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Abstract
Molecular discovery has received significant atten-
tion across various scientific fields by enabling the
creation of novel chemical compounds. In recent
years, the majority of studies have approached this
process as a multi-objective optimization problem.
Despite notable advancements, most methods opti-
mize only up to four molecular objectives and are
mainly designed for scenarios with a predetermined
number of objectives. However, in real-world ap-
plications, the number of molecular objectives can
be more than four (many-objective) and additional
objectives may be introduced over time (dynamic-
objective). To fill this gap, we propose DyMol, the
first method designed to tackle the dynamic many-
objective molecular optimization problem by uti-
lizing a novel divide-and-conquer approach com-
bined with a decomposition strategy. Additionally,
we comprehensively integrate convergence, Pareto
diversity, and structural diversity into the optimiza-
tion process to provide efficient exploration of the
search space. We validate the superior performance
of our method using the practical molecular opti-
mization (PMO) benchmark. The source code and
supplementary material are available online.

1 Introduction
Molecular discovery is foundational to progress in a variety of
scientific fields, ranging from the development of new phar-
maceuticals to the creation of innovative materials [Bilodeau
et al., 2022]. Basically, molecular discovery is a complex pro-
cess that seeks to identify molecules with desirable properties
[Son et al., 2024]. In essence, this process is fundamentally a
constrained multi-objective optimization problem, where the
objectives are to simultaneously maximize or minimize cer-
tain attributes of molecules [Fromer and Coley, 2023].

Unlike single-objective optimization, the multi-objective
optimization problem introduces distinct challenges that arise
from the necessity to balance multiple and often conflicting
objectives [Marler and Arora, 2004]. Therefore, it becomes
infeasible to identify a single optimal solution that satisfies all

https://github.com/MolecularTeam/DyMol

objectives. Instead, the focus shifts to finding Pareto optimal
solution sets that represent various trade-offs among these ob-
jectives [Gunantara, 2018].

In the context of molecular discovery, the application of
multi-objective optimization may exhibit unique characteris-
tics compared to its use in other general domains. First, oracle
calls in real-world molecular discovery are expensive, requir-
ing resource-intensive wet-lab experiments or computer sim-
ulations to accurately evaluate molecular properties [Huang
et al., 2021]. Second, the discrete nature of molecules results
in a complex and challenging optimization landscape [Wang
et al., 2006]. Lastly, the non-gradual transitions in molecular
structures introduce additional complexity by creating an op-
timization landscape with sharp cliffs [Aldeghi et al., 2022].

To tackle the multi-objective molecular optimization
(MOMO) problem, much prior work has employed a range of
generative models, including sampling-based methods [Fu et
al., 2021; Xie et al., 2021], genetic algorithms [Jensen, 2019;
Tripp et al., 2021], probabilistic models [Bengio et al.,
2021], and reinforcement learning [Olivecrona et al., 2017;
Jin et al., 2020]. However, given the necessity of simulta-
neously optimizing multiple objectives, they have commonly
adopted two multi-objective optimization techniques: scalar-
ization [Eichfelder, 2009] and Bayesian optimization [Lau-
manns and Ocenasek, 2002]. The scalarization method trans-
forms multiple objectives into a single objective function
by aggregating them using weighted sums or other combin-
ing strategies [Gunantara, 2018]. On the other hand, the
Bayesian optimization method can address multiple objec-
tives concurrently by leveraging acquisition functions to nav-
igate the optimization landscape without needing to quan-
tify the relative weights of each objective [Fromer and Co-
ley, 2023]. While prior frameworks have shown effectiveness
in molecular optimization, their applications exhibit distinct
constraints. Specifically, they are typically limited to optimiz-
ing up to four objectives and they are designed to work with a
fixed number of objectives, thereby lacking the capability to
adapt to scenarios with varying numbers of objectives.

In real-world applications such as drug discovery, the im-
portance of a dynamic many-objective molecular optimiza-
tion setting becomes particularly evident [Luukkonen et al.,
2023]. From a many-objective perspective, the drug devel-
opment process is inherently complex and multifaceted, typ-
ically requiring optimization of more than four objectives. In
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Figure 1: (a) Pareto front is a set of optimal solutions representing
the best possible trade-offs among objectives. Convergence pushes
the Pareto front’s boundary, while Pareto diversity pulls them apart
for a broader spread. (b) Structural diversity, represented by colors,
illustrates the variety in molecular scaffolds of chemical compounds.

particular, a new drug must meet various criteria, including
potency, bioavailability, safety, solubility, stability, and syn-
thesizability [Luukkonen et al., 2023]. Concurrently, from
a dynamic-objective standpoint, regulatory agencies such as
the FDA consistently update their drug approval standards
and requirements in response to new scientific insights, pub-
lic health needs, and safety concerns [Darrow et al., 2020].
These updates can introduce new optimization objectives
within the drug development process. However, to our knowl-
edge, no prior studies have tackled these issues.

