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Abstract001

Manual slide creation is labor-intensive and re-002
quires expert prior knowledge. Existing nat-003
ural language-based LLM generation meth-004
ods struggle to capture the visual and struc-005
tural nuances of slide designs. To address006
this, we formalize the Reference Image to007
Slide Generation task and propose Slide2Code,008
the first benchmark with difficulty-tiered sam-009
ples based on a novel Slide Complexity Met-010
ric. We introduce SlideCoder, a layout-aware,011
retrieval-augmented framework for generat-012
ing editable slides from reference images.013
SlideCoder integrates a Color Gradient-based014
Segmentation algorithm and a Hierarchical015
Retrieval-Augmented Generation method to016
decompose complex tasks and enhance code017
generation. We also release SlideMaster, a 7B018
open-source model fine-tuned with improved019
reverse-engineered data. Experiments show020
that SlideCoder outperforms state-of-the-art021
baselines by up to 40.5 points, demonstrat-022
ing strong performance across layout fidelity,023
execution accuracy, and visual consistency.024
Our code is available at https://anonymous.025
4open.science/r/SlideCoder.026

1 Introduction027

Slide creation is essential in academic and pro-028

fessional communication for visually conveying029

complex ideas. However, manual design is labor-030

intensive and time-consuming (Al Masum et al.,031

2005). While templates offer some relief, they en-032

force fixed layouts and styles, limiting flexibility.033

Recent progress in Large Language Models034

(LLMs) (Nam et al., 2024; Ge et al., 2023) has035

sparked interest in automatic slide creation. Au-036

toPresent (Ge et al., 2025), an early study on037

the Natural Language (NL) to slide generation038

task, fine-tunes a LLAMA-based model (Grattafiori039

et al., 2024) on the diversified SLIDESBENCH040

dataset. It translates NL instructions into Python041

code, which invokes SLIDESLIB, a high-level API042

The design of this 
image is great. Help 
me convert it into a 

editable slide.

Here is the python 
code for generating 

the slide. 

Figure 1: Illustration of slide generation scenarios from
design and mistakes made by MLLMs.

built on python-pptx (Canny, 2023), to construct 043

each slide. This pipeline reduces manual effort and 044

streamlines design workflows. 045

Despite Autopresent’s capability to generate 046

slides from natural language input, several signifi- 047

cant challenges remain unaddressed. 048

First, natural language inherently lacks an 049

accurate description of slide visual design (e.g., 050

color, layout, and style) and users sometimes 051

directly input the design image for slide gener- 052

ation. For example, as shown in Figure 1, a user 053

sees a nice design from non-editable slides (png 054

and pdf format) or other source like webpage de- 055

sign, and hopes to convert it into an editable slide 056

(pptx format). Or the user lacks the skills to make 057

slides, they can generate the slide by input their 058

design image. In these scenarios, the Multimodal 059

Large Language Models (MLLMs) are needed to 060

understand the design and generate slides. 061

Second, MLLMs face limitations when han- 062

dling complex slides, particularly those incorpo- 063

rating diverse element types and high element 064

density. As illustrated in Figure 1, these discrep- 065

ancies can be divided into three categories: miss, 066

which stands for the complete omission of certain 067

visual or textual elements (e.g., the top left corner 068

of the shape is missing); incorrect, referring to de- 069
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viations in visual styles or attributes from those070

