

early stopping rounds (η = 20) and the smallest loss thresholds (δAE = .0005, δCluster = .005), achieves the best
multiclass accuracy at .9824 for 50% of the training data and .9834 for 75%.

This trend of superior performance in Experiment 6 extends consistently across other evaluation metrics, including
Precision, Recall, and F1 Score, for both training data proportions. These findings emphasize the value of conservative
early stopping parameters, which contribute to stable convergence and enhanced classification performance. In contrast,
Experiment 1, configured with the loosest stopping criteria (η = 10, δAE = .001, δCluster = .01), produces the lowest
accuracy scores. However, Experiment 1 comes with the benefit of significantly shorter training times: 0:23:07 for
50% and 0:20:09 for 75% of the data, compared to Experiment 6, which requires 0:49:39 and 1:02:50, respectively
(in hh:mm:ss format)3. This contrast highlights the classic trade-off between computational efficiency and model
effectiveness.

3These training times are wall-clock measurements and may vary depending on the hardware, GPU availability, and runtime
environment.
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Based on these results, we selected the configuration from Case 6 with the hyperparameters used in Experiment 6 for
further evaluation. The extended performance of this setting on the attack recognition task is presented in Table 7.

Table 7: Comparison of six evaluation metrics across models.
Measurement FcNN 1D-CNN Case 6, Exp. 6

Multiclass Accuracy .981 .968 .983
Binary Accuracy .985 .974 .987

Misclassified Positive Rate .022 .035 .019
False Omission Rate .016 .029 .014

F1 Score .985 .974 .988
Competence .948 .935 .969

The table shows that the transfer learning model (Case 6, Exp. 6) achieves the best results across all six evaluation
metrics. Similar to the CIC-IDS-2017 dataset, it records the highest multiclass accuracy (.983) and binary accuracy
(.987), while also demonstrating the lowest Misclassified Positive Rate (.019) and False Omission Rate (.014). These
two metrics are crucial for intrusion detection systems, as they measure how often attacks are misclassified as benign,
an outcome with profound security implications. The transfer learning approach also attains the highest F1 score (.988),
indicating a strong balance between precision and recall.

Most notably, the Competence score, previously slightly higher for FcNN when training a model from the CIC-IDS-2017
dataset, is now also highest for our transfer learning model (.969). This signifies that the model achieves higher accuracy
and is better calibrated regarding predictive certainty. In contrast to earlier observations where models like ODXU
traded slight drops in competence for gains in accuracy, the current configuration demonstrates that transfer learning
can yield improvements in both dimensions.

(a) CIC-IDS-2017 (b) ACI-IoT-2023

Figure 4: Uncertainty score distributions in the MetaUQSHAP model for known and unknown samples of OSR.

5.3 Misclassification Detection and Open Set Recognition

UQ into NIDS offers a powerful way to address challenges like evolving threats, high-dimensional data, and computa-
tional efficiency. UQ helps reveal where the NIDS is confident vs. uncertain, which can guide further data collection or
model refinement. This section evaluates various UQ methods on two critical tasks: misclassification detection and
OSR.

It is essential to note that UQ models do not directly classify samples as “known” or “unknown.” Instead, they
generate uncertainty scores for each sample, which reflect the model’s confidence in its prediction. These scores form a
distribution, and by selecting a threshold of this score, we can predict whether the sample belongs to a known or an
unknown class. To determine the optimal uncertainty score threshold, we use the AUROC, which shows how the true
positive rate (TPR) and false positive rate (FPR) change across different threshold values. Samples with uncertainty
scores greater than or equal to the chosen threshold are classified as “unknown.” Figure 4 illustrates the distribution
of uncertainty scores for both known and unknown samples of MetaUQSHAP. For the distributions and thresholds of
other methods, please refer to the Appendix B.
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The results, summarized in Tables 8 and 9, indicate that our proposed metamodel-based approaches consistently
outperform score-based methods.

5.3.1 Misclassification Detection

In the misclassification detection task, all methods perform reasonably well, with AUROC scores approaching or
exceeding .9. For the CIC-IDS-2017 dataset, our metamodel variants MetaUQProb, MetaUQIG and MetaUQSHAP
achieve AUROCs of .923 and .925, respectively, compared to .895 for both Confidence and Entropy. Similarly, on the
ACI-IoT-2023 dataset, all metamodel variants outperform the baselines, with MetaUQIG achieving the highest AUROC
of .926.

Table 8: Misclassification performance comparison across UQ methods.

Dataset Metric Score-based MetaUQ
Confidence Entropy Prob SHAP IG

CIC IDS 2017 AUROC .895 .895 .923 .925 .923
TP@(TN=.95) .401 .400 .509 .536 .516

ACI IoT 2023 AUROC .911 .911 .924 .924 .926
TP@(TN=.95) .529 .529 .559 .559 .588

The TP@(TN=.95) metric further emphasizes the performance difference. On CIC-IDS-2017, MetaUQSHAP reaches
a TP rate of .536, outperforming Confidence (.401) and Entropy (.400). The pattern holds on ACI-IoT-2023, where
MetaUQIG achieves a TP rate of .588, a significant improvement over Confidence and Entropy (both at .529). These
results suggest that metamodel-based uncertainty estimation is more effective in identifying misclassified predictions,
making them highly useful for real-world deployment.

5.3.2 Open Set Recognition (OSR)

On CIC-IDS-2017, MetaUQSHAP attains the highest AUROC of .745, surpassing both score-based methods and other
metamodels. On ACI-IoT-2023, MetaUQSHAP also leads with an AUROC of .938, significantly ahead of the next best,
MetaUQProb and MetaUQIG (both at .921).