The dynamic many-objective molecular optimization prob-
lem presents distinct challenges that set it apart from the typ-
ical MOMO problem. The many-objective aspect introduces
an enormously large search space, which hinders efficient ex-
ploration and convergence to optimal Pareto solutions [Yuan
et al., 2015]. The dynamic-objective nature of this problem
further exacerbates difficulties by continually altering the op-
timization landscape through the introduction of new objec-
tives. To tackle these challenges, our approach diverges from
most previous works, which typically aim to find Pareto op-
timal solutions for all objectives in a high-dimensional joint
search space. Instead of tackling all objectives jointly, we
propose a divide-and-conquer approach that decomposes the
complex many-objective task into a series of manageable sub-
problems, allowing us to address each of them sequentially.
This progressive optimization scheme systematically unfolds
the inherent complexities associated with the many-objective
settings. Moreover, we incrementally introduce objectives
over time in our method, allowing it to seamlessly adapt to
the dynamic-objective settings with the incorporation of new
objectives. To enhance our method’s adaptability for new ob-
jectives, we have also developed an objective adaptation tech-
nique that detects changes in the optimization landscape and
helps the model to identify effective Pareto solutions.

To further promote the achievement of effective Pareto so-
lutions, we propose the Pareto sampling to strategically em-
phasize both convergence and Pareto diversity during the op-
timization process. As shown in Figure 1, convergence refers
to the ability of the optimization process to approach the true
Pareto optimal front, indicating the proximity of the solutions
to the best trade-offs among objectives [Yuan et al., 2015].

On the other hand, Pareto diversity indicates the spread of
solutions across the Pareto front, ensuring a wide range of so-
lutions with varying trade-offs among objectives [Yuan et al.,
2015]. Pareto diversity is particularly important in molecular
optimization, where the optimal trade-off is often unknown
in advance [Fromer and Coley, 2023]. In this paper, we
comprehensively address both convergence and Pareto diver-
sity through progressive optimization using the divide-and-
conquer approach alongside convergence and Pareto sam-
pling. In addition to Pareto diversity, we also take into ac-
count for molecular structural diversity, which refers to the
variety in chemical structures within the generated molecules.
Promoting structural diversity is vital in molecular discov-
ery fields such as drug design, as it offers multiple candidate
molecules that meet desired criteria while exhibiting distinct
chemical structures [Mathur and Hoskins, 2017].

The main contributions of our method can be summarized:

• To the best of our knowledge, DyMol, our proposed
method, is the first to tackle the dynamic many-objective
molecular optimization problem in molecular discovery.

• We propose a novel divide-and-conquer approach to de-
compose many-objective problems into sub-problems
by starting with a single objective, then systematically
adding over time to enable progressive optimization.

• Due to the incremental nature of adding objectives, our
approach can handle dynamic-objective settings, where
new objectives are introduced throughout the optimiza-
tion process. In addition, we develop an objective adap-
tation technique that aids our model in adjusting more
easily and effectively to newly introduced objectives.

• As far as we are aware, our method is the first to com-
prehensively integrate convergence, Pareto diversity, and
structural diversity into molecular optimization by utiliz-
ing both convergence sampling and Pareto sampling.

2 Related Work
2.1 Generative Models for Molecular Discovery
In recent years, there has been a growing interest in the use of
various generative models for molecular discovery. Genera-
tive models employed in molecular discovery can be broadly
classified into four categories: 1) sampling-based methods,
2) genetic algorithms, 3) reinforcement learning (RL), and 4)
probabilistic models. The sampling-based methods [Xie et
al., 2021; Fu et al., 2021] focus on sampling from a distribu-
tion of possible molecules with desirable properties. The ge-
netic algorithms [Jensen, 2019; Tripp et al., 2021] employ a
population-based approach that evolves molecules through it-
erative selection, crossover, and mutation guided by a fitness
function. The RL-based methods [Olivecrona et al., 2017;
Jin et al., 2020] involve an agent that interacts with an envi-
ronment to generate molecular structures. In this paradigm,
the agent receives rewards for taking actions that lead to desir-
able outcomes, thereby gradually refining its strategy through
trial and error to learn an optimal policy [Shin et al., 2024].
The probabilistic models, GFlowNets [Bengio et al., 2021],
generate molecular structures by identifying high-potential
regions using probability distributions learned from data.
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2.2 Multi-Objective Molecular Optimization
In the context of the MOMO problem, the challenge lies
in simultaneously optimizing multiple molecular objectives,
which often conflict with each other [Luukkonen et al.,
2023]. To address this, two prominent multi-objective opti-
mization techniques have been widely adopted: scalarization
and Bayesian optimization (BO). For instance, in the case
of scalarization, MIMOSA [Fu et al., 2021] has employed
straightforward linear scalarization techniques to handle the
MOMO problem. These techniques aim to aggregate multiple
objectives into a single objective function by using weighted
sums or Tchebycheff methods [Lin et al., 2022]. On the other
hand, BO offers a black box optimization approach that has
been integrated into various molecular generative models to
enhance sample efficiency [Laumanns and Ocenasek, 2002].
In particular, GPBO [Tripp et al., 2021] exemplifies the in-
tegration of BO within the framework of GraphGA [Jensen,
2019] as the backbone model. Similarly, LaMBO [Stanton et
al., 2022] leverages BO on top of denoising autoencoders to
address multi-objective sequence design problems. Recently,
HN-GFN [Zhu et al., 2023] proposes a multi-objective BO
algorithm that leverages hypernetwork-based GFlowNets.