specified or expected in the reference slides (e.g.,071

title is not bold); and disorder, which describes072

significant differences in spatial arrangements and073

alignment of elements compared to the original lay-074

out (e.g., the three subheadings are not properly075

positioned and aligned.).076

Third, MLLMs’ insufficient comprehension077

of the python-pptx library leads to the genera-078

tion of syntactically invalid or non-executable079

code. Autopresent (Ge et al., 2025) attempts to080

address this issue by constructing SLIDESLIB, a081

simplified library built upon python-pptx, encap-082

sulating commonly used operations into a set of083

high-level APIs. However, this operation inher-084

ently restricts the flexibility and comprehensive-085

ness of slide generation. Specifically, SLIDESLIB086

currently supports only five basic operation types,087

which neglects more intricate layouts and design088

requirements commonly encountered in realistic089

scenarios. Consequently, presentations produced090

by this approach tend to be overly simplistic, inad-091

equately capturing complex human intentions and092

detailed visual expectations.093

To address the aforementioned limitations, we in-094

troduce SlideCoder, a layout-aware RAG-enhanced095

hierarchical slide generation framework, which can096

understand the complex slides and python-pptx li-097

brary accurately. First, we formulate a novel task,098

Reference Image (RI) to slide generation, i.e.,099

automatically generating the code for replicating100

the slide, which is visually consistent with RI. To101

evaluate the performance of SlideCoder under com-102

plex slide scenarios, we propose a novel Slide103

Complexity Metric (SCM), and construct a new104

benchmark Slide2Code with different difficulty lev-105

els based on SCM. Second, we develop a novel106

Color Gradients-based Segmentation algorithm107

(CGSeg) that effectively decomposes slide images108

into semantically meaningful regions. Besides,109

we propose the Layout-aware Prompt, which in-110

tegrates the position information of elements to111

enhance MLLM’s understanding of slide layout.112

Third, we propose a novel Hierarchical Retrieval-113

Augmented Generation (H-RAG)-based Code114

Generation method, which employs a dual-level115

retrieval-augmented knowledge base (Cuconasu116

et al., 2024; Fan et al., 2024) to explicitly enhance117

MLLMs’ understanding of the python-pptx library.118

At the higher level, a Shape Type Knowledge Base119

(TS-KB) systematically classifies slide elements120

and standardizes their descriptions using python-121

pptx API terminologies. At the lower level, a Oper- 122

ation Function Knowledge Base (OF-KB) captures 123

precise syntactic patterns and invocation paradigms 124

of python-pptx library functions. 125

To further enhance the MLLM’s ability to gen- 126

erate high-quality slides, we build a PPTX reverse- 127

engineering tool to construct high quality training 128

data for fine-tuning a 7B model SlideMaster based 129

on Qwen-VL-7B (Bai et al., 2025), which can ap- 130

proaches the performance of the closed-sourced 131

model GPT-4o (Achiam et al., 2023). Our contri- 132

butions are summarized as follows: 133

• We define reference image (RI) to slide gener- 134

ation task and propose a novel Slide Complex- 135

ity Metric (SCM), based on which we con- 136

struct Slide2Code, the first difficulty-leveled 137

benchmark with 300 samples. 138

• We propose SlideCoder, which consists of a 139

novel Color Gradients-based Segmentation al- 140

gorithm (CGSeg), a Layout-aware Prompt and 141

a Hierarchical Retrieval-Augmented Genera- 142

tion (H-RAG)-based Code Generation method 143

for enhancing the MLLM’s understanding on 144

the complex slides and python-pptx library. 145

• We train SlideMaster, a 7B open-source model 146

approaching the performance of GPT-4o. To 147

enable effective fine-tuning, we also build 148

a comprehensive PPTX reverse-engineering 149

tool for precise code generation. 150

2 Related Work 151

2.1 Multimodal Large Language Models for 152

Code Generation 153

The multimodal large model demonstrates excel- 154

lent capabilities in visually rich code generation 155

scenarios, such as UI code generation (Xiao et al., 156

2024; Wan et al., 2024a; Yun et al., 2024; Wan 157

et al., 2024b), SVG code generation (Rodriguez 158

et al., 2025; Nishina and Matsui, 2024; Wu et al., 159

2024; Xing et al., 2024), and visually rich program- 160

ming questions (Li et al., 2024; Zhang et al., 2024a; 161

Ma et al., 2025). However, MLLMs are not yet ca- 162

pable of plug-and-play use across tasks and still 163

produce subtle errors, therefore, some studies ex- 164

plore their code repair abilities (Yang et al., 2024; 165

Yuan et al., 2024; Zhang et al., 2024b). 166

2.2 Slide Generation and Understanding 167

Previous work on slide generation has predomi- 168

nantly focused on basic content extraction from 169
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input documents. With the recent advancements170

in large language models (Fu et al., 2022; Hu and171

Wan, 2014; Kan, 2007; Sefid and Wu, 2019), sev-172

eral studies have begun to explore LLM-based slide173

generation. For example, (Zheng et al., 2025) uti-174

lizes LLMs to generate slides based on pre-defined175

slide templates and user-provided text. (Ge et al.,176

2025) introduces the task of natural language (NL)177

to slide code generation, aiming to organize visual178

slide content through textual input. However, its179

use of coarse-grained natural language descriptions180

and a native agent design significantly limits the181

quality of the generated slides.182

3 Slide2Code Benchmark183

We construct the Slide2Code benchmark to evalu-184

ate the performance of multimodal large language185

models (MLLMs) on the Reference Image (RI) to186

slide generation task. Each instance includes a ref-187

erence slide image and its corresponding PPTX188

slide. Slide2Code enables comparison of MLLM189

backbones under varying complexity. §3.1 formally190

defines the task, §3.2 describes our unified com-191

plexity scoring system based on element quantity,192

diversity, and visual density, and §3.3 details data193

collection and sampling.194

3.1 Task Description195

This work addresses the task of Reference Image196

(RI) to slide generation, where the input is a slide’s197

reference image I0 and the goal is to generate198

Python code using the python-pptx library. Let199

F0 denote the original slide file corresponding to200

I0. Given a generation framework G and Multi-201

modal Large Language Models (MLLMs) M , the202

generated code Cg = GM (I0) can be executed to203

obtain a new slide file Fg, whose rendered image204

is denoted as Ig. As the original code C0 for F0 is205

unavailable, we assess the performance of G and206

M by comparing (I0, F0) and (Ig, Fg).207

3.2 Slide Complexity Metric208

To evaluate slide complexity, we propose a Tri-209

Metric Slide Complexity Metric (SCM) that inte-210

grates production difficulty and visual complexity.211

Due to the mismatch between visual appearance212

and construction effort, for example, inserting a213

visually complex image may require minimal op-214

erations. To adress this, we assess slides using:215

(1) element count, (2) element type count (e.g.,216

textbox, placeholder), and (3) Element Coverage217

Ratio. The first two reflect operational cost, the218

0 20 40 60 80 100
Proportion (%)

SLIDESBENCH

Zenodo10k

Slide2Code

41.1% 42.0% 16.9%

25.7% 43.1% 31.1%

33.1% 33.4% 33.4%

Simple Medium Complex

Figure 2: Proportion of samples across three levels in the
Slide2Code, Zenodo10k, and SLIDEBENCH datasets.

third captures visual richness. Since reference com- 219

plexity labels are not available, we evaluate the 220

relative complexity of sample i within a collection 221

Y = {1, 2, 3, ..., N}. 222

Let ci be the number of elements and ei the num- 223

ber of distinct element types in sample i. The El- 224

ement Coverage Ratio vi is the proportion of ac- 225

tivated color grids to total grids in the image of 226

sample i, computed via the gradient-based segmen- 227

tation algorithm CGSeg (see §4.1 for details). 228

Each raw dimension score xi ∈ {ci, ei, vi} is 229

normalized as x̃i = σ
(

xi−µ√
σ2+ϵ

)
, where µ and σ2 230

denote the mean and variance over all samples in 231

set Y , respectively. Here, σ(·) is the sigmoid func- 232

tion (Han and Moraga, 1995), and ϵ is a small 233

constant for numerical stability. The final complex- 234

ity score for slide i is computed via a weighted 235

aggregation: zi = α · c̃i + β · ẽi + γ · ṽi, where 236

α+β+γ = 1 and the weights α, β, γ reflect the im- 237

portance of production effort and visual complexity. 238

This metric shows a strong correlation with human 239

judgment, as detailed in Section §5.4. 240

3.3 Data Collection 241

To construct a comprehensive benchmark that cap- 242

tures diverse slide characteristics, we randomly 243

sample approximately 32,000 Zenodo10k (Zheng 244

et al., 2025) slide instances, the largest publicly 245

available slide dataset, to construct the slide set Y 246

as described in §3.2. To enhance diversity and al- 247

low comparative analysis, we additionally incorpo- 248

rate SLIDEBENCH samples in Y . This unified set 249

is then used to calculate the normalized complexity 250

scores z for all slides. KMeans algorithm is used 251

to obtain three clusters, whose cluster centers are 252

sorted in order of z to define the simple, medium, 253

and complex levels. From each cluster, we ran- 254

domly select 100 representative samples from Y to 255

form the final Slide2Code benchmark. 256

Figure 2 shows that both Zenodo10k and 257
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SLIDEBENCH contain a significantly larger pro-258