Table 9: OSR Unknown attack performance comparison across UQ methods.

Dataset Metric Score-based MetaUQ
Confidence Entropy Prob SHAP IG

CIC IDS 2017 AUROC .710 .723 .728 .745 .725
TP@(TN=.95) .212 .212 .145 .145 .142

ACI IoT 2023 AUROC .916 .919 .921 .938 .921
TP@(TN=.95) .435 .462 .489 .590 .469

In terms of TP@(TN=.95), the advantage of MetaUQSHAP is especially pronounced. On ACI-IoT-2023, it achieves a TP
rate of .590, exceeding the second-best method (MetaUQProb at .489) by more than 10%. This large margin highlights
the capability of SHAP-based explanations to uncover high-quality uncertainty signals that generalize to unseen attack
types.

6 Conclusion

This paper presents an extension of the Neurosymbolic AI framework applied in network intrusion detection systems,
named Open Set Recognition with Deep Embedded Clustering for XGBoost and Uncertainty Quantification (ODXU).
First, we present the results on the CIC-IDS-2017 dataset, demonstrating that the hybrid architecture outperforms
neural-based models such as FcNN and 1D-CNN across most evaluation metrics. This suggests the effectiveness of
combining neural feature extraction with symbolic reasoning for robust and interpretable intrusion detection.

Second, we propose a transfer learning paradigm of ODXU and evaluate its generalizability on the ACI-IoT-2023
dataset. Our ablation studies show that a model trained on a large, well-structured dataset (CIC-IDS-2017) can be
successfully adapted to a new target dataset (ACI-IoT-2023), achieving high performance with fewer training data. The
optimal transfer configuration involves reusing the pre-trained Autoencoder (AE), training the clustering module from
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scratch, and fine-tuning the XGBoost classifier. This setup outperforms neural-based models when trained on around
50% of the target data (approximately 16,000 samples), balancing model performance and data efficiency.

To reduce computational overhead and prevent overfitting, we implement an early stopping strategy, halting training
if the Autoencoder and clustering losses fall below 0.0005 and 0.005, respectively, for 20 consecutive epochs. This
optimization maintains high accuracy while improving training efficiency.

We also evaluate five Uncertainty Quantification (UQ) methods, two scoring-based and three metamodel-based, on both
misclassification detection and Open Set Recognition (OSR) tasks for both datasets. Our results show that metamodel-
based approaches consistently outperform scoring-based ones in both tasks. However, the optimal metamodel varies
depending on the dataset and evaluation objective. For misclassification detection, MetaUQSHAP achieves the best
performance on CIC-IDS-2017, while MetaUQIG performs best on ACI-IoT-2023. In contrast, for OSR, MetaUQSHAP
outperforms all other methods across both datasets. These findings highlight the importance of selecting UQ methods
that are well-suited to the specific detection task and data distribution.

In future work, we plan to extend our framework to additional datasets such as the Canadian Institute for Cybersecurity
IoT 2023 dataset (CIC-IoT-2023) and the Unified Multimodal Network Intrusion Detection Systems (UM-NIDS)
dataset. We will also explore out-of-distribution detection tasks to further validate the robustness and generalizability of
the proposed transfer learning approach.
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A Per-class accuracy

Table 10: Per-class accuracy across models of the CIC-IDS-2017.
Class Accuracy FcNN 1D-CNN ODXU (Ours)

All-Class .934 .939 .969
Benign .974 .889 .902
BOT .642 .717 .909

DDoS 1 1 1
DoS Goldeneye .998 .983 .985

DoS Hulk .894 .894 .998
DoS Slowhttptest .997 .996 .993

DoS slowloris .996 .997 .998
FTP-Patator .999 .999 .999
Heartbleed .141 .471 .770
Infiltration .999 .999 .997
Portscan .411 .411 .548

SSH-Patator .999 .999 .996
Web Attack Brute Force .998 .998 .999

Web Attack SQL Injection .976 .952 .868
Web Attack XSS .987 .989 .992

Table 11: Per-class accuracy across models on the ACI-IoT-2023 dataset.
Class FcNN 1D-CNN Case 6, Exp. 6

Benign .986 .976 .989
Port Scan .656 .669 .738

Dictionary Attack .994 .995 .991
SYN Flood 1 1 1
DNS Flood .994 .990 .993
Slowloris 1 1 1
OS Scan .764 .566 .808

ICMP Flood 1 1 1
UDP Flood .842 .632 .841

Vulnerability Scan .816 .610 .725

https://dx.doi.org/10.21227/qacj-3x32
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B The distributions and thresholds across UQ methods for OSR task

(a) Confidence Scoring (CIC-IDS-2017) (b) Confidence Scoring (ACI-IoT-2023)

(c) Shannon Entropy (CIC-IDS-2017) (d) Shannon Entropy (ACI-IoT-2023)

(e) MetaUQProb (CIC-IDS-2017) (f) MetaUQProb (ACI-IoT-2023)

(g) MetaUQIG (CIC-IDS-2017) (h) MetaUQIG (ACI-IoT-2023)
Figure 5: Comparison of uncertainty score distributions. Column 1: CIC-IDS-2017. Column 2: ACI-IoT-2023. Row 1:
Confidence scoring, Row 2: Shannon Entropy, Row 3: MetaUQProb, Row 4: MetaUQIG.
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