2.3 Dynamic Many-Objective Optimization
Dynamic many-objective optimization, while yet to be widely
explored in molecular optimization, has found application in
diverse fields such as manufacturing [Quan et al., 2022], en-
vironmental management [Liu et al., 2021], and mineral pro-
cessing [Ding et al., 2018]. Existing approaches in these
domains have predominantly employed decomposition-based
MOEA/D [Zhang and Li, 2007] and non-dominated sorting
NSGA-III [Deb and Jain, 2013] frameworks due to their ef-
fectiveness in navigating high-dimensional search space.

3 Preliminary
3.1 Problem Formulation
In this work, we tackle the dynamic many-objective molecu-
lar optimization problem, characterized by the introduction of
new objectives during the optimization process. In this con-
text, ‘many-objective’ implies optimizing over four or more
objectives, presenting a significant increase in complexity and
dimensionality compared to a typical multi-objective problem
[Hughes, 2005]. The dynamic many-objective molecular op-
timization problem can be formally defined as:

Maximize
x∈X

F(x, t) = {f1(x), f2(x), . . . , ft(x)},

subject to gj(x, t) ≤ 0, j = 1, 2, . . . , k;

hj(x, t) = 0, j = 1, 2, . . . , l;

(1)

where x denotes the molecule vector, with X representing the
feasible set in n-dimensional solution space. The F(x, t) rep-
resents the set of molecular objective functions at time stage
t ∈ T . The objective function fi : X × T → R maps the
molecular space to the real numbers. Constraints are two-
fold: inequality constraints gj(x, t) set the boundaries for fea-
sible solutions, while equality constraints hj(x, t) specify ex-
act conditions that feasible solutions must satisfy. The goal of
this problem is to identify and track the evolving Pareto front.

3.2 Key Pareto Principles in Optimization
As mentioned earlier, the Pareto front is a set of solutions that
are each Pareto optimal, which indicates that none of these
solutions can be dominated by any other solutions. Therefore,
we have the following definitions in our problem formulation:

Definition 1 (Pareto Dominance). Let xa, xb ∈ X , xa is said
to Pareto dominate xb (denoted as xa ≻ xb) if and only if:

∀i ∈ {1, . . . , t}, fi(xa) ≥ fi(x
b)

and ∃j ∈ {1, . . . , t}, fj(xa) > fj(x
b).

(2)

Here, fi(xa) and fi(x
b) represent the values of the ith objec-

tive function for solutions xa and xb, respectively.

Definition 2 (Pareto Optimality). A solution x∗ ∈ X is de-
fined as Pareto optimal if no other solution in the feasible set
dominates it such as follows:

∄ x ∈ X : x ≻ x∗. (3)

Definition 3 (Pareto Front). The Pareto front, denoted as
PF, indicates the boundary of best possible trade-offs within
the objective space. It is formally defined as:

PF = {f(x∗) | x∗ ∈ X , ∄ x ∈ X : x ≻ x∗}, (4)

where f(x∗) denotes the vector of objective function values
corresponding to a Pareto optimal solution.

4 Methods
4.1 Objective Decomposition
As shown in Figure 2, at time stage t0, our method begins by
decomposing complex many-objective sets into more man-
ageable sub-problems. This decomposition process is facili-
tated by our decomposition module, which analyzes the com-
plexities of each objective and automatically determines the
order in which they should be prioritized during optimization.
Within this decomposition module, the generative model ini-
tially optimizes all objectives jointly for a limited number of
iterations. The model uses an initial molecule as a starting
point and produces an optimized molecule. Once complete,
both the optimized and initial molecules are evaluated by ob-
jective functions F(x, t0), also referred to as oracle functions.