portion of simple and medium slides. In contrast,259

Slide2Code exhibits a more balanced composition260

across all three levels, allowing a more equitable261

evaluation of slide generation models under vary-262

ing structural and visual complexities.263

4 Methodology264

In this section, we introduce SlideCoder, a uni-265

fied end-to-end framework for generating Python-266

executable slide code from reference images (RIs).267

We assume a scenario where a user provides a de-268

sign layout ("Design ") and embedded visual ele-269

ments such as pictures or background images ("Pic-270

tures "). SlideCoder comprises three core mod-271

ules. First, a Color Gradients-based Segmenta-272

tion (CGSeg) algorithm segments the input Design273

into semantically meaningful regions. Second, a274

Hierarchical Retrieval-Augmented Code Gen-275

eration module, consisting of three collaborative276

agents Describer, Coder, and Assembler, gener-277

ates the slide code. Third, a Layout-aware Prompt278

mechanism enhances the Assembler agent to en-279

sure spatial consistency and syntactic correctness.280

Finally, based on this framework, we fine-tune a281

7B open-source model, named SlideMaster.282

4.1 Color Gradient-based Segmentation283

To reduce the difficulty of MLLM in understand-284

ing complex slide design, we proposed CGSeg, a285

recursive color gradient-based segmentation algo-286

rithm to divide slide design into blocks. As shown287

in Algorithm 1, CGSeg starts by dividing the input288

image (Figure 4a) into a grid and computing the So-289

bel magnitude for each block to measure the inten-290

sity of the color gradient (lines 4–5). Blocks with291

gradient magnitudes significantly higher than the292

median are marked as activated block (lines 6–14),293

as visualized in Figure 4b. To group visually co-294

herent regions, CGSeg applies a flood-fill (Burtsev295

and Kuzmin, 1993) operation to the binary activa-296

tion mask (line 15), identifying connected regions297

corresponding to sub-images (line 16), as shown in298

Figure 4c. These sub-images are further segmented299

recursively to ensure a hierarchical decomposition300

of the image Im, along with the corresponding301

positional information pm (lines 1–3 and 17–23),302

with the final segmentation result shown in Fig-303

ure 4d. This recursive structure allows CGSeg to304

adaptively refine segment granularity based on lo-305

cal visual complexity, which is crucial for handling306

Algorithm 1 Color Gradient-based Segmentation
(CGSeg)
Require: Image I , Grid size g, Depth D, Max depth Dmax,

Threshold T
Ensure: List of segmented sub-images
1: if D = Dmax then
2: return ∅
3: end if
4: G← SPLIT(I, g) // g × g grid blocks
5: C ← GRADMAG(G) // gradient magnitudes
6: Cmid ← MEDIAN(C)
7: M ← 0g×g // binary mask
8: for each cij in C do
9: if cij > T · Cmid then

10: Mij ← 1 // activate the block
11: else
12: Mij ← 0
13: end if
14: end for
15: M ← FILL(M) // flood-fill
16: Ms ← REGIONS(M) // split connected regions
17: R← ∅
18: for each m in Ms do
19: Im, pm ← CROP(I,m) // get sub-image
20: add Im and pm to R
21: R′ ← CGSEG(Im, g,D+1, Dmax, T )
22: add all in R′ to R
23: end for
24: return R

slides with heterogeneous layout densities. 307

4.2 Hierarchical Retrieval-Augmented Code 308

Generation Module 309

4.2.1 Generation Process 310

We design three collaborative MLLM agents whose 311

code generation processes are augmented by H- 312

RAG. Describer is responsible for generating a 313

global Design description (Overall Description) as 314

well as block descriptions (Block Description) for 315

each segmented blocks. Based on block and their 316

associated block description, Coder produces cor- 317

responding code snippets. Subsequently, Assem- 318

bler generates the complete slide code by layout- 319

aware prompt, which will be elaborated in §4.3, 320

along with the Pictures provided. Executing this 321

code produces a slide that structurally and visually 322

aligns with the Reference Image(RI). If the gener- 323

ated code is not executable Assembler applies a 324

self-refinement mechanism to correct syntax errors, 325

where errors serves as the feedback to prompt the 326

MLLM to re-generate the code. 327

Beyond the above inputs, each agent draws 328

knowledge from distinct bases according to its role. 329

The form and origin of the knowledge used in each 330

agent’s prompt are detailed in §4.2.2. 331
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Color Gradient-based Segmentation Hierarchical RAG-based Code Generation

This textbox’s content 
is “understanding ...

Overall Description

Assembler

Layout-aware Prompt
You are a python-pptx expert. Based on the information and code snippets I provide, please assemble a complete python-pptx script: <Design>
refers to the reference image for this slide. Its global description is <Overall Description>. The code snippets and their layout positions are given as
<Code Snippets>, <Position*>. Here are some syntax rules that might be useful: <Grammar>. The background and images path is ...

Pictures and Prompt

Knowledge Base

Operation Function

<Grammar>

CoderDescriber

Blocks and Position

Design

…

< 𝑥!, 𝑦!, 𝑤!, ℎ! > < 𝑥", 𝑦", 𝑤", ℎ" >< 𝑥# , 𝑦# , 𝑤# , ℎ# >

There is a paragraph
runs in textbox ...

This autoshape
includes a textbox...

This slide is titled 
"Everyday Objects ...

Block Description

from pptx import Presentation…
font.color.rgb = RGBColor()…

from pptx import Presentation…
textbox = slide.shapes.add_textbox…

from pptx import Presentation…
textbox = slide.shapes.add_textbox…

Code Snippets from pptx import Presentation
…
textbox = slide.shapes.add_textbox
font.color.rgb = RGBColor()
slide.shapes.add_shape
…

Final Code

Slide

Shape Type

Figure 3: The framework of SlideCoder.

(a) Input Image (b) Activated Grid Blocks (c) Flood-filled Regions (d) Final result

Figure 4: An example of CGSeg applied to a slide reference image. The algorithm begins by computing color
gradients (a-b), fills them (c), and recursively segments sub-regions (d).

4.2.2 Hierarchical Retrieval-Augmented332

Generation333

Hierarchical Retrieval-Augmented Generation(H-334

RAG) comprises a Shape Type Knowledge Base335

and an Operation Function Knowledge Base. The336

former contains descriptions of objects from the337

python-pptx documentation, used in Describer to338

guide standardized description generation. For ex-339

ample, in “This autoshape includes a textbox...”,340

both terms are object names from the documenta-341

tion. The latter includes full syntax specifications342

(e.g., parameters, return values, etc.). Appendix F343

details their structure.344

We employ BGE M3-Embedding (Chen et al.,345

2024) to embed entries and build a vector-based346

retrieval database. For a prompt p, its vector qp is347

computed, and cosine similarity cos(qp, ki) is used348

to match ki. The top-k relevant entries are inserted349

into p. Given the size of the Shape Type Knowl-350

edge Base, all entries are included in Describer to351

ensure complete type coverage.352

In the hierarchical pipeline, agents collaborate353

progressively. Describer retrieves object types354

from the Shape Type Knowledge Base to identify355

elements in block images and output standardized356

descriptions. Coder uses these to query the Opera-357

tion Function Knowledge Base and generate code358

snippets. Assembler uses these snippets to retrieve359

full syntax patterns and generate executable code.360

4.3 Layout-aware Prompt 361

After Coder completes the generation of code snip- 362

pets for blocks, Assembler is applied to assemble 363

these code snippets for generating the final slide in 364

an accurate manner. The assembly prompt needs 365

to meet the following requirements: (1) ensure that 366

each block appears in the correct position in the 367

final slide; (2) avoid syntax errors in the merged 368

code and ensure code context consistency. 369

To achieve above goals, layout-aware prompt in- 370

jects the layout position using python-pptx standard 371

positioning units (inches) to ensure the position 372

correctness and retrieve the grammar <Grammar> 373

from Knowledge Base to avoid syntax errors and 374

code conflicts. Since the resolution of the Design 375

differs from the actual slide layout size, we apply 376

proportional scaling to the Position (<x, y, w, h>) 377

extracted from Color Gradients-based Segmenta- 378

tion (CGSeg) algorithm to map it onto the slide co- 379

ordinates, denoted as <Position*>. Subsequently, 380

the reference image design <Design>, global body 381

description <Overall description.>, partial codes 382

<Code Snippets> from Coder, layout representa- 383

tion <Position*>, and syntactic patterns <Gram- 384

mar> retrieved from the Hierarchical Retrieval- 385

Augmented Generation(H-RAG) knowledge base 386

are integrated into a predefined prompt template 387

to construct the final layout-aware prompt (see Ap- 388

pendix E for details). 389
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4.4 SlideMaster390