From this evaluation, we calculate ordering scores by sub-
tracting the objective scores of the initial molecules from the
optimized molecules. These ordering scores offer insights
into the extent of improvement in objective scores accom-
plished by the model. A lower ordering score indicates that
optimizing a specific objective is more challenging, implying
the need for early prioritization. It is worth noting that if a
preferred order for the optimization process is available, this
can be employed as the decomposition order as well.

4.2 Progressive Optimization
The main idea behind our method is to employ a divide-and-
conquer approach to provide adaptability and efficiency when
dealing with dynamic many-objective optimization. Consider
a scenario where we have a total of five molecular objectives:
objectives A through E, as shown in Figure 2. Following the
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Figure 2: The overview of our DyMol method for dynamic many-
objective molecular optimization problem, specifically exemplifies
the scenario involving five molecular objectives. (a) Our method be-
gins by decomposing complex many-objective sets into more man-
ageable sub-problems facilitated by our decomposition module. (b)
The optimization then progresses from a single objective, systemat-
ically incorporating additional objectives over time according to the
decomposition order, thereby enabling progressive optimization.

decomposition order of A → D → E → B → C, our proposed
model begins by solely optimizing objective A as follows:

Maximize
x∈X1

F(x, t1) = {fA(x)},

subject to gj(x, t1) ≤ 0, j = 1, 2, . . . , k;

hj(x, t1) = 0, j = 1, 2, . . . , l;

(5)

where fA(x) denotes the value of objective A for a molecule x
at time stage t1, and X1 represents the feasible set in the deci-
sion space specific to t1, potentially different from the general
decision space X due to the dynamic nature of the problem.
The gj(x, t1) and hj(x, t1) represent inequality and equality
constraints, respectively, derived from the physical, biologi-
cal, or chemical requirements that a molecule must meet to
be viable in a real-world environment.

When the model satisfies a certain score threshold related
to objective A or reaches a predetermined number of itera-

tions, it progresses to the next time stage t2 and incremen-
tally incorporates additional objective D. Consequently, the
optimization problem is expanded to maximize:

F(x, t2) = {fA(x), fD(x)}. (6)
However, the introduction of a new objective function fD(·)
necessarily alters the optimization landscape by expanding
the dimensions of the objective space. In this context, our ob-
jective adaptation technique plays a crucial role by enabling
the model to adapt to this evolving optimization landscape.
Specifically, it detects changes in the composition of objec-
tive scores, which provide learning feedback for model train-
ing and updates. For instance, at stage t1, the objective scores
are solely based on the value of objective A. However, at t2,
they evolve to encompass a composite value of both objec-
tives A and D. The major role of the objective adaptation tech-
nique is to retrain the model using these updated objective
scores, enabling the model to adjust to the evolving Pareto
front, which is defined as:
PF(t) = {f(x∗) | x∗ ∈ X , ∄x ∈ X : x ≻ x∗ w.r.t. F(x, t)}.

(7)
As time stages progress, the model systematically incorpo-

rates each new subsequent objective in line with the decom-
position order and sequentially adjusts to the evolving Pareto
front. Eventually, at the end of the time stage, the model can
address the complete set of objectives. Thus, our method can
be considered as a divide-and-conquer approach, as it strate-
gically divides the complex optimization task into a series of
simpler sub-problems, each focusing on a specific subset of
the objectives. However, distinct from conventional divide-
and-conquer methods that solve sub-problems independently
and then combine their solutions, our approach is charac-
terized by its sequential adaptation and refinement of solu-
tions. As new objectives are introduced, the model dynami-
cally adjusts its search process and integrates the incremental
sub-problem solutions into a comprehensive solution that ad-
dresses all objectives. This adaptive nature of our method can
make it effective in the dynamic-objective settings, where the
optimization landscape progressively evolves over time.

Theoretical Analysis on Divide-and-Conquer
Here, we present a theoretical analysis demonstrating that our
divide-and-conquer method, despite being incremental in na-
ture, progressively converges toward solutions to those of the
original complex problem that addresses all objectives jointly.
Theorem 1 (Convergence of the Divide-and-Conquer Ap-
proach to Global Near-Optimal Solutions). Let P be an orig-
inal problem with objectives {f1, ..., fi, ..., fn}, and Pi be
a sub-problem of P focusing on {f1, ..., fi}. The solution
{x∗