Using the SLIDESBENCH training set, we con-391

struct a dataset of (RI, instruction, program) triplets.392

The reverse-engineering tool proposed by (Ge et al.,393

2025) produces labels (Python code) for only a394

limited set of slide styles, resulting in suboptimal395

training data quality. To mitigate this, we develop396

a new reverse-engineering tool capable of handling397

a broader spectrum of slide styles, thereby enhanc-398

ing label quality. The effectiveness of this tool is399

analyzed in §5.3. We fine-tune our model, Slide-400

Master, based on Qwen2.5-VL-7B-Instruct (Bai401

et al., 2025), using LoRA (Hu et al., 2022). Full402

configuration details are provided in Appendix C.403

5 Experiments and Results404

5.1 Experimental Setup405

Model. To evaluate the performance of the Slide-406

Coder, we employ state-of-the-art (SOTA) models,407

including GPT-4o (Achiam et al., 2023), Gemini-408

2.0-flash (Google, 2025), and SlideMaster, which409

is a fine-tuned model based on the open-source410

Qwen2.5-VL-7B-Instruct (Bai et al., 2025). The411

SOTA models are accessed via their official APIs,412

with GPT-4o using version 20241120 and Gemini-413

2.0-flash accessed in May 2025. For both models,414

the maximum token limit and temperature are set to415

4096 and 0, respectively. Same as (Ge et al., 2025),416

we allow both Coder and Assembler agents up to417

three self-refinement attempt. The first successful418

attempt is taken as the output. If Coder fails to gen-419

erate executable code after the maximum number420

of attempts, the corresponding block is discarded.421

If Assembler fails, the corresponding sample is422

marked as execution failure.423

Metric. To comprehensively assess generation424

quality, we adopt four metrics, using the notations425

defined in §3.1. (1) Global Visual Metrics, in-426

cluding CLIP (Hessel et al., 2021) and SSIM (Nils-427

son and Akenine-Möller, 2020) scores computed428

between the original image I0 and the generated429

image Ig; (2) Local Structural Metrics, which430

compare the original and generated slide files F0431

and Fg in terms of content similarity and position432

similarity, following (Ge et al., 2025); (3) Execu-433

tion, defined as the success rate of executing Cg434

without errors; and (4) Overall Score, calculated as435

the average of all metric values across all samples,436

with failed executions assigned a score of zero.437

5.2 Quantitative Results and Analysis 438

The upper part of Table 1 presents the performance 439

of different frameworks on our proposed bench- 440

mark, evaluated using the metrics introduced in 441

Section 3.1. The results show that SlideCoder con- 442

sistently achieves the best performance across all 443

difficulty levels. Specifically, its overall score sur- 444

passes the best baseline by 40.5, 34.0, and 29.9 445

points on the simple, medium, and complex levels, 446

respectively, demonstrating the overall superior- 447

ity of our framework. For execution success rate, 448

SlideCoder outperforms the best baseline by 38%, 449

32%, and 27% across the three difficulty levels, 450

indicating that the proposed H-RAG and CGSeg 451

mechanisms significantly enhance model perfor- 452

mance and reduce task difficulty. 453

Moreover, SlideCoder outperforms all baselines 454

in both Local Structural Metrics and Global Visual 455

Metrics, confirming its strong fidelity in preserving 456

both the structural layout and visual appearance of 457

the original slides. The stepwise decline in Slide- 458

Coder’s overall score across increasing difficulty 459

levels further indicates its ability to leverage vi- 460

sual and structural cues from the input slides. In 461

contrast, baseline models relying solely on natu- 462

ral language descriptions exhibit weak sensitivity 463

to slide complexity, failing to reflect the difficulty 464

hierarchy in their overall scores. 465

On the SLIDESBENCH dataset (as shown in 466

the lower part of Table 1), SlideCoder also sur- 467

passes all baselines across all metrics, with an 468

overall score of 78.8 when using GPT-4o as the 469

backbone, representing a 11.9 improvement over 470

the best-performing baseline. Notably, the open- 471

source fine-tuned model SlideMaster also demon- 472

strates competitive performance, outperforming the 473

best GPT-4o-based baseline on both datasets. 474

5.3 Reverse Tool Analysis 475

Table 2 summarizes the supported object types and 476

corresponding styles in our proposed reverse engi- 477

neering tool. Our tool supports 10 commonly used 478

object types and 44 distinct object styles, whereas 479

Autopresent (Ge et al., 2025) only supports 5 object 480

types and 16 styles. Detailed comparisons can be 481

found in Appendix B. To quantitatively assess the 482

reverse engineering capabilities of both tools, we 483

adopt two evaluation metrics: 484

Reconstruction Ratio: This metric calculates 485

the ratio between the number of shapes in the slide 486

reconstructed from the reverse-engineered code 487
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Table 1: Results on Slide2Code (top) and SLIDESBENCH (bottom) using SlideCoder and AutoPresent with
different MLLMs. Green , yellow , and red indicate simple, medium, and complex levels in SlideCoder. Bolded
values mark the best result per level.

Framework Backbone Execution% Local Structural Metrics Global Visual Metrics OverallContent Position Clip SSIM
Slide2Code

AutoPresent

AutoPresent
61.0 92.7 78.9 70.8 80.3 48.6
53.0 89.6 77.3 69.2 79.1 41.4
67.0 87.2 71.4 65.9 73.4 48.5

Gemini2.0-flash
57.0 91.4 78.3 69.7 79.0 44.8
68.0 88.7 79.9 66.3 71.6 51.5
66.0 89.3 72.2 63.1 64.7 45.2

GPT-4o
58.0 92.7 80.9 68.8 75.6 45.4
50.0 92.3 74.6 67.6 72.6 36.8
69.0 90.3 73.3 62.3 63.3 47.1

SlideCoder

SlideMaster
86.0 92.4 87.4 77.6 91.1 76.7
75.0 84.7 79.8 75.4 86.4 61.7
73.0 76.1 70.5 72.4 82.8 54.2

Gemini2.0-flash
97.0 94.5 88.6 81.3 90.7 87.0
90.0 90.9 84.6 82.3 85.5 76.6
88.0 92.7 80.9 81.7 81.2 71.6

GPT-4o
99.0 96.3 88.1 79.8 91.8 89.1
100.0 92.5 84.7 81.5 86.2 85.5
96.0 94.3 80.0 80.7 82.6 78.4

SLIDESBENCH

AutoPresent
AutoPresent 84.1 92.2 67.2 81.6 73.7 65.3

Gemini2.0-flash 56.4 91.7 62.9 77.1 66.0 40.4
GPT-4o 86.7 92.5 76.3 78.0 70.8 66.9

SlideCoder
SlideMaster 87.2 91.5 76.9 73.4 80.0 68.4

Gemini2.0-flash 89.7 90.0 85.4 81.8 80.0 75.0
GPT-4o 94.9 94.8 83.9 82.1 80.9 78.8

Table 2: Object Types and Corresponding Style count

Type Name Ours AutoPresent’s

title 10 3
textbox 10 5
bullet points 8 5
background color 1 1
image 2 2
placeholder 4 –
freeform 2 –
connector 5 –
table 4 –
triangle 5 –

and the original slide. Our tool achieves a recon-488

struction ratio of 90.38%, significantly outperform-489

ing (Ge et al., 2025), which only reaches 65.67%.490

This demonstrates the broader object type coverage491

enabled by our tool.492

CLIP Score: Our method achieves a CLIP493

score (Hessel et al., 2021) of 88.66%, whereas494

Autopresent (Ge et al., 2025) only achieves495

69.87%. The higher score indicates that our reverse-496

engineered slides more accurately preserve the vi-497

sual and stylistic details of the original, owing to498

the broader support for object types and styles.499

5.4 Slide Complexity Metric Analysis 500

To evaluate the effectiveness of the proposed Slide 501

Complexity Metric (SCM), we conducted a human 502

subject study. A total of 100 samples were ran- 503

domly selected from the Slide2Code benchmark for 504

evaluation. Four doctoral students were recruited 505

as annotators, each assigned 50 slides to assess. 506

The annotators were instructed to score each slide 507

from the perspective of three dimensions: the num- 508

ber of shapes, the diversity of shape types, and the 509

level of element coverage. The scoring range was 510

0–100, following the protocol in Appendix D. Each 511

slide was rated independently by two annotators, 512

and the final score was their average. 513

To assess the alignment between SCM and hu- 514

man perception, we first compute the Pearson corre- 515

lation coefficient (Cohen et al., 2009) between the 516

TSC complexity scores and the averaged human 517

scores. The result is r = 0.873 with a p-value of 518

2.776× 10−32, indicating a strong and statistically 519

significant correlation. Additionally, we calculated 520

the intraclass correlation coefficient (Koo and Li, 521

2016) between the SCM scores and each individual 522

annotator’s score to assess consistency. The ICC 523

result is 0.726 with a p-value of 1.186 × 10−31, 524

7
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Figure 5: Examples of slides generated by different methods in three difficulty levels.

demonstrating substantial agreement between SCM525

and human evaluations. These results confirm that526

SCM is a reliable and objective metric aligned with527

human judgment of slide complexity.528

5.5 Ablation Study529

Table 3: Overall performance of ablation study.