1, x
∗
2, ..., x

∗
i } obtained at each stage i can be served as ef-

fective initial points for the next stage i + 1 to progressively
converge towards a globally near-optimal solution for P .
Lemma 1 (Initial Convergence). For the initial base case of
the divide-and-conquer approach where i = 1, the solution
x∗
1 for the sub-problem P1 can converge to a near-optimal so-

lution for the objective f1 even in cases of non-convexity. Let
x∗
1 = argmaxx∈X1

f1(x). Then, by the Bolzano-Weierstrass
theorem [Brattka et al., 2012], there exists a sequence {xk} ⊂
X1 such that xk → x∗

1, and lim infk→∞
f1(x

∗
1)−f1(xk)

∥x∗
1−xk∥ ≥ 0.
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Figure 3: Reward scores are derived as a weighted sum of objective
scores from optimized molecules. Molecules and their rewards are
stored in Experience replay, which serves two major roles: ranking
molecules by rewards for convergence sampling, and extracting the
Pareto front for Pareto sampling. These sampled molecules are then
integrated into the loss function for training the generative model.

Lemma 2 (Effective Initial Points). Let x̃1 be identified as a
near-optimal solution for f1 in P1. Extend the optimization
problem to P2 by incorporating an additional objective func-
tion f2. Utilize x̃1 as an initial point to define the restricted
Pareto set S by:

S =

{
x ∈ X2

∣∣∣∣ f1(x) = f1(x̃1),
f2(x) = max{f2(z; x̃1) | z ∈ X2}

}
,

(8)
where f2 is conditioned on x̃1 and S is initially formed
by maximizing f2 while fixing f1 at the near-optimal level
achieved by x̃1. Next, apply the notion of coordinate ascent
[Tseng and others, 1988] by re-optimizing f1 under the con-
straints imposed by the updated f2 values. This process can
be iterated until convergence. Let x′ ∈ PF∗

2 be a point on the
true Pareto front for P2. Assume f1 and f2 satisfy a Lipschitz
condition [Hager, 1979] on X2 that there exists at least local
Lipschitz constants Ci ≥ 0:

∥fi(x)− fi(x
′)∥ ≤ Ci∥x− x′∥, ∀i = 1, 2. (9)

Under the conjecture that if ∥x−x′∥ is sufficiently small (im-
plying x and x′ are close to each other), then ∥fi(x)−fi(x

′)∥
is also small. Thus, with the notion of coordinate ascent, S
can progressively approach closer to PF∗

2 in the input space.
Due to page constraints, additional proofs and their proof
sketches are provided in the supplementary material 7.1.

4.3 Pareto Sampling and Objective Adaptation
Our proposed model is designed to generate molecules that
satisfy given objectives, while promoting score-convergence,
Pareto diversity, and structural diversity. Our model employs
likelihood Pθ to autoregressively generate molecule xg , from
initial molecule sequence x0 up to a maximum length L as:

Pθ(xg = xL) =
L∏

j=0

Pθ(xj |xj−1, xj−2, . . . , x0). (10)

These generated molecules are evaluated by F(x, t) to obtain
objective scores. To provide learning feedback, we define the
reward scores R(x, t) at each time stage t by computing the
weighted sum of objective scores from F(x, t) such as:

R(x, t) =
∑n

i=1
wi(t)fi(x), (11)

where n is the total number of objective functions and wi(t)
denotes the relative weight for fi(x) at time stage t.

To further enhance the training efficiency, we utilize ex-
perience replay B that stores previously optimized molecules
with high reward scores. In contrast to traditional approaches
that primarily emphasize score-convergence, we develop the
Pareto sampling technique to also consider Pareto diversity.

Specifically, we perform two types of sampling: conver-
gence sampling, where we sample molecules xc with high
reward scores from B to promote score-convergence, and
Pareto sampling, where we sample molecules xp from the
Pareto front to encourage Pareto diversity. Finally, the gener-
ative model parameters θ are optimized by the following loss
function:
L(θ, t) = [− logPθ(x) + logPprior(x) +R(x, t)]2 , (12)

where Pprior is the likelihood of a pre-trained model that im-
poses additional constraints based on the chemical grammar.
It should be noted that x encompasses a set of molecules xg ,
xc, and xp, represented as x = {xg, xc, xp}.

As time stages advance t → t+ 1, the introduction of new
objective changes the composition of objective scores and the
reward scores. Although the generative model is initially un-
aware of these changes, we introduce the objective adaptation
technique to update θ. This involves retraining the model us-
ing updated reward scores to account for the impact of new
objectives. The objective adaptation loss can be expressed as:
LOA(θ, t) = [− logPθ(xb) + logPprior(xb) +R(xb, t+ 1)]

2
,

(13)
where xb denotes all molecules from B. Note that we employ
REINVENT [Olivecrona et al., 2017] as our backbone gener-
ative model due to its superior performance. The pseudo-code
for the entire process is in the supplementary material 7.2.