Setting Execution% Overall

SlideCoder
100.0 89.9
100.0 85.8
100.0 82.2

w/o Layout
100.0 81.2
93.9 73.6
93.9 71.8

w/o CGSeg
75.8 55.4
51.5 39.6
69.7 48.4

w/o H-RAG
90.9 80.4
81.8 69.3
84.8 70.7

Native Setting
75.8 53.9
48.5 37.4
66.7 46.9

We design three ablation settings to validate the530

effectiveness of different components in our frame-531

work: (1) w/o Layout, removes the layout-aware532

prompt; (2) w/o CGSeg, disables both the CGSeg533

mechanism and the layout-aware prompt; (3) w/o534

H-RAG, removes the <Grammar> content from535

all prompts.(4) Native setting, which removes H-536

RAG on top of the w/o CGSeg setting. Detailed537

descriptions are provided in Appendix A.1. We538

randomly sample 33 instances from each difficulty539

level, resulting in a total of 99 samples, and per-540

form inference using GPT-4o. The overall results541

are reported in Table 3, with detailed metric result542

provided in Appendix A.2. After removing each543

component, both execution rate and overall score544

exhibit varying degrees of decline, which demon- 545

strates the contribution of each component to the 546

overall framework. Notably, the w/o CGSeg set- 547

ting shows significant performance drops across all 548

metrics. Although slightly better than the Native 549

setting due to the presence of H-RAG. 550

5.6 Case Study 551

Figure 5 presents slides generated by different mod- 552

els under three levels of difficulty. It can be ob- 553

served that models based on natural language often 554

fail to satisfy the detailed and layout-specific re- 555

quirements of reference images. These models fre- 556

quently produce slides with overlapping elements 557

or content that extends beyond canvas boundaries. 558

In medium and complex samples, the generated 559

code often fails to compile. In contrast, Slide- 560

Coder’s CGSeg mechanism enables the MLLM 561

to focus more effectively on fine-grained details. 562

Moreover, the layout-aware prompt helps ensure 563

that the spatial arrangement of elements aligns 564

more closely with reference image. 565

6 Conclusion 566

We introduce a new Reference Image to Slide Gen- 567

eration task and a novel Slide Complexity Met- 568

ric for evaluating slide complexity. Based on this 569

metric, we build the Slide2Code benchmark with 570

different levels of difficulty. We also propose Slide- 571

Coder enhanced by a Color Gradients-based Seg- 572

mentation algorithm, a Layout-aware Prompt and 573

a Hierarchical Retrieval-Augmented Code Genera- 574

tion for accurate slide generation. A high-quality 575

training set is curated to fine-tune a 7B open-source 576

model. Experimental results show that SlideCoder 577

outperforms the strongest baselines. 578
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Limitations579

In this work, we take the first step toward vision-580

based slide generation. While our method achieves581

substantial improvements across multiple evalu-582

ation metrics, several limitations remain unad-583

dressed. First, the current framework focuses on584

generating a single slide from one reference image585

and does not explore the multi-slide generation sce-586

nario. Second, we assume that user input contains587

separate design and image components, and do not588

handle the case where a complete slide with em-589

bedded pictures is provided as input. Third, due to590

budget and time constraints, our segmentation al-591

gorithm adopts a fixed-rule paradigm. Future work592

may investigate more flexible model-based detec-593

tion approaches to enable adaptive and accurate594

block partitioning.595
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A Detail ablation analysis 783

A.1 Details of Ablation Settings 784

• w/o Layout: Removes only the layout-aware 785

prompt, meaning that the input to Assembler 786

does not contain the positional coordinates of 787

each block. 788

• w/o CGSeg: Disables the CGSeg mechanism. 789

Since the goal of Coder is to generate par- 790

tial code and Assembler is responsible for 791

code assembly, the removal of CGSeg renders 792
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Assembler unnecessary. Consequently, both793

Assembler and its layout-aware prompt are794

removed in this setting, and the output code795

generated by Coder is directly treated as the796

final output of the framework.797

• w/o H-RAG: Disables the retrieval of knowl-798

edge base content for all agents.799

• Native setting: Disables both H-RAG and800

CSeg components. Specifically, we input ordi-801

nary prompts that do not incorporate H-RAG,802

allowing the MLLMs to generate complete803

slide code directly from the reference image.804

This setup is used to evaluate the baseline805

capability of native MLLMs in handling the806

reference image to slide code generation task.807

A.2 Detailed Analysis of Ablation Results808

Table 4 provides a detailed evaluation metrics under809

different ablation settings.810

In the w/o Layout setting, the Position score811

under the complex level drops significantly from812

81.35 to 72.16. This is primarily because, in com-813

plex cases, the CGSeg algorithm typically divides814

the Reference Image(RI) into more blocks, and815

without layout information, the Agent struggles816

to model spatial relationships among multiple el-817

ements. This often leads to overlapping or out-818

of-bound content, causing a sharp decline in the819

Position metric and slightly affecting other metrics820

as well.821

In the w/o CGSeg setting, both the CGSeg822

mechanism and the layout-aware prompt are re-823

moved. As a result, a single Describer Agent is824

required to handle the entire complex slide, which825

exceeds its processing capacity, often leading to826

code generation failures and a sharp drop in ex-827

ecution success rate. Its performance is slightly828

better than the Native setting due to the additional829

knowledge provided by H-RAG.830

In the w/o H-RAG setting, the <Grammar>831

component is removed from each Agent. Ex-832

cluding this component from Describer reduces833

its ability to accurately identify the correspond-834

ing python-pptx object. Similarly, removing it835

from Coder and Assembler deprives the Agents836

of essential syntactic guidance, often resulting in837

version-related errors caused by inconsistencies838

between the model’s training data and the current839

version of the python-pptx library. These combined840

factors lead to overall performance degradation.841

In the Native setting, both the CGSeg mech- 842

anism and H-RAG are removed, leaving a single 843

Coder Agent to handle the entire slide without any 844

auxiliary support. This reduces the framework to 845

a plain MLLM-based inference process, severely 846

limiting its ability to generate structured and exe- 847

cutable code, and resulting in the lowest execution 848

rate and overall performance. 849

B Detailed comparisons of Reverse Tool 850

Table 5 lists the object types and their styles sup- 851

ported by our reverse engineering tool. 852

Table 6 lists the object types and their styles 853

supported by AutoPresent’s reverse engineering 854

tool. 855

C LoRA fine-tuning parameters 856

The LoRA fine-tuning parameters are listed in Ta- 857

ble 7. 858

D Evaluation Dimensions and Scoring 859

Criteria 860

The evaluation guidelines for the four doctoral stu- 861

dent annotators are provided in Figure 6. 862

E Prompt Templates 863

The prompt templates for the Describer and Coder 864

are shown in Figure 7 and Figure 8, respectively. 865

Layout-aware prompt is shown in Figure 9. 866

F Details of the Knowledge Base 867

Construction 868

Figure 10 presents several examples from the Shape 869

Type Knowledge Base, which consists of object 870

types defined in the python-pptx library along with 871

their corresponding descriptions. Figure 11 shows 872

an example from the Operation Function Knowl- 873

edge Base, which includes the function name, pa- 874

rameters, return value, usage example, and a textual 875

explanation of the function. 876
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Table 4: Detailed performance analysis under several ablation settings. Green , yellow , and red indicate simple,
medium, and complex levels in SlideCoder. Bolded values mark the best result per level.

Setting Execution% Global Visual Metrics Local Structural Metrics OverallContent Position Clip SSIM

SlideCoder
100.0 97.1 89.9 80.8 92.9 89.9
100.0 92.7 86.5 82.7 85.8 85.8
100.0 95.0 81.3 82.2 82.3 82.2

w/o Layout
100.0 88.8 86.4 81.2 79.2 81.2
93.9 90.4 75.2 80.9 78.4 73.6
93.9 93.6 72.2 80.3 76.4 71.8

w/o CGSeg
75.8 90.4 86.5 69.4 73.1 55.4
51.5 91.7 81.4 68.5 71.4 39.6
69.7 93.0 83.2 68.1 69.0 48.4

w/o H-RAG
90.9 98.6 88.4 79.7 91.8 80.4
81.8 91.6 84.7 81.7 87.8 69.3
84.8 94.0 87.9 81.3 83.4 70.7

Native Setting
75.8 90.0 87.9 71.1 71.2 53.9
48.5 92.9 83.3 66.7 69.5 37.4
66.7 92.6 85.7 66.5 70.4 46.9

Table 5: The object types and their styles supported by our reverse engineering tool.

Object Type Styles

textbox Position, Text frame margin, Alignment, Paragraph spacing, Font style, Fill
color, Font size, Bold, Italic, Underline

rectangle Position, Line color, Line width, Fill color
object_placeholder Position, Fill color, Object position
freeform Position, Fill color
bullet_points Position, Item content, Font size, Font color, Fill color, Bold, Italic, Underline
image Position, Image path
background_color Color
connector Start position, End position, Arrow color, Arrow width, Arrow style
table Position, Cell height, Cell fill color, Text inside cell
triangle Position, Type, Line color, Line width, Fill color

Table 6: The object types and their styles supported by AutoPresent’s reverse engineering tool.

Object Type Styles

title Font size, Font color, Fill color
textbox Position, Font size, Bold, Font color, Fill color
bullet_points Position, Item content, Font size, Font color, Fill color
image Position, Image path
background color Color
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Slide Complexity Evaluation Guide 

Purpose of Evaluation 
This guideline is intended to assist you in subjectively evaluating the complexity of slide samples based 
on the following three dimensions: 

1. Number of Shapes 
2. Diversity of Shape Types 
3. Visual Complexity 

Each dimension should be scored on a scale from 0 to 100. You are expected to assess each slide 
independently and provide a final overall score reflecting your holistic judgment of the slide’s 
complexity. 
Evaluation Procedure 
For each slide, please follow these steps: 

1. Review the slide thoroughly to understand its structure and element layout. 
2. Evaluate each of the three dimensions separately (see detailed criteria below). 
3. Based on your judgment, assign a comprehensive overall score (0–100).Record your scores 

(three dimensions + overall) clearly in the scoring table. 
Scoring Dimensions and Criteria 
1. Number of Shapes 
Refers to the total count of visual elements on the slide, including but not limited to: text boxes, diagrams, 
arrows, lines, images, geometric shapes, etc. 

• 0–20: Very few elements (e.g., only a title and 1–3 text boxes). 
• 21–50: Moderate amount of shapes (e.g., 4–10 elements, such as text + one chart). 
• 51–80: High density of shapes (e.g., 11–20 elements, visually filled slide). 
• 81–100: Extremely dense, cluttered with over 20 elements. 

2. Diversity of Shape Types 
Measures how varied the types of visual components are. Common types include text boxes, images, 
tables, flowcharts, icons, arrows, geometric shapes (e.g., rectangles, circles, lines), and more. 

• 0–20: Only one type used (e.g., all text). 
• 21–50: Two or three different types, basic variety. 
• 51–80: Four to six types, indicating notable diversity. 
• 81–100: Rich variety with more than six distinct shape types. 

3. Visual Complexity 
Refers to how complex the slide appears in terms of visual density, layout structure, information layering, 
and cognitive load. It captures the subjective perception of how “complicated” the slide looks. 

• 0–20: Very clean and minimalist, with generous whitespace. 
• 21–50: Well-structured, moderately filled, visually comfortable. 
• 51–80: Noticeably dense, some clutter, yet still readable. 
• 81–100: Overwhelming amount of information, chaotic layout, hard to scan quickly. 

Overall Score Guidelines 
After rating the three dimensions above, you are asked to provide a final overall score (0–100) that 
reflects your subjective judgment of the slide’s overall complexity. 
⚠ Note: This does not need to be a simple average of the three scores. Instead, consider how each 
factor influences the overall perception of complexity. 