5 Experiments
5.1 Experimental Setup
We evaluated the performance of our proposed method using
the practical molecular optimization (PMO) benchmark [Gao
et al., 2022]. In this setup, oracle call budgets are strictly lim-
ited to 10,000 evaluations to reflect the real-world constraints
of molecular discovery. For the oracle functions in our exper-
iments, we adopted the most commonly used molecular ob-
jective functions in previous MOMO studies [Jin et al., 2020;
Xie et al., 2021]. These include biological objectives GSK3β
and JNK3, which represent inhibition scores against two tar-
get proteins related to Alzheimer’s disease, as well as non-
biological objectives like QED and SA that quantify drug-
likeness and synthesizability, respectively. To extend our ap-
proach to many-objective settings, we included further objec-
tives such as DRD2, associated with dopamine receptor bind-
ing affinity, as well as Osimertinib MPO and Fexofenadine
MPO objectives for discovering new therapeutics that opti-
mize existing drugs with multiple desirable attributes.
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Four objectives Five objectives Six objectives

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Random ZINC 0.065±0.013 4.809±0.243 0.005±0.003 8.867±0.202 0.001±0.000 14.456±0.344
SMILES-VAE 0.073±0.023 4.839±0.435 0.004±0.001 9.226±0.512 0.001±0.000 15.109±0.548
GFlowNet 0.063±0.011 4.952±0.196 0.011±0.004 9.011±0.314 0.004±0.001 14.462±0.422
MIMOSA 0.082±0.028 4.905±0.410 0.016±0.012 9.195±0.761 0.005±0.005 15.454±1.701
LaMBO 0.123±0.006 4.496±0.148 0.009±0.001 9.302±0.159 Out-of-memory Out-of-memory
HN-GFN 0.120±0.000 4.013±0.060 0.004±9.861 9.861±0.096 0.002±0.000 15.349±0.102
MOEA/D 0.176±0.123 4.615±1.193 0.094±0.052 8.105±1.561 0.025±0.018 15.054±2.028
NSGA-III 0.234±0.107 3.477±0.837 0.071±0.047 7.130±1.349 0.016±0.020 14.366±2.393
GraphGA 0.254±0.069 3.379±0.666 0.100±0.057 7.676±1.312 0.051±0.030 11.814±1.787
GPBO 0.275±0.091 3.311±0.757 0.091±0.031 7.670±0.761 0.026±0.024 12.840±1.811
REINVENT BO 0.309±0.021 2.795±0.103 0.071±0.014 7.537±0.620 0.033±0.019 10.929±1.019
REINVENT 0.338±0.030 2.770±0.116 0.099±0.054 7.578±1.187 0.062±0.028 10.032±0.922
AugMem 0.395±0.038 2.496±0.192 0.090±0.043 8.011±0.955 0.071±0.072 12.472±3.758
DyMol (Ours) 0.422±0.023 2.297±0.095 0.247±0.087 4.943±0.990 0.143±0.056 8.842±1.632

Table 1: Performance comparison in many-objective optimization scenarios with Four objectives (GSK3β+JNK3+QED+SA), Five objectives
(GSK3β+JNK3+QED+SA+DRD2), and Six objectives (GSK3β+JNK3+QED+SA+DRD2+Osimertinib MPO) using 10 different seeds.

Figure 4: Average HV improvement curves for the top 8 methods.

5.2 Competing Methods
We compared the performance of our method against a range
of competing methods, including Random ZINC [Sterling
and Irwin, 2015], SMILES-VAE [Gómez-Bombarelli et al.,
2018], MIMOSA [Fu et al., 2021], GFlowNet [Bengio et
al., 2021], and GraphGA [Jensen, 2019]. Additionally, we
evaluated against BO methods such as GPBO [Tripp et al.,
2021], LaMBO [Stanton et al., 2022], and HN-GFN [Zhu
et al., 2023]; well-known many-objective optimization algo-
rithms like MOEA/D [Zhang and Li, 2007] and NSGA-III
[Verhellen, 2022]; and RL-based methods, including REIN-
VENT [Olivecrona et al., 2017], REINVENT BO [Tripp et
al., 2021], and AugMem [Guo and Schwaller, 2024]. Note
that REINVENT was acknowledged as the best-performing
algorithm for molecular optimization, as evidenced by the
PMO benchmark results [Gao et al., 2022]. Hence, as men-
tioned earlier, we employed REINVENT as our backbone
generative model. However, we distinctively developed it for
a dynamic many-objective setting. More information on com-
peting methods, experimental settings, and hyperparameter
configurations is available in the supplementary material 7.3.

5.3 Experimental Results
The performances of our proposed method and the compet-
ing methods were assessed by two evaluation metrics: the
hypervolume indicator (HV) [Zitzler et al., 2003] and the R2
indicator (R2) [Brockhoff et al., 2012]. The HV measures the
volume of the objective space dominated by the Pareto front,
while the R2 evaluates the quality of a solution set based on
user-defined reference points. A higher HV value indicates a
better solution set, while a lower R2 value is more desirable.
Refer to the supplementary material 7.4 for detailed explana-
tions of evaluation metrics. Note that each experiment was
conducted with 10 different seeds to ensure result reliability.

Table 1 presents the HV and R2 performance with standard
deviations for each method across many-objective optimiza-
tion scenarios with different numbers of objectives as follows:
• Four objectives: GSK3β + JNK3 + QED + SA;
• Five objectives: GSK3β + JNK3 + QED + SA + DRD2;
• Six objectives: GSK3β + JNK3 + QED + SA + DRD2

+ Osimertinib MPO.
As shown in Table 1, our method outperforms all competing
methods across all scenarios. Notably, in scenarios with Five
and Six objectives, our method demonstrates a substantial
performance improvement. This highlights the effectiveness
of our divide-and-conquer approach, which successfully han-
dles the inherent complexity of many-objective problems by
decomposing them into manageable sub-problems. However,
other competing methods struggle with exponential increases
in complexity. Additional experiments for many-objective
scenarios are provided in the supplementary material 7.5.

Figure 4 displays the average HV improvement curves for
the top 8 methods in Four objective scenarios. As depicted,
our method consistently outperforms others after reaching
2500 oracle calls. Genetic-based algorithms like MOEA/D,
NSGA-III, and GPBO demonstrate rapid initial performance
improvements but typically reach a plateau beyond 3000 or-
acle calls. In contrast, RL-based algorithms such as REIN-
VENT and AugMem exhibit more consistent and continual
improvement over time. Additional HV improvement curves
and analyses can be found in supplementary material 7.6.
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Ablation Four objectives Five objectives Six objectives

PS DC OA HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

- - - 0.338 2.770 0.099 7.578 0.062 10.032
✔ - - 0.379 2.501 0.103 7.018 0.073 10.033
- ✔ - 0.363 2.692 0.150 6.276 0.101 10.408
- ✔ ✔ 0.373 2.621 0.209 5.480 0.105 10.269
✔ ✔ - 0.412 2.321 0.182 5.488 0.122 9.439
✔ ✔ ✔ 0.422 2.297 0.247 4.943 0.143 8.842

Table 2: Ablation study for each technique: Pareto Sampling (PS),
Divide-and-Conquer (DC), and Objective Adaptation (OA).

Figure 5: Finetuning performance of the top 4 methods in dynamic-
objective scenarios, which introduce a new molecular objective.

5.4 Ablation Study
As shown in Table 2, we have conducted an ablation study to
investigate the impact of key techniques on the performance
of our method: Pareto Sampling (PS), Divide-and-Conquer
(DC), and Objective Adaptation (OA). We observed that each
of these techniques significantly contributes to improved per-
formance. DC primarily focuses on improving convergence,
bringing solutions closer to the optimal Pareto front values.
PS enhances performance through emphasis on Pareto diver-
sity. Remarkably, OA leads to substantial performance gains,
especially in Five-objective scenarios, highlighting its capa-
bility to adapt effectively to newly introduced objectives.

5.5 Dynamic-Objective Scenarios
To assess our method’s adaptability in dynamic-objective sce-
narios, we propose a novel experimental setup where a model
has initially been fully optimized for a set of Five objectives.
Subsequently, a new, sixth objective (Osimertinib MPO) is
introduced, requiring additional optimization. Instead of re-
optimizing all objectives from scratch, we implement a fine-
tuning approach that leverages the model already optimized
for the initial Five objectives, and further optimizing the new
objective. As depicted in Figure 5, our method effectively
reaches the baseline performance of the Six objectives within
fine-tuning 2000 oracle calls and continues to improve be-
yond that. This achievement can be attributed to our OA tech-
nique and the incremental nature of adding objectives within
our method. Details on dynamic-objective scenarios and ad-
ditional experiments are in the supplementary material 7.7.

Figure 6: Visualization of the Pareto front for biological objectives.

Four objectives Five objectives Six objectives

Method BM(↑) CS(↑) BM(↑) CS(↑) BM(↑) CS(↑)

REINVENT 5026 2004 6298 3134 7490 3400
AugMem 6796 2557 7131 3566 6918 4161
DyMol (Ours) 7210 3952 7134 3970 7664 4251

Table 3: Analysis of structural diversity indicated by the number of
unique Bemis-Murcko scaffolds (BM) and carbon skeletons (CS).