Figure 6: Evaluation guidelines provided to the four doctoral student annotators.
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Figure 7: Prompt of Describer.
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Prompt of Coder 
Code generation process 
Please write Python code to create a PowerPoint slide that matches the following description: 
{block_description} 
 
The following is an introduction in python-pptx API Documentation: 
{<Grammar> } 
 
Please generate Python code using the python-pptx library to create a PowerPoint slide based on the 
provided codes. The code should:   
1. Create a new PowerPoint presentation.   
2. Add a slide using the slide layout with index 6 (typically a Blank Layout) to ensure a clean slate 
for custom content placement.   
3. Include all text elements and shapes as specified in the slide, with properties such as font, size, 
color, and alignment accurately applied.   
4. Use inches (in) units for all size and position measurements, directly converting them using 
python-pptx's Inches() function for shapes and positions, and Pt for font sizes.   
5. Save the presentation in the output/generated_ppts directory with a descriptive filename (e.g., 
generated_slide.pptx).   
6. Ensure the code is well-commented and handles any necessary imports. 
{block_image} 
 
Fix code process 
You are a python-pptx expert. 
The previous code generated an error. Please fix the code. 
Error message:   
{error_message} 
Previous code: 
{code} 
 
Introduction in python-pptx API Documentation: 
{<Grammar> } 
Please provide the complete corrected code that will create the PowerPoint slide successfully. 
 
  

Figure 8: Prompt of Coder.
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Layout-aware prompt 
 
You are a python-pptx expert. Based on the information and code snippets I provide, please assemble 
a complete python-pptx script:  
<Design> refers to the reference image for this slide.  
 
Its global description is <Overall Description>.  
 
The code snippets and their layout positions are given as  
<Code Snippets1>, <Position1*>.  
<Code Snippets1>, <Position1*>.  
… 
 
Here are some syntax rules that might be useful: <Grammar>.  
 
The background and images path is ... 
 
 
Background path: 
{background_image_path} 
Image1 Path: 
{image_path_1} 
Image1 Coordinates: 
Left: {x1} inches 
Top: {y1} inches 
Width: {w1} inches 
Height: {h1} inches 
Please provide the complete corrected code that will create the PowerPoint slide successfully. 
Please generate Python code using the python-pptx library to create a PowerPoint slide based on the 
provided codes. The code should: 

1. Create a new PowerPoint presentation. 
2. Add a slide using the slide layout with index 6 (typically a Blank Layout) to ensure a clean 

slate for custom content placement. 
3. Include all text elements and shapes as specified in the slide, with properties such as font, 

size, color, and alignment accurately applied. 
4. Use inches (in) units for all size and position measurements, directly converting them using 

python-pptx's Inches() function for shapes and positions, and Pt for font sizes. 
5. Save the presentation in the output/generated_ppts directory with a descriptive filename 

(e.g., generated_slide.pptx). 
6. Ensure the code is well-commented and handles any necessary imports. 

 

Figure 9: Layout-aware prompt.
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Auto Shape 
An auto shape is a predefined, customizable shape in PowerPoint, such as a rectangle, ellipse, or 
block arrow, with approximately 180 variations. Auto shapes can have a fill, outline, and contain 
text. Some include adjustable features, indicated by yellow diamond handles (e.g., to modify the 
corner radius of a rounded rectangle). A text box is a specific type of auto shape, typically 
rectangular, with no default fill or outline. 
 
######## 
 
Picture 
A picture in PowerPoint refers to a raster image, such as a photograph or clip art, treated as a distinct 
shape type with unique behaviors compared to auto shapes. Note that an auto shape can have a 
picture fill, where an image serves as the shape’s background instead of a color or gradient, but this 
is a separate feature. 
 
######## 
 
Graphic Frame 
A graphic frame is a container that automatically appears in a PowerPoint file when adding graphical 
objects like tables, charts, SmartArt diagrams, or media clips. It cannot be inserted independently 
and typically requires no direct interaction from the user. 
 
######## 
 
Group Shape 
A group shape is created when multiple shapes in PowerPoint are grouped, enabling them to be 
selected, moved, resized, or filled as a single unit. The group shape is only visible through its 
bounding box when selected, containing the individual member shapes. 
 
######## 
 
Line/Connector 
Lines are linear shapes distinct from auto shapes. Some lines, known as connectors, can attach to 
other shapes and remain connected when those shapes are moved. Connectors are not yet fully 
supported in some contexts, but they are valuable for creating dynamic diagrams. 
 
######## 
 
Content Part 
A content part involves embedding external XML data, such as SVG, within a PowerPoint 
presentation. PowerPoint itself does not actively utilize content parts, and they can generally be 
ignored without impacting functionality. 
 
…… 

Figure 10: Examples from the Shape Type knowledge base.
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# Function: `pptx.Presentation` 
 
## Function Name 
 
`pptx.Presentation` 
 
## Function Parameters 
 
- **pptx** (`Union[str, IO[bytes], None]`, optional, default: `None`) 
  - Description: Specifies the source of the presentation. 
    - If a `str`, it represents the file path to a `.pptx` file. 
    - If an `IO[bytes]`, it represents a file-like object containing the `.pptx` file data. 
    - If `None`, loads the built-in default presentation template. 
  - Constraints: The file or stream must be a valid `.pptx` file if provided. 
 
## Function Return Value 
 
- **Type**: `presentation.Presentation` 
- **Description**: A `Presentation` object representing the loaded or newly created PowerPoint 
presentation. 
 
## Function Python Example 
 
```python 
from pptx import Presentation 
 
# Create a new presentation using the default template 
prs = Presentation() 
 
# Load an existing presentation from a file 
prs = Presentation("existing_presentation.pptx") 
 
# Load a presentation from a file-like object 
from io import BytesIO 
with open("existing_presentation.pptx", "rb") as f: 
    prs = Presentation(BytesIO(f.read())) 
``` 
 
## Function Purpose 
 
The `pptx.Presentation` function is the primary entry point for creating or loading a PowerPoint 
presentation. It initializes a `Presentation` object, which provides access to slides, slide masters, 
layouts, and other presentation components, enabling programmatic manipulation of presentation 
content. 

Figure 11: An example from the Operation Function knowledge base.
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Table 7: LoRA fine-tuning configuration used in our
experiments.

Parameter Value

Rank 8
Max Sequence Length 4096
Batch Size 4
Gradient Accumulation Steps 8
Learning rate 1e-4
Epochs 10
Warmup Ratio 0.1
Mixed Precision bf16
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