5.6 Visualization of the Pareto Front
To evaluate solution quality in our method, we have attempted
to visualize the Pareto front. However, visualizing the Pareto
front in settings with more than three objectives is challenging
due to the human limitations in interpreting high-dimensional
data [Tušar and Filipič, 2014]. Thus, we only focus on visual-
izing biological objectives in Five objective scenarios, as they
are considered to be more important in drug discovery [Sun
et al., 2022]. Figure 6 illustrates the 2D and 3D Pareto fronts,
comparing our method with baseline REINVENT method. In
both cases, the solutions of our method dominate the baseline
method by approaching the optimal Pareto front more closely.
Moreover, our method exhibits a broader distribution of solu-
tions along the Pareto front, suggesting a better exploration.

5.7 Structural Diversity Analysis
In the realm of drug discovery, structural diversity plays a piv-
otal role as it substantially enhances the chances of discover-
ing compounds with distinctive and potent biological activ-
ities [Walters and Namchuk, 2003]. To quantitatively assess
the structural diversity among the molecules generated by our
method, we adopted a diversity metric based on the number
of unique Bemis-Murcko scaffolds (BM) and corresponding
carbon skeletons (CS) [Bemis and Murcko, 1996]. Refer to
the supplementary material 7.8 for further details. As shown
in Table 3, our method outperforms other methods in terms of
BM and CS, indicating a higher average structural diversity.

6 Conclusion
In this work, we propose DyMol as a novel and first method to
address the dynamic many-objective molecular optimization
problem by leveraging the divide-and-conquer approach. Dy-
Mol decomposes complex many-objective sets into manage-
able sub-problems for progressive optimization. Our results
demonstrate that DyMol outperforms competing methods in
both many-objective and dynamic-objective scenarios. Fu-
ture work can include extending research to material science.
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sualization of pareto front approximations in evolutionary
multiobjective optimization: A critical review and the pro-
section method. IEEE Transactions on Evolutionary Com-
putation, 19(2):225–245, 2014.

[Verhellen, 2022] Jonas Verhellen. Graph-based molecu-
lar pareto optimisation. Chemical Science, 13(25):7526–
7535, 2022.

[Walters and Namchuk, 2003] W Patrick Walters and Mark
Namchuk. Designing screens: how to make your hits a
hit. Nature reviews Drug discovery, 2(4):259–266, 2003.

[Wang et al., 2006] Mingliang Wang, Xiangqian Hu,
David N Beratan, and Weitao Yang. Designing molecules
by optimizing potentials. Journal of the American
Chemical Society, 128(10):3228–3232, 2006.

[Xie et al., 2021] Yutong Xie, Chence Shi, Hao Zhou, Yuwei
Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars: Markov
molecular sampling for multi-objective drug discovery.
arXiv preprint arXiv:2103.10432, 2021.

[Yuan et al., 2015] Yuan Yuan, Hua Xu, Bo Wang,
Bo Zhang, and Xin Yao. Balancing convergence and
diversity in decomposition-based many-objective optimiz-
ers. IEEE Transactions on Evolutionary Computation,
20(2):180–198, 2015.

[Zhang and Li, 2007] Qingfu Zhang and Hui Li. MOEA/D:
A multiobjective evolutionary algorithm based on decom-
position. IEEE Transactions on evolutionary computation,
11(6):712–731, 2007.

[Zhu et al., 2023] Yiheng Zhu, Jialu Wu, Chaowen Hu, Ji-
ahuan Yan, Chang-Yu Hsieh, Tingjun Hou, and Jian Wu.
Sample-efficient multi-objective molecular optimization
with GFlownets. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[Zitzler et al., 2003] Eckart Zitzler, Lothar Thiele, Marco
Laumanns, Carlos M Fonseca, and Viviane Grunert
Da Fonseca. Performance assessment of multiobjective
optimizers: An analysis and review. IEEE Transactions
on evolutionary computation, 7(2):117–132, 2003.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6034


	Introduction
	Related Work
	Generative Models for Molecular Discovery
	Multi-Objective Molecular Optimization
	Dynamic Many-Objective Optimization

	Preliminary
	Problem Formulation
	Key Pareto Principles in Optimization 

	Methods
	Objective Decomposition
	Progressive Optimization
	Theoretical Analysis on Divide-and-Conquer

	Pareto Sampling and Objective Adaptation

	Experiments
	Experimental Setup
	Competing Methods
	Experimental Results
	Ablation Study
	Dynamic-Objective Scenarios
	Visualization of the Pareto Front
	Structural Diversity Analysis

	Conclusion

